ipc/mqueue: correct mq_attr_ok test
[platform/kernel/linux-rpi.git] / ipc / mqueue.c
1 /*
2  * POSIX message queues filesystem for Linux.
3  *
4  * Copyright (C) 2003,2004  Krzysztof Benedyczak    (golbi@mat.uni.torun.pl)
5  *                          Michal Wronski          (michal.wronski@gmail.com)
6  *
7  * Spinlocks:               Mohamed Abbas           (abbas.mohamed@intel.com)
8  * Lockless receive & send, fd based notify:
9  *                          Manfred Spraul          (manfred@colorfullife.com)
10  *
11  * Audit:                   George Wilson           (ltcgcw@us.ibm.com)
12  *
13  * This file is released under the GPL.
14  */
15
16 #include <linux/capability.h>
17 #include <linux/init.h>
18 #include <linux/pagemap.h>
19 #include <linux/file.h>
20 #include <linux/mount.h>
21 #include <linux/namei.h>
22 #include <linux/sysctl.h>
23 #include <linux/poll.h>
24 #include <linux/mqueue.h>
25 #include <linux/msg.h>
26 #include <linux/skbuff.h>
27 #include <linux/vmalloc.h>
28 #include <linux/netlink.h>
29 #include <linux/syscalls.h>
30 #include <linux/audit.h>
31 #include <linux/signal.h>
32 #include <linux/mutex.h>
33 #include <linux/nsproxy.h>
34 #include <linux/pid.h>
35 #include <linux/ipc_namespace.h>
36 #include <linux/user_namespace.h>
37 #include <linux/slab.h>
38
39 #include <net/sock.h>
40 #include "util.h"
41
42 #define MQUEUE_MAGIC    0x19800202
43 #define DIRENT_SIZE     20
44 #define FILENT_SIZE     80
45
46 #define SEND            0
47 #define RECV            1
48
49 #define STATE_NONE      0
50 #define STATE_PENDING   1
51 #define STATE_READY     2
52
53 struct posix_msg_tree_node {
54         struct rb_node          rb_node;
55         struct list_head        msg_list;
56         int                     priority;
57 };
58
59 struct ext_wait_queue {         /* queue of sleeping tasks */
60         struct task_struct *task;
61         struct list_head list;
62         struct msg_msg *msg;    /* ptr of loaded message */
63         int state;              /* one of STATE_* values */
64 };
65
66 struct mqueue_inode_info {
67         spinlock_t lock;
68         struct inode vfs_inode;
69         wait_queue_head_t wait_q;
70
71         struct rb_root msg_tree;
72         struct mq_attr attr;
73
74         struct sigevent notify;
75         struct pid* notify_owner;
76         struct user_namespace *notify_user_ns;
77         struct user_struct *user;       /* user who created, for accounting */
78         struct sock *notify_sock;
79         struct sk_buff *notify_cookie;
80
81         /* for tasks waiting for free space and messages, respectively */
82         struct ext_wait_queue e_wait_q[2];
83
84         unsigned long qsize; /* size of queue in memory (sum of all msgs) */
85 };
86
87 static const struct inode_operations mqueue_dir_inode_operations;
88 static const struct file_operations mqueue_file_operations;
89 static const struct super_operations mqueue_super_ops;
90 static void remove_notification(struct mqueue_inode_info *info);
91
92 static struct kmem_cache *mqueue_inode_cachep;
93
94 static struct ctl_table_header * mq_sysctl_table;
95
96 static inline struct mqueue_inode_info *MQUEUE_I(struct inode *inode)
97 {
98         return container_of(inode, struct mqueue_inode_info, vfs_inode);
99 }
100
101 /*
102  * This routine should be called with the mq_lock held.
103  */
104 static inline struct ipc_namespace *__get_ns_from_inode(struct inode *inode)
105 {
106         return get_ipc_ns(inode->i_sb->s_fs_info);
107 }
108
109 static struct ipc_namespace *get_ns_from_inode(struct inode *inode)
110 {
111         struct ipc_namespace *ns;
112
113         spin_lock(&mq_lock);
114         ns = __get_ns_from_inode(inode);
115         spin_unlock(&mq_lock);
116         return ns;
117 }
118
119 /* Auxiliary functions to manipulate messages' list */
120 static int msg_insert(struct msg_msg *msg, struct mqueue_inode_info *info)
121 {
122         struct rb_node **p, *parent = NULL;
123         struct posix_msg_tree_node *leaf;
124
125         p = &info->msg_tree.rb_node;
126         while (*p) {
127                 parent = *p;
128                 leaf = rb_entry(parent, struct posix_msg_tree_node, rb_node);
129
130                 if (likely(leaf->priority == msg->m_type))
131                         goto insert_msg;
132                 else if (msg->m_type < leaf->priority)
133                         p = &(*p)->rb_left;
134                 else
135                         p = &(*p)->rb_right;
136         }
137         leaf = kzalloc(sizeof(*leaf), GFP_ATOMIC);
138         if (!leaf)
139                 return -ENOMEM;
140         rb_init_node(&leaf->rb_node);
141         INIT_LIST_HEAD(&leaf->msg_list);
142         leaf->priority = msg->m_type;
143         rb_link_node(&leaf->rb_node, parent, p);
144         rb_insert_color(&leaf->rb_node, &info->msg_tree);
145         info->qsize += sizeof(struct posix_msg_tree_node);
146 insert_msg:
147         info->attr.mq_curmsgs++;
148         info->qsize += msg->m_ts;
149         list_add_tail(&msg->m_list, &leaf->msg_list);
150         return 0;
151 }
152
153 static inline struct msg_msg *msg_get(struct mqueue_inode_info *info)
154 {
155         struct rb_node **p, *parent = NULL;
156         struct posix_msg_tree_node *leaf;
157         struct msg_msg *msg;
158
159 try_again:
160         p = &info->msg_tree.rb_node;
161         while (*p) {
162                 parent = *p;
163                 /*
164                  * During insert, low priorities go to the left and high to the
165                  * right.  On receive, we want the highest priorities first, so
166                  * walk all the way to the right.
