2 * Copyright 2008-2009 Katholieke Universiteit Leuven
4 * Use of this software is governed by the GNU LGPLv2.1 license
6 * Written by Sven Verdoolaege, K.U.Leuven, Departement
7 * Computerwetenschappen, Celestijnenlaan 200A, B-3001 Leuven, Belgium
10 #include <isl_ctx_private.h>
11 #include <isl_map_private.h>
16 #include "isl_equalities.h"
17 #include "isl_sample.h"
19 #include <isl_mat_private.h>
21 struct isl_basic_map *isl_basic_map_implicit_equalities(
22 struct isl_basic_map *bmap)
29 bmap = isl_basic_map_gauss(bmap, NULL);
30 if (ISL_F_ISSET(bmap, ISL_BASIC_MAP_EMPTY))
32 if (ISL_F_ISSET(bmap, ISL_BASIC_MAP_NO_IMPLICIT))
34 if (bmap->n_ineq <= 1)
37 tab = isl_tab_from_basic_map(bmap, 0);
38 if (isl_tab_detect_implicit_equalities(tab) < 0)
40 bmap = isl_basic_map_update_from_tab(bmap, tab);
42 bmap = isl_basic_map_gauss(bmap, NULL);
43 ISL_F_SET(bmap, ISL_BASIC_MAP_NO_IMPLICIT);
47 isl_basic_map_free(bmap);
51 struct isl_basic_set *isl_basic_set_implicit_equalities(
52 struct isl_basic_set *bset)
54 return (struct isl_basic_set *)
55 isl_basic_map_implicit_equalities((struct isl_basic_map*)bset);
58 struct isl_map *isl_map_implicit_equalities(struct isl_map *map)
65 for (i = 0; i < map->n; ++i) {
66 map->p[i] = isl_basic_map_implicit_equalities(map->p[i]);
77 /* Make eq[row][col] of both bmaps equal so we can add the row
78 * add the column to the common matrix.
79 * Note that because of the echelon form, the columns of row row
80 * after column col are zero.
82 static void set_common_multiple(
83 struct isl_basic_set *bset1, struct isl_basic_set *bset2,
84 unsigned row, unsigned col)
88 if (isl_int_eq(bset1->eq[row][col], bset2->eq[row][col]))
93 isl_int_lcm(m, bset1->eq[row][col], bset2->eq[row][col]);
94 isl_int_divexact(c, m, bset1->eq[row][col]);
95 isl_seq_scale(bset1->eq[row], bset1->eq[row], c, col+1);
96 isl_int_divexact(c, m, bset2->eq[row][col]);
97 isl_seq_scale(bset2->eq[row], bset2->eq[row], c, col+1);
102 /* Delete a given equality, moving all the following equalities one up.
104 static void delete_row(struct isl_basic_set *bset, unsigned row)
111 for (r = row; r < bset->n_eq; ++r)
112 bset->eq[r] = bset->eq[r+1];
113 bset->eq[bset->n_eq] = t;
116 /* Make first row entries in column col of bset1 identical to
117 * those of bset2, using the fact that entry bset1->eq[row][col]=a
118 * is non-zero. Initially, these elements of bset1 are all zero.
119 * For each row i < row, we set
120 * A[i] = a * A[i] + B[i][col] * A[row]
123 * A[i][col] = B[i][col] = a * old(B[i][col])
125 static void construct_column(
126 struct isl_basic_set *bset1, struct isl_basic_set *bset2,
127 unsigned row, unsigned col)
136 total = 1 + isl_basic_set_n_dim(bset1);
137 for (r = 0; r < row; ++r) {
138 if (isl_int_is_zero(bset2->eq[r][col]))
140 isl_int_gcd(b, bset2->eq[r][col], bset1->eq[row][col]);
141 isl_int_divexact(a, bset1->eq[row][col], b);
142 isl_int_divexact(b, bset2->eq[r][col], b);
143 isl_seq_combine(bset1->eq[r], a, bset1->eq[r],
144 b, bset1->eq[row], total);
145 isl_seq_scale(bset2->eq[r], bset2->eq[r], a, total);
149 delete_row(bset1, row);
152 /* Make first row entries in column col of bset1 identical to
153 * those of bset2, using only these entries of the two matrices.
154 * Let t be the last row with different entries.
