1 // SPDX-License-Identifier: GPL-2.0
3 * Shared application/kernel submission and completion ring pairs, for
4 * supporting fast/efficient IO.
6 * A note on the read/write ordering memory barriers that are matched between
7 * the application and kernel side.
9 * After the application reads the CQ ring tail, it must use an
10 * appropriate smp_rmb() to pair with the smp_wmb() the kernel uses
11 * before writing the tail (using smp_load_acquire to read the tail will
12 * do). It also needs a smp_mb() before updating CQ head (ordering the
13 * entry load(s) with the head store), pairing with an implicit barrier
14 * through a control-dependency in io_get_cqe (smp_store_release to
15 * store head will do). Failure to do so could lead to reading invalid
18 * Likewise, the application must use an appropriate smp_wmb() before
19 * writing the SQ tail (ordering SQ entry stores with the tail store),
20 * which pairs with smp_load_acquire in io_get_sqring (smp_store_release
21 * to store the tail will do). And it needs a barrier ordering the SQ
22 * head load before writing new SQ entries (smp_load_acquire to read
25 * When using the SQ poll thread (IORING_SETUP_SQPOLL), the application
26 * needs to check the SQ flags for IORING_SQ_NEED_WAKEUP *after*
27 * updating the SQ tail; a full memory barrier smp_mb() is needed
30 * Also see the examples in the liburing library:
32 * git://git.kernel.dk/liburing
34 * io_uring also uses READ/WRITE_ONCE() for _any_ store or load that happens
35 * from data shared between the kernel and application. This is done both
36 * for ordering purposes, but also to ensure that once a value is loaded from
37 * data that the application could potentially modify, it remains stable.
39 * Copyright (C) 2018-2019 Jens Axboe
40 * Copyright (c) 2018-2019 Christoph Hellwig
42 #include <linux/kernel.h>
43 #include <linux/init.h>
44 #include <linux/errno.h>
45 #include <linux/syscalls.h>
46 #include <net/compat.h>
47 #include <linux/refcount.h>
48 #include <linux/uio.h>
49 #include <linux/bits.h>
51 #include <linux/sched/signal.h>
53 #include <linux/file.h>
54 #include <linux/fdtable.h>
56 #include <linux/mman.h>
57 #include <linux/percpu.h>
58 #include <linux/slab.h>
59 #include <linux/bvec.h>
60 #include <linux/net.h>
62 #include <net/af_unix.h>
64 #include <linux/anon_inodes.h>
65 #include <linux/sched/mm.h>
66 #include <linux/uaccess.h>
67 #include <linux/nospec.h>
68 #include <linux/highmem.h>
69 #include <linux/fsnotify.h>
70 #include <linux/fadvise.h>
71 #include <linux/task_work.h>
72 #include <linux/io_uring.h>
73 #include <linux/audit.h>
74 #include <linux/security.h>
75 #include <asm/shmparam.h>
77 #define CREATE_TRACE_POINTS
78 #include <trace/events/io_uring.h>
80 #include <uapi/linux/io_uring.h>
98 #include "alloc_cache.h"
100 #define IORING_MAX_ENTRIES 32768
101 #define IORING_MAX_CQ_ENTRIES (2 * IORING_MAX_ENTRIES)
103 #define IORING_MAX_RESTRICTIONS (IORING_RESTRICTION_LAST + \
104 IORING_REGISTER_LAST + IORING_OP_LAST)
106 #define SQE_COMMON_FLAGS (IOSQE_FIXED_FILE | IOSQE_IO_LINK | \