167                  */
168                 p = &(*p)->rb_right;
169         }
170         if (!parent) {
171                 if (info->attr.mq_curmsgs) {
172                         pr_warn_once("Inconsistency in POSIX message queue, "
173                                      "no tree element, but supposedly messages "
174                                      "should exist!\n");
175                         info->attr.mq_curmsgs = 0;
176                 }
177                 return NULL;
178         }
179         leaf = rb_entry(parent, struct posix_msg_tree_node, rb_node);
180         if (list_empty(&leaf->msg_list)) {
181                 pr_warn_once("Inconsistency in POSIX message queue, "
182                              "empty leaf node but we haven't implemented "
183                              "lazy leaf delete!\n");
184                 rb_erase(&leaf->rb_node, &info->msg_tree);
185                 info->qsize -= sizeof(struct posix_msg_tree_node);
186                 kfree(leaf);
187                 goto try_again;
188         } else {
189                 msg = list_first_entry(&leaf->msg_list,
190                                        struct msg_msg, m_list);
191                 list_del(&msg->m_list);
192                 if (list_empty(&leaf->msg_list)) {
193                         rb_erase(&leaf->rb_node, &info->msg_tree);
194                         info->qsize -= sizeof(struct posix_msg_tree_node);
195                         kfree(leaf);
196                 }
197         }
198         info->attr.mq_curmsgs--;
199         info->qsize -= msg->m_ts;
200         return msg;
201 }
202
203 static struct inode *mqueue_get_inode(struct super_block *sb,
204                 struct ipc_namespace *ipc_ns, umode_t mode,
205                 struct mq_attr *attr)
206 {
207         struct user_struct *u = current_user();
208         struct inode *inode;
209         int ret = -ENOMEM;
210
211         inode = new_inode(sb);
212         if (!inode)
213                 goto err;
214
215         inode->i_ino = get_next_ino();
216         inode->i_mode = mode;
217         inode->i_uid = current_fsuid();
218         inode->i_gid = current_fsgid();
219         inode->i_mtime = inode->i_ctime = inode->i_atime = CURRENT_TIME;
220
221         if (S_ISREG(mode)) {
222                 struct mqueue_inode_info *info;
223                 unsigned long mq_bytes, mq_treesize;
224
225                 inode->i_fop = &mqueue_file_operations;
226                 inode->i_size = FILENT_SIZE;
227                 /* mqueue specific info */
228                 info = MQUEUE_I(inode);
229                 spin_lock_init(&info->lock);
230                 init_waitqueue_head(&info->wait_q);
231                 INIT_LIST_HEAD(&info->e_wait_q[0].list);
232                 INIT_LIST_HEAD(&info->e_wait_q[1].list);
233                 info->notify_owner = NULL;
234                 info->notify_user_ns = NULL;
235                 info->qsize = 0;
236                 info->user = NULL;      /* set when all is ok */
237                 info->msg_tree = RB_ROOT;
238                 memset(&info->attr, 0, sizeof(info->attr));
239                 info->attr.mq_maxmsg = min(ipc_ns->mq_msg_max,
240                                            ipc_ns->mq_msg_default);
241                 info->attr.mq_msgsize = min(ipc_ns->mq_msgsize_max,
242                                             ipc_ns->mq_msgsize_default);
243                 if (attr) {
244                         info->attr.mq_maxmsg = attr->mq_maxmsg;
245                         info->attr.mq_msgsize = attr->mq_msgsize;
246                 }
247                 /*
248                  * We used to allocate a static array of pointers and account
249                  * the size of that array as well as one msg_msg struct per
250                  * possible message into the queue size. That's no longer
251                  * accurate as the queue is now an rbtree and will grow and
252                  * shrink depending on usage patterns.  We can, however, still
253                  * account one msg_msg struct per message, but the nodes are
254                  * allocated depending on priority usage, and most programs
255                  * only use one, or a handful, of priorities.  However, since
256                  * this is pinned memory, we need to assume worst case, so
257                  * that means the min(mq_maxmsg, max_priorities) * struct
258                  * posix_msg_tree_node.
259                  */
260                 mq_treesize = info->attr.mq_maxmsg * sizeof(struct msg_msg) +
261                         min_t(unsigned int, info->attr.mq_maxmsg, MQ_PRIO_MAX) *
262                         sizeof(struct posix_msg_tree_node);
263
264                 mq_bytes = mq_treesize + (info->attr.mq_maxmsg *
265                                           info->attr.mq_msgsize);
266
267                 spin_lock(&mq_lock);
268                 if (u->mq_bytes + mq_bytes < u->mq_bytes ||
269                     u->mq_bytes + mq_bytes > rlimit(RLIMIT_MSGQUEUE)) {
270                         spin_unlock(&mq_lock);
271                         /* mqueue_evict_inode() releases info->messages */
272                         ret = -EMFILE;
273                         goto out_inode;
274                 }
275                 u->mq_bytes += mq_bytes;
276                 spin_unlock(&mq_lock);
277
278                 /* all is ok */
279                 info->user = get_uid(u);
280         } else if (S_ISDIR(mode)) {
281                 inc_nlink(inode);
282                 /* Some things misbehave if size == 0 on a directory */
283                 inode->i_size = 2 * DIRENT_SIZE;
284                 inode->i_op = &mqueue_dir_inode_operations;
285                 inode->i_fop = &simple_dir_operations;
286         }
287
288         return inode;
289 out_inode:
290         iput(inode);
291 err:
292         return ERR_PTR(ret);
293 }
294
295 static int mqueue_fill_super(struct super_block *sb, void *data, int silent)
296 {
297         struct inode *inode;
298         struct ipc_namespace *ns = data;
299
300         sb->s_blocksize = PAGE_CACHE_SIZE;
301         sb->s_blocksize_bits = PAGE_CACHE_SHIFT;
302         sb->s_magic = MQUEUE_MAGIC;
303         sb->s_op = &mqueue_super_ops;
304
305         inode = mqueue_get_inode(sb, ns, S_IFDIR | S_ISVTX | S_IRWXUGO, NULL);
306         if (IS_ERR(inode))
307                 return PTR_ERR(inode);
308
309         sb->s_root = d_make_root(inode);
310         if (!sb->s_root)
311                 return -ENOMEM;
312         return 0;
313 }
314
315 static struct dentry *mqueue_mount(struct file_system_type *fs_type,
316                          int flags, const char *dev_name,
317                          void *data)
318 {
319         if (!(flags & MS_KERNMOUNT))
320                 data = current->nsproxy->ipc_ns;
321         return mount_ns(fs_type, flags, data, mqueue_fill_super);
322 }
323
324 static void init_once(void *foo)
325 {
326         struct mqueue_inode_info *p = (struct mqueue_inode_info *) foo;
327
328         inode_init_once(&p->vfs_inode);
329 }
330
331 static struct inode *mqueue_alloc_inode(struct super_block *sb)
332 {
333         struct mqueue_inode_info *ei;
334
335         ei = kmem_cache_alloc(mqueue_inode_cachep, GFP_KERNEL);
336         if (!ei)
337                 return NULL;
338         return &ei->vfs_inode;
339 }
340
341 static void mqueue_i_callback(struct rcu_head *head)
342 {
343         struct inode *inode = container_of(head, struct inode, i_rcu);
344         kmem_cache_free(mqueue_inode_cachep, MQUEUE_I(inode));
345 }
346
347 static void mqueue_destroy_inode(struct inode *inode)
348 {
349         call_rcu(&inode->i_rcu, mqueue_i_callback);
350 }
351
352 static void mqueue_evict_inode(struct inode *inode)
353 {
354         struct mqueue_inode_info *info;
355         struct user_struct *user;
356         unsigned long mq_bytes, mq_treesize;
357         struct ipc_namespace *ipc_ns;
358         struct msg_msg *msg;
359
360         clear_inode(inode);
361
362         if (S_ISDIR(inode->i_mode))
363                 return;
364
365         ipc_ns = get_ns_from_inode(inode);
366         info = MQUEUE_I(inode);
367         spin_lock(&info->lock);
368         while ((msg = msg_get(info)) != NULL)
369                 free_msg(msg);
370         spin_unlock(&info->lock);
371
372         /* Total amount of bytes accounted for the mqueue */
373         mq_treesize = info->attr.mq_maxmsg * sizeof(struct msg_msg) +
374                 min_t(unsigned int, info->attr.mq_maxmsg, MQ_PRIO_MAX) *
375                 sizeof(struct posix_msg_tree_node);
376
377         mq_bytes = mq_treesize + (info->attr.mq_maxmsg *
378                                   info->attr.mq_msgsize);
379
380         user = info->user;
381         if (user) {
382                 spin_lock(&mq_lock);
383                 user->mq_bytes -= mq_bytes;
384                 /*
385                  * get_ns_from_inode() ensures that the
386                  * (ipc_ns = sb->s_fs_info) is either a valid ipc_ns
387                  * to which we now hold a reference, or it is NULL.
