68717a24f28dad3c69765363c6a27197029b4b2e
[platform/upstream/isl.git] / isl_affine_hull.c
1 #include "isl_ctx.h"
2 #include "isl_seq.h"
3 #include "isl_set.h"
4 #include "isl_lp.h"
5 #include "isl_map.h"
6 #include "isl_map_private.h"
7 #include "isl_equalities.h"
8 #include "isl_sample.h"
9 #include "isl_tab.h"
10
11 struct isl_basic_map *isl_basic_map_implicit_equalities(
12                                                 struct isl_basic_map *bmap)
13 {
14         struct isl_tab *tab;
15
16         if (!bmap)
17                 return bmap;
18
19         bmap = isl_basic_map_gauss(bmap, NULL);
20         if (ISL_F_ISSET(bmap, ISL_BASIC_MAP_EMPTY))
21                 return bmap;
22         if (ISL_F_ISSET(bmap, ISL_BASIC_MAP_NO_IMPLICIT))
23                 return bmap;
24         if (bmap->n_ineq <= 1)
25                 return bmap;
26
27         tab = isl_tab_from_basic_map(bmap);
28         tab = isl_tab_detect_equalities(tab);
29         bmap = isl_basic_map_update_from_tab(bmap, tab);
30         isl_tab_free(tab);
31         bmap = isl_basic_map_gauss(bmap, NULL);
32         ISL_F_SET(bmap, ISL_BASIC_MAP_NO_IMPLICIT);
33         return bmap;
34 }
35
36 struct isl_basic_set *isl_basic_set_implicit_equalities(
37                                                 struct isl_basic_set *bset)
38 {
39         return (struct isl_basic_set *)
40                 isl_basic_map_implicit_equalities((struct isl_basic_map*)bset);
41 }
42
43 struct isl_map *isl_map_implicit_equalities(struct isl_map *map)
44 {
45         int i;
46
47         if (!map)
48                 return map;
49
50         for (i = 0; i < map->n; ++i) {
51                 map->p[i] = isl_basic_map_implicit_equalities(map->p[i]);
52                 if (!map->p[i])
53                         goto error;
54         }
55
56         return map;
57 error:
58         isl_map_free(map);
59         return NULL;
60 }
61
62 /* Make eq[row][col] of both bmaps equal so we can add the row
63  * add the column to the common matrix.
64  * Note that because of the echelon form, the columns of row row
65  * after column col are zero.
66  */
67 static void set_common_multiple(
68         struct isl_basic_set *bset1, struct isl_basic_set *bset2,
69         unsigned row, unsigned col)
70 {
71         isl_int m, c;
72
73         if (isl_int_eq(bset1->eq[row][col], bset2->eq[row][col]))
74                 return;
75
76         isl_int_init(c);
77         isl_int_init(m);
78         isl_int_lcm(m, bset1->eq[row][col], bset2->eq[row][col]);
79         isl_int_divexact(c, m, bset1->eq[row][col]);
80         isl_seq_scale(bset1->eq[row], bset1->eq[row], c, col+1);
81         isl_int_divexact(c, m, bset2->eq[row][col]);
82         isl_seq_scale(bset2->eq[row], bset2->eq[row], c, col+1);
83         isl_int_clear(c);
84         isl_int_clear(m);
85 }
86
87 /* Delete a given equality, moving all the following equalities one up.
88  */
89 static void delete_row(struct isl_basic_set *bset, unsigned row)
90 {
91         isl_int *t;
92         int r;
93
94         t = bset->eq[row];
95         bset->n_eq--;
96         for (r = row; r < bset->n_eq; ++r)
97                 bset->eq[r] = bset->eq[r+1];
98         bset->eq[bset->n_eq] = t;
99 }
100
101 /* Make first row entries in column col of bset1 identical to
102  * those of bset2, using the fact that entry bset1->eq[row][col]=a
103  * is non-zero.  Initially, these elements of bset1 are all zero.
