Merge tag 'disintegrate-openrisc-20121009' of git://git.infradead.org/users/dhowells...
[platform/adaptation/renesas_rcar/renesas_kernel.git] / ipc / mqueue.c
1 /*
2  * POSIX message queues filesystem for Linux.
3  *
4  * Copyright (C) 2003,2004  Krzysztof Benedyczak    (golbi@mat.uni.torun.pl)
5  *                          Michal Wronski          (michal.wronski@gmail.com)
6  *
7  * Spinlocks:               Mohamed Abbas           (abbas.mohamed@intel.com)
8  * Lockless receive & send, fd based notify:
9  *                          Manfred Spraul          (manfred@colorfullife.com)
10  *
11  * Audit:                   George Wilson           (ltcgcw@us.ibm.com)
12  *
13  * This file is released under the GPL.
14  */
15
16 #include <linux/capability.h>
17 #include <linux/init.h>
18 #include <linux/pagemap.h>
19 #include <linux/file.h>
20 #include <linux/mount.h>
21 #include <linux/namei.h>
22 #include <linux/sysctl.h>
23 #include <linux/poll.h>
24 #include <linux/mqueue.h>
25 #include <linux/msg.h>
26 #include <linux/skbuff.h>
27 #include <linux/vmalloc.h>
28 #include <linux/netlink.h>
29 #include <linux/syscalls.h>
30 #include <linux/audit.h>
31 #include <linux/signal.h>
32 #include <linux/mutex.h>
33 #include <linux/nsproxy.h>
34 #include <linux/pid.h>
35 #include <linux/ipc_namespace.h>
36 #include <linux/user_namespace.h>
37 #include <linux/slab.h>
38
39 #include <net/sock.h>
40 #include "util.h"
41
42 #define MQUEUE_MAGIC    0x19800202
43 #define DIRENT_SIZE     20
44 #define FILENT_SIZE     80
45
46 #define SEND            0
47 #define RECV            1
48
49 #define STATE_NONE      0
50 #define STATE_PENDING   1
51 #define STATE_READY     2
52
53 struct posix_msg_tree_node {
54         struct rb_node          rb_node;
55         struct list_head        msg_list;
56         int                     priority;
57 };
58
59 struct ext_wait_queue {         /* queue of sleeping tasks */
60         struct task_struct *task;
61         struct list_head list;
62         struct msg_msg *msg;    /* ptr of loaded message */
63         int state;              /* one of STATE_* values */
64 };
65
66 struct mqueue_inode_info {
67         spinlock_t lock;
68         struct inode vfs_inode;
69         wait_queue_head_t wait_q;
70
71         struct rb_root msg_tree;
72         struct posix_msg_tree_node *node_cache;
73         struct mq_attr attr;
74
75         struct sigevent notify;
76         struct pid* notify_owner;
77         struct user_namespace *notify_user_ns;
78         struct user_struct *user;       /* user who created, for accounting */
79         struct sock *notify_sock;
80         struct sk_buff *notify_cookie;
81
82         /* for tasks waiting for free space and messages, respectively */
83         struct ext_wait_queue e_wait_q[2];
84
85         unsigned long qsize; /* size of queue in memory (sum of all msgs) */
86 };
87
88 static const struct inode_operations mqueue_dir_inode_operations;
89 static const struct file_operations mqueue_file_operations;
90 static const struct super_operations mqueue_super_ops;
91 static void remove_notification(struct mqueue_inode_info *info);
92
93 static struct kmem_cache *mqueue_inode_cachep;
94
95 static struct ctl_table_header * mq_sysctl_table;
96
97 static inline struct mqueue_inode_info *MQUEUE_I(struct inode *inode)
98 {
99         return container_of(inode, struct mqueue_inode_info, vfs_inode);
100 }
101
102 /*
103  * This routine should be called with the mq_lock held.
104  */
105 static inline struct ipc_namespace *__get_ns_from_inode(struct inode *inode)
106 {
107         return get_ipc_ns(inode->i_sb->s_fs_info);
108 }
109
110 static struct ipc_namespace *get_ns_from_inode(struct inode *inode)
111 {
112         struct ipc_namespace *ns;
113
114         spin_lock(&mq_lock);
115         ns = __get_ns_from_inode(inode);
116         spin_unlock(&mq_lock);
117         return ns;
118 }
119
120 /* Auxiliary functions to manipulate messages' list */
121 static int msg_insert(struct msg_msg *msg, struct mqueue_inode_info *info)
122 {
123         struct rb_node **p, *parent = NULL;
124         struct posix_msg_tree_node *leaf;
125
126         p = &info->msg_tree.rb_node;
127         while (*p) {
128                 parent = *p;
129                 leaf = rb_entry(parent, struct posix_msg_tree_node, rb_node);
130
131                 if (likely(leaf->priority == msg->m_type))
132                         goto insert_msg;
133                 else if (msg->m_type < leaf->priority)
134                         p = &(*p)->rb_left;
135                 else
136                         p = &(*p)->rb_right;
137         }
138         if (info->node_cache) {
139                 leaf = info->node_cache;
140                 info->node_cache = NULL;
141         } else {
142                 leaf = kmalloc(sizeof(*leaf), GFP_ATOMIC);
143                 if (!leaf)
144                         return -ENOMEM;
145                 INIT_LIST_HEAD(&leaf->msg_list);
146                 info->qsize += sizeof(*leaf);
147         }
148         leaf->priority = msg->m_type;
149         rb_link_node(&leaf->rb_node, parent, p);
150         rb_insert_color(&leaf->rb_node, &info->msg_tree);
151 insert_msg:
152         info->attr.mq_curmsgs++;
153         info->qsize += msg->m_ts;
154         list_add_tail(&msg->m_list, &leaf->msg_list);
155         return 0;
156 }
157
158 static inline struct msg_msg *msg_get(struct mqueue_inode_info *info)
159 {
160         struct rb_node **p, *parent = NULL;
161         struct posix_msg_tree_node *leaf;
162         struct msg_msg *msg;
163
164 try_again:
165         p = &info->msg_tree.rb_node;
166         while (*p) {
167                 parent = *p;
168                 /*
169                  * During insert, low priorities go to the left and high to the
170                  * right.  On receive, we want the highest priorities first, so
171                  * walk all the way to the right.
