Merge tag 'nfs-for-5.4-1' of git://git.linux-nfs.org/projects/anna/linux-nfs
[platform/kernel/linux-rpi.git] / ipc / sem.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * linux/ipc/sem.c
4  * Copyright (C) 1992 Krishna Balasubramanian
5  * Copyright (C) 1995 Eric Schenk, Bruno Haible
6  *
7  * /proc/sysvipc/sem support (c) 1999 Dragos Acostachioaie <dragos@iname.com>
8  *
9  * SMP-threaded, sysctl's added
10  * (c) 1999 Manfred Spraul <manfred@colorfullife.com>
11  * Enforced range limit on SEM_UNDO
12  * (c) 2001 Red Hat Inc
13  * Lockless wakeup
14  * (c) 2003 Manfred Spraul <manfred@colorfullife.com>
15  * (c) 2016 Davidlohr Bueso <dave@stgolabs.net>
16  * Further wakeup optimizations, documentation
17  * (c) 2010 Manfred Spraul <manfred@colorfullife.com>
18  *
19  * support for audit of ipc object properties and permission changes
20  * Dustin Kirkland <dustin.kirkland@us.ibm.com>
21  *
22  * namespaces support
23  * OpenVZ, SWsoft Inc.
24  * Pavel Emelianov <xemul@openvz.org>
25  *
26  * Implementation notes: (May 2010)
27  * This file implements System V semaphores.
28  *
29  * User space visible behavior:
30  * - FIFO ordering for semop() operations (just FIFO, not starvation
31  *   protection)
32  * - multiple semaphore operations that alter the same semaphore in
33  *   one semop() are handled.
34  * - sem_ctime (time of last semctl()) is updated in the IPC_SET, SETVAL and
35  *   SETALL calls.
36  * - two Linux specific semctl() commands: SEM_STAT, SEM_INFO.
37  * - undo adjustments at process exit are limited to 0..SEMVMX.
38  * - namespace are supported.
39  * - SEMMSL, SEMMNS, SEMOPM and SEMMNI can be configured at runtine by writing
40  *   to /proc/sys/kernel/sem.
41  * - statistics about the usage are reported in /proc/sysvipc/sem.
42  *
43  * Internals:
44  * - scalability:
45  *   - all global variables are read-mostly.
46  *   - semop() calls and semctl(RMID) are synchronized by RCU.
47  *   - most operations do write operations (actually: spin_lock calls) to
48  *     the per-semaphore array structure.
49  *   Thus: Perfect SMP scaling between independent semaphore arrays.
50  *         If multiple semaphores in one array are used, then cache line
51  *         trashing on the semaphore array spinlock will limit the scaling.
52  * - semncnt and semzcnt are calculated on demand in count_semcnt()
53  * - the task that performs a successful semop() scans the list of all
54  *   sleeping tasks and completes any pending operations that can be fulfilled.
55  *   Semaphores are actively given to waiting tasks (necessary for FIFO).
56  *   (see update_queue())
57  * - To improve the scalability, the actual wake-up calls are performed after
58  *   dropping all locks. (see wake_up_sem_queue_prepare())
59  * - All work is done by the waker, the woken up task does not have to do
60  *   anything - not even acquiring a lock or dropping a refcount.
61  * - A woken up task may not even touch the semaphore array anymore, it may
62  *   have been destroyed already by a semctl(RMID).
63  * - UNDO values are stored in an array (one per process and per
64  *   semaphore array, lazily allocated). For backwards compatibility, multiple
65  *   modes for the UNDO variables are supported (per process, per thread)
66  *   (see copy_semundo, CLONE_SYSVSEM)
67  * - There are two lists of the pending operations: a per-array list
68  *   and per-semaphore list (stored in the array). This allows to achieve FIFO
69  *   ordering without always scanning all pending operations.
70  *   The worst-case behavior is nevertheless O(N^2) for N wakeups.
71  */
72
73 #include <linux/compat.h>
74 #include <linux/slab.h>
75 #include <linux/spinlock.h>
76 #include <linux/init.h>
77 #include <linux/proc_fs.h>
78 #include <linux/time.h>
79 #include <linux/security.h>
80 #include <linux/syscalls.h>
81 #include <linux/audit.h>
82 #include <linux/capability.h>
83 #include <linux/seq_file.h>
84 #include <linux/rwsem.h>
85 #include <linux/nsproxy.h>
86 #include <linux/ipc_namespace.h>
87 #include <linux/sched/wake_q.h>
88 #include <linux/nospec.h>
89 #include <linux/rhashtable.h>
90
91 #include <linux/uaccess.h>
92 #include "util.h"
93
94 /* One semaphore structure for each semaphore in the system. */
95 struct sem {
96         int     semval;         /* current value */
97         /*
98          * PID of the process that last modified the semaphore. For
99          * Linux, specifically these are:
100          *  - semop
101          *  - semctl, via SETVAL and SETALL.
102          *  - at task exit when performing undo adjustments (see exit_sem).
103          */
104         struct pid *sempid;
105         spinlock_t      lock;   /* spinlock for fine-grained semtimedop */
106         struct list_head pending_alter; /* pending single-sop operations */
107                                         /* that alter the semaphore */
108         struct list_head pending_const; /* pending single-sop operations */
109                                         /* that do not alter the semaphore*/
110         time64_t         sem_otime;     /* candidate for sem_otime */
111 } ____cacheline_aligned_in_smp;
112
113 /* One sem_array data structure for each set of semaphores in the system. */
114 struct sem_array {
115         struct kern_ipc_perm    sem_perm;       /* permissions .. see ipc.h */
116         time64_t                sem_ctime;      /* create/last semctl() time */
117         struct list_head        pending_alter;  /* pending operations */
118                                                 /* that alter the array */
119         struct list_head        pending_const;  /* pending complex operations */
120                                                 /* that do not alter semvals */
121         struct list_head        list_id;        /* undo requests on this array */
122         int                     sem_nsems;      /* no. of semaphores in array */
123         int                     complex_count;  /* pending complex operations */
124         unsigned int            use_global_lock;/* >0: global lock required */
125
126         struct sem              sems[];
127 } __randomize_layout;
128
129 /* One queue for each sleeping process in the system. */
130 struct sem_queue {
131         struct list_head        list;    /* queue of pending operations */
132         struct task_struct      *sleeper; /* this process */
133         struct sem_undo         *undo;   /* undo structure */
134         struct pid              *pid;    /* process id of requesting process */
135         int                     status;  /* completion status of operation */
136         struct sembuf           *sops;   /* array of pending operations */
137         struct sembuf           *blocking; /* the operation that blocked */
138         int                     nsops;   /* number of operations */
139         bool                    alter;   /* does *sops alter the array? */
140         bool                    dupsop;  /* sops on more than one sem_num */
141 };
142
143 /* Each task has a list of undo requests. They are executed automatically
144  * when the process exits.
145  */
146 struct sem_undo {
147         struct list_head        list_proc;      /* per-process list: *
148                                                  * all undos from one process
149                                                  * rcu protected */
150         struct rcu_head         rcu;            /* rcu struct for sem_undo */
151         struct sem_undo_list    *ulp;           /* back ptr to sem_undo_list */
152         struct list_head        list_id;        /* per semaphore array list:
153                                                  * all undos for one array */
154         int                     semid;          /* semaphore set identifier */
155         short                   *semadj;        /* array of adjustments */
156                                                 /* one per semaphore */
157 };
158
159 /* sem_undo_list controls shared access to the list of sem_undo structures
160  * that may be shared among all a CLONE_SYSVSEM task group.
161  */
162 struct sem_undo_list {
163         refcount_t              refcnt;
164         spinlock_t              lock;
165         struct list_head        list_proc;
166 };
167
168
169 #define sem_ids(ns)     ((ns)->ids[IPC_SEM_IDS])
170
171 static int newary(struct ipc_namespace *, struct ipc_params *);
172 static void freeary(struct ipc_namespace *, struct kern_ipc_perm *);
173 #ifdef CONFIG_PROC_FS
174 static int sysvipc_sem_proc_show(struct seq_file *s, void *it);
175 #endif
176
177 #define SEMMSL_FAST     256 /* 512 bytes on stack */
178 #define SEMOPM_FAST     64  /* ~ 372 bytes on stack */
179
180 /*
181  * Switching from the mode suitable for simple ops
182  * to the mode for complex ops is costly. Therefore:
183  * use some hysteresis
184  */
185 #define USE_GLOBAL_LOCK_HYSTERESIS      10
186
187 /*
188  * Locking:
189  * a) global sem_lock() for read/write
190  *      sem_undo.id_next,
191  *      sem_array.complex_count,
192  *      sem_array.pending{_alter,_const},
193  *      sem_array.sem_undo
194  *
195  * b) global or semaphore sem_lock() for read/write:
196  *      sem_array.sems[i].pending_{const,alter}:
197  *
198  * c) special:
199  *      sem_undo_list.list_proc:
200  *      * undo_list->lock for write
201  *      * rcu for read
202  *      use_global_lock:
203  *      * global sem_lock() for write
204  *      * either local or global sem_lock() for read.
205  *
206  * Memory ordering:
207  * Most ordering is enforced by using spin_lock() and spin_unlock().
208  * The special case is use_global_lock:
209  * Setting it from non-zero to 0 is a RELEASE, this is ensured by
210  * using smp_store_release().
211  * Testing if it is non-zero is an ACQUIRE, this is ensured by using
212  * smp_load_acquire().
213  * Setting it from 0 to non-zero must be ordered with regards to
214  * this smp_load_acquire(), this is guaranteed because the smp_load_acquire()
215  * is inside a spin_lock() and after a write from 0 to non-zero a
216  * spin_lock()+spin_unlock() is done.
217  */
218
219 #define sc_semmsl       sem_ctls[0]
220 #define sc_semmns       sem_ctls[1]
221 #define sc_semopm       sem_ctls[2]
222 #define sc_semmni       sem_ctls[3]
223
224 void sem_init_ns(struct ipc_namespace *ns)
225 {
226         ns->sc_semmsl = SEMMSL;
227         ns->sc_semmns = SEMMNS;
228         ns->sc_semopm = SEMOPM;
229         ns->sc_semmni = SEMMNI;
230         ns->used_sems = 0;
231         ipc_init_ids(&ns->ids[IPC_SEM_IDS]);
232 }
233
234 #ifdef CONFIG_IPC_NS
235 void sem_exit_ns(struct ipc_namespace *ns)
236 {
237         free_ipcs(ns, &sem_ids(ns), freeary);
238         idr_destroy(&ns->ids[IPC_SEM_IDS].ipcs_idr);
239         rhashtable_destroy(&ns->ids[IPC_SEM_IDS].key_ht);
240 }
241 #endif
242
243 void __init sem_init(void)
244 {
245         sem_init_ns(&init_ipc_ns);
246         ipc_init_proc_interface("sysvipc/sem",
247                                 "       key      semid perms      nsems   uid   gid  cuid  cgid      otime      ctime\n",
248                                 IPC_SEM_IDS, sysvipc_sem_proc_show);
249 }
250
251 /**
252  * unmerge_queues - unmerge queues, if possible.
253  * @sma: semaphore array
254  *
255  * The function unmerges the wait queues if complex_count is 0.
256  * It must be called prior to dropping the global semaphore array lock.