104  * For each row i < row, we set
105  *              A[i] = a * A[i] + B[i][col] * A[row]
106  *              B[i] = a * B[i]
107  * so that
108  *              A[i][col] = B[i][col] = a * old(B[i][col])
109  */
110 static void construct_column(
111         struct isl_basic_set *bset1, struct isl_basic_set *bset2,
112         unsigned row, unsigned col)
113 {
114         int r;
115         isl_int a;
116         isl_int b;
117         unsigned total;
118
119         isl_int_init(a);
120         isl_int_init(b);
121         total = 1 + isl_basic_set_n_dim(bset1);
122         for (r = 0; r < row; ++r) {
123                 if (isl_int_is_zero(bset2->eq[r][col]))
124                         continue;
125                 isl_int_gcd(b, bset2->eq[r][col], bset1->eq[row][col]);
126                 isl_int_divexact(a, bset1->eq[row][col], b);
127                 isl_int_divexact(b, bset2->eq[r][col], b);
128                 isl_seq_combine(bset1->eq[r], a, bset1->eq[r],
129                                               b, bset1->eq[row], total);
130                 isl_seq_scale(bset2->eq[r], bset2->eq[r], a, total);
131         }
132         isl_int_clear(a);
133         isl_int_clear(b);
134         delete_row(bset1, row);
135 }
136
137 /* Make first row entries in column col of bset1 identical to
138  * those of bset2, using only these entries of the two matrices.
139  * Let t be the last row with different entries.
140  * For each row i < t, we set
141  *      A[i] = (A[t][col]-B[t][col]) * A[i] + (B[i][col]-A[i][col) * A[t]
142  *      B[i] = (A[t][col]-B[t][col]) * B[i] + (B[i][col]-A[i][col) * B[t]
143  * so that
144  *      A[i][col] = B[i][col] = old(A[t][col]*B[i][col]-A[i][col]*B[t][col])
145  */
146 static int transform_column(
147         struct isl_basic_set *bset1, struct isl_basic_set *bset2,
148         unsigned row, unsigned col)
149 {
150         int i, t;
151         isl_int a, b, g;
152         unsigned total;
153
154         for (t = row-1; t >= 0; --t)
155                 if (isl_int_ne(bset1->eq[t][col], bset2->eq[t][col]))
156                         break;
157         if (t < 0)
158                 return 0;
159
160         total = 1 + isl_basic_set_n_dim(bset1);
161         isl_int_init(a);
162         isl_int_init(b);
163         isl_int_init(g);
164         isl_int_sub(b, bset1->eq[t][col], bset2->eq[t][col]);
165         for (i = 0; i < t; ++i) {
166                 isl_int_sub(a, bset2->eq[i][col], bset1->eq[i][col]);
167                 isl_int_gcd(g, a, b);
168                 isl_int_divexact(a, a, g);
169                 isl_int_divexact(g, b, g);
170                 isl_seq_combine(bset1->eq[i], g, bset1->eq[i], a, bset1->eq[t],
171                                 total);
172                 isl_seq_combine(bset2->eq[i], g, bset2->eq[i], a, bset2->eq[t],
173                                 total);
174         }
175         isl_int_clear(a);
176         isl_int_clear(b);
177         isl_int_clear(g);
178         delete_row(bset1, t);
179         delete_row(bset2, t);
180         return 1;
181 }
182
183 /* The implementation is based on Section 5.2 of Michael Karr,
184  * "Affine Relationships Among Variables of a Program",
185  * except that the echelon form we use starts from the last column
186  * and that we are dealing with integer coefficients.