155 * For each row i < t, we set
156 * A[i] = (A[t][col]-B[t][col]) * A[i] + (B[i][col]-A[i][col) * A[t]
157 * B[i] = (A[t][col]-B[t][col]) * B[i] + (B[i][col]-A[i][col) * B[t]
159 * A[i][col] = B[i][col] = old(A[t][col]*B[i][col]-A[i][col]*B[t][col])
161 static int transform_column(
162 struct isl_basic_set *bset1, struct isl_basic_set *bset2,
163 unsigned row, unsigned col)
169 for (t = row-1; t >= 0; --t)
170 if (isl_int_ne(bset1->eq[t][col], bset2->eq[t][col]))
175 total = 1 + isl_basic_set_n_dim(bset1);
179 isl_int_sub(b, bset1->eq[t][col], bset2->eq[t][col]);
180 for (i = 0; i < t; ++i) {
181 isl_int_sub(a, bset2->eq[i][col], bset1->eq[i][col]);
182 isl_int_gcd(g, a, b);
183 isl_int_divexact(a, a, g);
184 isl_int_divexact(g, b, g);
185 isl_seq_combine(bset1->eq[i], g, bset1->eq[i], a, bset1->eq[t],
187 isl_seq_combine(bset2->eq[i], g, bset2->eq[i], a, bset2->eq[t],
193 delete_row(bset1, t);
194 delete_row(bset2, t);
198 /* The implementation is based on Section 5.2 of Michael Karr,
199 * "Affine Relationships Among Variables of a Program",
200 * except that the echelon form we use starts from the last column
201 * and that we are dealing with integer coefficients.
203 static struct isl_basic_set *affine_hull(
204 struct isl_basic_set *bset1, struct isl_basic_set *bset2)
210 if (!bset1 || !bset2)
213 total = 1 + isl_basic_set_n_dim(bset1);
216 for (col = total-1; col >= 0; --col) {
217 int is_zero1 = row >= bset1->n_eq ||
218 isl_int_is_zero(bset1->eq[row][col]);
219 int is_zero2 = row >= bset2->n_eq ||
220 isl_int_is_zero(bset2->eq[row][col]);
221 if (!is_zero1 && !is_zero2) {
222 set_common_multiple(bset1, bset2, row, col);
224 } else if (!is_zero1 && is_zero2) {
225 construct_column(bset1, bset2, row, col);
226 } else if (is_zero1 && !is_zero2) {
227 construct_column(bset2, bset1, row, col);
229 if (transform_column(bset1, bset2, row, col))
233 isl_assert(bset1->ctx, row == bset1->n_eq, goto error);
234 isl_basic_set_free(bset2);
235 bset1 = isl_basic_set_normalize_constraints(bset1);
238 isl_basic_set_free(bset1);
239 isl_basic_set_free(bset2);
243 /* Find an integer point in the set represented by "tab"
244 * that lies outside of the equality "eq" e(x) = 0.
245 * If "up" is true, look for a point satisfying e(x) - 1 >= 0.
246 * Otherwise, look for a point satisfying -e(x) - 1 >= 0 (i.e., e(x) <= -1).
247 * The point, if found, is returned.
248 * If no point can be found, a zero-length vector is returned.
250 * Before solving an ILP problem, we first check if simply
251 * adding the normal of the constraint to one of the known
252 * integer points in the basic set represented by "tab"
253 * yields another point inside the basic set.
255 * The caller of this function ensures that the tableau is bounded or
256 * that tab->basis and tab->n_unbounded have been set appropriately.