257  */
258 static void unmerge_queues(struct sem_array *sma)
259 {
260         struct sem_queue *q, *tq;
261
262         /* complex operations still around? */
263         if (sma->complex_count)
264                 return;
265         /*
266          * We will switch back to simple mode.
267          * Move all pending operation back into the per-semaphore
268          * queues.
269          */
270         list_for_each_entry_safe(q, tq, &sma->pending_alter, list) {
271                 struct sem *curr;
272                 curr = &sma->sems[q->sops[0].sem_num];
273
274                 list_add_tail(&q->list, &curr->pending_alter);
275         }
276         INIT_LIST_HEAD(&sma->pending_alter);
277 }
278
279 /**
280  * merge_queues - merge single semop queues into global queue
281  * @sma: semaphore array
282  *
283  * This function merges all per-semaphore queues into the global queue.
284  * It is necessary to achieve FIFO ordering for the pending single-sop
285  * operations when a multi-semop operation must sleep.
286  * Only the alter operations must be moved, the const operations can stay.
287  */
288 static void merge_queues(struct sem_array *sma)
289 {
290         int i;
291         for (i = 0; i < sma->sem_nsems; i++) {
292                 struct sem *sem = &sma->sems[i];
293
294                 list_splice_init(&sem->pending_alter, &sma->pending_alter);
295         }
296 }
297
298 static void sem_rcu_free(struct rcu_head *head)
299 {
300         struct kern_ipc_perm *p = container_of(head, struct kern_ipc_perm, rcu);
301         struct sem_array *sma = container_of(p, struct sem_array, sem_perm);
302
303         security_sem_free(&sma->sem_perm);
304         kvfree(sma);
305 }
306
307 /*
308  * Enter the mode suitable for non-simple operations:
309  * Caller must own sem_perm.lock.
310  */
311 static void complexmode_enter(struct sem_array *sma)
312 {
313         int i;
314         struct sem *sem;
315
316         if (sma->use_global_lock > 0)  {
317                 /*
318                  * We are already in global lock mode.
319                  * Nothing to do, just reset the
320                  * counter until we return to simple mode.
321                  */
322                 sma->use_global_lock = USE_GLOBAL_LOCK_HYSTERESIS;
323                 return;
324         }
325         sma->use_global_lock = USE_GLOBAL_LOCK_HYSTERESIS;
326
327         for (i = 0; i < sma->sem_nsems; i++) {
328                 sem = &sma->sems[i];
329                 spin_lock(&sem->lock);
330                 spin_unlock(&sem->lock);
331         }
332 }
333
334 /*
335  * Try to leave the mode that disallows simple operations:
336  * Caller must own sem_perm.lock.
337  */
338 static void complexmode_tryleave(struct sem_array *sma)
339 {
340         if (sma->complex_count)  {
341                 /* Complex ops are sleeping.
342                  * We must stay in complex mode
343                  */
344                 return;
345         }
346         if (sma->use_global_lock == 1) {
347                 /*
348                  * Immediately after setting use_global_lock to 0,
349                  * a simple op can start. Thus: all memory writes
350                  * performed by the current operation must be visible
351                  * before we set use_global_lock to 0.
352                  */
353                 smp_store_release(&sma->use_global_lock, 0);
354         } else {
355                 sma->use_global_lock--;
356         }
357 }
358
359 #define SEM_GLOBAL_LOCK (-1)
360 /*
361  * If the request contains only one semaphore operation, and there are
362  * no complex transactions pending, lock only the semaphore involved.
363  * Otherwise, lock the entire semaphore array, since we either have
364  * multiple semaphores in our own semops, or we need to look at
365  * semaphores from other pending complex operations.
366  */
367 static inline int sem_lock(struct sem_array *sma, struct sembuf *sops,
368                               int nsops)
369 {
370         struct sem *sem;
371         int idx;
372
373         if (nsops != 1) {
374                 /* Complex operation - acquire a full lock */
375                 ipc_lock_object(&sma->sem_perm);
376
377                 /* Prevent parallel simple ops */
378                 complexmode_enter(sma);
379                 return SEM_GLOBAL_LOCK;
380         }
381
382         /*
383          * Only one semaphore affected - try to optimize locking.
384          * Optimized locking is possible if no complex operation
385          * is either enqueued or processed right now.
386          *
387          * Both facts are tracked by use_global_mode.
388          */
389         idx = array_index_nospec(sops->sem_num, sma->sem_nsems);
390         sem = &sma->sems[idx];
391
392         /*
393          * Initial check for use_global_lock. Just an optimization,
394          * no locking, no memory barrier.
395          */
396         if (!sma->use_global_lock) {
397                 /*
398                  * It appears that no complex operation is around.
399                  * Acquire the per-semaphore lock.
400                  */
401                 spin_lock(&sem->lock);
402
403                 /* pairs with smp_store_release() */
404                 if (!smp_load_acquire(&sma->use_global_lock)) {
405                         /* fast path successful! */
406                         return sops->sem_num;
407                 }
408                 spin_unlock(&sem->lock);
409         }
410
411         /* slow path: acquire the full lock */
412         ipc_lock_object(&sma->sem_perm);
413
414         if (sma->use_global_lock == 0) {
415                 /*
416                  * The use_global_lock mode ended while we waited for
417                  * sma->sem_perm.lock. Thus we must switch to locking
418                  * with sem->lock.
419                  * Unlike in the fast path, there is no need to recheck
420                  * sma->use_global_lock after we have acquired sem->lock:
421                  * We own sma->sem_perm.lock, thus use_global_lock cannot
422                  * change.
423                  */
424                 spin_lock(&sem->lock);
425
426                 ipc_unlock_object(&sma->sem_perm);
427                 return sops->sem_num;
428         } else {
429                 /*
430                  * Not a false alarm, thus continue to use the global lock
431                  * mode. No need for complexmode_enter(), this was done by
432                  * the caller that has set use_global_mode to non-zero.
433                  */
434                 return SEM_GLOBAL_LOCK;
435         }
436 }
437
438 static inline void sem_unlock(struct sem_array *sma, int locknum)
439 {
440         if (locknum == SEM_GLOBAL_LOCK) {
441                 unmerge_queues(sma);
442                 complexmode_tryleave(sma);
443                 ipc_unlock_object(&sma->sem_perm);
444         } else {
445                 struct sem *sem = &sma->sems[locknum];
446                 spin_unlock(&sem->lock);
447         }
448 }
449
450 /*
451  * sem_lock_(check_) routines are called in the paths where the rwsem
452  * is not held.
453  *
454  * The caller holds the RCU read lock.
455  */
456 static inline struct sem_array *sem_obtain_object(struct ipc_namespace *ns, int id)
457 {
458         struct kern_ipc_perm *ipcp = ipc_obtain_object_idr(&sem_ids(ns), id);
459
460         if (IS_ERR(ipcp))
461                 return ERR_CAST(ipcp);
462
463         return container_of(ipcp, struct sem_array, sem_perm);
464 }
465
466 static inline struct sem_array *sem_obtain_object_check(struct ipc_namespace *ns,
467                                                         int id)
468 {
469         struct kern_ipc_perm *ipcp = ipc_obtain_object_check(&sem_ids(ns), id);
470
471         if (IS_ERR(ipcp))
472                 return ERR_CAST(ipcp);
473
474         return container_of(ipcp, struct sem_array, sem_perm);
475 }
476
477 static inline void sem_lock_and_putref(struct sem_array *sma)
478 {
479         sem_lock(sma, NULL, -1);
480         ipc_rcu_putref(&sma->sem_perm, sem_rcu_free);
481 }
482
483 static inline void sem_rmid(struct ipc_namespace *ns, struct sem_array *s)
484 {
485         ipc_rmid(&sem_ids(ns), &s->sem_perm);
486 }
487
488 static struct sem_array *sem_alloc(size_t nsems)
489 {
490         struct sem_array *sma;
491
492         if (nsems > (INT_MAX - sizeof(*sma)) / sizeof(sma->sems[0]))
493                 return NULL;
494
495         sma = kvzalloc(struct_size(sma, sems, nsems), GFP_KERNEL);
496         if (unlikely(!sma))
497                 return NULL;
498
499         return sma;
500 }
501
502 /**
503  * newary - Create a new semaphore set
504  * @ns: namespace
505  * @params: ptr to the structure that contains key, semflg and nsems
506  *
507  * Called with sem_ids.rwsem held (as a writer)
508  */
509 static int newary(struct ipc_namespace *ns, struct ipc_params *params)
510 {
511         int retval;
512         struct sem_array *sma;
513         key_t key = params->key;
514         int nsems = params->u.nsems;
515         int semflg = params->flg;
516         int i;
517
518         if (!nsems)
519                 return -EINVAL;
520         if (ns->used_sems + nsems > ns->sc_semmns)
521                 return -ENOSPC;
522
523         sma = sem_alloc(nsems);
524         if (!sma)
525                 return -ENOMEM;
526
527         sma->sem_perm.mode = (semflg & S_IRWXUGO);
528         sma->sem_perm.key = key;
529
530         sma->sem_perm.security = NULL;
531         retval = security_sem_alloc(&sma->sem_perm);
532         if (retval) {
533                 kvfree(sma);
534                 return retval;
535         }
536
537         for (i = 0; i < nsems; i++) {
538                 INIT_LIST_HEAD(&sma->sems[i].pending_alter);
539                 INIT_LIST_HEAD(&sma->sems[i].pending_const);
540                 spin_lock_init(&sma->sems[i].lock);
541         }
542
543         sma->complex_count = 0;
544         sma->use_global_lock = USE_GLOBAL_LOCK_HYSTERESIS;
545         INIT_LIST_HEAD(&sma->pending_alter);
546         INIT_LIST_HEAD(&sma->pending_const);
547         INIT_LIST_HEAD(&sma->list_id);
548         sma->sem_nsems = nsems;
549         sma->sem_ctime = ktime_get_real_seconds();
550
551         /* ipc_addid() locks sma upon success. */
552         retval = ipc_addid(&sem_ids(ns), &sma->sem_perm, ns->sc_semmni);
553         if (retval < 0) {
554                 ipc_rcu_putref(&sma->sem_perm, sem_rcu_free);
555                 return retval;
556         }
557         ns->used_sems += nsems;
558
559         sem_unlock(sma, -1);
560         rcu_read_unlock();
561
562         return sma->sem_perm.id;
563 }
564
565
566 /*
567  * Called with sem_ids.rwsem and ipcp locked.
568  */
569 static inline int sem_more_checks(struct kern_ipc_perm *ipcp,
570                                 struct ipc_params *params)
571 {
572         struct sem_array *sma;
573
574         sma = container_of(ipcp, struct sem_array, sem_perm);
575         if (params->u.nsems > sma->sem_nsems)
576                 return -EINVAL;
577
578         return 0;
579 }
580
581 long ksys_semget(key_t key, int nsems, int semflg)
582 {
583         struct ipc_namespace *ns;
584         static const struct ipc_ops sem_ops = {
585                 .getnew = newary,
586                 .associate = security_sem_associate,
587                 .more_checks = sem_more_checks,
588         };
589         struct ipc_params sem_params;
590
591         ns = current->nsproxy->ipc_ns;
592
593         if (nsems < 0 || nsems > ns->sc_semmsl)
594                 return -EINVAL;
595
596         sem_params.key = key;
597         sem_params.flg = semflg;
598         sem_params.u.nsems = nsems;
599
600         return ipcget(ns, &sem_ids(ns), &sem_ops, &sem_params);
601 }
602
603 SYSCALL_DEFINE3(semget, key_t, key, int, nsems, int, semflg)
604 {
605         return ksys_semget(key, nsems, semflg);
606 }
607
608 /**
609  * perform_atomic_semop[_slow] - Attempt to perform semaphore
610  *                               operations on a given array.