107 IOSQE_IO_HARDLINK | IOSQE_ASYNC)
109 #define SQE_VALID_FLAGS (SQE_COMMON_FLAGS | IOSQE_BUFFER_SELECT | \
110 IOSQE_IO_DRAIN | IOSQE_CQE_SKIP_SUCCESS)
112 #define IO_REQ_CLEAN_FLAGS (REQ_F_BUFFER_SELECTED | REQ_F_NEED_CLEANUP | \
113 REQ_F_POLLED | REQ_F_INFLIGHT | REQ_F_CREDS | \
116 #define IO_REQ_CLEAN_SLOW_FLAGS (REQ_F_REFCOUNT | REQ_F_LINK | REQ_F_HARDLINK |\
119 #define IO_TCTX_REFS_CACHE_NR (1U << 10)
121 #define IO_COMPL_BATCH 32
122 #define IO_REQ_ALLOC_BATCH 8
125 IO_CHECK_CQ_OVERFLOW_BIT,
126 IO_CHECK_CQ_DROPPED_BIT,
130 IO_EVENTFD_OP_SIGNAL_BIT,
131 IO_EVENTFD_OP_FREE_BIT,
134 struct io_defer_entry {
135 struct list_head list;
136 struct io_kiocb *req;
140 /* requests with any of those set should undergo io_disarm_next() */
141 #define IO_DISARM_MASK (REQ_F_ARM_LTIMEOUT | REQ_F_LINK_TIMEOUT | REQ_F_FAIL)
142 #define IO_REQ_LINK_FLAGS (REQ_F_LINK | REQ_F_HARDLINK)
144 static bool io_uring_try_cancel_requests(struct io_ring_ctx *ctx,
145 struct task_struct *task,
148 static void io_dismantle_req(struct io_kiocb *req);
149 static void io_clean_op(struct io_kiocb *req);
150 static void io_queue_sqe(struct io_kiocb *req);
151 static void io_move_task_work_from_local(struct io_ring_ctx *ctx);
152 static void __io_submit_flush_completions(struct io_ring_ctx *ctx);
153 static __cold void io_fallback_tw(struct io_uring_task *tctx);
155 struct kmem_cache *req_cachep;
157 struct sock *io_uring_get_socket(struct file *file)
159 #if defined(CONFIG_UNIX)
160 if (io_is_uring_fops(file)) {
161 struct io_ring_ctx *ctx = file->private_data;
163 return ctx->ring_sock->sk;
168 EXPORT_SYMBOL(io_uring_get_socket);
170 static inline void io_submit_flush_completions(struct io_ring_ctx *ctx)
172 if (!wq_list_empty(&ctx->submit_state.compl_reqs) ||
173 ctx->submit_state.cqes_count)
174 __io_submit_flush_completions(ctx);
177 static inline unsigned int __io_cqring_events(struct io_ring_ctx *ctx)
179 return ctx->cached_cq_tail - READ_ONCE(ctx->rings->cq.head);
182 static inline unsigned int __io_cqring_events_user(struct io_ring_ctx *ctx)
184 return READ_ONCE(ctx->rings->cq.tail) - READ_ONCE(ctx->rings->cq.head);
187 static bool io_match_linked(struct io_kiocb *head)
189 struct io_kiocb *req;
191 io_for_each_link(req, head) {
192 if (req->flags & REQ_F_INFLIGHT)
199 * As io_match_task() but protected against racing with linked timeouts.
200 * User must not hold timeout_lock.
202 bool io_match_task_safe(struct io_kiocb *head, struct task_struct *task,
207 if (task && head->task != task)
212 if (head->flags & REQ_F_LINK_TIMEOUT) {
213 struct io_ring_ctx *ctx = head->ctx;
215 /* protect against races with linked timeouts */
216 spin_lock_irq(&ctx->timeout_lock);
217 matched = io_match_linked(head);
218 spin_unlock_irq(&ctx->timeout_lock);
220 matched = io_match_linked(head);
225 static inline void req_fail_link_node(struct io_kiocb *req, int res)
228 io_req_set_res(req, res, 0);
231 static inline void io_req_add_to_cache(struct io_kiocb *req, struct io_ring_ctx *ctx)
233 wq_stack_add_head(&req->comp_list, &ctx->submit_state.free_list);