258 static struct isl_vec *outside_point(struct isl_tab *tab, isl_int *eq, int up)
261 struct isl_vec *sample = NULL;
262 struct isl_tab_undo *snap;
270 sample = isl_vec_alloc(ctx, 1 + dim);
273 isl_int_set_si(sample->el[0], 1);
274 isl_seq_combine(sample->el + 1,
275 ctx->one, tab->bmap->sample->el + 1,
276 up ? ctx->one : ctx->negone, eq + 1, dim);
277 if (isl_basic_map_contains(tab->bmap, sample))
279 isl_vec_free(sample);
282 snap = isl_tab_snap(tab);
285 isl_seq_neg(eq, eq, 1 + dim);
286 isl_int_sub_ui(eq[0], eq[0], 1);
288 if (isl_tab_extend_cons(tab, 1) < 0)
290 if (isl_tab_add_ineq(tab, eq) < 0)
293 sample = isl_tab_sample(tab);
295 isl_int_add_ui(eq[0], eq[0], 1);
297 isl_seq_neg(eq, eq, 1 + dim);
299 if (sample && isl_tab_rollback(tab, snap) < 0)
304 isl_vec_free(sample);
308 struct isl_basic_set *isl_basic_set_recession_cone(struct isl_basic_set *bset)
312 bset = isl_basic_set_cow(bset);
315 isl_assert(bset->ctx, bset->n_div == 0, goto error);
317 for (i = 0; i < bset->n_eq; ++i)
318 isl_int_set_si(bset->eq[i][0], 0);
320 for (i = 0; i < bset->n_ineq; ++i)
321 isl_int_set_si(bset->ineq[i][0], 0);
323 ISL_F_CLR(bset, ISL_BASIC_SET_NO_IMPLICIT);
324 return isl_basic_set_implicit_equalities(bset);
326 isl_basic_set_free(bset);
330 __isl_give isl_set *isl_set_recession_cone(__isl_take isl_set *set)
339 set = isl_set_remove_divs(set);
340 set = isl_set_cow(set);
344 for (i = 0; i < set->n; ++i) {
345 set->p[i] = isl_basic_set_recession_cone(set->p[i]);
356 /* Move "sample" to a point that is one up (or down) from the original
357 * point in dimension "pos".
359 static void adjacent_point(__isl_keep isl_vec *sample, int pos, int up)
362 isl_int_add_ui(sample->el[1 + pos], sample->el[1 + pos], 1);
364 isl_int_sub_ui(sample->el[1 + pos], sample->el[1 + pos], 1);
367 /* Check if any points that are adjacent to "sample" also belong to "bset".
368 * If so, add them to "hull" and return the updated hull.
370 * Before checking whether and adjacent point belongs to "bset", we first
371 * check whether it already belongs to "hull" as this test is typically
374 static __isl_give isl_basic_set *add_adjacent_points(
375 __isl_take isl_basic_set *hull, __isl_take isl_vec *sample,
376 __isl_keep isl_basic_set *bset)
384 dim = isl_basic_set_dim(hull, isl_dim_set);
386 for (i = 0; i < dim; ++i) {
387 for (up = 0; up <= 1; ++up) {
389 isl_basic_set *point;
391 adjacent_point(sample, i, up);
392 contains = isl_basic_set_contains(hull, sample);
396 adjacent_point(sample, i, !up);
399 contains = isl_basic_set_contains(bset, sample);
403 point = isl_basic_set_from_vec(
404 isl_vec_copy(sample));
405 hull = affine_hull(hull, point);
407 adjacent_point(sample, i, !up);
413 isl_vec_free(sample);
417 isl_vec_free(sample);
418 isl_basic_set_free(hull);
422 /* Extend an initial (under-)approximation of the affine hull of basic
423 * set represented by the tableau "tab"
424 * by looking for points that do not satisfy one of the equalities
425 * in the current approximation and adding them to that approximation
426 * until no such points can be found any more.
428 * The caller of this function ensures that "tab" is bounded or
429 * that tab->basis and tab->n_unbounded have been set appropriately.
431 * "bset" may be either NULL or the basic set represented by "tab".
432 * If "bset" is not NULL, we check for any point we find if any
433 * of its adjacent points also belong to "bset".
435 static __isl_give isl_basic_set *extend_affine_hull(struct isl_tab *tab,
436 __isl_take isl_basic_set *hull, __isl_keep isl_basic_set *bset)
446 if (isl_tab_extend_cons(tab, 2 * dim + 1) < 0)
449 for (i = 0; i < dim; ++i) {
450 struct isl_vec *sample;
451 struct isl_basic_set *point;
452 for (j = 0; j < hull->n_eq; ++j) {
453 sample = outside_point(tab, hull->eq[j], 1);
456 if (sample->size > 0)
458 isl_vec_free(sample);
459 sample = outside_point(tab, hull->eq[j], 0);
462 if (sample->size > 0)
464 isl_vec_free(sample);
466 if (isl_tab_add_eq(tab, hull->eq[j]) < 0)
472 tab = isl_tab_add_sample(tab, isl_vec_copy(sample));
476 hull = add_adjacent_points(hull, isl_vec_copy(sample),
478 point = isl_basic_set_from_vec(sample);
479 hull = affine_hull(hull, point);
486 isl_basic_set_free(hull);
490 /* Drop all constraints in bset that involve any of the dimensions
491 * first to first+n-1.
