2 * Copyright 2008-2009 Katholieke Universiteit Leuven
4 * Use of this software is governed by the GNU LGPLv2.1 license
6 * Written by Sven Verdoolaege, K.U.Leuven, Departement
7 * Computerwetenschappen, Celestijnenlaan 200A, B-3001 Leuven, Belgium
15 #include "isl_map_private.h"
16 #include "isl_equalities.h"
17 #include "isl_sample.h"
20 struct isl_basic_map *isl_basic_map_implicit_equalities(
21 struct isl_basic_map *bmap)
28 bmap = isl_basic_map_gauss(bmap, NULL);
29 if (ISL_F_ISSET(bmap, ISL_BASIC_MAP_EMPTY))
31 if (ISL_F_ISSET(bmap, ISL_BASIC_MAP_NO_IMPLICIT))
33 if (bmap->n_ineq <= 1)
36 tab = isl_tab_from_basic_map(bmap);
37 tab = isl_tab_detect_implicit_equalities(tab);
38 bmap = isl_basic_map_update_from_tab(bmap, tab);
40 bmap = isl_basic_map_gauss(bmap, NULL);
41 ISL_F_SET(bmap, ISL_BASIC_MAP_NO_IMPLICIT);
45 struct isl_basic_set *isl_basic_set_implicit_equalities(
46 struct isl_basic_set *bset)
48 return (struct isl_basic_set *)
49 isl_basic_map_implicit_equalities((struct isl_basic_map*)bset);
52 struct isl_map *isl_map_implicit_equalities(struct isl_map *map)
59 for (i = 0; i < map->n; ++i) {
60 map->p[i] = isl_basic_map_implicit_equalities(map->p[i]);
71 /* Make eq[row][col] of both bmaps equal so we can add the row
72 * add the column to the common matrix.
73 * Note that because of the echelon form, the columns of row row
74 * after column col are zero.
76 static void set_common_multiple(
77 struct isl_basic_set *bset1, struct isl_basic_set *bset2,
78 unsigned row, unsigned col)
82 if (isl_int_eq(bset1->eq[row][col], bset2->eq[row][col]))
87 isl_int_lcm(m, bset1->eq[row][col], bset2->eq[row][col]);
88 isl_int_divexact(c, m, bset1->eq[row][col]);
89 isl_seq_scale(bset1->eq[row], bset1->eq[row], c, col+1);
90 isl_int_divexact(c, m, bset2->eq[row][col]);
91 isl_seq_scale(bset2->eq[row], bset2->eq[row], c, col+1);
96 /* Delete a given equality, moving all the following equalities one up.
98 static void delete_row(struct isl_basic_set *bset, unsigned row)
105 for (r = row; r < bset->n_eq; ++r)
106 bset->eq[r] = bset->eq[r+1];
107 bset->eq[bset->n_eq] = t;
110 /* Make first row entries in column col of bset1 identical to
111 * those of bset2, using the fact that entry bset1->eq[row][col]=a
112 * is non-zero. Initially, these elements of bset1 are all zero.
113 * For each row i < row, we set
114 * A[i] = a * A[i] + B[i][col] * A[row]
117 * A[i][col] = B[i][col] = a * old(B[i][col])
119 static void construct_column(
120 struct isl_basic_set *bset1, struct isl_basic_set *bset2,
121 unsigned row, unsigned col)
130 total = 1 + isl_basic_set_n_dim(bset1);
131 for (r = 0; r < row; ++r) {
132 if (isl_int_is_zero(bset2->eq[r][col]))
134 isl_int_gcd(b, bset2->eq[r][col], bset1->eq[row][col]);
135 isl_int_divexact(a, bset1->eq[row][col], b);
136 isl_int_divexact(b, bset2->eq[r][col], b);
137 isl_seq_combine(bset1->eq[r], a, bset1->eq[r],
138 b, bset1->eq[row], total);
139 isl_seq_scale(bset2->eq[r], bset2->eq[r], a, total);
143 delete_row(bset1, row);
146 /* Make first row entries in column col of bset1 identical to
147 * those of bset2, using only these entries of the two matrices.