234 kasan_poison_object_data(req_cachep, req);
237 static __cold void io_ring_ctx_ref_free(struct percpu_ref *ref)
239 struct io_ring_ctx *ctx = container_of(ref, struct io_ring_ctx, refs);
241 complete(&ctx->ref_comp);
244 static __cold void io_fallback_req_func(struct work_struct *work)
246 struct io_ring_ctx *ctx = container_of(work, struct io_ring_ctx,
248 struct llist_node *node = llist_del_all(&ctx->fallback_llist);
249 struct io_kiocb *req, *tmp;
250 struct io_tw_state ts = { .locked = true, };
252 mutex_lock(&ctx->uring_lock);
253 llist_for_each_entry_safe(req, tmp, node, io_task_work.node)
254 req->io_task_work.func(req, &ts);
255 if (WARN_ON_ONCE(!ts.locked))
257 io_submit_flush_completions(ctx);
258 mutex_unlock(&ctx->uring_lock);
261 static int io_alloc_hash_table(struct io_hash_table *table, unsigned bits)
263 unsigned hash_buckets = 1U << bits;
264 size_t hash_size = hash_buckets * sizeof(table->hbs[0]);
266 table->hbs = kmalloc(hash_size, GFP_KERNEL);
270 table->hash_bits = bits;
271 init_hash_table(table, hash_buckets);
275 static __cold struct io_ring_ctx *io_ring_ctx_alloc(struct io_uring_params *p)
277 struct io_ring_ctx *ctx;
280 ctx = kzalloc(sizeof(*ctx), GFP_KERNEL);
284 xa_init(&ctx->io_bl_xa);
287 * Use 5 bits less than the max cq entries, that should give us around
288 * 32 entries per hash list if totally full and uniformly spread, but
289 * don't keep too many buckets to not overconsume memory.
291 hash_bits = ilog2(p->cq_entries) - 5;
292 hash_bits = clamp(hash_bits, 1, 8);
293 if (io_alloc_hash_table(&ctx->cancel_table, hash_bits))
295 if (io_alloc_hash_table(&ctx->cancel_table_locked, hash_bits))
298 ctx->dummy_ubuf = kzalloc(sizeof(*ctx->dummy_ubuf), GFP_KERNEL);
299 if (!ctx->dummy_ubuf)
301 /* set invalid range, so io_import_fixed() fails meeting it */
302 ctx->dummy_ubuf->ubuf = -1UL;
304 if (percpu_ref_init(&ctx->refs, io_ring_ctx_ref_free,
308 ctx->flags = p->flags;
309 init_waitqueue_head(&ctx->sqo_sq_wait);
310 INIT_LIST_HEAD(&ctx->sqd_list);
311 INIT_LIST_HEAD(&ctx->cq_overflow_list);
312 INIT_LIST_HEAD(&ctx->io_buffers_cache);
313 io_alloc_cache_init(&ctx->rsrc_node_cache, IO_NODE_ALLOC_CACHE_MAX,
314 sizeof(struct io_rsrc_node));
315 io_alloc_cache_init(&ctx->apoll_cache, IO_ALLOC_CACHE_MAX,
316 sizeof(struct async_poll));
317 io_alloc_cache_init(&ctx->netmsg_cache, IO_ALLOC_CACHE_MAX,
318 sizeof(struct io_async_msghdr));
319 init_completion(&ctx->ref_comp);
320 xa_init_flags(&ctx->personalities, XA_FLAGS_ALLOC1);
321 mutex_init(&ctx->uring_lock);
322 init_waitqueue_head(&ctx->cq_wait);
323 init_waitqueue_head(&ctx->poll_wq);
324 init_waitqueue_head(&ctx->rsrc_quiesce_wq);
325 spin_lock_init(&ctx->completion_lock);
326 spin_lock_init(&ctx->timeout_lock);
327 INIT_WQ_LIST(&ctx->iopoll_list);
328 INIT_LIST_HEAD(&ctx->io_buffers_pages);
329 INIT_LIST_HEAD(&ctx->io_buffers_comp);
330 INIT_LIST_HEAD(&ctx->defer_list);
331 INIT_LIST_HEAD(&ctx->timeout_list);
332 INIT_LIST_HEAD(&ctx->ltimeout_list);
333 INIT_LIST_HEAD(&ctx->rsrc_ref_list);
334 init_llist_head(&ctx->work_llist);