187  */
188 static struct isl_basic_set *affine_hull(
189         struct isl_basic_set *bset1, struct isl_basic_set *bset2)
190 {
191         unsigned total;
192         int col;
193         int row;
194
195         total = 1 + isl_basic_set_n_dim(bset1);
196
197         row = 0;
198         for (col = total-1; col >= 0; --col) {
199                 int is_zero1 = row >= bset1->n_eq ||
200                         isl_int_is_zero(bset1->eq[row][col]);
201                 int is_zero2 = row >= bset2->n_eq ||
202                         isl_int_is_zero(bset2->eq[row][col]);
203                 if (!is_zero1 && !is_zero2) {
204                         set_common_multiple(bset1, bset2, row, col);
205                         ++row;
206                 } else if (!is_zero1 && is_zero2) {
207                         construct_column(bset1, bset2, row, col);
208                 } else if (is_zero1 && !is_zero2) {
209                         construct_column(bset2, bset1, row, col);
210                 } else {
211                         if (transform_column(bset1, bset2, row, col))
212                                 --row;
213                 }
214         }
215         isl_basic_set_free(bset2);
216         isl_assert(bset1->ctx, row == bset1->n_eq, goto error);
217         bset1 = isl_basic_set_normalize_constraints(bset1);
218         return bset1;
219 error:
220         isl_basic_set_free(bset1);
221         return NULL;
222 }
223
224 static struct isl_basic_set *isl_basic_set_from_vec(struct isl_vec *vec)
225 {
226         int i;
227         int k;
228         struct isl_basic_set *bset = NULL;
229         struct isl_ctx *ctx;
230         unsigned dim;
231
232         if (!vec)
233                 return NULL;
234         ctx = vec->ctx;
235         isl_assert(ctx, vec->size != 0, goto error);
236
237         bset = isl_basic_set_alloc(ctx, 0, vec->size - 1, 0, vec->size - 1, 0);
238         if (!bset)
239                 goto error;
240         dim = isl_basic_set_n_dim(bset);
241         for (i = dim - 1; i >= 0; --i) {
242                 k = isl_basic_set_alloc_equality(bset);
243                 if (k < 0)
244                         goto error;
245                 isl_seq_clr(bset->eq[k], 1 + dim);
246                 isl_int_neg(bset->eq[k][0], vec->el[1 + i]);
247                 isl_int_set(bset->eq[k][1 + i], vec->el[0]);
248         }
249         isl_vec_free(vec);
250
251         return bset;
252 error:
253         isl_basic_set_free(bset);
254         isl_vec_free(vec);
255         return NULL;
256 }
257
258 /* Find an integer point in "bset" that lies outside of the equality
259  * "eq" e(x) = 0.
260  * If "up" is true, look for a point satisfying e(x) - 1 >= 0.
261  * Otherwise, look for a point satisfying -e(x) - 1 >= 0 (i.e., e(x) <= -1).
262  * The point, if found, is returned as a singleton set.
263  * If no point can be found, the empty set is returned.
264  *
265  * Before solving an ILP problem, we first check if simply
266  * adding the normal of the constraint to one of the known
267  * integer points in the basic set yields another point
268  * inside the basic set.
269  *
270  * The caller of this function ensures that "bset" is bounded.
271  */
272 static struct isl_basic_set *outside_point(struct isl_ctx *ctx,
273         struct isl_basic_set *bset, isl_int *eq, int up)
274 {
275         struct isl_basic_set *slice = NULL;
276         struct isl_vec *sample;
277         struct isl_basic_set *point;
278         unsigned dim;
279         int k;
280
281         dim = isl_basic_set_n_dim(bset);
282         sample = isl_vec_alloc(ctx, 1 + dim);
283         if (!sample)
284                 return NULL;
285         isl_int_set_si(sample->block.data[0], 1);
286         isl_seq_combine(sample->block.data + 1,
287                 ctx->one, bset->sample->block.data + 1,
288                 up ? ctx->one : ctx->negone, eq + 1, dim);
289         if (isl_basic_set_contains(bset, sample))
290                 return isl_basic_set_from_vec(sample);
291         isl_vec_free(sample);
292         sample = NULL;
293
294         slice = isl_basic_set_copy(bset);
295         if (!slice)
296                 goto error;
297         slice = isl_basic_set_cow(slice);
298         slice = isl_basic_set_extend(slice, 0, dim, 0, 0, 1);
299         k = isl_basic_set_alloc_inequality(slice);
300         if (k < 0)
301                 goto error;
302         if (up)
303                 isl_seq_cpy(slice->ineq[k], eq, 1 + dim);
304         else
305                 isl_seq_neg(slice->ineq[k], eq, 1 + dim);
306         isl_int_sub_ui(slice->ineq[k][0], slice->ineq[k][0], 1);
307
308         sample = isl_basic_set_sample_bounded(slice);
309         if (!sample)
310                 goto error;
311         if (sample->size == 0) {
312                 isl_vec_free(sample);
313                 point = isl_basic_set_empty_like(bset);
314         } else
315                 point = isl_basic_set_from_vec(sample);
316
317         return point;
318 error:
319         isl_basic_set_free(slice);
320         return NULL;
321 }
322
323 struct isl_basic_set *isl_basic_set_recession_cone(struct isl_basic_set *bset)
324 {
325         int i;
326
327         bset = isl_basic_set_cow(bset);
328         if (!bset)
329                 return NULL;
330         isl_assert(bset->ctx, bset->n_div == 0, goto error);
331
332         for (i = 0; i < bset->n_eq; ++i)
333                 isl_int_set_si(bset->eq[i][0], 0);
334
335         for (i = 0; i < bset->n_ineq; ++i)
336                 isl_int_set_si(bset->ineq[i][0], 0);
337
338         ISL_F_CLR(bset, ISL_BASIC_SET_NO_IMPLICIT);
339         return isl_basic_set_implicit_equalities(bset);
340 error:
341         isl_basic_set_free(bset);
342         return NULL;
343 }
344
345 /* Extend an initial (under-)approximation of the affine hull of "bset"
346  * by looking for points that do not satisfy one of the equalities
347  * in the current approximation and adding them to that approximation
348  * until no such points can be found any more.