148 * Let t be the last row with different entries.
149 * For each row i < t, we set
150 * A[i] = (A[t][col]-B[t][col]) * A[i] + (B[i][col]-A[i][col) * A[t]
151 * B[i] = (A[t][col]-B[t][col]) * B[i] + (B[i][col]-A[i][col) * B[t]
153 * A[i][col] = B[i][col] = old(A[t][col]*B[i][col]-A[i][col]*B[t][col])
155 static int transform_column(
156 struct isl_basic_set *bset1, struct isl_basic_set *bset2,
157 unsigned row, unsigned col)
163 for (t = row-1; t >= 0; --t)
164 if (isl_int_ne(bset1->eq[t][col], bset2->eq[t][col]))
169 total = 1 + isl_basic_set_n_dim(bset1);
173 isl_int_sub(b, bset1->eq[t][col], bset2->eq[t][col]);
174 for (i = 0; i < t; ++i) {
175 isl_int_sub(a, bset2->eq[i][col], bset1->eq[i][col]);
176 isl_int_gcd(g, a, b);
177 isl_int_divexact(a, a, g);
178 isl_int_divexact(g, b, g);
179 isl_seq_combine(bset1->eq[i], g, bset1->eq[i], a, bset1->eq[t],
181 isl_seq_combine(bset2->eq[i], g, bset2->eq[i], a, bset2->eq[t],
187 delete_row(bset1, t);
188 delete_row(bset2, t);
192 /* The implementation is based on Section 5.2 of Michael Karr,
193 * "Affine Relationships Among Variables of a Program",
194 * except that the echelon form we use starts from the last column
195 * and that we are dealing with integer coefficients.
197 static struct isl_basic_set *affine_hull(
198 struct isl_basic_set *bset1, struct isl_basic_set *bset2)
204 total = 1 + isl_basic_set_n_dim(bset1);
207 for (col = total-1; col >= 0; --col) {
208 int is_zero1 = row >= bset1->n_eq ||
209 isl_int_is_zero(bset1->eq[row][col]);
210 int is_zero2 = row >= bset2->n_eq ||
211 isl_int_is_zero(bset2->eq[row][col]);
212 if (!is_zero1 && !is_zero2) {
213 set_common_multiple(bset1, bset2, row, col);
215 } else if (!is_zero1 && is_zero2) {
216 construct_column(bset1, bset2, row, col);
217 } else if (is_zero1 && !is_zero2) {
218 construct_column(bset2, bset1, row, col);
220 if (transform_column(bset1, bset2, row, col))
224 isl_basic_set_free(bset2);
225 isl_assert(bset1->ctx, row == bset1->n_eq, goto error);
226 bset1 = isl_basic_set_normalize_constraints(bset1);
229 isl_basic_set_free(bset1);
233 /* Find an integer point in the set represented by "tab"
234 * that lies outside of the equality "eq" e(x) = 0.
235 * If "up" is true, look for a point satisfying e(x) - 1 >= 0.
236 * Otherwise, look for a point satisfying -e(x) - 1 >= 0 (i.e., e(x) <= -1).
237 * The point, if found, is returned.
238 * If no point can be found, a zero-length vector is returned.
240 * Before solving an ILP problem, we first check if simply
241 * adding the normal of the constraint to one of the known
242 * integer points in the basic set represented by "tab"
243 * yields another point inside the basic set.
245 * The caller of this function ensures that the tableau is bounded or
246 * that tab->basis and tab->n_unbounded have been set appropriately.