388                  * We can't put it here under mq_lock, though.
389                  */
390                 if (ipc_ns)
391                         ipc_ns->mq_queues_count--;
392                 spin_unlock(&mq_lock);
393                 free_uid(user);
394         }
395         if (ipc_ns)
396                 put_ipc_ns(ipc_ns);
397 }
398
399 static int mqueue_create(struct inode *dir, struct dentry *dentry,
400                                 umode_t mode, struct nameidata *nd)
401 {
402         struct inode *inode;
403         struct mq_attr *attr = dentry->d_fsdata;
404         int error;
405         struct ipc_namespace *ipc_ns;
406
407         spin_lock(&mq_lock);
408         ipc_ns = __get_ns_from_inode(dir);
409         if (!ipc_ns) {
410                 error = -EACCES;
411                 goto out_unlock;
412         }
413         if (ipc_ns->mq_queues_count >= HARD_QUEUESMAX ||
414             (ipc_ns->mq_queues_count >= ipc_ns->mq_queues_max &&
415              !capable(CAP_SYS_RESOURCE))) {
416                 error = -ENOSPC;
417                 goto out_unlock;
418         }
419         ipc_ns->mq_queues_count++;
420         spin_unlock(&mq_lock);
421
422         inode = mqueue_get_inode(dir->i_sb, ipc_ns, mode, attr);
423         if (IS_ERR(inode)) {
424                 error = PTR_ERR(inode);
425                 spin_lock(&mq_lock);
426                 ipc_ns->mq_queues_count--;
427                 goto out_unlock;
428         }
429
430         put_ipc_ns(ipc_ns);
431         dir->i_size += DIRENT_SIZE;
432         dir->i_ctime = dir->i_mtime = dir->i_atime = CURRENT_TIME;
433
434         d_instantiate(dentry, inode);
435         dget(dentry);
436         return 0;
437 out_unlock:
438         spin_unlock(&mq_lock);
439         if (ipc_ns)
440                 put_ipc_ns(ipc_ns);
441         return error;
442 }
443
444 static int mqueue_unlink(struct inode *dir, struct dentry *dentry)
445 {
446         struct inode *inode = dentry->d_inode;
447
448         dir->i_ctime = dir->i_mtime = dir->i_atime = CURRENT_TIME;
449         dir->i_size -= DIRENT_SIZE;
450         drop_nlink(inode);
451         dput(dentry);
452         return 0;
453 }
454
455 /*
456 *       This is routine for system read from queue file.
457 *       To avoid mess with doing here some sort of mq_receive we allow
458 *       to read only queue size & notification info (the only values
459 *       that are interesting from user point of view and aren't accessible
460 *       through std routines)
461 */
462 static ssize_t mqueue_read_file(struct file *filp, char __user *u_data,
463                                 size_t count, loff_t *off)
464 {
465         struct mqueue_inode_info *info = MQUEUE_I(filp->f_path.dentry->d_inode);
466         char buffer[FILENT_SIZE];
467         ssize_t ret;
468
469         spin_lock(&info->lock);
470         snprintf(buffer, sizeof(buffer),
471                         "QSIZE:%-10lu NOTIFY:%-5d SIGNO:%-5d NOTIFY_PID:%-6d\n",
472                         info->qsize,
473                         info->notify_owner ? info->notify.sigev_notify : 0,
474                         (info->notify_owner &&
475                          info->notify.sigev_notify == SIGEV_SIGNAL) ?
476                                 info->notify.sigev_signo : 0,
477                         pid_vnr(info->notify_owner));
478         spin_unlock(&info->lock);
479         buffer[sizeof(buffer)-1] = '\0';
480
481         ret = simple_read_from_buffer(u_data, count, off, buffer,
482                                 strlen(buffer));
483         if (ret <= 0)
484                 return ret;
485
486         filp->f_path.dentry->d_inode->i_atime = filp->f_path.dentry->d_inode->i_ctime = CURRENT_TIME;
487         return ret;
488 }
489
490 static int mqueue_flush_file(struct file *filp, fl_owner_t id)
491 {
492         struct mqueue_inode_info *info = MQUEUE_I(filp->f_path.dentry->d_inode);
493
494         spin_lock(&info->lock);
495         if (task_tgid(current) == info->notify_owner)
496                 remove_notification(info);
497
498         spin_unlock(&info->lock);
499         return 0;
500 }
501
502 static unsigned int mqueue_poll_file(struct file *filp, struct poll_table_struct *poll_tab)
503 {
504         struct mqueue_inode_info *info = MQUEUE_I(filp->f_path.dentry->d_inode);
505         int retval = 0;
506
507         poll_wait(filp, &info->wait_q, poll_tab);
508
509         spin_lock(&info->lock);
510         if (info->attr.mq_curmsgs)
511                 retval = POLLIN | POLLRDNORM;
512
513         if (info->attr.mq_curmsgs < info->attr.mq_maxmsg)
514                 retval |= POLLOUT | POLLWRNORM;
515         spin_unlock(&info->lock);
516
517         return retval;
518 }
519
520 /* Adds current to info->e_wait_q[sr] before element with smaller prio */
521 static void wq_add(struct mqueue_inode_info *info, int sr,
522                         struct ext_wait_queue *ewp)
523 {
524         struct ext_wait_queue *walk;
525
526         ewp->task = current;
527
528         list_for_each_entry(walk, &info->e_wait_q[sr].list, list) {
529                 if (walk->task->static_prio <= current->static_prio) {
530                         list_add_tail(&ewp->list, &walk->list);
531                         return;
532                 }
533         }
534         list_add_tail(&ewp->list, &info->e_wait_q[sr].list);
535 }
536
537 /*
538  * Puts current task to sleep. Caller must hold queue lock. After return
539  * lock isn't held.