611  * @sma: semaphore array
612  * @q: struct sem_queue that describes the operation
613  *
614  * Caller blocking are as follows, based the value
615  * indicated by the semaphore operation (sem_op):
616  *
617  *  (1) >0 never blocks.
618  *  (2)  0 (wait-for-zero operation): semval is non-zero.
619  *  (3) <0 attempting to decrement semval to a value smaller than zero.
620  *
621  * Returns 0 if the operation was possible.
622  * Returns 1 if the operation is impossible, the caller must sleep.
623  * Returns <0 for error codes.
624  */
625 static int perform_atomic_semop_slow(struct sem_array *sma, struct sem_queue *q)
626 {
627         int result, sem_op, nsops;
628         struct pid *pid;
629         struct sembuf *sop;
630         struct sem *curr;
631         struct sembuf *sops;
632         struct sem_undo *un;
633
634         sops = q->sops;
635         nsops = q->nsops;
636         un = q->undo;
637
638         for (sop = sops; sop < sops + nsops; sop++) {
639                 int idx = array_index_nospec(sop->sem_num, sma->sem_nsems);
640                 curr = &sma->sems[idx];
641                 sem_op = sop->sem_op;
642                 result = curr->semval;
643
644                 if (!sem_op && result)
645                         goto would_block;
646
647                 result += sem_op;
648                 if (result < 0)
649                         goto would_block;
650                 if (result > SEMVMX)
651                         goto out_of_range;
652
653                 if (sop->sem_flg & SEM_UNDO) {
654                         int undo = un->semadj[sop->sem_num] - sem_op;
655                         /* Exceeding the undo range is an error. */
656                         if (undo < (-SEMAEM - 1) || undo > SEMAEM)
657                                 goto out_of_range;
658                         un->semadj[sop->sem_num] = undo;
659                 }
660
661                 curr->semval = result;
662         }
663
664         sop--;
665         pid = q->pid;
666         while (sop >= sops) {
667                 ipc_update_pid(&sma->sems[sop->sem_num].sempid, pid);
668                 sop--;
669         }
670
671         return 0;
672
673 out_of_range:
674         result = -ERANGE;
675         goto undo;
676
677 would_block:
678         q->blocking = sop;
679
680         if (sop->sem_flg & IPC_NOWAIT)
681                 result = -EAGAIN;
682         else
683                 result = 1;
684
685 undo:
686         sop--;
687         while (sop >= sops) {
688                 sem_op = sop->sem_op;
689                 sma->sems[sop->sem_num].semval -= sem_op;
690                 if (sop->sem_flg & SEM_UNDO)
691                         un->semadj[sop->sem_num] += sem_op;
692                 sop--;
693         }
694
695         return result;
696 }
697
698 static int perform_atomic_semop(struct sem_array *sma, struct sem_queue *q)
699 {
700         int result, sem_op, nsops;
701         struct sembuf *sop;
702         struct sem *curr;
703         struct sembuf *sops;
704         struct sem_undo *un;
705
706         sops = q->sops;
707         nsops = q->nsops;
708         un = q->undo;
709
710         if (unlikely(q->dupsop))
711                 return perform_atomic_semop_slow(sma, q);
712
713         /*
714          * We scan the semaphore set twice, first to ensure that the entire
715          * operation can succeed, therefore avoiding any pointless writes
716          * to shared memory and having to undo such changes in order to block
717          * until the operations can go through.
718          */
719         for (sop = sops; sop < sops + nsops; sop++) {
720                 int idx = array_index_nospec(sop->sem_num, sma->sem_nsems);
721
722                 curr = &sma->sems[idx];
723                 sem_op = sop->sem_op;
724                 result = curr->semval;
725
726                 if (!sem_op && result)
727                         goto would_block; /* wait-for-zero */
728
729                 result += sem_op;
730                 if (result < 0)
731                         goto would_block;
732
733                 if (result > SEMVMX)
734                         return -ERANGE;
735
736                 if (sop->sem_flg & SEM_UNDO) {
737                         int undo = un->semadj[sop->sem_num] - sem_op;
738
739                         /* Exceeding the undo range is an error. */
740                         if (undo < (-SEMAEM - 1) || undo > SEMAEM)
741                                 return -ERANGE;
742                 }
743         }
744
745         for (sop = sops; sop < sops + nsops; sop++) {
746                 curr = &sma->sems[sop->sem_num];
747                 sem_op = sop->sem_op;
748                 result = curr->semval;
749
750                 if (sop->sem_flg & SEM_UNDO) {
751                         int undo = un->semadj[sop->sem_num] - sem_op;
752
753                         un->semadj[sop->sem_num] = undo;
754                 }
755                 curr->semval += sem_op;
756                 ipc_update_pid(&curr->sempid, q->pid);
757         }
758
759         return 0;
760
761 would_block:
762         q->blocking = sop;
763         return sop->sem_flg & IPC_NOWAIT ? -EAGAIN : 1;
764 }
765
766 static inline void wake_up_sem_queue_prepare(struct sem_queue *q, int error,
767                                              struct wake_q_head *wake_q)
768 {
769         wake_q_add(wake_q, q->sleeper);
770         /*
771          * Rely on the above implicit barrier, such that we can
772          * ensure that we hold reference to the task before setting
773          * q->status. Otherwise we could race with do_exit if the
774          * task is awoken by an external event before calling
775          * wake_up_process().
776          */
777         WRITE_ONCE(q->status, error);
778 }
779
780 static void unlink_queue(struct sem_array *sma, struct sem_queue *q)
781 {
782         list_del(&q->list);
783         if (q->nsops > 1)
784                 sma->complex_count--;
785 }
786
787 /** check_restart(sma, q)
788  * @sma: semaphore array
789  * @q: the operation that just completed
790  *
791  * update_queue is O(N^2) when it restarts scanning the whole queue of
792  * waiting operations. Therefore this function checks if the restart is
793  * really necessary. It is called after a previously waiting operation
794  * modified the array.
795  * Note that wait-for-zero operations are handled without restart.
796  */
797 static inline int check_restart(struct sem_array *sma, struct sem_queue *q)
798 {
799         /* pending complex alter operations are too difficult to analyse */
800         if (!list_empty(&sma->pending_alter))
801                 return 1;
802
803         /* we were a sleeping complex operation. Too difficult */
804         if (q->nsops > 1)
805                 return 1;
806
807         /* It is impossible that someone waits for the new value:
808          * - complex operations always restart.
809          * - wait-for-zero are handled seperately.
810          * - q is a previously sleeping simple operation that
811          *   altered the array. It must be a decrement, because
812          *   simple increments never sleep.
813          * - If there are older (higher priority) decrements
814          *   in the queue, then they have observed the original
815          *   semval value and couldn't proceed. The operation
816          *   decremented to value - thus they won't proceed either.
817          */
818         return 0;
819 }
820
821 /**
822  * wake_const_ops - wake up non-alter tasks
823  * @sma: semaphore array.
824  * @semnum: semaphore that was modified.
825  * @wake_q: lockless wake-queue head.
826  *
827  * wake_const_ops must be called after a semaphore in a semaphore array
828  * was set to 0. If complex const operations are pending, wake_const_ops must
829  * be called with semnum = -1, as well as with the number of each modified
830  * semaphore.
831  * The tasks that must be woken up are added to @wake_q. The return code
832  * is stored in q->pid.
833  * The function returns 1 if at least one operation was completed successfully.
834  */
835 static int wake_const_ops(struct sem_array *sma, int semnum,
836                           struct wake_q_head *wake_q)
837 {
838         struct sem_queue *q, *tmp;
839         struct list_head *pending_list;
840         int semop_completed = 0;
841
842         if (semnum == -1)
843                 pending_list = &sma->pending_const;
844         else
845                 pending_list = &sma->sems[semnum].pending_const;
846
847         list_for_each_entry_safe(q, tmp, pending_list, list) {
848                 int error = perform_atomic_semop(sma, q);
849
850                 if (error > 0)
851                         continue;
852                 /* operation completed, remove from queue & wakeup */
853                 unlink_queue(sma, q);
854
855                 wake_up_sem_queue_prepare(q, error, wake_q);
856                 if (error == 0)
857                         semop_completed = 1;
858         }
859
860         return semop_completed;
861 }
862
863 /**
864  * do_smart_wakeup_zero - wakeup all wait for zero tasks
865  * @sma: semaphore array
866  * @sops: operations that were performed
867  * @nsops: number of operations
868  * @wake_q: lockless wake-queue head
869  *
870  * Checks all required queue for wait-for-zero operations, based
871  * on the actual changes that were performed on the semaphore array.
872  * The function returns 1 if at least one operation was completed successfully.
873  */
874 static int do_smart_wakeup_zero(struct sem_array *sma, struct sembuf *sops,
875                                 int nsops, struct wake_q_head *wake_q)
876 {
877         int i;
878         int semop_completed = 0;
879         int got_zero = 0;
880
881         /* first: the per-semaphore queues, if known */
882         if (sops) {
883                 for (i = 0; i < nsops; i++) {
884                         int num = sops[i].sem_num;
885
886                         if (sma->sems[num].semval == 0) {
887                                 got_zero = 1;
888                                 semop_completed |= wake_const_ops(sma, num, wake_q);
889                         }
890                 }
891         } else {
892                 /*
893                  * No sops means modified semaphores not known.
894                  * Assume all were changed.
895                  */
896                 for (i = 0; i < sma->sem_nsems; i++) {
897                         if (sma->sems[i].semval == 0) {
898                                 got_zero = 1;
899                                 semop_completed |= wake_const_ops(sma, i, wake_q);
900                         }
901                 }
902         }
903         /*
904          * If one of the modified semaphores got 0,
905          * then check the global queue, too.
906          */
907         if (got_zero)
908                 semop_completed |= wake_const_ops(sma, -1, wake_q);
909
910         return semop_completed;
911 }
912
913
914 /**
915  * update_queue - look for tasks that can be completed.
916  * @sma: semaphore array.
917  * @semnum: semaphore that was modified.
918  * @wake_q: lockless wake-queue head.
919  *
920  * update_queue must be called after a semaphore in a semaphore array
921  * was modified. If multiple semaphores were modified, update_queue must
922  * be called with semnum = -1, as well as with the number of each modified
923  * semaphore.
924  * The tasks that must be woken up are added to @wake_q. The return code
925  * is stored in q->pid.
926  * The function internally checks if const operations can now succeed.
927  *
928  * The function return 1 if at least one semop was completed successfully.
929  */
930 static int update_queue(struct sem_array *sma, int semnum, struct wake_q_head *wake_q)
931 {
932         struct sem_queue *q, *tmp;
933         struct list_head *pending_list;
934         int semop_completed = 0;
935
936         if (semnum == -1)
937                 pending_list = &sma->pending_alter;
938         else
939                 pending_list = &sma->sems[semnum].pending_alter;
940
941 again:
942         list_for_each_entry_safe(q, tmp, pending_list, list) {
943                 int error, restart;
944
945                 /* If we are scanning the single sop, per-semaphore list of
946                  * one semaphore and that semaphore is 0, then it is not
947                  * necessary to scan further: simple increments
948                  * that affect only one entry succeed immediately and cannot
949                  * be in the  per semaphore pending queue, and decrements
950                  * cannot be successful if the value is already 0.