493 __isl_give isl_basic_set *isl_basic_set_drop_constraints_involving(
494 __isl_take isl_basic_set *bset, unsigned first, unsigned n)
501 bset = isl_basic_set_cow(bset);
506 for (i = bset->n_eq - 1; i >= 0; --i) {
507 if (isl_seq_first_non_zero(bset->eq[i] + 1 + first, n) == -1)
509 isl_basic_set_drop_equality(bset, i);
512 for (i = bset->n_ineq - 1; i >= 0; --i) {
513 if (isl_seq_first_non_zero(bset->ineq[i] + 1 + first, n) == -1)
515 isl_basic_set_drop_inequality(bset, i);
521 /* Construct an initial underapproximatino of the hull of "bset"
522 * from "sample" and any of its adjacent points that also belong to "bset".
524 static __isl_give isl_basic_set *initialize_hull(__isl_keep isl_basic_set *bset,
525 __isl_take isl_vec *sample)
529 hull = isl_basic_set_from_vec(isl_vec_copy(sample));
530 hull = add_adjacent_points(hull, sample, bset);
535 /* Look for all equalities satisfied by the integer points in bset,
536 * which is assumed to be bounded.
538 * The equalities are obtained by successively looking for
539 * a point that is affinely independent of the points found so far.
540 * In particular, for each equality satisfied by the points so far,
541 * we check if there is any point on a hyperplane parallel to the
542 * corresponding hyperplane shifted by at least one (in either direction).
544 static struct isl_basic_set *uset_affine_hull_bounded(struct isl_basic_set *bset)
546 struct isl_vec *sample = NULL;
547 struct isl_basic_set *hull;
548 struct isl_tab *tab = NULL;
551 if (isl_basic_set_plain_is_empty(bset))
554 dim = isl_basic_set_n_dim(bset);
556 if (bset->sample && bset->sample->size == 1 + dim) {
557 int contains = isl_basic_set_contains(bset, bset->sample);
563 sample = isl_vec_copy(bset->sample);
565 isl_vec_free(bset->sample);
570 tab = isl_tab_from_basic_set(bset, 1);
575 isl_vec_free(sample);
576 return isl_basic_set_set_to_empty(bset);
580 struct isl_tab_undo *snap;
581 snap = isl_tab_snap(tab);
582 sample = isl_tab_sample(tab);
583 if (isl_tab_rollback(tab, snap) < 0)
585 isl_vec_free(tab->bmap->sample);
586 tab->bmap->sample = isl_vec_copy(sample);
591 if (sample->size == 0) {
593 isl_vec_free(sample);
594 return isl_basic_set_set_to_empty(bset);
597 hull = initialize_hull(bset, sample);
599 hull = extend_affine_hull(tab, hull, bset);
600 isl_basic_set_free(bset);
605 isl_vec_free(sample);
607 isl_basic_set_free(bset);
611 /* Given an unbounded tableau and an integer point satisfying the tableau,
612 * construct an initial affine hull containing the recession cone
613 * shifted to the given point.
615 * The unbounded directions are taken from the last rows of the basis,
616 * which is assumed to have been initialized appropriately.
618 static __isl_give isl_basic_set *initial_hull(struct isl_tab *tab,
619 __isl_take isl_vec *vec)
623 struct isl_basic_set *bset = NULL;
630 isl_assert(ctx, vec->size != 0, goto error);
632 bset = isl_basic_set_alloc(ctx, 0, vec->size - 1, 0, vec->size - 1, 0);
635 dim = isl_basic_set_n_dim(bset) - tab->n_unbounded;
636 for (i = 0; i < dim; ++i) {
637 k = isl_basic_set_alloc_equality(bset);
640 isl_seq_cpy(bset->eq[k] + 1, tab->basis->row[1 + i] + 1,
642 isl_seq_inner_product(bset->eq[k] + 1, vec->el +1,
643 vec->size - 1, &bset->eq[k][0]);
644 isl_int_neg(bset->eq[k][0], bset->eq[k][0]);
647 bset = isl_basic_set_gauss(bset, NULL);
651 isl_basic_set_free(bset);
656 /* Given a tableau of a set and a tableau of the corresponding
657 * recession cone, detect and add all equalities to the tableau.
658 * If the tableau is bounded, then we can simply keep the
659 * tableau in its state after the return from extend_affine_hull.
660 * However, if the tableau is unbounded, then
661 * isl_tab_set_initial_basis_with_cone will add some additional
662 * constraints to the tableau that have to be removed again.