172                  */
173                 p = &(*p)->rb_right;
174         }
175         if (!parent) {
176                 if (info->attr.mq_curmsgs) {
177                         pr_warn_once("Inconsistency in POSIX message queue, "
178                                      "no tree element, but supposedly messages "
179                                      "should exist!\n");
180                         info->attr.mq_curmsgs = 0;
181                 }
182                 return NULL;
183         }
184         leaf = rb_entry(parent, struct posix_msg_tree_node, rb_node);
185         if (unlikely(list_empty(&leaf->msg_list))) {
186                 pr_warn_once("Inconsistency in POSIX message queue, "
187                              "empty leaf node but we haven't implemented "
188                              "lazy leaf delete!\n");
189                 rb_erase(&leaf->rb_node, &info->msg_tree);
190                 if (info->node_cache) {
191                         info->qsize -= sizeof(*leaf);
192                         kfree(leaf);
193                 } else {
194                         info->node_cache = leaf;
195                 }
196                 goto try_again;
197         } else {
198                 msg = list_first_entry(&leaf->msg_list,
199                                        struct msg_msg, m_list);
200                 list_del(&msg->m_list);
201                 if (list_empty(&leaf->msg_list)) {
202                         rb_erase(&leaf->rb_node, &info->msg_tree);
203                         if (info->node_cache) {
204                                 info->qsize -= sizeof(*leaf);
205                                 kfree(leaf);
206                         } else {
207                                 info->node_cache = leaf;
208                         }
209                 }
210         }
211         info->attr.mq_curmsgs--;
212         info->qsize -= msg->m_ts;
213         return msg;
214 }
215
216 static struct inode *mqueue_get_inode(struct super_block *sb,
217                 struct ipc_namespace *ipc_ns, umode_t mode,
218                 struct mq_attr *attr)
219 {
220         struct user_struct *u = current_user();
221         struct inode *inode;
222         int ret = -ENOMEM;
223
224         inode = new_inode(sb);
225         if (!inode)
226                 goto err;
227
228         inode->i_ino = get_next_ino();
229         inode->i_mode = mode;
230         inode->i_uid = current_fsuid();
231         inode->i_gid = current_fsgid();
232         inode->i_mtime = inode->i_ctime = inode->i_atime = CURRENT_TIME;
233
234         if (S_ISREG(mode)) {
235                 struct mqueue_inode_info *info;
236                 unsigned long mq_bytes, mq_treesize;
237
238                 inode->i_fop = &mqueue_file_operations;
239                 inode->i_size = FILENT_SIZE;
240                 /* mqueue specific info */
241                 info = MQUEUE_I(inode);
242                 spin_lock_init(&info->lock);
243                 init_waitqueue_head(&info->wait_q);
244                 INIT_LIST_HEAD(&info->e_wait_q[0].list);
245                 INIT_LIST_HEAD(&info->e_wait_q[1].list);
246                 info->notify_owner = NULL;
247                 info->notify_user_ns = NULL;
248                 info->qsize = 0;
249                 info->user = NULL;      /* set when all is ok */
250                 info->msg_tree = RB_ROOT;
251                 info->node_cache = NULL;
252                 memset(&info->attr, 0, sizeof(info->attr));
253                 info->attr.mq_maxmsg = min(ipc_ns->mq_msg_max,
254                                            ipc_ns->mq_msg_default);
255                 info->attr.mq_msgsize = min(ipc_ns->mq_msgsize_max,
256                                             ipc_ns->mq_msgsize_default);
257                 if (attr) {
258                         info->attr.mq_maxmsg = attr->mq_maxmsg;
259                         info->attr.mq_msgsize = attr->mq_msgsize;
260                 }
261                 /*
262                  * We used to allocate a static array of pointers and account
263                  * the size of that array as well as one msg_msg struct per
264                  * possible message into the queue size. That's no longer
265                  * accurate as the queue is now an rbtree and will grow and
266                  * shrink depending on usage patterns.  We can, however, still
267                  * account one msg_msg struct per message, but the nodes are
268                  * allocated depending on priority usage, and most programs
269                  * only use one, or a handful, of priorities.  However, since
270                  * this is pinned memory, we need to assume worst case, so
271                  * that means the min(mq_maxmsg, max_priorities) * struct
272                  * posix_msg_tree_node.
273                  */
274                 mq_treesize = info->attr.mq_maxmsg * sizeof(struct msg_msg) +
275                         min_t(unsigned int, info->attr.mq_maxmsg, MQ_PRIO_MAX) *
276                         sizeof(struct posix_msg_tree_node);
277
278                 mq_bytes = mq_treesize + (info->attr.mq_maxmsg *
279                                           info->attr.mq_msgsize);
280
281                 spin_lock(&mq_lock);
282                 if (u->mq_bytes + mq_bytes < u->mq_bytes ||
283                     u->mq_bytes + mq_bytes > rlimit(RLIMIT_MSGQUEUE)) {
284                         spin_unlock(&mq_lock);
285                         /* mqueue_evict_inode() releases info->messages */
286                         ret = -EMFILE;
287                         goto out_inode;
288                 }
289                 u->mq_bytes += mq_bytes;
290                 spin_unlock(&mq_lock);
291
292                 /* all is ok */
293                 info->user = get_uid(u);
294         } else if (S_ISDIR(mode)) {
295                 inc_nlink(inode);
296                 /* Some things misbehave if size == 0 on a directory */
297                 inode->i_size = 2 * DIRENT_SIZE;
298                 inode->i_op = &mqueue_dir_inode_operations;
299                 inode->i_fop = &simple_dir_operations;
300         }
301
302         return inode;
303 out_inode:
304         iput(inode);
305 err:
306         return ERR_PTR(ret);
307 }
308
309 static int mqueue_fill_super(struct super_block *sb, void *data, int silent)
310 {
311         struct inode *inode;
312         struct ipc_namespace *ns = data;
313
314         sb->s_blocksize = PAGE_CACHE_SIZE;
315         sb->s_blocksize_bits = PAGE_CACHE_SHIFT;
316         sb->s_magic = MQUEUE_MAGIC;
317         sb->s_op = &mqueue_super_ops;
318
319         inode = mqueue_get_inode(sb, ns, S_IFDIR | S_ISVTX | S_IRWXUGO, NULL);
320         if (IS_ERR(inode))
321                 return PTR_ERR(inode);
322
323         sb->s_root = d_make_root(inode);
324         if (!sb->s_root)
325                 return -ENOMEM;
326         return 0;
327 }
328
329 static struct dentry *mqueue_mount(struct file_system_type *fs_type,
330                          int flags, const char *dev_name,
331                          void *data)
332 {
333         if (!(flags & MS_KERNMOUNT))
334                 data = current->nsproxy->ipc_ns;
335         return mount_ns(fs_type, flags, data, mqueue_fill_super);
336 }
337
338 static void init_once(void *foo)
339 {
340         struct mqueue_inode_info *p = (struct mqueue_inode_info *) foo;
341
342         inode_init_once(&p->vfs_inode);
343 }
344
345 static struct inode *mqueue_alloc_inode(struct super_block *sb)
346 {
347         struct mqueue_inode_info *ei;
348
349         ei = kmem_cache_alloc(mqueue_inode_cachep, GFP_KERNEL);
350         if (!ei)
351                 return NULL;
352         return &ei->vfs_inode;
353 }
354
355 static void mqueue_i_callback(struct rcu_head *head)
356 {
357         struct inode *inode = container_of(head, struct inode, i_rcu);
358         kmem_cache_free(mqueue_inode_cachep, MQUEUE_I(inode));
359 }
360
361 static void mqueue_destroy_inode(struct inode *inode)
362 {
363         call_rcu(&inode->i_rcu, mqueue_i_callback);
364 }
365
366 static void mqueue_evict_inode(struct inode *inode)
367 {
368         struct mqueue_inode_info *info;
369         struct user_struct *user;
370         unsigned long mq_bytes, mq_treesize;
371         struct ipc_namespace *ipc_ns;
372         struct msg_msg *msg;
373
374         clear_inode(inode);
375
376         if (S_ISDIR(inode->i_mode))
377                 return;
378
379         ipc_ns = get_ns_from_inode(inode);
380         info = MQUEUE_I(inode);
381         spin_lock(&info->lock);
382         while ((msg = msg_get(info)) != NULL)
383                 free_msg(msg);
384         kfree(info->node_cache);
385         spin_unlock(&info->lock);
386
387         /* Total amount of bytes accounted for the mqueue */
388         mq_treesize = info->attr.mq_maxmsg * sizeof(struct msg_msg) +
389                 min_t(unsigned int, info->attr.mq_maxmsg, MQ_PRIO_MAX) *
390                 sizeof(struct posix_msg_tree_node);
391
392         mq_bytes = mq_treesize + (info->attr.mq_maxmsg *
393                                   info->attr.mq_msgsize);
394
395         user = info->user;
396         if (user) {
397                 spin_lock(&mq_lock);
398                 user->mq_bytes -= mq_bytes;
399                 /*
400                  * get_ns_from_inode() ensures that the
401                  * (ipc_ns = sb->s_fs_info) is either a valid ipc_ns
402                  * to which we now hold a reference, or it is NULL.