951                  */
952                 if (semnum != -1 && sma->sems[semnum].semval == 0)
953                         break;
954
955                 error = perform_atomic_semop(sma, q);
956
957                 /* Does q->sleeper still need to sleep? */
958                 if (error > 0)
959                         continue;
960
961                 unlink_queue(sma, q);
962
963                 if (error) {
964                         restart = 0;
965                 } else {
966                         semop_completed = 1;
967                         do_smart_wakeup_zero(sma, q->sops, q->nsops, wake_q);
968                         restart = check_restart(sma, q);
969                 }
970
971                 wake_up_sem_queue_prepare(q, error, wake_q);
972                 if (restart)
973                         goto again;
974         }
975         return semop_completed;
976 }
977
978 /**
979  * set_semotime - set sem_otime
980  * @sma: semaphore array
981  * @sops: operations that modified the array, may be NULL
982  *
983  * sem_otime is replicated to avoid cache line trashing.
984  * This function sets one instance to the current time.
985  */
986 static void set_semotime(struct sem_array *sma, struct sembuf *sops)
987 {
988         if (sops == NULL) {
989                 sma->sems[0].sem_otime = ktime_get_real_seconds();
990         } else {
991                 sma->sems[sops[0].sem_num].sem_otime =
992                                                 ktime_get_real_seconds();
993         }
994 }
995
996 /**
997  * do_smart_update - optimized update_queue
998  * @sma: semaphore array
999  * @sops: operations that were performed
1000  * @nsops: number of operations
1001  * @otime: force setting otime
1002  * @wake_q: lockless wake-queue head
1003  *
1004  * do_smart_update() does the required calls to update_queue and wakeup_zero,
1005  * based on the actual changes that were performed on the semaphore array.
1006  * Note that the function does not do the actual wake-up: the caller is
1007  * responsible for calling wake_up_q().
1008  * It is safe to perform this call after dropping all locks.
1009  */
1010 static void do_smart_update(struct sem_array *sma, struct sembuf *sops, int nsops,
1011                             int otime, struct wake_q_head *wake_q)
1012 {
1013         int i;
1014
1015         otime |= do_smart_wakeup_zero(sma, sops, nsops, wake_q);
1016
1017         if (!list_empty(&sma->pending_alter)) {
1018                 /* semaphore array uses the global queue - just process it. */
1019                 otime |= update_queue(sma, -1, wake_q);
1020         } else {
1021                 if (!sops) {
1022                         /*
1023                          * No sops, thus the modified semaphores are not
1024                          * known. Check all.
1025                          */
1026                         for (i = 0; i < sma->sem_nsems; i++)
1027                                 otime |= update_queue(sma, i, wake_q);
1028                 } else {
1029                         /*
1030                          * Check the semaphores that were increased:
1031                          * - No complex ops, thus all sleeping ops are
1032                          *   decrease.
1033                          * - if we decreased the value, then any sleeping
1034                          *   semaphore ops wont be able to run: If the
1035                          *   previous value was too small, then the new
1036                          *   value will be too small, too.
1037                          */
1038                         for (i = 0; i < nsops; i++) {
1039                                 if (sops[i].sem_op > 0) {
1040                                         otime |= update_queue(sma,
1041                                                               sops[i].sem_num, wake_q);
1042                                 }
1043                         }
1044                 }
1045         }
1046         if (otime)
1047                 set_semotime(sma, sops);
1048 }
1049
1050 /*
1051  * check_qop: Test if a queued operation sleeps on the semaphore semnum
1052  */
1053 static int check_qop(struct sem_array *sma, int semnum, struct sem_queue *q,
1054                         bool count_zero)
1055 {
1056         struct sembuf *sop = q->blocking;
1057
1058         /*
1059          * Linux always (since 0.99.10) reported a task as sleeping on all
1060          * semaphores. This violates SUS, therefore it was changed to the
1061          * standard compliant behavior.
1062          * Give the administrators a chance to notice that an application
1063          * might misbehave because it relies on the Linux behavior.
1064          */
1065         pr_info_once("semctl(GETNCNT/GETZCNT) is since 3.16 Single Unix Specification compliant.\n"
1066                         "The task %s (%d) triggered the difference, watch for misbehavior.\n",
1067                         current->comm, task_pid_nr(current));
1068
1069         if (sop->sem_num != semnum)
1070                 return 0;
1071
1072         if (count_zero && sop->sem_op == 0)
1073                 return 1;
1074         if (!count_zero && sop->sem_op < 0)
1075                 return 1;
1076
1077         return 0;
1078 }
1079
1080 /* The following counts are associated to each semaphore:
1081  *   semncnt        number of tasks waiting on semval being nonzero
1082  *   semzcnt        number of tasks waiting on semval being zero
1083  *
1084  * Per definition, a task waits only on the semaphore of the first semop
1085  * that cannot proceed, even if additional operation would block, too.
1086  */
1087 static int count_semcnt(struct sem_array *sma, ushort semnum,
1088                         bool count_zero)
1089 {
1090         struct list_head *l;
1091         struct sem_queue *q;
1092         int semcnt;
1093
1094         semcnt = 0;
1095         /* First: check the simple operations. They are easy to evaluate */
1096         if (count_zero)
1097                 l = &sma->sems[semnum].pending_const;
1098         else
1099                 l = &sma->sems[semnum].pending_alter;
1100
1101         list_for_each_entry(q, l, list) {
1102                 /* all task on a per-semaphore list sleep on exactly
1103                  * that semaphore
1104                  */
1105                 semcnt++;
1106         }
1107
1108         /* Then: check the complex operations. */
1109         list_for_each_entry(q, &sma->pending_alter, list) {
1110                 semcnt += check_qop(sma, semnum, q, count_zero);
1111         }
1112         if (count_zero) {
1113                 list_for_each_entry(q, &sma->pending_const, list) {
1114                         semcnt += check_qop(sma, semnum, q, count_zero);
1115                 }
1116         }
1117         return semcnt;
1118 }
1119
1120 /* Free a semaphore set. freeary() is called with sem_ids.rwsem locked
1121  * as a writer and the spinlock for this semaphore set hold. sem_ids.rwsem
1122  * remains locked on exit.
1123  */
1124 static void freeary(struct ipc_namespace *ns, struct kern_ipc_perm *ipcp)
1125 {
1126         struct sem_undo *un, *tu;
1127         struct sem_queue *q, *tq;
1128         struct sem_array *sma = container_of(ipcp, struct sem_array, sem_perm);
1129         int i;
1130         DEFINE_WAKE_Q(wake_q);
1131
1132         /* Free the existing undo structures for this semaphore set.  */
1133         ipc_assert_locked_object(&sma->sem_perm);
1134         list_for_each_entry_safe(un, tu, &sma->list_id, list_id) {
1135                 list_del(&un->list_id);
1136                 spin_lock(&un->ulp->lock);
1137                 un->semid = -1;
1138                 list_del_rcu(&un->list_proc);
1139                 spin_unlock(&un->ulp->lock);
1140                 kfree_rcu(un, rcu);
1141         }
1142
1143         /* Wake up all pending processes and let them fail with EIDRM. */
1144         list_for_each_entry_safe(q, tq, &sma->pending_const, list) {
1145                 unlink_queue(sma, q);
1146                 wake_up_sem_queue_prepare(q, -EIDRM, &wake_q);
1147         }
1148
1149         list_for_each_entry_safe(q, tq, &sma->pending_alter, list) {
1150                 unlink_queue(sma, q);
1151                 wake_up_sem_queue_prepare(q, -EIDRM, &wake_q);
1152         }
1153         for (i = 0; i < sma->sem_nsems; i++) {
1154                 struct sem *sem = &sma->sems[i];
1155                 list_for_each_entry_safe(q, tq, &sem->pending_const, list) {
1156                         unlink_queue(sma, q);
1157                         wake_up_sem_queue_prepare(q, -EIDRM, &wake_q);
1158                 }
1159                 list_for_each_entry_safe(q, tq, &sem->pending_alter, list) {
1160                         unlink_queue(sma, q);
1161                         wake_up_sem_queue_prepare(q, -EIDRM, &wake_q);
1162                 }
1163                 ipc_update_pid(&sem->sempid, NULL);
1164         }
1165
1166         /* Remove the semaphore set from the IDR */
1167         sem_rmid(ns, sma);
1168         sem_unlock(sma, -1);
1169         rcu_read_unlock();
1170
1171         wake_up_q(&wake_q);
1172         ns->used_sems -= sma->sem_nsems;
1173         ipc_rcu_putref(&sma->sem_perm, sem_rcu_free);
1174 }
1175
1176 static unsigned long copy_semid_to_user(void __user *buf, struct semid64_ds *in, int version)
1177 {
1178         switch (version) {
1179         case IPC_64:
1180                 return copy_to_user(buf, in, sizeof(*in));
1181         case IPC_OLD:
1182             {
1183                 struct semid_ds out;
1184
1185                 memset(&out, 0, sizeof(out));
1186
1187                 ipc64_perm_to_ipc_perm(&in->sem_perm, &out.sem_perm);
1188
1189                 out.sem_otime   = in->sem_otime;
1190                 out.sem_ctime   = in->sem_ctime;
1191                 out.sem_nsems   = in->sem_nsems;
1192
1193                 return copy_to_user(buf, &out, sizeof(out));
1194             }
1195         default:
1196                 return -EINVAL;
1197         }
1198 }
1199
1200 static time64_t get_semotime(struct sem_array *sma)
1201 {
1202         int i;
1203         time64_t res;
1204
1205         res = sma->sems[0].sem_otime;
1206         for (i = 1; i < sma->sem_nsems; i++) {
1207                 time64_t to = sma->sems[i].sem_otime;
1208
1209                 if (to > res)
1210                         res = to;
1211         }
1212         return res;
1213 }
1214
1215 static int semctl_stat(struct ipc_namespace *ns, int semid,
1216                          int cmd, struct semid64_ds *semid64)
1217 {
1218         struct sem_array *sma;
1219         time64_t semotime;
1220         int err;
1221
1222         memset(semid64, 0, sizeof(*semid64));
1223
1224         rcu_read_lock();
1225         if (cmd == SEM_STAT || cmd == SEM_STAT_ANY) {
1226                 sma = sem_obtain_object(ns, semid);
1227                 if (IS_ERR(sma)) {
1228                         err = PTR_ERR(sma);
1229                         goto out_unlock;
1230                 }
1231         } else { /* IPC_STAT */
1232                 sma = sem_obtain_object_check(ns, semid);
1233                 if (IS_ERR(sma)) {
1234                         err = PTR_ERR(sma);
1235                         goto out_unlock;
1236                 }
1237         }
1238
1239         /* see comment for SHM_STAT_ANY */
1240         if (cmd == SEM_STAT_ANY)
1241                 audit_ipc_obj(&sma->sem_perm);
1242         else {
1243                 err = -EACCES;
1244                 if (ipcperms(ns, &sma->sem_perm, S_IRUGO))
1245                         goto out_unlock;
1246         }
1247
1248         err = security_sem_semctl(&sma->sem_perm, cmd);
1249         if (err)
1250                 goto out_unlock;
1251
1252         ipc_lock_object(&sma->sem_perm);
1253
1254         if (!ipc_valid_object(&sma->sem_perm)) {