335 INIT_LIST_HEAD(&ctx->tctx_list);
336 ctx->submit_state.free_list.next = NULL;
337 INIT_WQ_LIST(&ctx->locked_free_list);
338 INIT_DELAYED_WORK(&ctx->fallback_work, io_fallback_req_func);
339 INIT_WQ_LIST(&ctx->submit_state.compl_reqs);
342 kfree(ctx->dummy_ubuf);
343 kfree(ctx->cancel_table.hbs);
344 kfree(ctx->cancel_table_locked.hbs);
346 xa_destroy(&ctx->io_bl_xa);
351 static void io_account_cq_overflow(struct io_ring_ctx *ctx)
353 struct io_rings *r = ctx->rings;
355 WRITE_ONCE(r->cq_overflow, READ_ONCE(r->cq_overflow) + 1);
359 static bool req_need_defer(struct io_kiocb *req, u32 seq)
361 if (unlikely(req->flags & REQ_F_IO_DRAIN)) {
362 struct io_ring_ctx *ctx = req->ctx;
364 return seq + READ_ONCE(ctx->cq_extra) != ctx->cached_cq_tail;
370 static inline void io_req_track_inflight(struct io_kiocb *req)
372 if (!(req->flags & REQ_F_INFLIGHT)) {
373 req->flags |= REQ_F_INFLIGHT;
374 atomic_inc(&req->task->io_uring->inflight_tracked);
378 static struct io_kiocb *__io_prep_linked_timeout(struct io_kiocb *req)
380 if (WARN_ON_ONCE(!req->link))
383 req->flags &= ~REQ_F_ARM_LTIMEOUT;
384 req->flags |= REQ_F_LINK_TIMEOUT;
386 /* linked timeouts should have two refs once prep'ed */
387 io_req_set_refcount(req);
388 __io_req_set_refcount(req->link, 2);
392 static inline struct io_kiocb *io_prep_linked_timeout(struct io_kiocb *req)
394 if (likely(!(req->flags & REQ_F_ARM_LTIMEOUT)))
396 return __io_prep_linked_timeout(req);
399 static noinline void __io_arm_ltimeout(struct io_kiocb *req)
401 io_queue_linked_timeout(__io_prep_linked_timeout(req));
404 static inline void io_arm_ltimeout(struct io_kiocb *req)
406 if (unlikely(req->flags & REQ_F_ARM_LTIMEOUT))
407 __io_arm_ltimeout(req);
410 static void io_prep_async_work(struct io_kiocb *req)
412 const struct io_issue_def *def = &io_issue_defs[req->opcode];
413 struct io_ring_ctx *ctx = req->ctx;
415 if (!(req->flags & REQ_F_CREDS)) {
416 req->flags |= REQ_F_CREDS;
417 req->creds = get_current_cred();
420 req->work.list.next = NULL;
422 req->work.cancel_seq = atomic_read(&ctx->cancel_seq);
423 if (req->flags & REQ_F_FORCE_ASYNC)
424 req->work.flags |= IO_WQ_WORK_CONCURRENT;
426 if (req->file && !io_req_ffs_set(req))
427 req->flags |= io_file_get_flags(req->file) << REQ_F_SUPPORT_NOWAIT_BIT;
429 if (req->file && (req->flags & REQ_F_ISREG)) {
430 bool should_hash = def->hash_reg_file;
432 /* don't serialize this request if the fs doesn't need it */
433 if (should_hash && (req->file->f_flags & O_DIRECT) &&
434 (req->file->f_mode & FMODE_DIO_PARALLEL_WRITE))
436 if (should_hash || (ctx->flags & IORING_SETUP_IOPOLL))
437 io_wq_hash_work(&req->work, file_inode(req->file));
438 } else if (!req->file || !S_ISBLK(file_inode(req->file)->i_mode)) {
439 if (def->unbound_nonreg_file)
440 req->work.flags |= IO_WQ_WORK_UNBOUND;
444 static void io_prep_async_link(struct io_kiocb *req)
446 struct io_kiocb *cur;
448 if (req->flags & REQ_F_LINK_TIMEOUT) {
449 struct io_ring_ctx *ctx = req->ctx;
451 spin_lock_irq(&ctx->timeout_lock);
452 io_for_each_link(cur, req)
453 io_prep_async_work(cur);