403                  * We can't put it here under mq_lock, though.
404                  */
405                 if (ipc_ns)
406                         ipc_ns->mq_queues_count--;
407                 spin_unlock(&mq_lock);
408                 free_uid(user);
409         }
410         if (ipc_ns)
411                 put_ipc_ns(ipc_ns);
412 }
413
414 static int mqueue_create(struct inode *dir, struct dentry *dentry,
415                                 umode_t mode, bool excl)
416 {
417         struct inode *inode;
418         struct mq_attr *attr = dentry->d_fsdata;
419         int error;
420         struct ipc_namespace *ipc_ns;
421
422         spin_lock(&mq_lock);
423         ipc_ns = __get_ns_from_inode(dir);
424         if (!ipc_ns) {
425                 error = -EACCES;
426                 goto out_unlock;
427         }
428         if (ipc_ns->mq_queues_count >= HARD_QUEUESMAX ||
429             (ipc_ns->mq_queues_count >= ipc_ns->mq_queues_max &&
430              !capable(CAP_SYS_RESOURCE))) {
431                 error = -ENOSPC;
432                 goto out_unlock;
433         }
434         ipc_ns->mq_queues_count++;
435         spin_unlock(&mq_lock);
436
437         inode = mqueue_get_inode(dir->i_sb, ipc_ns, mode, attr);
438         if (IS_ERR(inode)) {
439                 error = PTR_ERR(inode);
440                 spin_lock(&mq_lock);
441                 ipc_ns->mq_queues_count--;
442                 goto out_unlock;
443         }
444
445         put_ipc_ns(ipc_ns);
446         dir->i_size += DIRENT_SIZE;
447         dir->i_ctime = dir->i_mtime = dir->i_atime = CURRENT_TIME;
448
449         d_instantiate(dentry, inode);
450         dget(dentry);
451         return 0;
452 out_unlock:
453         spin_unlock(&mq_lock);
454         if (ipc_ns)
455                 put_ipc_ns(ipc_ns);
456         return error;
457 }
458
459 static int mqueue_unlink(struct inode *dir, struct dentry *dentry)
460 {
461         struct inode *inode = dentry->d_inode;
462
463         dir->i_ctime = dir->i_mtime = dir->i_atime = CURRENT_TIME;
464         dir->i_size -= DIRENT_SIZE;
465         drop_nlink(inode);
466         dput(dentry);
467         return 0;
468 }
469
470 /*
471 *       This is routine for system read from queue file.
472 *       To avoid mess with doing here some sort of mq_receive we allow
473 *       to read only queue size & notification info (the only values
474 *       that are interesting from user point of view and aren't accessible
475 *       through std routines)
476 */
477 static ssize_t mqueue_read_file(struct file *filp, char __user *u_data,
478                                 size_t count, loff_t *off)
479 {
480         struct mqueue_inode_info *info = MQUEUE_I(filp->f_path.dentry->d_inode);
481         char buffer[FILENT_SIZE];
482         ssize_t ret;
483
484         spin_lock(&info->lock);
485         snprintf(buffer, sizeof(buffer),
486                         "QSIZE:%-10lu NOTIFY:%-5d SIGNO:%-5d NOTIFY_PID:%-6d\n",
487                         info->qsize,
488                         info->notify_owner ? info->notify.sigev_notify : 0,
489                         (info->notify_owner &&
490                          info->notify.sigev_notify == SIGEV_SIGNAL) ?
491                                 info->notify.sigev_signo : 0,
492                         pid_vnr(info->notify_owner));
493         spin_unlock(&info->lock);
494         buffer[sizeof(buffer)-1] = '\0';
495
496         ret = simple_read_from_buffer(u_data, count, off, buffer,
497                                 strlen(buffer));
498         if (ret <= 0)
499                 return ret;
500
501         filp->f_path.dentry->d_inode->i_atime = filp->f_path.dentry->d_inode->i_ctime = CURRENT_TIME;
502         return ret;
503 }
504
505 static int mqueue_flush_file(struct file *filp, fl_owner_t id)
506 {
507         struct mqueue_inode_info *info = MQUEUE_I(filp->f_path.dentry->d_inode);
508
509         spin_lock(&info->lock);
510         if (task_tgid(current) == info->notify_owner)
511                 remove_notification(info);
512
513         spin_unlock(&info->lock);
514         return 0;
515 }
516
517 static unsigned int mqueue_poll_file(struct file *filp, struct poll_table_struct *poll_tab)
518 {
519         struct mqueue_inode_info *info = MQUEUE_I(filp->f_path.dentry->d_inode);
520         int retval = 0;
521
522         poll_wait(filp, &info->wait_q, poll_tab);
523
524         spin_lock(&info->lock);
525         if (info->attr.mq_curmsgs)
526                 retval = POLLIN | POLLRDNORM;
527
528         if (info->attr.mq_curmsgs < info->attr.mq_maxmsg)
529                 retval |= POLLOUT | POLLWRNORM;
530         spin_unlock(&info->lock);
531
532         return retval;
533 }
534
535 /* Adds current to info->e_wait_q[sr] before element with smaller prio */
536 static void wq_add(struct mqueue_inode_info *info, int sr,
537                         struct ext_wait_queue *ewp)
538 {
539         struct ext_wait_queue *walk;
540
541         ewp->task = current;
542
543         list_for_each_entry(walk, &info->e_wait_q[sr].list, list) {
544                 if (walk->task->static_prio <= current->static_prio) {
545                         list_add_tail(&ewp->list, &walk->list);
546                         return;
547                 }
548         }
549         list_add_tail(&ewp->list, &info->e_wait_q[sr].list);
550 }
551
552 /*
553  * Puts current task to sleep. Caller must hold queue lock. After return
554  * lock isn't held.