248 static struct isl_vec *outside_point(struct isl_tab *tab, isl_int *eq, int up)
251 struct isl_vec *sample = NULL;
252 struct isl_tab_undo *snap;
261 sample = isl_vec_alloc(ctx, 1 + dim);
264 isl_int_set_si(sample->el[0], 1);
265 isl_seq_combine(sample->el + 1,
266 ctx->one, tab->bmap->sample->el + 1,
267 up ? ctx->one : ctx->negone, eq + 1, dim);
268 if (isl_basic_map_contains(tab->bmap, sample))
270 isl_vec_free(sample);
273 snap = isl_tab_snap(tab);
276 isl_seq_neg(eq, eq, 1 + dim);
277 isl_int_sub_ui(eq[0], eq[0], 1);
279 if (isl_tab_extend_cons(tab, 1) < 0)
281 if (isl_tab_add_ineq(tab, eq) < 0)
284 sample = isl_tab_sample(tab);
286 isl_int_add_ui(eq[0], eq[0], 1);
288 isl_seq_neg(eq, eq, 1 + dim);
290 if (isl_tab_rollback(tab, snap) < 0)
295 isl_vec_free(sample);
299 struct isl_basic_set *isl_basic_set_recession_cone(struct isl_basic_set *bset)
303 bset = isl_basic_set_cow(bset);
306 isl_assert(bset->ctx, bset->n_div == 0, goto error);
308 for (i = 0; i < bset->n_eq; ++i)
309 isl_int_set_si(bset->eq[i][0], 0);
311 for (i = 0; i < bset->n_ineq; ++i)
312 isl_int_set_si(bset->ineq[i][0], 0);
314 ISL_F_CLR(bset, ISL_BASIC_SET_NO_IMPLICIT);
315 return isl_basic_set_implicit_equalities(bset);
317 isl_basic_set_free(bset);
321 __isl_give isl_set *isl_set_recession_cone(__isl_take isl_set *set)
330 set = isl_set_remove_divs(set);
331 set = isl_set_cow(set);
335 for (i = 0; i < set->n; ++i) {
336 set->p[i] = isl_basic_set_recession_cone(set->p[i]);
347 /* Extend an initial (under-)approximation of the affine hull of basic
348 * set represented by the tableau "tab"
349 * by looking for points that do not satisfy one of the equalities
350 * in the current approximation and adding them to that approximation
351 * until no such points can be found any more.
353 * The caller of this function ensures that "tab" is bounded or
354 * that tab->basis and tab->n_unbounded have been set appropriately.
356 static struct isl_basic_set *extend_affine_hull(struct isl_tab *tab,
357 struct isl_basic_set *hull)
367 if (isl_tab_extend_cons(tab, 2 * dim + 1) < 0)
370 for (i = 0; i < dim; ++i) {
371 struct isl_vec *sample;
372 struct isl_basic_set *point;
373 for (j = 0; j < hull->n_eq; ++j) {
374 sample = outside_point(tab, hull->eq[j], 1);
377 if (sample->size > 0)
379 isl_vec_free(sample);
380 sample = outside_point(tab, hull->eq[j], 0);
383 if (sample->size > 0)
385 isl_vec_free(sample);
387 tab = isl_tab_add_eq(tab, hull->eq[j]);
394 tab = isl_tab_add_sample(tab, isl_vec_copy(sample));
397 point = isl_basic_set_from_vec(sample);
398 hull = affine_hull(hull, point);
403 isl_basic_set_free(hull);
407 /* Drop all constraints in bset that involve any of the dimensions
408 * first to first+n-1.
410 static struct isl_basic_set *drop_constraints_involving
411 (struct isl_basic_set *bset, unsigned first, unsigned n)
418 bset = isl_basic_set_cow(bset);
420 for (i = bset->n_eq - 1; i >= 0; --i) {
421 if (isl_seq_first_non_zero(bset->eq[i] + 1 + first, n) == -1)
423 isl_basic_set_drop_equality(bset, i);
426 for (i = bset->n_ineq - 1; i >= 0; --i) {
427 if (isl_seq_first_non_zero(bset->ineq[i] + 1 + first, n) == -1)
429 isl_basic_set_drop_inequality(bset, i);
435 /* Look for all equalities satisfied by the integer points in bset,
436 * which is assumed to be bounded.
438 * The equalities are obtained by successively looking for
439 * a point that is affinely independent of the points found so far.