454 spin_unlock_irq(&ctx->timeout_lock);
456 io_for_each_link(cur, req)
457 io_prep_async_work(cur);
461 void io_queue_iowq(struct io_kiocb *req, struct io_tw_state *ts_dont_use)
463 struct io_kiocb *link = io_prep_linked_timeout(req);
464 struct io_uring_task *tctx = req->task->io_uring;
467 BUG_ON(!tctx->io_wq);
469 /* init ->work of the whole link before punting */
470 io_prep_async_link(req);
473 * Not expected to happen, but if we do have a bug where this _can_
474 * happen, catch it here and ensure the request is marked as
475 * canceled. That will make io-wq go through the usual work cancel
476 * procedure rather than attempt to run this request (or create a new
479 if (WARN_ON_ONCE(!same_thread_group(req->task, current)))
480 req->work.flags |= IO_WQ_WORK_CANCEL;
482 trace_io_uring_queue_async_work(req, io_wq_is_hashed(&req->work));
483 io_wq_enqueue(tctx->io_wq, &req->work);
485 io_queue_linked_timeout(link);
488 static __cold void io_queue_deferred(struct io_ring_ctx *ctx)
490 while (!list_empty(&ctx->defer_list)) {
491 struct io_defer_entry *de = list_first_entry(&ctx->defer_list,
492 struct io_defer_entry, list);
494 if (req_need_defer(de->req, de->seq))
496 list_del_init(&de->list);
497 io_req_task_queue(de->req);
503 static void io_eventfd_ops(struct rcu_head *rcu)
505 struct io_ev_fd *ev_fd = container_of(rcu, struct io_ev_fd, rcu);
506 int ops = atomic_xchg(&ev_fd->ops, 0);
508 if (ops & BIT(IO_EVENTFD_OP_SIGNAL_BIT))
509 eventfd_signal_mask(ev_fd->cq_ev_fd, 1, EPOLL_URING_WAKE);
511 /* IO_EVENTFD_OP_FREE_BIT may not be set here depending on callback
512 * ordering in a race but if references are 0 we know we have to free
515 if (atomic_dec_and_test(&ev_fd->refs)) {
516 eventfd_ctx_put(ev_fd->cq_ev_fd);
521 static void io_eventfd_signal(struct io_ring_ctx *ctx)
523 struct io_ev_fd *ev_fd = NULL;
527 * rcu_dereference ctx->io_ev_fd once and use it for both for checking
530 ev_fd = rcu_dereference(ctx->io_ev_fd);
533 * Check again if ev_fd exists incase an io_eventfd_unregister call
534 * completed between the NULL check of ctx->io_ev_fd at the start of
535 * the function and rcu_read_lock.
537 if (unlikely(!ev_fd))
539 if (READ_ONCE(ctx->rings->cq_flags) & IORING_CQ_EVENTFD_DISABLED)
541 if (ev_fd->eventfd_async && !io_wq_current_is_worker())
544 if (likely(eventfd_signal_allowed())) {
545 eventfd_signal_mask(ev_fd->cq_ev_fd, 1, EPOLL_URING_WAKE);
547 atomic_inc(&ev_fd->refs);
548 if (!atomic_fetch_or(BIT(IO_EVENTFD_OP_SIGNAL_BIT), &ev_fd->ops))
549 call_rcu_hurry(&ev_fd->rcu, io_eventfd_ops);
551 atomic_dec(&ev_fd->refs);
558 static void io_eventfd_flush_signal(struct io_ring_ctx *ctx)
562 spin_lock(&ctx->completion_lock);
565 * Eventfd should only get triggered when at least one event has been
566 * posted. Some applications rely on the eventfd notification count
567 * only changing IFF a new CQE has been added to the CQ ring. There's
568 * no depedency on 1:1 relationship between how many times this
569 * function is called (and hence the eventfd count) and number of CQEs
570 * posted to the CQ ring.