555  * sr: SEND or RECV
556  */
557 static int wq_sleep(struct mqueue_inode_info *info, int sr,
558                     ktime_t *timeout, struct ext_wait_queue *ewp)
559 {
560         int retval;
561         signed long time;
562
563         wq_add(info, sr, ewp);
564
565         for (;;) {
566                 set_current_state(TASK_INTERRUPTIBLE);
567
568                 spin_unlock(&info->lock);
569                 time = schedule_hrtimeout_range_clock(timeout, 0,
570                         HRTIMER_MODE_ABS, CLOCK_REALTIME);
571
572                 while (ewp->state == STATE_PENDING)
573                         cpu_relax();
574
575                 if (ewp->state == STATE_READY) {
576                         retval = 0;
577                         goto out;
578                 }
579                 spin_lock(&info->lock);
580                 if (ewp->state == STATE_READY) {
581                         retval = 0;
582                         goto out_unlock;
583                 }
584                 if (signal_pending(current)) {
585                         retval = -ERESTARTSYS;
586                         break;
587                 }
588                 if (time == 0) {
589                         retval = -ETIMEDOUT;
590                         break;
591                 }
592         }
593         list_del(&ewp->list);
594 out_unlock:
595         spin_unlock(&info->lock);
596 out:
597         return retval;
598 }
599
600 /*
601  * Returns waiting task that should be serviced first or NULL if none exists
602  */
603 static struct ext_wait_queue *wq_get_first_waiter(
604                 struct mqueue_inode_info *info, int sr)
605 {
606         struct list_head *ptr;
607
608         ptr = info->e_wait_q[sr].list.prev;
609         if (ptr == &info->e_wait_q[sr].list)
610                 return NULL;
611         return list_entry(ptr, struct ext_wait_queue, list);
612 }
613
614
615 static inline void set_cookie(struct sk_buff *skb, char code)
616 {
617         ((char*)skb->data)[NOTIFY_COOKIE_LEN-1] = code;
618 }
619
620 /*
621  * The next function is only to split too long sys_mq_timedsend
622  */
623 static void __do_notify(struct mqueue_inode_info *info)
624 {
625         /* notification
626          * invoked when there is registered process and there isn't process
627          * waiting synchronously for message AND state of queue changed from
628          * empty to not empty. Here we are sure that no one is waiting
629          * synchronously. */
630         if (info->notify_owner &&
631             info->attr.mq_curmsgs == 1) {
632                 struct siginfo sig_i;
633                 switch (info->notify.sigev_notify) {
634                 case SIGEV_NONE:
635                         break;
636                 case SIGEV_SIGNAL:
637                         /* sends signal */
638
639                         sig_i.si_signo = info->notify.sigev_signo;
640                         sig_i.si_errno = 0;
641                         sig_i.si_code = SI_MESGQ;
642                         sig_i.si_value = info->notify.sigev_value;
643                         /* map current pid/uid into info->owner's namespaces */
644                         rcu_read_lock();
645                         sig_i.si_pid = task_tgid_nr_ns(current,
646                                                 ns_of_pid(info->notify_owner));
647                         sig_i.si_uid = from_kuid_munged(info->notify_user_ns, current_uid());
648                         rcu_read_unlock();
649
650                         kill_pid_info(info->notify.sigev_signo,
651                                       &sig_i, info->notify_owner);
652                         break;
653                 case SIGEV_THREAD:
654                         set_cookie(info->notify_cookie, NOTIFY_WOKENUP);
655                         netlink_sendskb(info->notify_sock, info->notify_cookie);
656                         break;
657                 }
658                 /* after notification unregisters process */
659                 put_pid(info->notify_owner);
660                 put_user_ns(info->notify_user_ns);
661                 info->notify_owner = NULL;
662                 info->notify_user_ns = NULL;
663         }
664         wake_up(&info->wait_q);
665 }
666
667 static int prepare_timeout(const struct timespec __user *u_abs_timeout,
668                            ktime_t *expires, struct timespec *ts)
669 {
670         if (copy_from_user(ts, u_abs_timeout, sizeof(struct timespec)))
671                 return -EFAULT;
672         if (!timespec_valid(ts))
673                 return -EINVAL;
674
675         *expires = timespec_to_ktime(*ts);
676         return 0;
677 }
678
679 static void remove_notification(struct mqueue_inode_info *info)
680 {
681         if (info->notify_owner != NULL &&
682             info->notify.sigev_notify == SIGEV_THREAD) {
683                 set_cookie(info->notify_cookie, NOTIFY_REMOVED);
684                 netlink_sendskb(info->notify_sock, info->notify_cookie);
685         }
686         put_pid(info->notify_owner);
687         put_user_ns(info->notify_user_ns);
688         info->notify_owner = NULL;
689         info->notify_user_ns = NULL;
690 }
691
692 static int mq_attr_ok(struct ipc_namespace *ipc_ns, struct mq_attr *attr)
693 {
694         int mq_treesize;
695         unsigned long total_size;
696
697         if (attr->mq_maxmsg <= 0 || attr->mq_msgsize <= 0)
698                 return -EINVAL;
699         if (capable(CAP_SYS_RESOURCE)) {
700                 if (attr->mq_maxmsg > HARD_MSGMAX ||
701                     attr->mq_msgsize > HARD_MSGSIZEMAX)
702                         return -EINVAL;
703         } else {
704                 if (attr->mq_maxmsg > ipc_ns->mq_msg_max ||
705                                 attr->mq_msgsize > ipc_ns->mq_msgsize_max)
706                         return -EINVAL;
707         }
708         /* check for overflow */
709         if (attr->mq_msgsize > ULONG_MAX/attr->mq_maxmsg)
710                 return -EOVERFLOW;
711         mq_treesize = attr->mq_maxmsg * sizeof(struct msg_msg) +
712                 min_t(unsigned int, attr->mq_maxmsg, MQ_PRIO_MAX) *
713                 sizeof(struct posix_msg_tree_node);
714         total_size = attr->mq_maxmsg * attr->mq_msgsize;
715         if (total_size + mq_treesize < total_size)
716                 return -EOVERFLOW;
717         return 0;
718 }
719
720 /*
721  * Invoked when creating a new queue via sys_mq_open
722  */
723 static struct file *do_create(struct ipc_namespace *ipc_ns, struct inode *dir,
724                         struct path *path, int oflag, umode_t mode,