663 * In this case, we therefore rollback to the state before
664 * any constraints were added and then add the equalities back in.
666 struct isl_tab *isl_tab_detect_equalities(struct isl_tab *tab,
667 struct isl_tab *tab_cone)
670 struct isl_vec *sample;
671 struct isl_basic_set *hull;
672 struct isl_tab_undo *snap;
674 if (!tab || !tab_cone)
677 snap = isl_tab_snap(tab);
679 isl_mat_free(tab->basis);
682 isl_assert(tab->mat->ctx, tab->bmap, goto error);
683 isl_assert(tab->mat->ctx, tab->samples, goto error);
684 isl_assert(tab->mat->ctx, tab->samples->n_col == 1 + tab->n_var, goto error);
685 isl_assert(tab->mat->ctx, tab->n_sample > tab->n_outside, goto error);
687 if (isl_tab_set_initial_basis_with_cone(tab, tab_cone) < 0)
690 sample = isl_vec_alloc(tab->mat->ctx, 1 + tab->n_var);
694 isl_seq_cpy(sample->el, tab->samples->row[tab->n_outside], sample->size);
696 isl_vec_free(tab->bmap->sample);
697 tab->bmap->sample = isl_vec_copy(sample);
699 if (tab->n_unbounded == 0)
700 hull = isl_basic_set_from_vec(isl_vec_copy(sample));
702 hull = initial_hull(tab, isl_vec_copy(sample));
704 for (j = tab->n_outside + 1; j < tab->n_sample; ++j) {
705 isl_seq_cpy(sample->el, tab->samples->row[j], sample->size);
706 hull = affine_hull(hull,
707 isl_basic_set_from_vec(isl_vec_copy(sample)));
710 isl_vec_free(sample);
712 hull = extend_affine_hull(tab, hull, NULL);
716 if (tab->n_unbounded == 0) {
717 isl_basic_set_free(hull);
721 if (isl_tab_rollback(tab, snap) < 0)
724 if (hull->n_eq > tab->n_zero) {
725 for (j = 0; j < hull->n_eq; ++j) {
726 isl_seq_normalize(tab->mat->ctx, hull->eq[j], 1 + tab->n_var);
727 if (isl_tab_add_eq(tab, hull->eq[j]) < 0)
732 isl_basic_set_free(hull);
740 /* Compute the affine hull of "bset", where "cone" is the recession cone
743 * We first compute a unimodular transformation that puts the unbounded
744 * directions in the last dimensions. In particular, we take a transformation
745 * that maps all equalities to equalities (in HNF) on the first dimensions.
746 * Let x be the original dimensions and y the transformed, with y_1 bounded
749 * [ y_1 ] [ y_1 ] [ Q_1 ]
750 * x = U [ y_2 ] [ y_2 ] = [ Q_2 ] x
752 * Let's call the input basic set S. We compute S' = preimage(S, U)
753 * and drop the final dimensions including any constraints involving them.
754 * This results in set S''.
755 * Then we compute the affine hull A'' of S''.
756 * Let F y_1 >= g be the constraint system of A''. In the transformed
757 * space the y_2 are unbounded, so we can add them back without any constraints,
761 * [ F 0 ] [ y_2 ] >= g
764 * [ F 0 ] [ Q_2 ] x >= g
768 * The affine hull in the original space is then obtained as
769 * A = preimage(A'', Q_1).
771 static struct isl_basic_set *affine_hull_with_cone(struct isl_basic_set *bset,
772 struct isl_basic_set *cone)
776 struct isl_basic_set *hull;
777 struct isl_mat *M, *U, *Q;
782 total = isl_basic_set_total_dim(cone);
783 cone_dim = total - cone->n_eq;
785 M = isl_mat_sub_alloc6(bset->ctx, cone->eq, 0, cone->n_eq, 1, total);
786 M = isl_mat_left_hermite(M, 0, &U, &Q);
791 U = isl_mat_lin_to_aff(U);
792 bset = isl_basic_set_preimage(bset, isl_mat_copy(U));
794 bset = isl_basic_set_drop_constraints_involving(bset, total - cone_dim,
796 bset = isl_basic_set_drop_dims(bset, total - cone_dim, cone_dim);
798 Q = isl_mat_lin_to_aff(Q);
799 Q = isl_mat_drop_rows(Q, 1 + total - cone_dim, cone_dim);
801 if (bset && bset->sample && bset->sample->size == 1 + total)
802 bset->sample = isl_mat_vec_product(isl_mat_copy(Q), bset->sample);
804 hull = uset_affine_hull_bounded(bset);
809 struct isl_vec *sample = isl_vec_copy(hull->sample);
810 U = isl_mat_drop_cols(U, 1 + total - cone_dim, cone_dim);
811 if (sample && sample->size > 0)
812 sample = isl_mat_vec_product(U, sample);
815 hull = isl_basic_set_preimage(hull, Q);
817 isl_vec_free(hull->sample);
818 hull->sample = sample;
820 isl_vec_free(sample);
823 isl_basic_set_free(cone);
827 isl_basic_set_free(bset);
828 isl_basic_set_free(cone);
832 /* Look for all equalities satisfied by the integer points in bset,
833 * which is assumed not to have any explicit equalities.