440 * In particular, for each equality satisfied by the points so far,
441 * we check if there is any point on a hyperplane parallel to the
442 * corresponding hyperplane shifted by at least one (in either direction).
444 static struct isl_basic_set *uset_affine_hull_bounded(struct isl_basic_set *bset)
446 struct isl_vec *sample = NULL;
447 struct isl_basic_set *hull;
448 struct isl_tab *tab = NULL;
451 if (isl_basic_set_fast_is_empty(bset))
454 dim = isl_basic_set_n_dim(bset);
456 if (bset->sample && bset->sample->size == 1 + dim) {
457 int contains = isl_basic_set_contains(bset, bset->sample);
463 sample = isl_vec_copy(bset->sample);
465 isl_vec_free(bset->sample);
470 tab = isl_tab_from_basic_set(bset);
475 isl_vec_free(sample);
476 return isl_basic_set_set_to_empty(bset);
478 if (isl_tab_track_bset(tab, isl_basic_set_copy(bset)) < 0)
482 struct isl_tab_undo *snap;
483 snap = isl_tab_snap(tab);
484 sample = isl_tab_sample(tab);
485 if (isl_tab_rollback(tab, snap) < 0)
487 isl_vec_free(tab->bmap->sample);
488 tab->bmap->sample = isl_vec_copy(sample);
493 if (sample->size == 0) {
495 isl_vec_free(sample);
496 return isl_basic_set_set_to_empty(bset);
499 hull = isl_basic_set_from_vec(sample);
501 isl_basic_set_free(bset);
502 hull = extend_affine_hull(tab, hull);
507 isl_vec_free(sample);
509 isl_basic_set_free(bset);
513 /* Given an unbounded tableau and an integer point satisfying the tableau,
514 * construct an intial affine hull containing the recession cone
515 * shifted to the given point.
517 * The unbounded directions are taken from the last rows of the basis,
518 * which is assumed to have been initialized appropriately.
520 static __isl_give isl_basic_set *initial_hull(struct isl_tab *tab,
521 __isl_take isl_vec *vec)
525 struct isl_basic_set *bset = NULL;
532 isl_assert(ctx, vec->size != 0, goto error);
534 bset = isl_basic_set_alloc(ctx, 0, vec->size - 1, 0, vec->size - 1, 0);
537 dim = isl_basic_set_n_dim(bset) - tab->n_unbounded;
538 for (i = 0; i < dim; ++i) {
539 k = isl_basic_set_alloc_equality(bset);
542 isl_seq_cpy(bset->eq[k] + 1, tab->basis->row[1 + i] + 1,
544 isl_seq_inner_product(bset->eq[k] + 1, vec->el +1,
545 vec->size - 1, &bset->eq[k][0]);
546 isl_int_neg(bset->eq[k][0], bset->eq[k][0]);
549 bset = isl_basic_set_gauss(bset, NULL);
553 isl_basic_set_free(bset);
558 /* Given a tableau of a set and a tableau of the corresponding
559 * recession cone, detect and add all equalities to the tableau.
560 * If the tableau is bounded, then we can simply keep the
561 * tableau in its state after the return from extend_affine_hull.
562 * However, if the tableau is unbounded, then
563 * isl_tab_set_initial_basis_with_cone will add some additional
564 * constraints to the tableau that have to be removed again.
565 * In this case, we therefore rollback to the state before
566 * any constraints were added and then add the eqaulities back in.