349  *
350  * The caller of this function ensures that "bset" is bounded.
351  */
352 static struct isl_basic_set *extend_affine_hull(struct isl_basic_set *bset,
353         struct isl_basic_set *hull)
354 {
355         int i, j, k;
356         struct isl_ctx *ctx;
357         unsigned dim;
358
359         ctx = bset->ctx;
360         dim = isl_basic_set_n_dim(bset);
361         for (i = 0; i < dim; ++i) {
362                 struct isl_basic_set *point;
363                 for (j = 0; j < hull->n_eq; ++j) {
364                         point = outside_point(ctx, bset, hull->eq[j], 1);
365                         if (!point)
366                                 goto error;
367                         if (!ISL_F_ISSET(point, ISL_BASIC_SET_EMPTY))
368                                 break;
369                         isl_basic_set_free(point);
370                         point = outside_point(ctx, bset, hull->eq[j], 0);
371                         if (!point)
372                                 goto error;
373                         if (!ISL_F_ISSET(point, ISL_BASIC_SET_EMPTY))
374                                 break;
375                         isl_basic_set_free(point);
376
377                         bset = isl_basic_set_extend_constraints(bset, 1, 0);
378                         k = isl_basic_set_alloc_equality(bset);
379                         if (k < 0)
380                                 goto error;
381                         isl_seq_cpy(bset->eq[k], hull->eq[j],
382                                         1 + isl_basic_set_total_dim(hull));
383                         bset = isl_basic_set_gauss(bset, NULL);
384                         if (!bset)
385                                 goto error;
386                 }
387                 if (j == hull->n_eq)
388                         break;
389                 hull = affine_hull(hull, point);
390         }
391         isl_basic_set_free(bset);
392
393         return hull;
394 error:
395         isl_basic_set_free(bset);
396         isl_basic_set_free(hull);
397         return NULL;
398 }
399
400 /* Drop all constraints in bset that involve any of the dimensions
401  * first to first+n-1.
402  */
403 static struct isl_basic_set *drop_constraints_involving
404         (struct isl_basic_set *bset, unsigned first, unsigned n)
405 {
406         int i;
407
408         if (!bset)
409                 return NULL;
410
411         bset = isl_basic_set_cow(bset);
412
413         for (i = bset->n_eq - 1; i >= 0; --i) {
414                 if (isl_seq_first_non_zero(bset->eq[i] + 1 + first, n) == -1)
415                         continue;
416                 isl_basic_set_drop_equality(bset, i);
417         }
418
419         for (i = bset->n_ineq - 1; i >= 0; --i) {
420                 if (isl_seq_first_non_zero(bset->ineq[i] + 1 + first, n) == -1)
421                         continue;
422                 isl_basic_set_drop_inequality(bset, i);
423         }
424
425         return bset;
426 }
427
428 /* Compute the affine hull of "bset", where "hull" is an initial approximation
429  * with only a single point of "bset" and "cone" is the recession cone
430  * of "bset".