540  * sr: SEND or RECV
541  */
542 static int wq_sleep(struct mqueue_inode_info *info, int sr,
543                     ktime_t *timeout, struct ext_wait_queue *ewp)
544 {
545         int retval;
546         signed long time;
547
548         wq_add(info, sr, ewp);
549
550         for (;;) {
551                 set_current_state(TASK_INTERRUPTIBLE);
552
553                 spin_unlock(&info->lock);
554                 time = schedule_hrtimeout_range_clock(timeout, 0,
555                         HRTIMER_MODE_ABS, CLOCK_REALTIME);
556
557                 while (ewp->state == STATE_PENDING)
558                         cpu_relax();
559
560                 if (ewp->state == STATE_READY) {
561                         retval = 0;
562                         goto out;
563                 }
564                 spin_lock(&info->lock);
565                 if (ewp->state == STATE_READY) {
566                         retval = 0;
567                         goto out_unlock;
568                 }
569                 if (signal_pending(current)) {
570                         retval = -ERESTARTSYS;
571                         break;
572                 }
573                 if (time == 0) {
574                         retval = -ETIMEDOUT;
575                         break;
576                 }
577         }
578         list_del(&ewp->list);
579 out_unlock:
580         spin_unlock(&info->lock);
581 out:
582         return retval;
583 }
584
585 /*
586  * Returns waiting task that should be serviced first or NULL if none exists
587  */
588 static struct ext_wait_queue *wq_get_first_waiter(
589                 struct mqueue_inode_info *info, int sr)
590 {
591         struct list_head *ptr;
592
593         ptr = info->e_wait_q[sr].list.prev;
594         if (ptr == &info->e_wait_q[sr].list)
595                 return NULL;
596         return list_entry(ptr, struct ext_wait_queue, list);
597 }
598
599
600 static inline void set_cookie(struct sk_buff *skb, char code)
601 {
602         ((char*)skb->data)[NOTIFY_COOKIE_LEN-1] = code;
603 }
604
605 /*
606  * The next function is only to split too long sys_mq_timedsend
607  */
608 static void __do_notify(struct mqueue_inode_info *info)
609 {
610         /* notification
611          * invoked when there is registered process and there isn't process
612          * waiting synchronously for message AND state of queue changed from
613          * empty to not empty. Here we are sure that no one is waiting
614          * synchronously. */
615         if (info->notify_owner &&
616             info->attr.mq_curmsgs == 1) {
617                 struct siginfo sig_i;
618                 switch (info->notify.sigev_notify) {
619                 case SIGEV_NONE:
620                         break;
621                 case SIGEV_SIGNAL:
622                         /* sends signal */
623
624                         sig_i.si_signo = info->notify.sigev_signo;
625                         sig_i.si_errno = 0;
626                         sig_i.si_code = SI_MESGQ;
627                         sig_i.si_value = info->notify.sigev_value;
628                         /* map current pid/uid into info->owner's namespaces */
629                         rcu_read_lock();
630                         sig_i.si_pid = task_tgid_nr_ns(current,
631                                                 ns_of_pid(info->notify_owner));
632                         sig_i.si_uid = from_kuid_munged(info->notify_user_ns, current_uid());
633                         rcu_read_unlock();
634
635                         kill_pid_info(info->notify.sigev_signo,
636                                       &sig_i, info->notify_owner);
637                         break;
638                 case SIGEV_THREAD:
639                         set_cookie(info->notify_cookie, NOTIFY_WOKENUP);
640                         netlink_sendskb(info->notify_sock, info->notify_cookie);
641                         break;
642                 }
643                 /* after notification unregisters process */
644                 put_pid(info->notify_owner);
645                 put_user_ns(info->notify_user_ns);
646                 info->notify_owner = NULL;
647                 info->notify_user_ns = NULL;
648         }
649         wake_up(&info->wait_q);
650 }
651
652 static int prepare_timeout(const struct timespec __user *u_abs_timeout,
653                            ktime_t *expires, struct timespec *ts)
654 {
655         if (copy_from_user(ts, u_abs_timeout, sizeof(struct timespec)))
656                 return -EFAULT;
657         if (!timespec_valid(ts))
658                 return -EINVAL;
659
660         *expires = timespec_to_ktime(*ts);
661         return 0;
662 }
663
664 static void remove_notification(struct mqueue_inode_info *info)
665 {
666         if (info->notify_owner != NULL &&
667             info->notify.sigev_notify == SIGEV_THREAD) {
668                 set_cookie(info->notify_cookie, NOTIFY_REMOVED);
669                 netlink_sendskb(info->notify_sock, info->notify_cookie);
670         }
671         put_pid(info->notify_owner);
672         put_user_ns(info->notify_user_ns);
673         info->notify_owner = NULL;
674         info->notify_user_ns = NULL;
675 }
676
677 static int mq_attr_ok(struct ipc_namespace *ipc_ns, struct mq_attr *attr)
678 {
679         int mq_treesize;
680         unsigned long total_size;
681
682         if (attr->mq_maxmsg <= 0 || attr->mq_msgsize <= 0)
683                 return 0;
684         if (capable(CAP_SYS_RESOURCE)) {
685                 if (attr->mq_maxmsg > HARD_MSGMAX ||
686                     attr->mq_msgsize > HARD_MSGSIZEMAX)
687                         return 0;
688         } else {
689                 if (attr->mq_maxmsg > ipc_ns->mq_msg_max ||
690                                 attr->mq_msgsize > ipc_ns->mq_msgsize_max)
691                         return 0;
692         }
693         /* check for overflow */
694         if (attr->mq_msgsize > ULONG_MAX/attr->mq_maxmsg)
695                 return 0;
696         mq_treesize = attr->mq_maxmsg * sizeof(struct msg_msg) +
697                 min_t(unsigned int, attr->mq_maxmsg, MQ_PRIO_MAX) *
698                 sizeof(struct posix_msg_tree_node);
699         total_size = attr->mq_maxmsg * attr->mq_msgsize;
700         if (total_size + mq_treesize < total_size)
701                 return 0;
702         return 1;
703 }
704
705 /*
706  * Invoked when creating a new queue via sys_mq_open
707  */
708 static struct file *do_create(struct ipc_namespace *ipc_ns, struct dentry *dir,
709                         struct dentry *dentry, int oflag, umode_t mode,
710                         struct mq_attr *attr)
711 {
712         const struct cred *cred = current_cred();
713         struct file *result;
714         int ret;
715
716         if (attr) {
717                 if (!mq_attr_ok(ipc_ns, attr)) {
718                         ret = -EINVAL;
719                         goto out;
720                 }
721                 /* store for use during create */
722                 dentry->d_fsdata = attr;
723         }
724
725         mode &= ~current_umask();
726         ret = mnt_want_write(ipc_ns->mq_mnt);
727         if (ret)
728                 goto out;
729         ret = vfs_create(dir->d_inode, dentry, mode, NULL);
730         dentry->d_fsdata = NULL;
731         if (ret)
732                 goto out_drop_write;
733
734         result = dentry_open(dentry, ipc_ns->mq_mnt, oflag, cred);
735         /*
736          * dentry_open() took a persistent mnt_want_write(),
737          * so we can now drop this one.