725                         struct mq_attr *attr)
726 {
727         const struct cred *cred = current_cred();
728         int ret;
729
730         if (attr) {
731                 ret = mq_attr_ok(ipc_ns, attr);
732                 if (ret)
733                         return ERR_PTR(ret);
734                 /* store for use during create */
735                 path->dentry->d_fsdata = attr;
736         } else {
737                 struct mq_attr def_attr;
738
739                 def_attr.mq_maxmsg = min(ipc_ns->mq_msg_max,
740                                          ipc_ns->mq_msg_default);
741                 def_attr.mq_msgsize = min(ipc_ns->mq_msgsize_max,
742                                           ipc_ns->mq_msgsize_default);
743                 ret = mq_attr_ok(ipc_ns, &def_attr);
744                 if (ret)
745                         return ERR_PTR(ret);
746         }
747
748         mode &= ~current_umask();
749         ret = vfs_create(dir, path->dentry, mode, true);
750         path->dentry->d_fsdata = NULL;
751         if (ret)
752                 return ERR_PTR(ret);
753         return dentry_open(path, oflag, cred);
754 }
755
756 /* Opens existing queue */
757 static struct file *do_open(struct path *path, int oflag)
758 {
759         static const int oflag2acc[O_ACCMODE] = { MAY_READ, MAY_WRITE,
760                                                   MAY_READ | MAY_WRITE };
761         int acc;
762         if ((oflag & O_ACCMODE) == (O_RDWR | O_WRONLY))
763                 return ERR_PTR(-EINVAL);
764         acc = oflag2acc[oflag & O_ACCMODE];
765         if (inode_permission(path->dentry->d_inode, acc))
766                 return ERR_PTR(-EACCES);
767         return dentry_open(path, oflag, current_cred());
768 }
769
770 SYSCALL_DEFINE4(mq_open, const char __user *, u_name, int, oflag, umode_t, mode,
771                 struct mq_attr __user *, u_attr)
772 {
773         struct path path;
774         struct file *filp;
775         struct filename *name;
776         struct mq_attr attr;
777         int fd, error;
778         struct ipc_namespace *ipc_ns = current->nsproxy->ipc_ns;
779         struct vfsmount *mnt = ipc_ns->mq_mnt;
780         struct dentry *root = mnt->mnt_root;
781         int ro;
782
783         if (u_attr && copy_from_user(&attr, u_attr, sizeof(struct mq_attr)))
784                 return -EFAULT;
785
786         audit_mq_open(oflag, mode, u_attr ? &attr : NULL);
787
788         if (IS_ERR(name = getname(u_name)))
789                 return PTR_ERR(name);
790
791         fd = get_unused_fd_flags(O_CLOEXEC);
792         if (fd < 0)
793                 goto out_putname;
794
795         ro = mnt_want_write(mnt);       /* we'll drop it in any case */
796         error = 0;
797         mutex_lock(&root->d_inode->i_mutex);
798         path.dentry = lookup_one_len(name->name, root, strlen(name->name));
799         if (IS_ERR(path.dentry)) {
800                 error = PTR_ERR(path.dentry);
801                 goto out_putfd;
802         }
803         path.mnt = mntget(mnt);
804
805         if (oflag & O_CREAT) {
806                 if (path.dentry->d_inode) {     /* entry already exists */
807                         audit_inode(name, path.dentry, 0);
808                         if (oflag & O_EXCL) {
809                                 error = -EEXIST;
810                                 goto out;
811                         }
812                         filp = do_open(&path, oflag);
813                 } else {
814                         if (ro) {
815                                 error = ro;
816                                 goto out;
817                         }
818                         filp = do_create(ipc_ns, root->d_inode,
819                                                 &path, oflag, mode,
820                                                 u_attr ? &attr : NULL);
821                 }
822         } else {
823                 if (!path.dentry->d_inode) {
824                         error = -ENOENT;
825                         goto out;
826                 }
827                 audit_inode(name, path.dentry, 0);
828                 filp = do_open(&path, oflag);
829         }
830
831         if (!IS_ERR(filp))
832                 fd_install(fd, filp);
833         else
834                 error = PTR_ERR(filp);
835 out:
836         path_put(&path);
837 out_putfd:
838         if (error) {
839                 put_unused_fd(fd);
840                 fd = error;
841         }
842         mutex_unlock(&root->d_inode->i_mutex);
843         mnt_drop_write(mnt);
844 out_putname:
845         putname(name);
846         return fd;
847 }
848
849 SYSCALL_DEFINE1(mq_unlink, const char __user *, u_name)
850 {
851         int err;
852         struct filename *name;
853         struct dentry *dentry;
854         struct inode *inode = NULL;
855         struct ipc_namespace *ipc_ns = current->nsproxy->ipc_ns;
856         struct vfsmount *mnt = ipc_ns->mq_mnt;
857
858         name = getname(u_name);
859         if (IS_ERR(name))
860                 return PTR_ERR(name);
861
862         err = mnt_want_write(mnt);
863         if (err)
864                 goto out_name;
865         mutex_lock_nested(&mnt->mnt_root->d_inode->i_mutex, I_MUTEX_PARENT);
866         dentry = lookup_one_len(name->name, mnt->mnt_root,
867                                 strlen(name->name));
868         if (IS_ERR(dentry)) {
869                 err = PTR_ERR(dentry);
870                 goto out_unlock;
871         }
872
873         inode = dentry->d_inode;
874         if (!inode) {
875                 err = -ENOENT;
876         } else {
877                 ihold(inode);
878                 err = vfs_unlink(dentry->d_parent->d_inode, dentry);
879         }
880         dput(dentry);
881
882 out_unlock:
883         mutex_unlock(&mnt->mnt_root->d_inode->i_mutex);
884         if (inode)
885                 iput(inode);
886         mnt_drop_write(mnt);
887 out_name:
888         putname(name);
889
890         return err;
891 }
892
893 /* Pipelined send and receive functions.
894  *
895  * If a receiver finds no waiting message, then it registers itself in the
896  * list of waiting receivers. A sender checks that list before adding the new
897  * message into the message array. If there is a waiting receiver, then it
898  * bypasses the message array and directly hands the message over to the
899  * receiver.
900  * The receiver accepts the message and returns without grabbing the queue
901  * spinlock. Therefore an intermediate STATE_PENDING state and memory barriers
902  * are necessary. The same algorithm is used for sysv semaphores, see
903  * ipc/sem.c for more details.