1255                 ipc_unlock_object(&sma->sem_perm);
1256                 err = -EIDRM;
1257                 goto out_unlock;
1258         }
1259
1260         kernel_to_ipc64_perm(&sma->sem_perm, &semid64->sem_perm);
1261         semotime = get_semotime(sma);
1262         semid64->sem_otime = semotime;
1263         semid64->sem_ctime = sma->sem_ctime;
1264 #ifndef CONFIG_64BIT
1265         semid64->sem_otime_high = semotime >> 32;
1266         semid64->sem_ctime_high = sma->sem_ctime >> 32;
1267 #endif
1268         semid64->sem_nsems = sma->sem_nsems;
1269
1270         if (cmd == IPC_STAT) {
1271                 /*
1272                  * As defined in SUS:
1273                  * Return 0 on success
1274                  */
1275                 err = 0;
1276         } else {
1277                 /*
1278                  * SEM_STAT and SEM_STAT_ANY (both Linux specific)
1279                  * Return the full id, including the sequence number
1280                  */
1281                 err = sma->sem_perm.id;
1282         }
1283         ipc_unlock_object(&sma->sem_perm);
1284 out_unlock:
1285         rcu_read_unlock();
1286         return err;
1287 }
1288
1289 static int semctl_info(struct ipc_namespace *ns, int semid,
1290                          int cmd, void __user *p)
1291 {
1292         struct seminfo seminfo;
1293         int max_idx;
1294         int err;
1295
1296         err = security_sem_semctl(NULL, cmd);
1297         if (err)
1298                 return err;
1299
1300         memset(&seminfo, 0, sizeof(seminfo));
1301         seminfo.semmni = ns->sc_semmni;
1302         seminfo.semmns = ns->sc_semmns;
1303         seminfo.semmsl = ns->sc_semmsl;
1304         seminfo.semopm = ns->sc_semopm;
1305         seminfo.semvmx = SEMVMX;
1306         seminfo.semmnu = SEMMNU;
1307         seminfo.semmap = SEMMAP;
1308         seminfo.semume = SEMUME;
1309         down_read(&sem_ids(ns).rwsem);
1310         if (cmd == SEM_INFO) {
1311                 seminfo.semusz = sem_ids(ns).in_use;
1312                 seminfo.semaem = ns->used_sems;
1313         } else {
1314                 seminfo.semusz = SEMUSZ;
1315                 seminfo.semaem = SEMAEM;
1316         }
1317         max_idx = ipc_get_maxidx(&sem_ids(ns));
1318         up_read(&sem_ids(ns).rwsem);
1319         if (copy_to_user(p, &seminfo, sizeof(struct seminfo)))
1320                 return -EFAULT;
1321         return (max_idx < 0) ? 0 : max_idx;
1322 }
1323
1324 static int semctl_setval(struct ipc_namespace *ns, int semid, int semnum,
1325                 int val)
1326 {
1327         struct sem_undo *un;
1328         struct sem_array *sma;
1329         struct sem *curr;
1330         int err;
1331         DEFINE_WAKE_Q(wake_q);
1332
1333         if (val > SEMVMX || val < 0)
1334                 return -ERANGE;
1335
1336         rcu_read_lock();
1337         sma = sem_obtain_object_check(ns, semid);
1338         if (IS_ERR(sma)) {
1339                 rcu_read_unlock();
1340                 return PTR_ERR(sma);
1341         }
1342
1343         if (semnum < 0 || semnum >= sma->sem_nsems) {
1344                 rcu_read_unlock();
1345                 return -EINVAL;
1346         }
1347
1348
1349         if (ipcperms(ns, &sma->sem_perm, S_IWUGO)) {
1350                 rcu_read_unlock();
1351                 return -EACCES;
1352         }
1353
1354         err = security_sem_semctl(&sma->sem_perm, SETVAL);
1355         if (err) {
1356                 rcu_read_unlock();
1357                 return -EACCES;
1358         }
1359
1360         sem_lock(sma, NULL, -1);
1361
1362         if (!ipc_valid_object(&sma->sem_perm)) {
1363                 sem_unlock(sma, -1);
1364                 rcu_read_unlock();
1365                 return -EIDRM;
1366         }
1367
1368         semnum = array_index_nospec(semnum, sma->sem_nsems);
1369         curr = &sma->sems[semnum];
1370
1371         ipc_assert_locked_object(&sma->sem_perm);
1372         list_for_each_entry(un, &sma->list_id, list_id)
1373                 un->semadj[semnum] = 0;
1374
1375         curr->semval = val;
1376         ipc_update_pid(&curr->sempid, task_tgid(current));
1377         sma->sem_ctime = ktime_get_real_seconds();
1378         /* maybe some queued-up processes were waiting for this */
1379         do_smart_update(sma, NULL, 0, 0, &wake_q);
1380         sem_unlock(sma, -1);
1381         rcu_read_unlock();
1382         wake_up_q(&wake_q);
1383         return 0;
1384 }
1385
1386 static int semctl_main(struct ipc_namespace *ns, int semid, int semnum,
1387                 int cmd, void __user *p)
1388 {
1389         struct sem_array *sma;
1390         struct sem *curr;
1391         int err, nsems;
1392         ushort fast_sem_io[SEMMSL_FAST];
1393         ushort *sem_io = fast_sem_io;
1394         DEFINE_WAKE_Q(wake_q);
1395
1396         rcu_read_lock();
1397         sma = sem_obtain_object_check(ns, semid);
1398         if (IS_ERR(sma)) {
1399                 rcu_read_unlock();
1400                 return PTR_ERR(sma);
1401         }
1402
1403         nsems = sma->sem_nsems;
1404
1405         err = -EACCES;
1406         if (ipcperms(ns, &sma->sem_perm, cmd == SETALL ? S_IWUGO : S_IRUGO))
1407                 goto out_rcu_wakeup;
1408
1409         err = security_sem_semctl(&sma->sem_perm, cmd);
1410         if (err)
1411                 goto out_rcu_wakeup;
1412
1413         err = -EACCES;
1414         switch (cmd) {
1415         case GETALL:
1416         {
1417                 ushort __user *array = p;
1418                 int i;
1419
1420                 sem_lock(sma, NULL, -1);
1421                 if (!ipc_valid_object(&sma->sem_perm)) {
1422                         err = -EIDRM;
1423                         goto out_unlock;
1424                 }
1425                 if (nsems > SEMMSL_FAST) {
1426                         if (!ipc_rcu_getref(&sma->sem_perm)) {
1427                                 err = -EIDRM;
1428                                 goto out_unlock;
1429                         }
1430                         sem_unlock(sma, -1);
1431                         rcu_read_unlock();
1432                         sem_io = kvmalloc_array(nsems, sizeof(ushort),
1433                                                 GFP_KERNEL);
1434                         if (sem_io == NULL) {
1435                                 ipc_rcu_putref(&sma->sem_perm, sem_rcu_free);
1436                                 return -ENOMEM;
1437                         }
1438
1439                         rcu_read_lock();
1440                         sem_lock_and_putref(sma);
1441                         if (!ipc_valid_object(&sma->sem_perm)) {
1442                                 err = -EIDRM;
1443                                 goto out_unlock;
1444                         }
1445                 }
1446                 for (i = 0; i < sma->sem_nsems; i++)
1447                         sem_io[i] = sma->sems[i].semval;
1448                 sem_unlock(sma, -1);
1449                 rcu_read_unlock();
1450                 err = 0;
1451                 if (copy_to_user(array, sem_io, nsems*sizeof(ushort)))
1452                         err = -EFAULT;
1453                 goto out_free;
1454         }
1455         case SETALL:
1456         {
1457                 int i;
1458                 struct sem_undo *un;
1459
1460                 if (!ipc_rcu_getref(&sma->sem_perm)) {
1461                         err = -EIDRM;
1462                         goto out_rcu_wakeup;
1463                 }
1464                 rcu_read_unlock();
1465
1466                 if (nsems > SEMMSL_FAST) {
1467                         sem_io = kvmalloc_array(nsems, sizeof(ushort),
1468                                                 GFP_KERNEL);
1469                         if (sem_io == NULL) {
1470                                 ipc_rcu_putref(&sma->sem_perm, sem_rcu_free);
1471                                 return -ENOMEM;
1472                         }
1473                 }
1474
1475                 if (copy_from_user(sem_io, p, nsems*sizeof(ushort))) {
1476                         ipc_rcu_putref(&sma->sem_perm, sem_rcu_free);
1477                         err = -EFAULT;
1478                         goto out_free;
1479                 }
1480
1481                 for (i = 0; i < nsems; i++) {
1482                         if (sem_io[i] > SEMVMX) {
1483                                 ipc_rcu_putref(&sma->sem_perm, sem_rcu_free);
1484                                 err = -ERANGE;
1485                                 goto out_free;
1486                         }
1487                 }
1488                 rcu_read_lock();
1489                 sem_lock_and_putref(sma);
1490                 if (!ipc_valid_object(&sma->sem_perm)) {
1491                         err = -EIDRM;
1492                         goto out_unlock;
1493                 }
1494
1495                 for (i = 0; i < nsems; i++) {
1496                         sma->sems[i].semval = sem_io[i];
1497                         ipc_update_pid(&sma->sems[i].sempid, task_tgid(current));
1498                 }
1499
1500                 ipc_assert_locked_object(&sma->sem_perm);
1501                 list_for_each_entry(un, &sma->list_id, list_id) {
1502                         for (i = 0; i < nsems; i++)
1503                                 un->semadj[i] = 0;
1504                 }
1505                 sma->sem_ctime = ktime_get_real_seconds();
1506                 /* maybe some queued-up processes were waiting for this */
1507                 do_smart_update(sma, NULL, 0, 0, &wake_q);
1508                 err = 0;
1509                 goto out_unlock;
1510         }
1511         /* GETVAL, GETPID, GETNCTN, GETZCNT: fall-through */
1512         }
1513         err = -EINVAL;
1514         if (semnum < 0 || semnum >= nsems)
1515                 goto out_rcu_wakeup;
1516
1517         sem_lock(sma, NULL, -1);
1518         if (!ipc_valid_object(&sma->sem_perm)) {
1519                 err = -EIDRM;
1520                 goto out_unlock;
1521         }
1522
1523         semnum = array_index_nospec(semnum, nsems);
1524         curr = &sma->sems[semnum];
1525
1526         switch (cmd) {
1527         case GETVAL:
1528                 err = curr->semval;
1529                 goto out_unlock;
1530         case GETPID:
1531                 err = pid_vnr(curr->sempid);
1532                 goto out_unlock;
1533         case GETNCNT:
1534                 err = count_semcnt(sma, semnum, 0);
1535                 goto out_unlock;
1536         case GETZCNT:
1537                 err = count_semcnt(sma, semnum, 1);
1538                 goto out_unlock;
1539         }
1540
1541 out_unlock:
1542         sem_unlock(sma, -1);
1543 out_rcu_wakeup:
1544         rcu_read_unlock();
1545         wake_up_q(&wake_q);
1546 out_free:
1547         if (sem_io != fast_sem_io)
1548                 kvfree(sem_io);
1549         return err;
1550 }
1551
1552 static inline unsigned long
1553 copy_semid_from_user(struct semid64_ds *out, void __user *buf, int version)
1554 {
1555         switch (version) {
1556         case IPC_64:
1557                 if (copy_from_user(out, buf, sizeof(*out)))
1558                         return -EFAULT;
1559                 return 0;
1560         case IPC_OLD:
1561             {
1562                 struct semid_ds tbuf_old;
1563
1564                 if (copy_from_user(&tbuf_old, buf, sizeof(tbuf_old)))
1565                         return -EFAULT;
1566
1567                 out->sem_perm.uid       = tbuf_old.sem_perm.uid;
1568                 out->sem_perm.gid       = tbuf_old.sem_perm.gid;
1569                 out->sem_perm.mode      = tbuf_old.sem_perm.mode;
1570
1571                 return 0;
1572             }
1573         default:
1574                 return -EINVAL;
1575         }
1576 }
1577
1578 /*
1579  * This function handles some semctl commands which require the rwsem
1580  * to be held in write mode.