568 struct isl_tab *isl_tab_detect_equalities(struct isl_tab *tab,
569 struct isl_tab *tab_cone)
572 struct isl_vec *sample;
573 struct isl_basic_set *hull;
574 struct isl_tab_undo *snap;
576 if (!tab || !tab_cone)
579 snap = isl_tab_snap(tab);
581 isl_mat_free(tab->basis);
584 isl_assert(tab->mat->ctx, tab->bmap, goto error);
585 isl_assert(tab->mat->ctx, tab->samples, goto error);
586 isl_assert(tab->mat->ctx, tab->samples->n_col == 1 + tab->n_var, goto error);
587 isl_assert(tab->mat->ctx, tab->n_sample > tab->n_outside, goto error);
589 if (isl_tab_set_initial_basis_with_cone(tab, tab_cone) < 0)
592 sample = isl_vec_alloc(tab->mat->ctx, 1 + tab->n_var);
596 isl_seq_cpy(sample->el, tab->samples->row[tab->n_outside], sample->size);
598 isl_vec_free(tab->bmap->sample);
599 tab->bmap->sample = isl_vec_copy(sample);
601 if (tab->n_unbounded == 0)
602 hull = isl_basic_set_from_vec(isl_vec_copy(sample));
604 hull = initial_hull(tab, isl_vec_copy(sample));
606 for (j = tab->n_outside + 1; j < tab->n_sample; ++j) {
607 isl_seq_cpy(sample->el, tab->samples->row[j], sample->size);
608 hull = affine_hull(hull,
609 isl_basic_set_from_vec(isl_vec_copy(sample)));
612 isl_vec_free(sample);
614 hull = extend_affine_hull(tab, hull);
618 if (tab->n_unbounded == 0) {
619 isl_basic_set_free(hull);
623 if (isl_tab_rollback(tab, snap) < 0)
626 if (hull->n_eq > tab->n_zero) {
627 for (j = 0; j < hull->n_eq; ++j) {
628 isl_seq_normalize(tab->mat->ctx, hull->eq[j], 1 + tab->n_var);
629 tab = isl_tab_add_eq(tab, hull->eq[j]);
633 isl_basic_set_free(hull);
641 /* Compute the affine hull of "bset", where "cone" is the recession cone
644 * We first compute a unimodular transformation that puts the unbounded
645 * directions in the last dimensions. In particular, we take a transformation
646 * that maps all equalities to equalities (in HNF) on the first dimensions.
647 * Let x be the original dimensions and y the transformed, with y_1 bounded
650 * [ y_1 ] [ y_1 ] [ Q_1 ]
651 * x = U [ y_2 ] [ y_2 ] = [ Q_2 ] x
653 * Let's call the input basic set S. We compute S' = preimage(S, U)
654 * and drop the final dimensions including any constraints involving them.
655 * This results in set S''.
656 * Then we compute the affine hull A'' of S''.
657 * Let F y_1 >= g be the constraint system of A''. In the transformed
658 * space the y_2 are unbounded, so we can add them back without any constraints,
662 * [ F 0 ] [ y_2 ] >= g
665 * [ F 0 ] [ Q_2 ] x >= g
669 * The affine hull in the original space is then obtained as
670 * A = preimage(A'', Q_1).
672 static struct isl_basic_set *affine_hull_with_cone(struct isl_basic_set *bset,
673 struct isl_basic_set *cone)
677 struct isl_basic_set *hull;
678 struct isl_mat *M, *U, *Q;
683 total = isl_basic_set_total_dim(cone);
684 cone_dim = total - cone->n_eq;
686 M = isl_mat_sub_alloc(bset->ctx, cone->eq, 0, cone->n_eq, 1, total);
687 M = isl_mat_left_hermite(M, 0, &U, &Q);
692 U = isl_mat_lin_to_aff(U);
693 bset = isl_basic_set_preimage(bset, isl_mat_copy(U));
695 bset = drop_constraints_involving(bset, total - cone_dim, cone_dim);
696 bset = isl_basic_set_drop_dims(bset, total - cone_dim, cone_dim);
698 Q = isl_mat_lin_to_aff(Q);
699 Q = isl_mat_drop_rows(Q, 1 + total - cone_dim, cone_dim);
701 if (bset && bset->sample && bset->sample->size == 1 + total)
702 bset->sample = isl_mat_vec_product(isl_mat_copy(Q), bset->sample);
704 hull = uset_affine_hull_bounded(bset);
709 struct isl_vec *sample = isl_vec_copy(hull->sample);
710 U = isl_mat_drop_cols(U, 1 + total - cone_dim, cone_dim);
711 if (sample && sample->size > 0)
712 sample = isl_mat_vec_product(U, sample);
715 hull = isl_basic_set_preimage(hull, Q);
716 isl_vec_free(hull->sample);
717 hull->sample = sample;
720 isl_basic_set_free(cone);
724 isl_basic_set_free(bset);
725 isl_basic_set_free(cone);
729 /* Look for all equalities satisfied by the integer points in bset,
730 * which is assumed not to have any explicit equalities.