904  *
905  * The same algorithm is used for senders.
906  */
907
908 /* pipelined_send() - send a message directly to the task waiting in
909  * sys_mq_timedreceive() (without inserting message into a queue).
910  */
911 static inline void pipelined_send(struct mqueue_inode_info *info,
912                                   struct msg_msg *message,
913                                   struct ext_wait_queue *receiver)
914 {
915         receiver->msg = message;
916         list_del(&receiver->list);
917         receiver->state = STATE_PENDING;
918         wake_up_process(receiver->task);
919         smp_wmb();
920         receiver->state = STATE_READY;
921 }
922
923 /* pipelined_receive() - if there is task waiting in sys_mq_timedsend()
924  * gets its message and put to the queue (we have one free place for sure). */
925 static inline void pipelined_receive(struct mqueue_inode_info *info)
926 {
927         struct ext_wait_queue *sender = wq_get_first_waiter(info, SEND);
928
929         if (!sender) {
930                 /* for poll */
931                 wake_up_interruptible(&info->wait_q);
932                 return;
933         }
934         if (msg_insert(sender->msg, info))
935                 return;
936         list_del(&sender->list);
937         sender->state = STATE_PENDING;
938         wake_up_process(sender->task);
939         smp_wmb();
940         sender->state = STATE_READY;
941 }
942
943 SYSCALL_DEFINE5(mq_timedsend, mqd_t, mqdes, const char __user *, u_msg_ptr,
944                 size_t, msg_len, unsigned int, msg_prio,
945                 const struct timespec __user *, u_abs_timeout)
946 {
947         struct fd f;
948         struct inode *inode;
949         struct ext_wait_queue wait;
950         struct ext_wait_queue *receiver;
951         struct msg_msg *msg_ptr;
952         struct mqueue_inode_info *info;
953         ktime_t expires, *timeout = NULL;
954         struct timespec ts;
955         struct posix_msg_tree_node *new_leaf = NULL;
956         int ret = 0;
957
958         if (u_abs_timeout) {
959                 int res = prepare_timeout(u_abs_timeout, &expires, &ts);
960                 if (res)
961                         return res;
962                 timeout = &expires;
963         }
964
965         if (unlikely(msg_prio >= (unsigned long) MQ_PRIO_MAX))
966                 return -EINVAL;
967
968         audit_mq_sendrecv(mqdes, msg_len, msg_prio, timeout ? &ts : NULL);
969
970         f = fdget(mqdes);
971         if (unlikely(!f.file)) {
972                 ret = -EBADF;
973                 goto out;
974         }
975
976         inode = f.file->f_path.dentry->d_inode;
977         if (unlikely(f.file->f_op != &mqueue_file_operations)) {
978                 ret = -EBADF;
979                 goto out_fput;
980         }
981         info = MQUEUE_I(inode);
982         audit_inode(NULL, f.file->f_path.dentry, 0);
983
984         if (unlikely(!(f.file->f_mode & FMODE_WRITE))) {
985                 ret = -EBADF;
986                 goto out_fput;
987         }
988
989         if (unlikely(msg_len > info->attr.mq_msgsize)) {
990                 ret = -EMSGSIZE;
991                 goto out_fput;
992         }
993
994         /* First try to allocate memory, before doing anything with
995          * existing queues. */
996         msg_ptr = load_msg(u_msg_ptr, msg_len);
997         if (IS_ERR(msg_ptr)) {
998                 ret = PTR_ERR(msg_ptr);
999                 goto out_fput;
1000         }
1001         msg_ptr->m_ts = msg_len;
1002         msg_ptr->m_type = msg_prio;
1003
1004         /*
1005          * msg_insert really wants us to have a valid, spare node struct so
1006          * it doesn't have to kmalloc a GFP_ATOMIC allocation, but it will
1007          * fall back to that if necessary.
1008          */
1009         if (!info->node_cache)
1010                 new_leaf = kmalloc(sizeof(*new_leaf), GFP_KERNEL);
1011
1012         spin_lock(&info->lock);
1013
1014         if (!info->node_cache && new_leaf) {
1015                 /* Save our speculative allocation into the cache */
1016                 INIT_LIST_HEAD(&new_leaf->msg_list);
1017                 info->node_cache = new_leaf;
1018                 info->qsize += sizeof(*new_leaf);
1019                 new_leaf = NULL;
1020         } else {
1021                 kfree(new_leaf);
1022         }
1023
1024         if (info->attr.mq_curmsgs == info->attr.mq_maxmsg) {
1025                 if (f.file->f_flags & O_NONBLOCK) {
1026                         ret = -EAGAIN;
1027                 } else {
1028                         wait.task = current;
1029                         wait.msg = (void *) msg_ptr;
1030                         wait.state = STATE_NONE;
1031                         ret = wq_sleep(info, SEND, timeout, &wait);
1032                         /*
1033                          * wq_sleep must be called with info->lock held, and
1034                          * returns with the lock released
1035                          */
1036                         goto out_free;
1037                 }
1038         } else {
1039                 receiver = wq_get_first_waiter(info, RECV);
1040                 if (receiver) {
1041                         pipelined_send(info, msg_ptr, receiver);
1042                 } else {
1043                         /* adds message to the queue */
1044                         ret = msg_insert(msg_ptr, info);
1045                         if (ret)
1046                                 goto out_unlock;
1047                         __do_notify(info);
1048                 }
1049                 inode->i_atime = inode->i_mtime = inode->i_ctime =
1050                                 CURRENT_TIME;
1051         }
1052 out_unlock:
1053         spin_unlock(&info->lock);
1054 out_free:
1055         if (ret)
1056                 free_msg(msg_ptr);
1057 out_fput:
1058         fdput(f);
1059 out:
1060         return ret;
1061 }
1062
1063 SYSCALL_DEFINE5(mq_timedreceive, mqd_t, mqdes, char __user *, u_msg_ptr,
1064                 size_t, msg_len, unsigned int __user *, u_msg_prio,
1065                 const struct timespec __user *, u_abs_timeout)
1066 {
1067         ssize_t ret;
1068         struct msg_msg *msg_ptr;
1069         struct fd f;
1070         struct inode *inode;
1071         struct mqueue_inode_info *info;
1072         struct ext_wait_queue wait;
1073         ktime_t expires, *timeout = NULL;
1074         struct timespec ts;
1075         struct posix_msg_tree_node *new_leaf = NULL;
1076
1077         if (u_abs_timeout) {
1078                 int res = prepare_timeout(u_abs_timeout, &expires, &ts);
1079                 if (res)
1080                         return res;
1081                 timeout = &expires;
1082         }
1083
1084         audit_mq_sendrecv(mqdes, msg_len, 0, timeout ? &ts : NULL);
1085
1086         f = fdget(mqdes);
1087         if (unlikely(!f.file)) {
1088                 ret = -EBADF;
1089                 goto out;
1090         }
1091
1092         inode = f.file->f_path.dentry->d_inode;
1093         if (unlikely(f.file->f_op != &mqueue_file_operations)) {
1094                 ret = -EBADF;
1095                 goto out_fput;
1096         }
1097         info = MQUEUE_I(inode);
1098         audit_inode(NULL, f.file->f_path.dentry, 0);
1099
1100         if (unlikely(!(f.file->f_mode & FMODE_READ))) {
1101                 ret = -EBADF;
1102                 goto out_fput;
1103         }
1104
1105         /* checks if buffer is big enough */
1106         if (unlikely(msg_len < info->attr.mq_msgsize)) {
1107                 ret = -EMSGSIZE;
1108                 goto out_fput;
1109         }
1110
1111         /*
1112          * msg_insert really wants us to have a valid, spare node struct so
1113          * it doesn't have to kmalloc a GFP_ATOMIC allocation, but it will
1114          * fall back to that if necessary.