738          */
739         mnt_drop_write(ipc_ns->mq_mnt);
740         return result;
741
742 out_drop_write:
743         mnt_drop_write(ipc_ns->mq_mnt);
744 out:
745         dput(dentry);
746         mntput(ipc_ns->mq_mnt);
747         return ERR_PTR(ret);
748 }
749
750 /* Opens existing queue */
751 static struct file *do_open(struct ipc_namespace *ipc_ns,
752                                 struct dentry *dentry, int oflag)
753 {
754         int ret;
755         const struct cred *cred = current_cred();
756
757         static const int oflag2acc[O_ACCMODE] = { MAY_READ, MAY_WRITE,
758                                                   MAY_READ | MAY_WRITE };
759
760         if ((oflag & O_ACCMODE) == (O_RDWR | O_WRONLY)) {
761                 ret = -EINVAL;
762                 goto err;
763         }
764
765         if (inode_permission(dentry->d_inode, oflag2acc[oflag & O_ACCMODE])) {
766                 ret = -EACCES;
767                 goto err;
768         }
769
770         return dentry_open(dentry, ipc_ns->mq_mnt, oflag, cred);
771
772 err:
773         dput(dentry);
774         mntput(ipc_ns->mq_mnt);
775         return ERR_PTR(ret);
776 }
777
778 SYSCALL_DEFINE4(mq_open, const char __user *, u_name, int, oflag, umode_t, mode,
779                 struct mq_attr __user *, u_attr)
780 {
781         struct dentry *dentry;
782         struct file *filp;
783         char *name;
784         struct mq_attr attr;
785         int fd, error;
786         struct ipc_namespace *ipc_ns = current->nsproxy->ipc_ns;
787
788         if (u_attr && copy_from_user(&attr, u_attr, sizeof(struct mq_attr)))
789                 return -EFAULT;
790
791         audit_mq_open(oflag, mode, u_attr ? &attr : NULL);
792
793         if (IS_ERR(name = getname(u_name)))
794                 return PTR_ERR(name);
795
796         fd = get_unused_fd_flags(O_CLOEXEC);
797         if (fd < 0)
798                 goto out_putname;
799
800         mutex_lock(&ipc_ns->mq_mnt->mnt_root->d_inode->i_mutex);
801         dentry = lookup_one_len(name, ipc_ns->mq_mnt->mnt_root, strlen(name));
802         if (IS_ERR(dentry)) {
803                 error = PTR_ERR(dentry);
804                 goto out_putfd;
805         }
806         mntget(ipc_ns->mq_mnt);
807
808         if (oflag & O_CREAT) {
809                 if (dentry->d_inode) {  /* entry already exists */
810                         audit_inode(name, dentry);
811                         if (oflag & O_EXCL) {
812                                 error = -EEXIST;
813                                 goto out;
814                         }
815                         filp = do_open(ipc_ns, dentry, oflag);
816                 } else {
817                         filp = do_create(ipc_ns, ipc_ns->mq_mnt->mnt_root,
818                                                 dentry, oflag, mode,
819                                                 u_attr ? &attr : NULL);
820                 }
821         } else {
822                 if (!dentry->d_inode) {
823                         error = -ENOENT;
824                         goto out;
825                 }
826                 audit_inode(name, dentry);
827                 filp = do_open(ipc_ns, dentry, oflag);
828         }
829
830         if (IS_ERR(filp)) {
831                 error = PTR_ERR(filp);
832                 goto out_putfd;
833         }
834
835         fd_install(fd, filp);
836         goto out_upsem;
837
838 out:
839         dput(dentry);
840         mntput(ipc_ns->mq_mnt);
841 out_putfd:
842         put_unused_fd(fd);
843         fd = error;
844 out_upsem:
845         mutex_unlock(&ipc_ns->mq_mnt->mnt_root->d_inode->i_mutex);
846 out_putname:
847         putname(name);
848         return fd;
849 }
850
851 SYSCALL_DEFINE1(mq_unlink, const char __user *, u_name)
852 {
853         int err;
854         char *name;
855         struct dentry *dentry;
856         struct inode *inode = NULL;
857         struct ipc_namespace *ipc_ns = current->nsproxy->ipc_ns;
858
859         name = getname(u_name);
860         if (IS_ERR(name))
861                 return PTR_ERR(name);
862
863         mutex_lock_nested(&ipc_ns->mq_mnt->mnt_root->d_inode->i_mutex,
864                         I_MUTEX_PARENT);
865         dentry = lookup_one_len(name, ipc_ns->mq_mnt->mnt_root, strlen(name));
866         if (IS_ERR(dentry)) {
867                 err = PTR_ERR(dentry);
868                 goto out_unlock;
869         }
870
871         if (!dentry->d_inode) {
872                 err = -ENOENT;
873                 goto out_err;
874         }
875
876         inode = dentry->d_inode;
877         if (inode)
878                 ihold(inode);
879         err = mnt_want_write(ipc_ns->mq_mnt);
880         if (err)
881                 goto out_err;
882         err = vfs_unlink(dentry->d_parent->d_inode, dentry);
883         mnt_drop_write(ipc_ns->mq_mnt);
884 out_err:
885         dput(dentry);
886
887 out_unlock:
888         mutex_unlock(&ipc_ns->mq_mnt->mnt_root->d_inode->i_mutex);
889         putname(name);
890         if (inode)
891                 iput(inode);
892
893         return err;
894 }
895
896 /* Pipelined send and receive functions.