431  *
432  * We first compute a unimodular transformation that puts the unbounded
433  * directions in the last dimensions.  In particular, we take a transformation
434  * that maps all equalities to equalities (in HNF) on the first dimensions.
435  * Let x be the original dimensions and y the transformed, with y_1 bounded
436  * and y_2 unbounded.
437  *
438  *             [ y_1 ]                  [ y_1 ]   [ Q_1 ]
439  *      x = U  [ y_2 ]                  [ y_2 ] = [ Q_2 ] x
440  *
441  * Let's call the input basic set S and the initial hull H.
442  * We compute S' = preimage(S, U) and H' = preimage(H, U)
443  * and drop the final dimensions including any constraints involving them.
444  * This results in sets S'' and H''.
445  * Then we extend H'' to the affine hull A'' of S''.
446  * Let F y_1 >= g be the constraint system of A''.  In the transformed
447  * space the y_2 are unbounded, so we can add them back without any constraints,
448  * resulting in
449  *
450  *                      [ y_1 ]
451  *              [ F 0 ] [ y_2 ] >= g
452  * or
453  *                      [ Q_1 ]
454  *              [ F 0 ] [ Q_2 ] x >= g
455  * or
456  *              F Q_1 x >= g
457  *
458  * The affine hull in the original space is then obtained as
459  * A = preimage(A'', Q_1).
460  */
461 static struct isl_basic_set *affine_hull_with_cone(struct isl_basic_set *bset,
462         struct isl_basic_set *hull, struct isl_basic_set *cone)
463 {
464         unsigned total;
465         unsigned cone_dim;
466         struct isl_mat *M, *U, *Q;
467
468         if (!bset || !hull || !cone)
469                 goto error;
470
471         total = isl_basic_set_total_dim(cone);
472         cone_dim = total - cone->n_eq;
473
474         M = isl_mat_sub_alloc(bset->ctx, cone->eq, 0, cone->n_eq, 1, total);
475         M = isl_mat_left_hermite(M, 0, &U, &Q);
476         if (!M)
477                 goto error;
478         isl_mat_free(M);
479
480         U = isl_mat_lin_to_aff(U);
481         bset = isl_basic_set_preimage(bset, isl_mat_copy(U));
482         hull = isl_basic_set_preimage(hull, U);
483
484         bset = drop_constraints_involving(bset, total - cone_dim, cone_dim);
485         bset = isl_basic_set_drop_dims(bset, total - cone_dim, cone_dim);
486         hull = drop_constraints_involving(hull, total - cone_dim, cone_dim);
487         hull = isl_basic_set_drop_dims(hull, total - cone_dim, cone_dim);
488
489         Q = isl_mat_lin_to_aff(Q);
490         Q = isl_mat_drop_rows(Q, 1 + total - cone_dim, cone_dim);
491
492         if (bset && bset->sample)
493                 bset->sample = isl_mat_vec_product(isl_mat_copy(Q), bset->sample);
494
495         hull = extend_affine_hull(bset, hull);
496
497         hull = isl_basic_set_preimage(hull, Q);
498
499         isl_basic_set_free(cone);
500
501         return hull;
502 error:
503         isl_basic_set_free(bset);
504         isl_basic_set_free(hull);
505         isl_basic_set_free(cone);
506         return NULL;
507 }
508
509 /* Look for all equalities satisfied by the integer points in bset,
510  * which is assumed not to have any explicit equalities.
511  *
512  * The equalities are obtained by successively looking for
513  * a point that is affinely independent of the points found so far.
514  * In particular, for each equality satisfied by the points so far,
515  * we check if there is any point on a hyperplane parallel to the
516  * corresponding hyperplane shifted by at least one (in either direction).
517  *
518  * Before looking for any outside points, we first compute the recession
519  * cone.  The directions of this recession cone will always be part
520  * of the affine hull, so there is no need for looking for any points
521  * in these directions.
522  * In particular, if the recession cone is full-dimensional, then
523  * the affine hull is simply the whole universe.