835 * The equalities are obtained by successively looking for
836 * a point that is affinely independent of the points found so far.
837 * In particular, for each equality satisfied by the points so far,
838 * we check if there is any point on a hyperplane parallel to the
839 * corresponding hyperplane shifted by at least one (in either direction).
841 * Before looking for any outside points, we first compute the recession
842 * cone. The directions of this recession cone will always be part
843 * of the affine hull, so there is no need for looking for any points
844 * in these directions.
845 * In particular, if the recession cone is full-dimensional, then
846 * the affine hull is simply the whole universe.
848 static struct isl_basic_set *uset_affine_hull(struct isl_basic_set *bset)
850 struct isl_basic_set *cone;
852 if (isl_basic_set_plain_is_empty(bset))
855 cone = isl_basic_set_recession_cone(isl_basic_set_copy(bset));
858 if (cone->n_eq == 0) {
859 struct isl_basic_set *hull;
860 isl_basic_set_free(cone);
861 hull = isl_basic_set_universe_like(bset);
862 isl_basic_set_free(bset);
866 if (cone->n_eq < isl_basic_set_total_dim(cone))
867 return affine_hull_with_cone(bset, cone);
869 isl_basic_set_free(cone);
870 return uset_affine_hull_bounded(bset);
872 isl_basic_set_free(bset);
876 /* Look for all equalities satisfied by the integer points in bmap
877 * that are independent of the equalities already explicitly available
880 * We first remove all equalities already explicitly available,
881 * then look for additional equalities in the reduced space
882 * and then transform the result to the original space.
883 * The original equalities are _not_ added to this set. This is
884 * the responsibility of the calling function.
885 * The resulting basic set has all meaning about the dimensions removed.
886 * In particular, dimensions that correspond to existential variables
887 * in bmap and that are found to be fixed are not removed.
889 static struct isl_basic_set *equalities_in_underlying_set(
890 struct isl_basic_map *bmap)
892 struct isl_mat *T1 = NULL;
893 struct isl_mat *T2 = NULL;
894 struct isl_basic_set *bset = NULL;
895 struct isl_basic_set *hull = NULL;
897 bset = isl_basic_map_underlying_set(bmap);
901 bset = isl_basic_set_remove_equalities(bset, &T1, &T2);
905 hull = uset_affine_hull(bset);
913 struct isl_vec *sample = isl_vec_copy(hull->sample);
914 if (sample && sample->size > 0)
915 sample = isl_mat_vec_product(T1, sample);
918 hull = isl_basic_set_preimage(hull, T2);
920 isl_vec_free(hull->sample);
921 hull->sample = sample;
923 isl_vec_free(sample);
929 isl_basic_set_free(bset);
930 isl_basic_set_free(hull);
934 /* Detect and make explicit all equalities satisfied by the (integer)
937 struct isl_basic_map *isl_basic_map_detect_equalities(
938 struct isl_basic_map *bmap)
941 struct isl_basic_set *hull = NULL;
945 if (bmap->n_ineq == 0)
947 if (ISL_F_ISSET(bmap, ISL_BASIC_MAP_EMPTY))
949 if (ISL_F_ISSET(bmap, ISL_BASIC_MAP_ALL_EQUALITIES))
951 if (ISL_F_ISSET(bmap, ISL_BASIC_MAP_RATIONAL))
952 return isl_basic_map_implicit_equalities(bmap);
954 hull = equalities_in_underlying_set(isl_basic_map_copy(bmap));
957 if (ISL_F_ISSET(hull, ISL_BASIC_SET_EMPTY)) {
958 isl_basic_set_free(hull);