1115          */
1116         if (!info->node_cache)
1117                 new_leaf = kmalloc(sizeof(*new_leaf), GFP_KERNEL);
1118
1119         spin_lock(&info->lock);
1120
1121         if (!info->node_cache && new_leaf) {
1122                 /* Save our speculative allocation into the cache */
1123                 INIT_LIST_HEAD(&new_leaf->msg_list);
1124                 info->node_cache = new_leaf;
1125                 info->qsize += sizeof(*new_leaf);
1126         } else {
1127                 kfree(new_leaf);
1128         }
1129
1130         if (info->attr.mq_curmsgs == 0) {
1131                 if (f.file->f_flags & O_NONBLOCK) {
1132                         spin_unlock(&info->lock);
1133                         ret = -EAGAIN;
1134                 } else {
1135                         wait.task = current;
1136                         wait.state = STATE_NONE;
1137                         ret = wq_sleep(info, RECV, timeout, &wait);
1138                         msg_ptr = wait.msg;
1139                 }
1140         } else {
1141                 msg_ptr = msg_get(info);
1142
1143                 inode->i_atime = inode->i_mtime = inode->i_ctime =
1144                                 CURRENT_TIME;
1145
1146                 /* There is now free space in queue. */
1147                 pipelined_receive(info);
1148                 spin_unlock(&info->lock);
1149                 ret = 0;
1150         }
1151         if (ret == 0) {
1152                 ret = msg_ptr->m_ts;
1153
1154                 if ((u_msg_prio && put_user(msg_ptr->m_type, u_msg_prio)) ||
1155                         store_msg(u_msg_ptr, msg_ptr, msg_ptr->m_ts)) {
1156                         ret = -EFAULT;
1157                 }
1158                 free_msg(msg_ptr);
1159         }
1160 out_fput:
1161         fdput(f);
1162 out:
1163         return ret;
1164 }
1165
1166 /*
1167  * Notes: the case when user wants us to deregister (with NULL as pointer)
1168  * and he isn't currently owner of notification, will be silently discarded.
1169  * It isn't explicitly defined in the POSIX.
1170  */
1171 SYSCALL_DEFINE2(mq_notify, mqd_t, mqdes,
1172                 const struct sigevent __user *, u_notification)
1173 {
1174         int ret;
1175         struct fd f;
1176         struct sock *sock;
1177         struct inode *inode;
1178         struct sigevent notification;
1179         struct mqueue_inode_info *info;
1180         struct sk_buff *nc;
1181
1182         if (u_notification) {
1183                 if (copy_from_user(&notification, u_notification,
1184                                         sizeof(struct sigevent)))
1185                         return -EFAULT;
1186         }
1187
1188         audit_mq_notify(mqdes, u_notification ? &notification : NULL);
1189
1190         nc = NULL;
1191         sock = NULL;
1192         if (u_notification != NULL) {
1193                 if (unlikely(notification.sigev_notify != SIGEV_NONE &&
1194                              notification.sigev_notify != SIGEV_SIGNAL &&
1195                              notification.sigev_notify != SIGEV_THREAD))
1196                         return -EINVAL;
1197                 if (notification.sigev_notify == SIGEV_SIGNAL &&
1198                         !valid_signal(notification.sigev_signo)) {
1199                         return -EINVAL;
1200                 }
1201                 if (notification.sigev_notify == SIGEV_THREAD) {
1202                         long timeo;
1203
1204                         /* create the notify skb */
1205                         nc = alloc_skb(NOTIFY_COOKIE_LEN, GFP_KERNEL);
1206                         if (!nc) {
1207                                 ret = -ENOMEM;
1208                                 goto out;
1209                         }
1210                         if (copy_from_user(nc->data,
1211                                         notification.sigev_value.sival_ptr,
1212                                         NOTIFY_COOKIE_LEN)) {
1213                                 ret = -EFAULT;
1214                                 goto out;
1215                         }
1216
1217                         /* TODO: add a header? */
1218                         skb_put(nc, NOTIFY_COOKIE_LEN);
1219                         /* and attach it to the socket */
1220 retry:
1221                         f = fdget(notification.sigev_signo);
1222                         if (!f.file) {
1223                                 ret = -EBADF;
1224                                 goto out;
1225                         }
1226                         sock = netlink_getsockbyfilp(f.file);
1227                         fdput(f);
1228                         if (IS_ERR(sock)) {
1229                                 ret = PTR_ERR(sock);
1230                                 sock = NULL;
1231                                 goto out;
1232                         }
1233
1234                         timeo = MAX_SCHEDULE_TIMEOUT;
1235                         ret = netlink_attachskb(sock, nc, &timeo, NULL);
1236                         if (ret == 1)
1237                                 goto retry;
1238                         if (ret) {
1239                                 sock = NULL;
1240                                 nc = NULL;
1241                                 goto out;
1242                         }
1243                 }
1244         }
1245
1246         f = fdget(mqdes);
1247         if (!f.file) {
1248                 ret = -EBADF;
1249                 goto out;
1250         }
1251
1252         inode = f.file->f_path.dentry->d_inode;
1253         if (unlikely(f.file->f_op != &mqueue_file_operations)) {
1254                 ret = -EBADF;
1255                 goto out_fput;
1256         }
1257         info = MQUEUE_I(inode);
1258
1259         ret = 0;
1260         spin_lock(&info->lock);
1261         if (u_notification == NULL) {
1262                 if (info->notify_owner == task_tgid(current)) {
1263                         remove_notification(info);
1264                         inode->i_atime = inode->i_ctime = CURRENT_TIME;
1265                 }
1266         } else if (info->notify_owner != NULL) {
1267                 ret = -EBUSY;
1268         } else {