1581  * NOTE: no locks must be held, the rwsem is taken inside this function.
1582  */
1583 static int semctl_down(struct ipc_namespace *ns, int semid,
1584                        int cmd, struct semid64_ds *semid64)
1585 {
1586         struct sem_array *sma;
1587         int err;
1588         struct kern_ipc_perm *ipcp;
1589
1590         down_write(&sem_ids(ns).rwsem);
1591         rcu_read_lock();
1592
1593         ipcp = ipcctl_obtain_check(ns, &sem_ids(ns), semid, cmd,
1594                                       &semid64->sem_perm, 0);
1595         if (IS_ERR(ipcp)) {
1596                 err = PTR_ERR(ipcp);
1597                 goto out_unlock1;
1598         }
1599
1600         sma = container_of(ipcp, struct sem_array, sem_perm);
1601
1602         err = security_sem_semctl(&sma->sem_perm, cmd);
1603         if (err)
1604                 goto out_unlock1;
1605
1606         switch (cmd) {
1607         case IPC_RMID:
1608                 sem_lock(sma, NULL, -1);
1609                 /* freeary unlocks the ipc object and rcu */
1610                 freeary(ns, ipcp);
1611                 goto out_up;
1612         case IPC_SET:
1613                 sem_lock(sma, NULL, -1);
1614                 err = ipc_update_perm(&semid64->sem_perm, ipcp);
1615                 if (err)
1616                         goto out_unlock0;
1617                 sma->sem_ctime = ktime_get_real_seconds();
1618                 break;
1619         default:
1620                 err = -EINVAL;
1621                 goto out_unlock1;
1622         }
1623
1624 out_unlock0:
1625         sem_unlock(sma, -1);
1626 out_unlock1:
1627         rcu_read_unlock();
1628 out_up:
1629         up_write(&sem_ids(ns).rwsem);
1630         return err;
1631 }
1632
1633 static long ksys_semctl(int semid, int semnum, int cmd, unsigned long arg, int version)
1634 {
1635         struct ipc_namespace *ns;
1636         void __user *p = (void __user *)arg;
1637         struct semid64_ds semid64;
1638         int err;
1639
1640         if (semid < 0)
1641                 return -EINVAL;
1642
1643         ns = current->nsproxy->ipc_ns;
1644
1645         switch (cmd) {
1646         case IPC_INFO:
1647         case SEM_INFO:
1648                 return semctl_info(ns, semid, cmd, p);
1649         case IPC_STAT:
1650         case SEM_STAT:
1651         case SEM_STAT_ANY:
1652                 err = semctl_stat(ns, semid, cmd, &semid64);
1653                 if (err < 0)
1654                         return err;
1655                 if (copy_semid_to_user(p, &semid64, version))
1656                         err = -EFAULT;
1657                 return err;
1658         case GETALL:
1659         case GETVAL:
1660         case GETPID:
1661         case GETNCNT:
1662         case GETZCNT:
1663         case SETALL:
1664                 return semctl_main(ns, semid, semnum, cmd, p);
1665         case SETVAL: {
1666                 int val;
1667 #if defined(CONFIG_64BIT) && defined(__BIG_ENDIAN)
1668                 /* big-endian 64bit */
1669                 val = arg >> 32;
1670 #else
1671                 /* 32bit or little-endian 64bit */
1672                 val = arg;
1673 #endif
1674                 return semctl_setval(ns, semid, semnum, val);
1675         }
1676         case IPC_SET:
1677                 if (copy_semid_from_user(&semid64, p, version))
1678                         return -EFAULT;
1679                 /* fall through */
1680         case IPC_RMID:
1681                 return semctl_down(ns, semid, cmd, &semid64);
1682         default:
1683                 return -EINVAL;
1684         }
1685 }
1686
1687 SYSCALL_DEFINE4(semctl, int, semid, int, semnum, int, cmd, unsigned long, arg)
1688 {
1689         return ksys_semctl(semid, semnum, cmd, arg, IPC_64);
1690 }
1691
1692 #ifdef CONFIG_ARCH_WANT_IPC_PARSE_VERSION
1693 long ksys_old_semctl(int semid, int semnum, int cmd, unsigned long arg)
1694 {
1695         int version = ipc_parse_version(&cmd);
1696
1697         return ksys_semctl(semid, semnum, cmd, arg, version);
1698 }
1699
1700 SYSCALL_DEFINE4(old_semctl, int, semid, int, semnum, int, cmd, unsigned long, arg)
1701 {
1702         return ksys_old_semctl(semid, semnum, cmd, arg);
1703 }
1704 #endif
1705
1706 #ifdef CONFIG_COMPAT
1707
1708 struct compat_semid_ds {
1709         struct compat_ipc_perm sem_perm;
1710         old_time32_t sem_otime;
1711         old_time32_t sem_ctime;
1712         compat_uptr_t sem_base;
1713         compat_uptr_t sem_pending;
1714         compat_uptr_t sem_pending_last;
1715         compat_uptr_t undo;
1716         unsigned short sem_nsems;
1717 };
1718
1719 static int copy_compat_semid_from_user(struct semid64_ds *out, void __user *buf,
1720                                         int version)
1721 {
1722         memset(out, 0, sizeof(*out));
1723         if (version == IPC_64) {
1724                 struct compat_semid64_ds __user *p = buf;
1725                 return get_compat_ipc64_perm(&out->sem_perm, &p->sem_perm);
1726         } else {
1727                 struct compat_semid_ds __user *p = buf;
1728                 return get_compat_ipc_perm(&out->sem_perm, &p->sem_perm);
1729         }
1730 }
1731
1732 static int copy_compat_semid_to_user(void __user *buf, struct semid64_ds *in,
1733                                         int version)
1734 {
1735         if (version == IPC_64) {
1736                 struct compat_semid64_ds v;
1737                 memset(&v, 0, sizeof(v));
1738                 to_compat_ipc64_perm(&v.sem_perm, &in->sem_perm);
1739                 v.sem_otime      = lower_32_bits(in->sem_otime);
1740                 v.sem_otime_high = upper_32_bits(in->sem_otime);
1741                 v.sem_ctime      = lower_32_bits(in->sem_ctime);
1742                 v.sem_ctime_high = upper_32_bits(in->sem_ctime);
1743                 v.sem_nsems = in->sem_nsems;
1744                 return copy_to_user(buf, &v, sizeof(v));
1745         } else {
1746                 struct compat_semid_ds v;
1747                 memset(&v, 0, sizeof(v));
1748                 to_compat_ipc_perm(&v.sem_perm, &in->sem_perm);
1749                 v.sem_otime = in->sem_otime;
1750                 v.sem_ctime = in->sem_ctime;
1751                 v.sem_nsems = in->sem_nsems;
1752                 return copy_to_user(buf, &v, sizeof(v));
1753         }
1754 }
1755
1756 static long compat_ksys_semctl(int semid, int semnum, int cmd, int arg, int version)
1757 {
1758         void __user *p = compat_ptr(arg);
1759         struct ipc_namespace *ns;
1760         struct semid64_ds semid64;
1761         int err;
1762
1763         ns = current->nsproxy->ipc_ns;
1764
1765         if (semid < 0)
1766                 return -EINVAL;
1767
1768         switch (cmd & (~IPC_64)) {
1769         case IPC_INFO:
1770         case SEM_INFO:
1771                 return semctl_info(ns, semid, cmd, p);
1772         case IPC_STAT:
1773         case SEM_STAT:
1774         case SEM_STAT_ANY:
1775                 err = semctl_stat(ns, semid, cmd, &semid64);
1776                 if (err < 0)
1777                         return err;
1778                 if (copy_compat_semid_to_user(p, &semid64, version))
1779                         err = -EFAULT;
1780                 return err;
1781         case GETVAL:
1782         case GETPID:
1783         case GETNCNT:
1784         case GETZCNT:
1785         case GETALL:
1786         case SETALL:
1787                 return semctl_main(ns, semid, semnum, cmd, p);
1788         case SETVAL:
1789                 return semctl_setval(ns, semid, semnum, arg);
1790         case IPC_SET:
1791                 if (copy_compat_semid_from_user(&semid64, p, version))
1792                         return -EFAULT;
1793                 /* fallthru */
1794         case IPC_RMID:
1795                 return semctl_down(ns, semid, cmd, &semid64);
1796         default:
1797                 return -EINVAL;
1798         }
1799 }
1800
1801 COMPAT_SYSCALL_DEFINE4(semctl, int, semid, int, semnum, int, cmd, int, arg)
1802 {
1803         return compat_ksys_semctl(semid, semnum, cmd, arg, IPC_64);
1804 }
1805
1806 #ifdef CONFIG_ARCH_WANT_COMPAT_IPC_PARSE_VERSION
1807 long compat_ksys_old_semctl(int semid, int semnum, int cmd, int arg)
1808 {
1809         int version = compat_ipc_parse_version(&cmd);
1810
1811         return compat_ksys_semctl(semid, semnum, cmd, arg, version);
1812 }
1813
1814 COMPAT_SYSCALL_DEFINE4(old_semctl, int, semid, int, semnum, int, cmd, int, arg)
1815 {
1816         return compat_ksys_old_semctl(semid, semnum, cmd, arg);
1817 }
1818 #endif
1819 #endif
1820
1821 /* If the task doesn't already have a undo_list, then allocate one
1822  * here.  We guarantee there is only one thread using this undo list,
1823  * and current is THE ONE
1824  *
1825  * If this allocation and assignment succeeds, but later
1826  * portions of this code fail, there is no need to free the sem_undo_list.
1827  * Just let it stay associated with the task, and it'll be freed later
1828  * at exit time.
1829  *
1830  * This can block, so callers must hold no locks.