959 return isl_basic_map_set_to_empty(bmap);
961 bmap = isl_basic_map_extend_space(bmap, isl_space_copy(bmap->dim), 0,
963 for (i = 0; i < hull->n_eq; ++i) {
964 j = isl_basic_map_alloc_equality(bmap);
967 isl_seq_cpy(bmap->eq[j], hull->eq[i],
968 1 + isl_basic_set_total_dim(hull));
970 isl_vec_free(bmap->sample);
971 bmap->sample = isl_vec_copy(hull->sample);
972 isl_basic_set_free(hull);
973 ISL_F_SET(bmap, ISL_BASIC_MAP_NO_IMPLICIT | ISL_BASIC_MAP_ALL_EQUALITIES);
974 bmap = isl_basic_map_simplify(bmap);
975 return isl_basic_map_finalize(bmap);
977 isl_basic_set_free(hull);
978 isl_basic_map_free(bmap);
982 __isl_give isl_basic_set *isl_basic_set_detect_equalities(
983 __isl_take isl_basic_set *bset)
985 return (isl_basic_set *)
986 isl_basic_map_detect_equalities((isl_basic_map *)bset);
989 __isl_give isl_map *isl_map_inline_foreach_basic_map(__isl_take isl_map *map,
990 __isl_give isl_basic_map *(*fn)(__isl_take isl_basic_map *bmap))
992 struct isl_basic_map *bmap;
998 for (i = 0; i < map->n; ++i) {
999 bmap = isl_basic_map_copy(map->p[i]);
1003 isl_basic_map_free(map->p[i]);
1013 __isl_give isl_map *isl_map_detect_equalities(__isl_take isl_map *map)
1015 return isl_map_inline_foreach_basic_map(map,
1016 &isl_basic_map_detect_equalities);
1019 __isl_give isl_set *isl_set_detect_equalities(__isl_take isl_set *set)
1021 return (isl_set *)isl_map_detect_equalities((isl_map *)set);
1024 /* After computing the rational affine hull (by detecting the implicit
1025 * equalities), we compute the additional equalities satisfied by
1026 * the integer points (if any) and add the original equalities back in.
1028 struct isl_basic_map *isl_basic_map_affine_hull(struct isl_basic_map *bmap)
1030 bmap = isl_basic_map_detect_equalities(bmap);
1031 bmap = isl_basic_map_cow(bmap);
1033 isl_basic_map_free_inequality(bmap, bmap->n_ineq);
1034 bmap = isl_basic_map_finalize(bmap);
1038 struct isl_basic_set *isl_basic_set_affine_hull(struct isl_basic_set *bset)
1040 return (struct isl_basic_set *)
1041 isl_basic_map_affine_hull((struct isl_basic_map *)bset);
1044 struct isl_basic_map *isl_map_affine_hull(struct isl_map *map)
1047 struct isl_basic_map *model = NULL;
1048 struct isl_basic_map *hull = NULL;
1049 struct isl_set *set;
1051 map = isl_map_detect_equalities(map);
1052 map = isl_map_align_divs(map);
1058 hull = isl_basic_map_empty_like_map(map);
1063 model = isl_basic_map_copy(map->p[0]);
1064 set = isl_map_underlying_set(map);
1065 set = isl_set_cow(set);
1069 for (i = 0; i < set->n; ++i) {
1070 set->p[i] = isl_basic_set_cow(set->p[i]);
1071 set->p[i] = isl_basic_set_affine_hull(set->p[i]);
1072 set->p[i] = isl_basic_set_gauss(set->p[i], NULL);
1076 set = isl_set_remove_empty_parts(set);
1078 hull = isl_basic_map_empty_like(model);
1079 isl_basic_map_free(model);
1081 struct isl_basic_set *bset;
1082 while (set->n > 1) {
1083 set->p[0] = affine_hull(set->p[0], set->p[--set->n]);
1087 bset = isl_basic_set_copy(set->p[0]);
1088 hull = isl_basic_map_overlying_set(bset, model);
1091 hull = isl_basic_map_simplify(hull);
1092 return isl_basic_map_finalize(hull);
1094 isl_basic_map_free(model);
1099 struct isl_basic_set *isl_set_affine_hull(struct isl_set *set)
1101 return (struct isl_basic_set *)
1102 isl_map_affine_hull((struct isl_map *)set);