524  */
525 static struct isl_basic_set *uset_affine_hull(struct isl_basic_set *bset)
526 {
527         struct isl_basic_set *hull = NULL;
528         struct isl_vec *sample = NULL;
529         struct isl_basic_set *cone;
530
531         if (isl_basic_set_is_empty(bset))
532                 return bset;
533
534         sample = isl_basic_set_sample(isl_basic_set_copy(bset));
535         if (!sample)
536                 goto error;
537         if (sample->size == 0) {
538                 isl_vec_free(sample);
539                 hull = isl_basic_set_empty_like(bset);
540                 isl_basic_set_free(bset);
541                 return hull;
542         }
543         if (sample->size == 1) {
544                 isl_vec_free(sample);
545                 return bset;
546         }
547
548         cone = isl_basic_set_recession_cone(isl_basic_set_copy(bset));
549         if (!cone)
550                 goto error;
551         if (cone->n_eq == 0) {
552                 isl_basic_set_free(cone);
553                 isl_vec_free(sample);
554                 hull = isl_basic_set_universe_like(bset);
555                 isl_basic_set_free(bset);
556                 return hull;
557         }
558
559         hull = isl_basic_set_from_vec(sample);
560         if (cone->n_eq < isl_basic_set_total_dim(cone))
561                 return affine_hull_with_cone(bset, hull, cone);
562
563         isl_basic_set_free(cone);
564         return extend_affine_hull(bset, hull);
565 error:
566         isl_vec_free(sample);
567         isl_basic_set_free(bset);
568         isl_basic_set_free(hull);
569         return NULL;
570 }
571
572 /* Look for all equalities satisfied by the integer points in bmap
573  * that are independent of the equalities already explicitly available
574  * in bmap.
575  *
576  * We first remove all equalities already explicitly available,
577  * then look for additional equalities in the reduced space
578  * and then transform the result to the original space.
579  * The original equalities are _not_ added to this set.  This is
580  * the responsibility of the calling function.
581  * The resulting basic set has all meaning about the dimensions removed.
582  * In particular, dimensions that correspond to existential variables
583  * in bmap and that are found to be fixed are not removed.
584  */
585 static struct isl_basic_set *equalities_in_underlying_set(
586                                                 struct isl_basic_map *bmap)
587 {
588         struct isl_mat *T2 = NULL;
589         struct isl_basic_set *bset = NULL;
590         struct isl_basic_set *hull = NULL;
591
592         bset = isl_basic_map_underlying_set(bmap);
593         bset = isl_basic_set_remove_equalities(bset, NULL, &T2);
594         if (!bset)
595                 goto error;
596
597         hull = uset_affine_hull(bset);
598         if (T2)
599                 hull = isl_basic_set_preimage(hull, T2);
600
601         return hull;
602 error:
603         isl_mat_free(T2);
604         isl_basic_set_free(bset);
605         isl_basic_set_free(hull);
606         return NULL;
607 }
608
609 /* Detect and make explicit all equalities satisfied by the (integer)
610  * points in bmap.
611  */
612 struct isl_basic_map *isl_basic_map_detect_equalities(
613                                                 struct isl_basic_map *bmap)
614 {
615         int i, j;
616         struct isl_basic_set *hull = NULL;
617
618         if (!bmap)
619                 return NULL;
620         if (bmap->n_ineq == 0)
621                 return bmap;
622         if (ISL_F_ISSET(bmap, ISL_BASIC_MAP_EMPTY))
623                 return bmap;
624         if (ISL_F_ISSET(bmap, ISL_BASIC_MAP_ALL_EQUALITIES))
625                 return bmap;
626         if (ISL_F_ISSET(bmap, ISL_BASIC_MAP_RATIONAL))
627                 return isl_basic_map_implicit_equalities(bmap);
628
629         hull = equalities_in_underlying_set(isl_basic_map_copy(bmap));
630         if (!hull)
631                 goto error;
632         if (ISL_F_ISSET(hull, ISL_BASIC_SET_EMPTY)) {
633                 isl_basic_set_free(hull);
634                 return isl_basic_map_set_to_empty(bmap);
635         }
636         bmap = isl_basic_map_extend_dim(bmap, isl_dim_copy(bmap->dim), 0,
637                                         hull->n_eq, 0);