732 * The equalities are obtained by successively looking for
733 * a point that is affinely independent of the points found so far.
734 * In particular, for each equality satisfied by the points so far,
735 * we check if there is any point on a hyperplane parallel to the
736 * corresponding hyperplane shifted by at least one (in either direction).
738 * Before looking for any outside points, we first compute the recession
739 * cone. The directions of this recession cone will always be part
740 * of the affine hull, so there is no need for looking for any points
741 * in these directions.
742 * In particular, if the recession cone is full-dimensional, then
743 * the affine hull is simply the whole universe.
745 static struct isl_basic_set *uset_affine_hull(struct isl_basic_set *bset)
747 struct isl_basic_set *cone;
749 if (isl_basic_set_fast_is_empty(bset))
752 cone = isl_basic_set_recession_cone(isl_basic_set_copy(bset));
755 if (cone->n_eq == 0) {
756 struct isl_basic_set *hull;
757 isl_basic_set_free(cone);
758 hull = isl_basic_set_universe_like(bset);
759 isl_basic_set_free(bset);
763 if (cone->n_eq < isl_basic_set_total_dim(cone))
764 return affine_hull_with_cone(bset, cone);
766 isl_basic_set_free(cone);
767 return uset_affine_hull_bounded(bset);
769 isl_basic_set_free(bset);
773 /* Look for all equalities satisfied by the integer points in bmap
774 * that are independent of the equalities already explicitly available
777 * We first remove all equalities already explicitly available,
778 * then look for additional equalities in the reduced space
779 * and then transform the result to the original space.
780 * The original equalities are _not_ added to this set. This is
781 * the responsibility of the calling function.
782 * The resulting basic set has all meaning about the dimensions removed.
783 * In particular, dimensions that correspond to existential variables
784 * in bmap and that are found to be fixed are not removed.
786 static struct isl_basic_set *equalities_in_underlying_set(
787 struct isl_basic_map *bmap)
789 struct isl_mat *T1 = NULL;
790 struct isl_mat *T2 = NULL;
791 struct isl_basic_set *bset = NULL;
792 struct isl_basic_set *hull = NULL;
794 bset = isl_basic_map_underlying_set(bmap);
798 bset = isl_basic_set_remove_equalities(bset, &T1, &T2);
802 hull = uset_affine_hull(bset);
809 struct isl_vec *sample = isl_vec_copy(hull->sample);
810 if (sample && sample->size > 0)
811 sample = isl_mat_vec_product(T1, sample);
814 hull = isl_basic_set_preimage(hull, T2);
815 isl_vec_free(hull->sample);
816 hull->sample = sample;
822 isl_basic_set_free(bset);
823 isl_basic_set_free(hull);
827 /* Detect and make explicit all equalities satisfied by the (integer)
830 struct isl_basic_map *isl_basic_map_detect_equalities(
831 struct isl_basic_map *bmap)
834 struct isl_basic_set *hull = NULL;
838 if (bmap->n_ineq == 0)
840 if (ISL_F_ISSET(bmap, ISL_BASIC_MAP_EMPTY))
842 if (ISL_F_ISSET(bmap, ISL_BASIC_MAP_ALL_EQUALITIES))
844 if (ISL_F_ISSET(bmap, ISL_BASIC_MAP_RATIONAL))
845 return isl_basic_map_implicit_equalities(bmap);