1831  */
1832 static inline int get_undo_list(struct sem_undo_list **undo_listp)
1833 {
1834         struct sem_undo_list *undo_list;
1835
1836         undo_list = current->sysvsem.undo_list;
1837         if (!undo_list) {
1838                 undo_list = kzalloc(sizeof(*undo_list), GFP_KERNEL);
1839                 if (undo_list == NULL)
1840                         return -ENOMEM;
1841                 spin_lock_init(&undo_list->lock);
1842                 refcount_set(&undo_list->refcnt, 1);
1843                 INIT_LIST_HEAD(&undo_list->list_proc);
1844
1845                 current->sysvsem.undo_list = undo_list;
1846         }
1847         *undo_listp = undo_list;
1848         return 0;
1849 }
1850
1851 static struct sem_undo *__lookup_undo(struct sem_undo_list *ulp, int semid)
1852 {
1853         struct sem_undo *un;
1854
1855         list_for_each_entry_rcu(un, &ulp->list_proc, list_proc,
1856                                 spin_is_locked(&ulp->lock)) {
1857                 if (un->semid == semid)
1858                         return un;
1859         }
1860         return NULL;
1861 }
1862
1863 static struct sem_undo *lookup_undo(struct sem_undo_list *ulp, int semid)
1864 {
1865         struct sem_undo *un;
1866
1867         assert_spin_locked(&ulp->lock);
1868
1869         un = __lookup_undo(ulp, semid);
1870         if (un) {
1871                 list_del_rcu(&un->list_proc);
1872                 list_add_rcu(&un->list_proc, &ulp->list_proc);
1873         }
1874         return un;
1875 }
1876
1877 /**
1878  * find_alloc_undo - lookup (and if not present create) undo array
1879  * @ns: namespace
1880  * @semid: semaphore array id
1881  *
1882  * The function looks up (and if not present creates) the undo structure.
1883  * The size of the undo structure depends on the size of the semaphore
1884  * array, thus the alloc path is not that straightforward.
1885  * Lifetime-rules: sem_undo is rcu-protected, on success, the function
1886  * performs a rcu_read_lock().
1887  */
1888 static struct sem_undo *find_alloc_undo(struct ipc_namespace *ns, int semid)
1889 {
1890         struct sem_array *sma;
1891         struct sem_undo_list *ulp;
1892         struct sem_undo *un, *new;
1893         int nsems, error;
1894
1895         error = get_undo_list(&ulp);
1896         if (error)
1897                 return ERR_PTR(error);
1898
1899         rcu_read_lock();
1900         spin_lock(&ulp->lock);
1901         un = lookup_undo(ulp, semid);
1902         spin_unlock(&ulp->lock);
1903         if (likely(un != NULL))
1904                 goto out;
1905
1906         /* no undo structure around - allocate one. */
1907         /* step 1: figure out the size of the semaphore array */
1908         sma = sem_obtain_object_check(ns, semid);
1909         if (IS_ERR(sma)) {
1910                 rcu_read_unlock();
1911                 return ERR_CAST(sma);
1912         }
1913
1914         nsems = sma->sem_nsems;
1915         if (!ipc_rcu_getref(&sma->sem_perm)) {
1916                 rcu_read_unlock();
1917                 un = ERR_PTR(-EIDRM);
1918                 goto out;
1919         }
1920         rcu_read_unlock();
1921
1922         /* step 2: allocate new undo structure */
1923         new = kzalloc(sizeof(struct sem_undo) + sizeof(short)*nsems, GFP_KERNEL);
1924         if (!new) {
1925                 ipc_rcu_putref(&sma->sem_perm, sem_rcu_free);
1926                 return ERR_PTR(-ENOMEM);
1927         }
1928
1929         /* step 3: Acquire the lock on semaphore array */
1930         rcu_read_lock();
1931         sem_lock_and_putref(sma);
1932         if (!ipc_valid_object(&sma->sem_perm)) {
1933                 sem_unlock(sma, -1);
1934                 rcu_read_unlock();
1935                 kfree(new);
1936                 un = ERR_PTR(-EIDRM);
1937                 goto out;
1938         }
1939         spin_lock(&ulp->lock);
1940
1941         /*
1942          * step 4: check for races: did someone else allocate the undo struct?
1943          */
1944         un = lookup_undo(ulp, semid);
1945         if (un) {
1946                 kfree(new);
1947                 goto success;
1948         }
1949         /* step 5: initialize & link new undo structure */
1950         new->semadj = (short *) &new[1];
1951         new->ulp = ulp;
1952         new->semid = semid;
1953         assert_spin_locked(&ulp->lock);
1954         list_add_rcu(&new->list_proc, &ulp->list_proc);
1955         ipc_assert_locked_object(&sma->sem_perm);
1956         list_add(&new->list_id, &sma->list_id);
1957         un = new;
1958
1959 success:
1960         spin_unlock(&ulp->lock);
1961         sem_unlock(sma, -1);
1962 out:
1963         return un;
1964 }
1965
1966 static long do_semtimedop(int semid, struct sembuf __user *tsops,
1967                 unsigned nsops, const struct timespec64 *timeout)
1968 {
1969         int error = -EINVAL;
1970         struct sem_array *sma;
1971         struct sembuf fast_sops[SEMOPM_FAST];
1972         struct sembuf *sops = fast_sops, *sop;
1973         struct sem_undo *un;
1974         int max, locknum;
1975         bool undos = false, alter = false, dupsop = false;
1976         struct sem_queue queue;
1977         unsigned long dup = 0, jiffies_left = 0;
1978         struct ipc_namespace *ns;
1979
1980         ns = current->nsproxy->ipc_ns;
1981
1982         if (nsops < 1 || semid < 0)
1983                 return -EINVAL;
1984         if (nsops > ns->sc_semopm)
1985                 return -E2BIG;
1986         if (nsops > SEMOPM_FAST) {
1987                 sops = kvmalloc_array(nsops, sizeof(*sops), GFP_KERNEL);
1988                 if (sops == NULL)
1989                         return -ENOMEM;
1990         }
1991
1992         if (copy_from_user(sops, tsops, nsops * sizeof(*tsops))) {
1993                 error =  -EFAULT;
1994                 goto out_free;
1995         }
1996
1997         if (timeout) {
1998                 if (timeout->tv_sec < 0 || timeout->tv_nsec < 0 ||
1999                         timeout->tv_nsec >= 1000000000L) {
2000                         error = -EINVAL;
2001                         goto out_free;
2002                 }
2003                 jiffies_left = timespec64_to_jiffies(timeout);
2004         }
2005
2006         max = 0;
2007         for (sop = sops; sop < sops + nsops; sop++) {
2008                 unsigned long mask = 1ULL << ((sop->sem_num) % BITS_PER_LONG);
2009
2010                 if (sop->sem_num >= max)
2011                         max = sop->sem_num;
2012                 if (sop->sem_flg & SEM_UNDO)
2013                         undos = true;
2014                 if (dup & mask) {
2015                         /*
2016                          * There was a previous alter access that appears
2017                          * to have accessed the same semaphore, thus use
2018                          * the dupsop logic. "appears", because the detection
2019                          * can only check % BITS_PER_LONG.
2020                          */
2021                         dupsop = true;
2022                 }
2023                 if (sop->sem_op != 0) {
2024                         alter = true;
2025                         dup |= mask;
2026                 }
2027         }
2028
2029         if (undos) {
2030                 /* On success, find_alloc_undo takes the rcu_read_lock */
2031                 un = find_alloc_undo(ns, semid);
2032                 if (IS_ERR(un)) {
2033                         error = PTR_ERR(un);
2034                         goto out_free;
2035                 }
2036         } else {
2037                 un = NULL;
2038                 rcu_read_lock();
2039         }
2040
2041         sma = sem_obtain_object_check(ns, semid);
2042         if (IS_ERR(sma)) {
2043                 rcu_read_unlock();
2044                 error = PTR_ERR(sma);
2045                 goto out_free;
2046         }
2047
2048         error = -EFBIG;
2049         if (max >= sma->sem_nsems) {
2050                 rcu_read_unlock();
2051                 goto out_free;
2052         }
2053
2054         error = -EACCES;
2055         if (ipcperms(ns, &sma->sem_perm, alter ? S_IWUGO : S_IRUGO)) {
2056                 rcu_read_unlock();
2057                 goto out_free;
2058         }
2059
2060         error = security_sem_semop(&sma->sem_perm, sops, nsops, alter);
2061         if (error) {
2062                 rcu_read_unlock();
2063                 goto out_free;
2064         }
2065
2066         error = -EIDRM;
2067         locknum = sem_lock(sma, sops, nsops);
2068         /*
2069          * We eventually might perform the following check in a lockless
2070          * fashion, considering ipc_valid_object() locking constraints.
2071          * If nsops == 1 and there is no contention for sem_perm.lock, then
2072          * only a per-semaphore lock is held and it's OK to proceed with the
2073          * check below. More details on the fine grained locking scheme
2074          * entangled here and why it's RMID race safe on comments at sem_lock()
2075          */
2076         if (!ipc_valid_object(&sma->sem_perm))
2077                 goto out_unlock_free;
2078         /*
2079          * semid identifiers are not unique - find_alloc_undo may have
2080          * allocated an undo structure, it was invalidated by an RMID
2081          * and now a new array with received the same id. Check and fail.
2082          * This case can be detected checking un->semid. The existence of
2083          * "un" itself is guaranteed by rcu.
2084          */
2085         if (un && un->semid == -1)
2086                 goto out_unlock_free;
2087
2088         queue.sops = sops;
2089         queue.nsops = nsops;
2090         queue.undo = un;
2091         queue.pid = task_tgid(current);
2092         queue.alter = alter;
2093         queue.dupsop = dupsop;
2094
2095         error = perform_atomic_semop(sma, &queue);
2096         if (error == 0) { /* non-blocking succesfull path */
2097                 DEFINE_WAKE_Q(wake_q);
2098
2099                 /*
2100                  * If the operation was successful, then do
2101                  * the required updates.
2102                  */
2103                 if (alter)
2104                         do_smart_update(sma, sops, nsops, 1, &wake_q);
2105                 else
2106                         set_semotime(sma, sops);
2107
2108                 sem_unlock(sma, locknum);
2109                 rcu_read_unlock();
2110                 wake_up_q(&wake_q);
2111
2112                 goto out_free;
2113         }
2114         if (error < 0) /* non-blocking error path */
2115                 goto out_unlock_free;
2116
2117         /*
2118          * We need to sleep on this operation, so we put the current
2119          * task into the pending queue and go to sleep.
2120          */
2121         if (nsops == 1) {
2122                 struct sem *curr;
2123                 int idx = array_index_nospec(sops->sem_num, sma->sem_nsems);
2124                 curr = &sma->sems[idx];
2125
2126                 if (alter) {
2127                         if (sma->complex_count) {
2128                                 list_add_tail(&queue.list,
2129                                                 &sma->pending_alter);
2130                         } else {
2131
2132                                 list_add_tail(&queue.list,
2133                                                 &curr->pending_alter);
2134                         }
2135                 } else {
2136                         list_add_tail(&queue.list, &curr->pending_const);
2137                 }
2138         } else {
2139                 if (!sma->complex_count)
2140                         merge_queues(sma);
2141
2142                 if (alter)
2143                         list_add_tail(&queue.list, &sma->pending_alter);
2144                 else
2145                         list_add_tail(&queue.list, &sma->pending_const);
2146
2147                 sma->complex_count++;
2148         }
2149
2150         do {
2151                 WRITE_ONCE(queue.status, -EINTR);
2152                 queue.sleeper = current;
2153
2154                 __set_current_state(TASK_INTERRUPTIBLE);
2155                 sem_unlock(sma, locknum);
2156                 rcu_read_unlock();
2157
2158                 if (timeout)
2159                         jiffies_left = schedule_timeout(jiffies_left);
2160                 else
2161                         schedule();
2162
2163                 /*
2164                  * fastpath: the semop has completed, either successfully or
2165                  * not, from the syscall pov, is quite irrelevant to us at this
2166                  * point; we're done.