897  *
898  * If a receiver finds no waiting message, then it registers itself in the
899  * list of waiting receivers. A sender checks that list before adding the new
900  * message into the message array. If there is a waiting receiver, then it
901  * bypasses the message array and directly hands the message over to the
902  * receiver.
903  * The receiver accepts the message and returns without grabbing the queue
904  * spinlock. Therefore an intermediate STATE_PENDING state and memory barriers
905  * are necessary. The same algorithm is used for sysv semaphores, see
906  * ipc/sem.c for more details.
907  *
908  * The same algorithm is used for senders.
909  */
910
911 /* pipelined_send() - send a message directly to the task waiting in
912  * sys_mq_timedreceive() (without inserting message into a queue).
913  */
914 static inline void pipelined_send(struct mqueue_inode_info *info,
915                                   struct msg_msg *message,
916                                   struct ext_wait_queue *receiver)
917 {
918         receiver->msg = message;
919         list_del(&receiver->list);
920         receiver->state = STATE_PENDING;
921         wake_up_process(receiver->task);
922         smp_wmb();
923         receiver->state = STATE_READY;
924 }
925
926 /* pipelined_receive() - if there is task waiting in sys_mq_timedsend()
927  * gets its message and put to the queue (we have one free place for sure). */
928 static inline void pipelined_receive(struct mqueue_inode_info *info)
929 {
930         struct ext_wait_queue *sender = wq_get_first_waiter(info, SEND);
931
932         if (!sender) {
933                 /* for poll */
934                 wake_up_interruptible(&info->wait_q);
935                 return;
936         }
937         if (msg_insert(sender->msg, info))
938                 return;
939         list_del(&sender->list);
940         sender->state = STATE_PENDING;
941         wake_up_process(sender->task);
942         smp_wmb();
943         sender->state = STATE_READY;
944 }
945
946 SYSCALL_DEFINE5(mq_timedsend, mqd_t, mqdes, const char __user *, u_msg_ptr,
947                 size_t, msg_len, unsigned int, msg_prio,
948                 const struct timespec __user *, u_abs_timeout)
949 {
950         struct file *filp;
951         struct inode *inode;
952         struct ext_wait_queue wait;
953         struct ext_wait_queue *receiver;
954         struct msg_msg *msg_ptr;
955         struct mqueue_inode_info *info;
956         ktime_t expires, *timeout = NULL;
957         struct timespec ts;
958         int ret;
959
960         if (u_abs_timeout) {
961                 int res = prepare_timeout(u_abs_timeout, &expires, &ts);
962                 if (res)
963                         return res;
964                 timeout = &expires;
965         }
966
967         if (unlikely(msg_prio >= (unsigned long) MQ_PRIO_MAX))
968                 return -EINVAL;
969
970         audit_mq_sendrecv(mqdes, msg_len, msg_prio, timeout ? &ts : NULL);
971
972         filp = fget(mqdes);
973         if (unlikely(!filp)) {
974                 ret = -EBADF;
975                 goto out;
976         }
977
978         inode = filp->f_path.dentry->d_inode;
979         if (unlikely(filp->f_op != &mqueue_file_operations)) {
980                 ret = -EBADF;
981                 goto out_fput;
982         }
983         info = MQUEUE_I(inode);
984         audit_inode(NULL, filp->f_path.dentry);
985
986         if (unlikely(!(filp->f_mode & FMODE_WRITE))) {
987                 ret = -EBADF;
988                 goto out_fput;
989         }
990
991         if (unlikely(msg_len > info->attr.mq_msgsize)) {
992                 ret = -EMSGSIZE;
993                 goto out_fput;
994         }
995
996         /* First try to allocate memory, before doing anything with
997          * existing queues. */
998         msg_ptr = load_msg(u_msg_ptr, msg_len);
999         if (IS_ERR(msg_ptr)) {
1000                 ret = PTR_ERR(msg_ptr);
1001                 goto out_fput;
1002         }
1003         msg_ptr->m_ts = msg_len;
1004         msg_ptr->m_type = msg_prio;
1005
1006         spin_lock(&info->lock);
1007
1008         if (info->attr.mq_curmsgs == info->attr.mq_maxmsg) {
1009                 if (filp->f_flags & O_NONBLOCK) {
1010                         spin_unlock(&info->lock);
1011                         ret = -EAGAIN;
1012                 } else {
1013                         wait.task = current;
1014                         wait.msg = (void *) msg_ptr;
1015                         wait.state = STATE_NONE;
1016                         ret = wq_sleep(info, SEND, timeout, &wait);
1017                 }
1018                 if (ret < 0)
1019                         free_msg(msg_ptr);
1020         } else {
1021                 receiver = wq_get_first_waiter(info, RECV);
1022                 if (receiver) {
1023                         pipelined_send(info, msg_ptr, receiver);
1024                 } else {
1025                         /* adds message to the queue */
1026                         if (msg_insert(msg_ptr, info)) {
1027                                 free_msg(msg_ptr);
1028                                 ret = -ENOMEM;
1029                                 spin_unlock(&info->lock);
1030                                 goto out_fput;
1031                         }
1032                         __do_notify(info);
1033                 }
1034                 inode->i_atime = inode->i_mtime = inode->i_ctime =
1035                                 CURRENT_TIME;
1036                 spin_unlock(&info->lock);
1037                 ret = 0;
1038         }
1039 out_fput:
1040         fput(filp);
1041 out:
1042         return ret;
1043 }
1044
1045 SYSCALL_DEFINE5(mq_timedreceive, mqd_t, mqdes, char __user *, u_msg_ptr,
1046                 size_t, msg_len, unsigned int __user *, u_msg_prio,
1047                 const struct timespec __user *, u_abs_timeout)
1048 {
1049         ssize_t ret;
1050         struct msg_msg *msg_ptr;
1051         struct file *filp;
1052         struct inode *inode;
1053         struct mqueue_inode_info *info;
1054         struct ext_wait_queue wait;
1055         ktime_t expires, *timeout = NULL;
1056         struct timespec ts;
1057
1058         if (u_abs_timeout) {
1059                 int res = prepare_timeout(u_abs_timeout, &expires, &ts);
1060                 if (res)
1061                         return res;