847 hull = equalities_in_underlying_set(isl_basic_map_copy(bmap));
850 if (ISL_F_ISSET(hull, ISL_BASIC_SET_EMPTY)) {
851 isl_basic_set_free(hull);
852 return isl_basic_map_set_to_empty(bmap);
854 bmap = isl_basic_map_extend_dim(bmap, isl_dim_copy(bmap->dim), 0,
856 for (i = 0; i < hull->n_eq; ++i) {
857 j = isl_basic_map_alloc_equality(bmap);
860 isl_seq_cpy(bmap->eq[j], hull->eq[i],
861 1 + isl_basic_set_total_dim(hull));
863 isl_vec_free(bmap->sample);
864 bmap->sample = isl_vec_copy(hull->sample);
865 isl_basic_set_free(hull);
866 ISL_F_SET(bmap, ISL_BASIC_MAP_NO_IMPLICIT | ISL_BASIC_MAP_ALL_EQUALITIES);
867 bmap = isl_basic_map_simplify(bmap);
868 return isl_basic_map_finalize(bmap);
870 isl_basic_set_free(hull);
871 isl_basic_map_free(bmap);
875 __isl_give isl_basic_set *isl_basic_set_detect_equalities(
876 __isl_take isl_basic_set *bset)
878 return (isl_basic_set *)
879 isl_basic_map_detect_equalities((isl_basic_map *)bset);
882 struct isl_map *isl_map_detect_equalities(struct isl_map *map)
884 struct isl_basic_map *bmap;
890 for (i = 0; i < map->n; ++i) {
891 bmap = isl_basic_map_copy(map->p[i]);
892 bmap = isl_basic_map_detect_equalities(bmap);
895 isl_basic_map_free(map->p[i]);
905 __isl_give isl_set *isl_set_detect_equalities(__isl_take isl_set *set)
907 return (isl_set *)isl_map_detect_equalities((isl_map *)set);
910 /* After computing the rational affine hull (by detecting the implicit
911 * equalities), we compute the additional equalities satisfied by
912 * the integer points (if any) and add the original equalities back in.
914 struct isl_basic_map *isl_basic_map_affine_hull(struct isl_basic_map *bmap)
916 bmap = isl_basic_map_detect_equalities(bmap);
917 bmap = isl_basic_map_cow(bmap);
918 isl_basic_map_free_inequality(bmap, bmap->n_ineq);
922 struct isl_basic_set *isl_basic_set_affine_hull(struct isl_basic_set *bset)
924 return (struct isl_basic_set *)
925 isl_basic_map_affine_hull((struct isl_basic_map *)bset);
928 struct isl_basic_map *isl_map_affine_hull(struct isl_map *map)
931 struct isl_basic_map *model = NULL;
932 struct isl_basic_map *hull = NULL;
935 map = isl_map_detect_equalities(map);
936 map = isl_map_align_divs(map);
942 hull = isl_basic_map_empty_like_map(map);
947 model = isl_basic_map_copy(map->p[0]);
948 set = isl_map_underlying_set(map);
949 set = isl_set_cow(set);
953 for (i = 0; i < set->n; ++i) {
954 set->p[i] = isl_basic_set_cow(set->p[i]);
955 set->p[i] = isl_basic_set_affine_hull(set->p[i]);
956 set->p[i] = isl_basic_set_gauss(set->p[i], NULL);
960 set = isl_set_remove_empty_parts(set);
962 hull = isl_basic_map_empty_like(model);
963 isl_basic_map_free(model);
965 struct isl_basic_set *bset;
967 set->p[0] = affine_hull(set->p[0], set->p[--set->n]);
971 bset = isl_basic_set_copy(set->p[0]);
972 hull = isl_basic_map_overlying_set(bset, model);
975 hull = isl_basic_map_simplify(hull);
976 return isl_basic_map_finalize(hull);
978 isl_basic_map_free(model);
983 struct isl_basic_set *isl_set_affine_hull(struct isl_set *set)
985 return (struct isl_basic_set *)
986 isl_map_affine_hull((struct isl_map *)set);