638         for (i = 0; i < hull->n_eq; ++i) {
639                 j = isl_basic_map_alloc_equality(bmap);
640                 if (j < 0)
641                         goto error;
642                 isl_seq_cpy(bmap->eq[j], hull->eq[i],
643                                 1 + isl_basic_set_total_dim(hull));
644         }
645         isl_basic_set_free(hull);
646         ISL_F_SET(bmap, ISL_BASIC_MAP_NO_IMPLICIT | ISL_BASIC_MAP_ALL_EQUALITIES);
647         bmap = isl_basic_map_simplify(bmap);
648         return isl_basic_map_finalize(bmap);
649 error:
650         isl_basic_set_free(hull);
651         isl_basic_map_free(bmap);
652         return NULL;
653 }
654
655 struct isl_map *isl_map_detect_equalities(struct isl_map *map)
656 {
657         struct isl_basic_map *bmap;
658         int i;
659
660         if (!map)
661                 return NULL;
662
663         for (i = 0; i < map->n; ++i) {
664                 bmap = isl_basic_map_copy(map->p[i]);
665                 bmap = isl_basic_map_detect_equalities(bmap);
666                 if (!bmap)
667                         goto error;
668                 isl_basic_map_free(map->p[i]);
669                 map->p[i] = bmap;
670         }
671
672         return map;
673 error:
674         isl_map_free(map);
675         return NULL;
676 }
677
678 /* After computing the rational affine hull (by detecting the implicit
679  * equalities), we compute the additional equalities satisfied by
680  * the integer points (if any) and add the original equalities back in.
681  */
682 struct isl_basic_map *isl_basic_map_affine_hull(struct isl_basic_map *bmap)
683 {
684         struct isl_basic_set *hull = NULL;
685
686         bmap = isl_basic_map_detect_equalities(bmap);
687         bmap = isl_basic_map_cow(bmap);
688         isl_basic_map_free_inequality(bmap, bmap->n_ineq);
689         return bmap;
690 }
691
692 struct isl_basic_set *isl_basic_set_affine_hull(struct isl_basic_set *bset)
693 {
694         return (struct isl_basic_set *)
695                 isl_basic_map_affine_hull((struct isl_basic_map *)bset);
696 }
697
698 struct isl_basic_map *isl_map_affine_hull(struct isl_map *map)
699 {
700         int i;
701         struct isl_basic_map *model = NULL;
702         struct isl_basic_map *hull = NULL;
703         struct isl_set *set;
704
705         if (!map)
706                 return NULL;
707
708         if (map->n == 0) {
709                 hull = isl_basic_map_empty_like_map(map);
710                 isl_map_free(map);
711                 return hull;
712         }
713
714         map = isl_map_detect_equalities(map);
715         map = isl_map_align_divs(map);
716         if (!map)
717                 return NULL;
718         model = isl_basic_map_copy(map->p[0]);
719         set = isl_map_underlying_set(map);
720         set = isl_set_cow(set);
721         if (!set)
722                 goto error;
723
724         for (i = 0; i < set->n; ++i) {
725                 set->p[i] = isl_basic_set_cow(set->p[i]);
726                 set->p[i] = isl_basic_set_affine_hull(set->p[i]);
727                 set->p[i] = isl_basic_set_gauss(set->p[i], NULL);
728                 if (!set->p[i])
729                         goto error;
730         }
731         set = isl_set_remove_empty_parts(set);
732         if (set->n == 0) {
733                 hull = isl_basic_map_empty_like(model);
734                 isl_basic_map_free(model);
735         } else {
736                 struct isl_basic_set *bset;
737                 while (set->n > 1) {
738                         set->p[0] = affine_hull(set->p[0], set->p[--set->n]);
739                         if (!set->p[0])
740                                 goto error;
741                 }
742                 bset = isl_basic_set_copy(set->p[0]);
743                 hull = isl_basic_map_overlying_set(bset, model);
744         }
745         isl_set_free(set);
746         hull = isl_basic_map_simplify(hull);
747         return isl_basic_map_finalize(hull);
748 error:
749         isl_basic_map_free(model);
750         isl_set_free(set);
751         return NULL;
752 }
753
754 struct isl_basic_set *isl_set_affine_hull(struct isl_set *set)
755 {
756         return (struct isl_basic_set *)
757                 isl_map_affine_hull((struct isl_map *)set);
758 }