1062                 timeout = &expires;
1063         }
1064
1065         audit_mq_sendrecv(mqdes, msg_len, 0, timeout ? &ts : NULL);
1066
1067         filp = fget(mqdes);
1068         if (unlikely(!filp)) {
1069                 ret = -EBADF;
1070                 goto out;
1071         }
1072
1073         inode = filp->f_path.dentry->d_inode;
1074         if (unlikely(filp->f_op != &mqueue_file_operations)) {
1075                 ret = -EBADF;
1076                 goto out_fput;
1077         }
1078         info = MQUEUE_I(inode);
1079         audit_inode(NULL, filp->f_path.dentry);
1080
1081         if (unlikely(!(filp->f_mode & FMODE_READ))) {
1082                 ret = -EBADF;
1083                 goto out_fput;
1084         }
1085
1086         /* checks if buffer is big enough */
1087         if (unlikely(msg_len < info->attr.mq_msgsize)) {
1088                 ret = -EMSGSIZE;
1089                 goto out_fput;
1090         }
1091
1092         spin_lock(&info->lock);
1093         if (info->attr.mq_curmsgs == 0) {
1094                 if (filp->f_flags & O_NONBLOCK) {
1095                         spin_unlock(&info->lock);
1096                         ret = -EAGAIN;
1097                 } else {
1098                         wait.task = current;
1099                         wait.state = STATE_NONE;
1100                         ret = wq_sleep(info, RECV, timeout, &wait);
1101                         msg_ptr = wait.msg;
1102                 }
1103         } else {
1104                 msg_ptr = msg_get(info);
1105
1106                 inode->i_atime = inode->i_mtime = inode->i_ctime =
1107                                 CURRENT_TIME;
1108
1109                 /* There is now free space in queue. */
1110                 pipelined_receive(info);
1111                 spin_unlock(&info->lock);
1112                 ret = 0;
1113         }
1114         if (ret == 0) {
1115                 ret = msg_ptr->m_ts;
1116
1117                 if ((u_msg_prio && put_user(msg_ptr->m_type, u_msg_prio)) ||
1118                         store_msg(u_msg_ptr, msg_ptr, msg_ptr->m_ts)) {
1119                         ret = -EFAULT;
1120                 }
1121                 free_msg(msg_ptr);
1122         }
1123 out_fput:
1124         fput(filp);
1125 out:
1126         return ret;
1127 }
1128
1129 /*
1130  * Notes: the case when user wants us to deregister (with NULL as pointer)
1131  * and he isn't currently owner of notification, will be silently discarded.
1132  * It isn't explicitly defined in the POSIX.
1133  */
1134 SYSCALL_DEFINE2(mq_notify, mqd_t, mqdes,
1135                 const struct sigevent __user *, u_notification)
1136 {
1137         int ret;
1138         struct file *filp;
1139         struct sock *sock;
1140         struct inode *inode;
1141         struct sigevent notification;
1142         struct mqueue_inode_info *info;
1143         struct sk_buff *nc;
1144
1145         if (u_notification) {
1146                 if (copy_from_user(&notification, u_notification,
1147                                         sizeof(struct sigevent)))
1148                         return -EFAULT;
1149         }
1150
1151         audit_mq_notify(mqdes, u_notification ? &notification : NULL);
1152
1153         nc = NULL;
1154         sock = NULL;
1155         if (u_notification != NULL) {
1156                 if (unlikely(notification.sigev_notify != SIGEV_NONE &&
1157                              notification.sigev_notify != SIGEV_SIGNAL &&
1158                              notification.sigev_notify != SIGEV_THREAD))
1159                         return -EINVAL;
1160                 if (notification.sigev_notify == SIGEV_SIGNAL &&
1161                         !valid_signal(notification.sigev_signo)) {
1162                         return -EINVAL;
1163                 }
1164                 if (notification.sigev_notify == SIGEV_THREAD) {
1165                         long timeo;
1166
1167                         /* create the notify skb */
1168                         nc = alloc_skb(NOTIFY_COOKIE_LEN, GFP_KERNEL);
1169                         if (!nc) {
1170                                 ret = -ENOMEM;
1171                                 goto out;
1172                         }
1173                         if (copy_from_user(nc->data,
1174                                         notification.sigev_value.sival_ptr,
1175                                         NOTIFY_COOKIE_LEN)) {
1176                                 ret = -EFAULT;
1177                                 goto out;
1178                         }
1179
1180                         /* TODO: add a header? */
1181                         skb_put(nc, NOTIFY_COOKIE_LEN);
1182                         /* and attach it to the socket */
1183 retry:
1184                         filp = fget(notification.sigev_signo);
1185                         if (!filp) {
1186                                 ret = -EBADF;
1187                                 goto out;
1188                         }
1189                         sock = netlink_getsockbyfilp(filp);
1190                         fput(filp);
1191                         if (IS_ERR(sock)) {
1192                                 ret = PTR_ERR(sock);
1193                                 sock = NULL;
1194                                 goto out;
1195                         }
1196
1197                         timeo = MAX_SCHEDULE_TIMEOUT;
1198                         ret = netlink_attachskb(sock, nc, &timeo, NULL);
1199                         if (ret == 1)
1200                                 goto retry;
1201                         if (ret) {
1202                                 sock = NULL;
1203                                 nc = NULL;
1204                                 goto out;
1205                         }
1206                 }
1207         }
1208
1209         filp = fget(mqdes);
1210         if (!filp) {
1211                 ret = -EBADF;
1212                 goto out;
1213         }
1214
1215         inode = filp->f_path.dentry->d_inode;
1216         if (unlikely(filp->f_op != &mqueue_file_operations)) {
1217                 ret = -EBADF;
1218                 goto out_fput;
1219         }
1220         info = MQUEUE_I(inode);
1221
1222         ret = 0;
1223         spin_lock(&info->lock);
1224         if (u_notification == NULL) {
1225                 if (info->notify_owner == task_tgid(current)) {
1226                         remove_notification(info);