1269                 switch (notification.sigev_notify) {
1270                 case SIGEV_NONE:
1271                         info->notify.sigev_notify = SIGEV_NONE;
1272                         break;
1273                 case SIGEV_THREAD:
1274                         info->notify_sock = sock;
1275                         info->notify_cookie = nc;
1276                         sock = NULL;
1277                         nc = NULL;
1278                         info->notify.sigev_notify = SIGEV_THREAD;
1279                         break;
1280                 case SIGEV_SIGNAL:
1281                         info->notify.sigev_signo = notification.sigev_signo;
1282                         info->notify.sigev_value = notification.sigev_value;
1283                         info->notify.sigev_notify = SIGEV_SIGNAL;
1284                         break;
1285                 }
1286
1287                 info->notify_owner = get_pid(task_tgid(current));
1288                 info->notify_user_ns = get_user_ns(current_user_ns());
1289                 inode->i_atime = inode->i_ctime = CURRENT_TIME;
1290         }
1291         spin_unlock(&info->lock);
1292 out_fput:
1293         fdput(f);
1294 out:
1295         if (sock) {
1296                 netlink_detachskb(sock, nc);
1297         } else if (nc) {
1298                 dev_kfree_skb(nc);
1299         }
1300         return ret;
1301 }
1302
1303 SYSCALL_DEFINE3(mq_getsetattr, mqd_t, mqdes,
1304                 const struct mq_attr __user *, u_mqstat,
1305                 struct mq_attr __user *, u_omqstat)
1306 {
1307         int ret;
1308         struct mq_attr mqstat, omqstat;
1309         struct fd f;
1310         struct inode *inode;
1311         struct mqueue_inode_info *info;
1312
1313         if (u_mqstat != NULL) {
1314                 if (copy_from_user(&mqstat, u_mqstat, sizeof(struct mq_attr)))
1315                         return -EFAULT;
1316                 if (mqstat.mq_flags & (~O_NONBLOCK))
1317                         return -EINVAL;
1318         }
1319
1320         f = fdget(mqdes);
1321         if (!f.file) {
1322                 ret = -EBADF;
1323                 goto out;
1324         }
1325
1326         inode = f.file->f_path.dentry->d_inode;
1327         if (unlikely(f.file->f_op != &mqueue_file_operations)) {
1328                 ret = -EBADF;
1329                 goto out_fput;
1330         }
1331         info = MQUEUE_I(inode);
1332
1333         spin_lock(&info->lock);
1334
1335         omqstat = info->attr;
1336         omqstat.mq_flags = f.file->f_flags & O_NONBLOCK;
1337         if (u_mqstat) {
1338                 audit_mq_getsetattr(mqdes, &mqstat);
1339                 spin_lock(&f.file->f_lock);
1340                 if (mqstat.mq_flags & O_NONBLOCK)
1341                         f.file->f_flags |= O_NONBLOCK;
1342                 else
1343                         f.file->f_flags &= ~O_NONBLOCK;
1344                 spin_unlock(&f.file->f_lock);
1345
1346                 inode->i_atime = inode->i_ctime = CURRENT_TIME;
1347         }
1348
1349         spin_unlock(&info->lock);
1350
1351         ret = 0;
1352         if (u_omqstat != NULL && copy_to_user(u_omqstat, &omqstat,
1353                                                 sizeof(struct mq_attr)))
1354                 ret = -EFAULT;
1355
1356 out_fput:
1357         fdput(f);
1358 out:
1359         return ret;
1360 }
1361
1362 static const struct inode_operations mqueue_dir_inode_operations = {
1363         .lookup = simple_lookup,
1364         .create = mqueue_create,
1365         .unlink = mqueue_unlink,
1366 };
1367
1368 static const struct file_operations mqueue_file_operations = {
1369         .flush = mqueue_flush_file,
1370         .poll = mqueue_poll_file,
1371         .read = mqueue_read_file,
1372         .llseek = default_llseek,
1373 };
1374
1375 static const struct super_operations mqueue_super_ops = {
1376         .alloc_inode = mqueue_alloc_inode,
1377         .destroy_inode = mqueue_destroy_inode,
1378         .evict_inode = mqueue_evict_inode,
1379         .statfs = simple_statfs,
1380 };
1381
1382 static struct file_system_type mqueue_fs_type = {
1383         .name = "mqueue",
1384         .mount = mqueue_mount,
1385         .kill_sb = kill_litter_super,
1386 };
1387
1388 int mq_init_ns(struct ipc_namespace *ns)
1389 {
1390         ns->mq_queues_count  = 0;
1391         ns->mq_queues_max    = DFLT_QUEUESMAX;
1392         ns->mq_msg_max       = DFLT_MSGMAX;
1393         ns->mq_msgsize_max   = DFLT_MSGSIZEMAX;
1394         ns->mq_msg_default   = DFLT_MSG;
1395         ns->mq_msgsize_default  = DFLT_MSGSIZE;
1396
1397         ns->mq_mnt = kern_mount_data(&mqueue_fs_type, ns);
1398         if (IS_ERR(ns->mq_mnt)) {
1399                 int err = PTR_ERR(ns->mq_mnt);
1400                 ns->mq_mnt = NULL;
1401                 return err;
1402         }
1403         return 0;
1404 }
1405
1406 void mq_clear_sbinfo(struct ipc_namespace *ns)
1407 {
1408         ns->mq_mnt->mnt_sb->s_fs_info = NULL;
1409 }
1410
1411 void mq_put_mnt(struct ipc_namespace *ns)
1412 {
1413         kern_unmount(ns->mq_mnt);
1414 }
1415
1416 static int __init init_mqueue_fs(void)
1417 {
1418         int error;
1419
1420         mqueue_inode_cachep = kmem_cache_create("mqueue_inode_cache",
1421                                 sizeof(struct mqueue_inode_info), 0,
1422                                 SLAB_HWCACHE_ALIGN, init_once);
1423         if (mqueue_inode_cachep == NULL)
1424                 return -ENOMEM;
1425
1426         /* ignore failures - they are not fatal */
1427         mq_sysctl_table = mq_register_sysctl_table();
1428
1429         error = register_filesystem(&mqueue_fs_type);
1430         if (error)
1431                 goto out_sysctl;
1432
1433         spin_lock_init(&mq_lock);
1434
1435         error = mq_init_ns(&init_ipc_ns);
1436         if (error)
1437                 goto out_filesystem;
1438
1439         return 0;
1440
1441 out_filesystem:
1442         unregister_filesystem(&mqueue_fs_type);
1443 out_sysctl:
1444         if (mq_sysctl_table)
1445                 unregister_sysctl_table(mq_sysctl_table);
1446         kmem_cache_destroy(mqueue_inode_cachep);
1447         return error;
1448 }
1449
1450 __initcall(init_mqueue_fs);