2167                  *
2168                  * We _do_ care, nonetheless, about being awoken by a signal or
2169                  * spuriously.  The queue.status is checked again in the
2170                  * slowpath (aka after taking sem_lock), such that we can detect
2171                  * scenarios where we were awakened externally, during the
2172                  * window between wake_q_add() and wake_up_q().
2173                  */
2174                 error = READ_ONCE(queue.status);
2175                 if (error != -EINTR) {
2176                         /*
2177                          * User space could assume that semop() is a memory
2178                          * barrier: Without the mb(), the cpu could
2179                          * speculatively read in userspace stale data that was
2180                          * overwritten by the previous owner of the semaphore.
2181                          */
2182                         smp_mb();
2183                         goto out_free;
2184                 }
2185
2186                 rcu_read_lock();
2187                 locknum = sem_lock(sma, sops, nsops);
2188
2189                 if (!ipc_valid_object(&sma->sem_perm))
2190                         goto out_unlock_free;
2191
2192                 error = READ_ONCE(queue.status);
2193
2194                 /*
2195                  * If queue.status != -EINTR we are woken up by another process.
2196                  * Leave without unlink_queue(), but with sem_unlock().
2197                  */
2198                 if (error != -EINTR)
2199                         goto out_unlock_free;
2200
2201                 /*
2202                  * If an interrupt occurred we have to clean up the queue.
2203                  */
2204                 if (timeout && jiffies_left == 0)
2205                         error = -EAGAIN;
2206         } while (error == -EINTR && !signal_pending(current)); /* spurious */
2207
2208         unlink_queue(sma, &queue);
2209
2210 out_unlock_free:
2211         sem_unlock(sma, locknum);
2212         rcu_read_unlock();
2213 out_free:
2214         if (sops != fast_sops)
2215                 kvfree(sops);
2216         return error;
2217 }
2218
2219 long ksys_semtimedop(int semid, struct sembuf __user *tsops,
2220                      unsigned int nsops, const struct __kernel_timespec __user *timeout)
2221 {
2222         if (timeout) {
2223                 struct timespec64 ts;
2224                 if (get_timespec64(&ts, timeout))
2225                         return -EFAULT;
2226                 return do_semtimedop(semid, tsops, nsops, &ts);
2227         }
2228         return do_semtimedop(semid, tsops, nsops, NULL);
2229 }
2230
2231 SYSCALL_DEFINE4(semtimedop, int, semid, struct sembuf __user *, tsops,
2232                 unsigned int, nsops, const struct __kernel_timespec __user *, timeout)
2233 {
2234         return ksys_semtimedop(semid, tsops, nsops, timeout);
2235 }
2236
2237 #ifdef CONFIG_COMPAT_32BIT_TIME
2238 long compat_ksys_semtimedop(int semid, struct sembuf __user *tsems,
2239                             unsigned int nsops,
2240                             const struct old_timespec32 __user *timeout)
2241 {
2242         if (timeout) {
2243                 struct timespec64 ts;
2244                 if (get_old_timespec32(&ts, timeout))
2245                         return -EFAULT;
2246                 return do_semtimedop(semid, tsems, nsops, &ts);
2247         }
2248         return do_semtimedop(semid, tsems, nsops, NULL);
2249 }
2250
2251 SYSCALL_DEFINE4(semtimedop_time32, int, semid, struct sembuf __user *, tsems,
2252                        unsigned int, nsops,
2253                        const struct old_timespec32 __user *, timeout)
2254 {
2255         return compat_ksys_semtimedop(semid, tsems, nsops, timeout);
2256 }
2257 #endif
2258
2259 SYSCALL_DEFINE3(semop, int, semid, struct sembuf __user *, tsops,
2260                 unsigned, nsops)
2261 {
2262         return do_semtimedop(semid, tsops, nsops, NULL);
2263 }
2264
2265 /* If CLONE_SYSVSEM is set, establish sharing of SEM_UNDO state between
2266  * parent and child tasks.
2267  */
2268
2269 int copy_semundo(unsigned long clone_flags, struct task_struct *tsk)
2270 {
2271         struct sem_undo_list *undo_list;
2272         int error;
2273
2274         if (clone_flags & CLONE_SYSVSEM) {
2275                 error = get_undo_list(&undo_list);
2276                 if (error)
2277                         return error;
2278                 refcount_inc(&undo_list->refcnt);
2279                 tsk->sysvsem.undo_list = undo_list;
2280         } else
2281                 tsk->sysvsem.undo_list = NULL;
2282
2283         return 0;
2284 }
2285
2286 /*
2287  * add semadj values to semaphores, free undo structures.
2288  * undo structures are not freed when semaphore arrays are destroyed
2289  * so some of them may be out of date.
2290  * IMPLEMENTATION NOTE: There is some confusion over whether the
2291  * set of adjustments that needs to be done should be done in an atomic
2292  * manner or not. That is, if we are attempting to decrement the semval
2293  * should we queue up and wait until we can do so legally?
2294  * The original implementation attempted to do this (queue and wait).
2295  * The current implementation does not do so. The POSIX standard
2296  * and SVID should be consulted to determine what behavior is mandated.
2297  */
2298 void exit_sem(struct task_struct *tsk)
2299 {
2300         struct sem_undo_list *ulp;
2301
2302         ulp = tsk->sysvsem.undo_list;
2303         if (!ulp)
2304                 return;
2305         tsk->sysvsem.undo_list = NULL;
2306
2307         if (!refcount_dec_and_test(&ulp->refcnt))
2308                 return;
2309
2310         for (;;) {
2311                 struct sem_array *sma;
2312                 struct sem_undo *un;
2313                 int semid, i;
2314                 DEFINE_WAKE_Q(wake_q);
2315
2316                 cond_resched();
2317
2318                 rcu_read_lock();
2319                 un = list_entry_rcu(ulp->list_proc.next,
2320                                     struct sem_undo, list_proc);
2321                 if (&un->list_proc == &ulp->list_proc) {
2322                         /*
2323                          * We must wait for freeary() before freeing this ulp,
2324                          * in case we raced with last sem_undo. There is a small
2325                          * possibility where we exit while freeary() didn't
2326                          * finish unlocking sem_undo_list.
2327                          */
2328                         spin_lock(&ulp->lock);
2329                         spin_unlock(&ulp->lock);
2330                         rcu_read_unlock();
2331                         break;
2332                 }
2333                 spin_lock(&ulp->lock);
2334                 semid = un->semid;
2335                 spin_unlock(&ulp->lock);
2336
2337                 /* exit_sem raced with IPC_RMID, nothing to do */
2338                 if (semid == -1) {
2339                         rcu_read_unlock();
2340                         continue;
2341                 }
2342
2343                 sma = sem_obtain_object_check(tsk->nsproxy->ipc_ns, semid);
2344                 /* exit_sem raced with IPC_RMID, nothing to do */
2345                 if (IS_ERR(sma)) {
2346                         rcu_read_unlock();
2347                         continue;
2348                 }
2349
2350                 sem_lock(sma, NULL, -1);
2351                 /* exit_sem raced with IPC_RMID, nothing to do */
2352                 if (!ipc_valid_object(&sma->sem_perm)) {
2353                         sem_unlock(sma, -1);
2354                         rcu_read_unlock();
2355                         continue;
2356                 }
2357                 un = __lookup_undo(ulp, semid);
2358                 if (un == NULL) {
2359                         /* exit_sem raced with IPC_RMID+semget() that created
2360                          * exactly the same semid. Nothing to do.
2361                          */
2362                         sem_unlock(sma, -1);
2363                         rcu_read_unlock();
2364                         continue;
2365                 }
2366
2367                 /* remove un from the linked lists */
2368                 ipc_assert_locked_object(&sma->sem_perm);
2369                 list_del(&un->list_id);
2370
2371                 /* we are the last process using this ulp, acquiring ulp->lock
2372                  * isn't required. Besides that, we are also protected against
2373                  * IPC_RMID as we hold sma->sem_perm lock now
2374                  */
2375                 list_del_rcu(&un->list_proc);
2376
2377                 /* perform adjustments registered in un */
2378                 for (i = 0; i < sma->sem_nsems; i++) {
2379                         struct sem *semaphore = &sma->sems[i];
2380                         if (un->semadj[i]) {
2381                                 semaphore->semval += un->semadj[i];
2382                                 /*
2383                                  * Range checks of the new semaphore value,
2384                                  * not defined by sus:
2385                                  * - Some unices ignore the undo entirely
2386                                  *   (e.g. HP UX 11i 11.22, Tru64 V5.1)
2387                                  * - some cap the value (e.g. FreeBSD caps
2388                                  *   at 0, but doesn't enforce SEMVMX)
2389                                  *
2390                                  * Linux caps the semaphore value, both at 0
2391                                  * and at SEMVMX.
2392                                  *
2393                                  *      Manfred <manfred@colorfullife.com>
2394                                  */
2395                                 if (semaphore->semval < 0)
2396                                         semaphore->semval = 0;
2397                                 if (semaphore->semval > SEMVMX)
2398                                         semaphore->semval = SEMVMX;
2399                                 ipc_update_pid(&semaphore->sempid, task_tgid(current));
2400                         }
2401                 }
2402                 /* maybe some queued-up processes were waiting for this */
2403                 do_smart_update(sma, NULL, 0, 1, &wake_q);
2404                 sem_unlock(sma, -1);
2405                 rcu_read_unlock();
2406                 wake_up_q(&wake_q);
2407
2408                 kfree_rcu(un, rcu);
2409         }
2410         kfree(ulp);
2411 }
2412
2413 #ifdef CONFIG_PROC_FS
2414 static int sysvipc_sem_proc_show(struct seq_file *s, void *it)
2415 {
2416         struct user_namespace *user_ns = seq_user_ns(s);
2417         struct kern_ipc_perm *ipcp = it;
2418         struct sem_array *sma = container_of(ipcp, struct sem_array, sem_perm);
2419         time64_t sem_otime;
2420
2421         /*
2422          * The proc interface isn't aware of sem_lock(), it calls
2423          * ipc_lock_object() directly (in sysvipc_find_ipc).
2424          * In order to stay compatible with sem_lock(), we must
2425          * enter / leave complex_mode.
2426          */
2427         complexmode_enter(sma);
2428
2429         sem_otime = get_semotime(sma);
2430
2431         seq_printf(s,
2432                    "%10d %10d  %4o %10u %5u %5u %5u %5u %10llu %10llu\n",
2433                    sma->sem_perm.key,
2434                    sma->sem_perm.id,
2435                    sma->sem_perm.mode,
2436                    sma->sem_nsems,
2437                    from_kuid_munged(user_ns, sma->sem_perm.uid),
2438                    from_kgid_munged(user_ns, sma->sem_perm.gid),
2439                    from_kuid_munged(user_ns, sma->sem_perm.cuid),
2440                    from_kgid_munged(user_ns, sma->sem_perm.cgid),
2441                    sem_otime,
2442                    sma->sem_ctime);
2443
2444         complexmode_tryleave(sma);
2445
2446         return 0;
2447 }
2448 #endif