1227                         inode->i_atime = inode->i_ctime = CURRENT_TIME;
1228                 }
1229         } else if (info->notify_owner != NULL) {
1230                 ret = -EBUSY;
1231         } else {
1232                 switch (notification.sigev_notify) {
1233                 case SIGEV_NONE:
1234                         info->notify.sigev_notify = SIGEV_NONE;
1235                         break;
1236                 case SIGEV_THREAD:
1237                         info->notify_sock = sock;
1238                         info->notify_cookie = nc;
1239                         sock = NULL;
1240                         nc = NULL;
1241                         info->notify.sigev_notify = SIGEV_THREAD;
1242                         break;
1243                 case SIGEV_SIGNAL:
1244                         info->notify.sigev_signo = notification.sigev_signo;
1245                         info->notify.sigev_value = notification.sigev_value;
1246                         info->notify.sigev_notify = SIGEV_SIGNAL;
1247                         break;
1248                 }
1249
1250                 info->notify_owner = get_pid(task_tgid(current));
1251                 info->notify_user_ns = get_user_ns(current_user_ns());
1252                 inode->i_atime = inode->i_ctime = CURRENT_TIME;
1253         }
1254         spin_unlock(&info->lock);
1255 out_fput:
1256         fput(filp);
1257 out:
1258         if (sock) {
1259                 netlink_detachskb(sock, nc);
1260         } else if (nc) {
1261                 dev_kfree_skb(nc);
1262         }
1263         return ret;
1264 }
1265
1266 SYSCALL_DEFINE3(mq_getsetattr, mqd_t, mqdes,
1267                 const struct mq_attr __user *, u_mqstat,
1268                 struct mq_attr __user *, u_omqstat)
1269 {
1270         int ret;
1271         struct mq_attr mqstat, omqstat;
1272         struct file *filp;
1273         struct inode *inode;
1274         struct mqueue_inode_info *info;
1275
1276         if (u_mqstat != NULL) {
1277                 if (copy_from_user(&mqstat, u_mqstat, sizeof(struct mq_attr)))
1278                         return -EFAULT;
1279                 if (mqstat.mq_flags & (~O_NONBLOCK))
1280                         return -EINVAL;
1281         }
1282
1283         filp = fget(mqdes);
1284         if (!filp) {
1285                 ret = -EBADF;
1286                 goto out;
1287         }
1288
1289         inode = filp->f_path.dentry->d_inode;
1290         if (unlikely(filp->f_op != &mqueue_file_operations)) {
1291                 ret = -EBADF;
1292                 goto out_fput;
1293         }
1294         info = MQUEUE_I(inode);
1295
1296         spin_lock(&info->lock);
1297
1298         omqstat = info->attr;
1299         omqstat.mq_flags = filp->f_flags & O_NONBLOCK;
1300         if (u_mqstat) {
1301                 audit_mq_getsetattr(mqdes, &mqstat);
1302                 spin_lock(&filp->f_lock);
1303                 if (mqstat.mq_flags & O_NONBLOCK)
1304                         filp->f_flags |= O_NONBLOCK;
1305                 else
1306                         filp->f_flags &= ~O_NONBLOCK;
1307                 spin_unlock(&filp->f_lock);
1308
1309                 inode->i_atime = inode->i_ctime = CURRENT_TIME;
1310         }
1311
1312         spin_unlock(&info->lock);
1313
1314         ret = 0;
1315         if (u_omqstat != NULL && copy_to_user(u_omqstat, &omqstat,
1316                                                 sizeof(struct mq_attr)))
1317                 ret = -EFAULT;
1318
1319 out_fput:
1320         fput(filp);
1321 out:
1322         return ret;
1323 }
1324
1325 static const struct inode_operations mqueue_dir_inode_operations = {
1326         .lookup = simple_lookup,
1327         .create = mqueue_create,
1328         .unlink = mqueue_unlink,
1329 };
1330
1331 static const struct file_operations mqueue_file_operations = {
1332         .flush = mqueue_flush_file,
1333         .poll = mqueue_poll_file,
1334         .read = mqueue_read_file,
1335         .llseek = default_llseek,
1336 };
1337
1338 static const struct super_operations mqueue_super_ops = {
1339         .alloc_inode = mqueue_alloc_inode,
1340         .destroy_inode = mqueue_destroy_inode,
1341         .evict_inode = mqueue_evict_inode,
1342         .statfs = simple_statfs,
1343 };
1344
1345 static struct file_system_type mqueue_fs_type = {
1346         .name = "mqueue",
1347         .mount = mqueue_mount,
1348         .kill_sb = kill_litter_super,
1349 };
1350
1351 int mq_init_ns(struct ipc_namespace *ns)
1352 {
1353         ns->mq_queues_count  = 0;
1354         ns->mq_queues_max    = DFLT_QUEUESMAX;
1355         ns->mq_msg_max       = DFLT_MSGMAX;
1356         ns->mq_msgsize_max   = DFLT_MSGSIZEMAX;
1357         ns->mq_msg_default   = DFLT_MSG;
1358         ns->mq_msgsize_default  = DFLT_MSGSIZE;
1359
1360         ns->mq_mnt = kern_mount_data(&mqueue_fs_type, ns);
1361         if (IS_ERR(ns->mq_mnt)) {
1362                 int err = PTR_ERR(ns->mq_mnt);
1363                 ns->mq_mnt = NULL;
1364                 return err;
1365         }
1366         return 0;
1367 }
1368
1369 void mq_clear_sbinfo(struct ipc_namespace *ns)
1370 {
1371         ns->mq_mnt->mnt_sb->s_fs_info = NULL;
1372 }
1373
1374 void mq_put_mnt(struct ipc_namespace *ns)
1375 {
1376         kern_unmount(ns->mq_mnt);
1377 }
1378
1379 static int __init init_mqueue_fs(void)
1380 {
1381         int error;
1382
1383         mqueue_inode_cachep = kmem_cache_create("mqueue_inode_cache",
1384                                 sizeof(struct mqueue_inode_info), 0,
1385                                 SLAB_HWCACHE_ALIGN, init_once);
1386         if (mqueue_inode_cachep == NULL)
1387                 return -ENOMEM;
1388
1389         /* ignore failures - they are not fatal */
1390         mq_sysctl_table = mq_register_sysctl_table();
1391
1392         error = register_filesystem(&mqueue_fs_type);
1393         if (error)
1394                 goto out_sysctl;
1395
1396         spin_lock_init(&mq_lock);
1397
1398         error = mq_init_ns(&init_ipc_ns);
1399         if (error)
1400                 goto out_filesystem;
1401
1402         return 0;
1403
1404 out_filesystem:
1405         unregister_filesystem(&mqueue_fs_type);
1406 out_sysctl:
1407         if (mq_sysctl_table)
1408                 unregister_sysctl_table(mq_sysctl_table);
1409         kmem_cache_destroy(mqueue_inode_cachep);
1410         return error;
1411 }
1412
1413 __initcall(init_mqueue_fs);