572 skip = ctx->cached_cq_tail == ctx->evfd_last_cq_tail;
573 ctx->evfd_last_cq_tail = ctx->cached_cq_tail;
574 spin_unlock(&ctx->completion_lock);
578 io_eventfd_signal(ctx);
581 void __io_commit_cqring_flush(struct io_ring_ctx *ctx)
583 if (ctx->poll_activated)
584 io_poll_wq_wake(ctx);
585 if (ctx->off_timeout_used)
586 io_flush_timeouts(ctx);
587 if (ctx->drain_active) {
588 spin_lock(&ctx->completion_lock);
589 io_queue_deferred(ctx);
590 spin_unlock(&ctx->completion_lock);
593 io_eventfd_flush_signal(ctx);
596 static inline void __io_cq_lock(struct io_ring_ctx *ctx)
597 __acquires(ctx->completion_lock)
599 if (!ctx->task_complete)
600 spin_lock(&ctx->completion_lock);
603 static inline void __io_cq_unlock(struct io_ring_ctx *ctx)
605 if (!ctx->task_complete)
606 spin_unlock(&ctx->completion_lock);
609 static inline void io_cq_lock(struct io_ring_ctx *ctx)
610 __acquires(ctx->completion_lock)
612 spin_lock(&ctx->completion_lock);
615 static inline void io_cq_unlock(struct io_ring_ctx *ctx)
616 __releases(ctx->completion_lock)
618 spin_unlock(&ctx->completion_lock);
621 /* keep it inlined for io_submit_flush_completions() */
622 static inline void __io_cq_unlock_post(struct io_ring_ctx *ctx)
623 __releases(ctx->completion_lock)
625 io_commit_cqring(ctx);
627 io_commit_cqring_flush(ctx);
631 static void __io_cq_unlock_post_flush(struct io_ring_ctx *ctx)
632 __releases(ctx->completion_lock)
634 io_commit_cqring(ctx);
636 if (ctx->task_complete) {
638 * ->task_complete implies that only current might be waiting
639 * for CQEs, and obviously, we currently don't. No one is
640 * waiting, wakeups are futile, skip them.
642 io_commit_cqring_flush(ctx);
645 io_commit_cqring_flush(ctx);
650 void io_cq_unlock_post(struct io_ring_ctx *ctx)
651 __releases(ctx->completion_lock)
653 io_commit_cqring(ctx);
654 spin_unlock(&ctx->completion_lock);
655 io_commit_cqring_flush(ctx);
659 /* Returns true if there are no backlogged entries after the flush */
660 static void io_cqring_overflow_kill(struct io_ring_ctx *ctx)
662 struct io_overflow_cqe *ocqe;
666 list_splice_init(&ctx->cq_overflow_list, &list);
667 clear_bit(IO_CHECK_CQ_OVERFLOW_BIT, &ctx->check_cq);
670 while (!list_empty(&list)) {
671 ocqe = list_first_entry(&list, struct io_overflow_cqe, list);
672 list_del(&ocqe->list);
677 static void __io_cqring_overflow_flush(struct io_ring_ctx *ctx)
679 size_t cqe_size = sizeof(struct io_uring_cqe);
681 if (__io_cqring_events(ctx) == ctx->cq_entries)
684 if (ctx->flags & IORING_SETUP_CQE32)
688 while (!list_empty(&ctx->cq_overflow_list)) {
689 struct io_uring_cqe *cqe = io_get_cqe_overflow(ctx, true);
690 struct io_overflow_cqe *ocqe;
694 ocqe = list_first_entry(&ctx->cq_overflow_list,
695 struct io_overflow_cqe, list);
696 memcpy(cqe, &ocqe->cqe, cqe_size);
697 list_del(&ocqe->list);
701 if (list_empty(&ctx->cq_overflow_list)) {
702 clear_bit(IO_CHECK_CQ_OVERFLOW_BIT, &ctx->check_cq);
703 atomic_andnot(IORING_SQ_CQ_OVERFLOW, &ctx->rings->sq_flags);
705 io_cq_unlock_post(ctx);
708 static void io_cqring_do_overflow_flush(struct io_ring_ctx *ctx)
710 /* iopoll syncs against uring_lock, not completion_lock */
711 if (ctx->flags & IORING_SETUP_IOPOLL)
712 mutex_lock(&ctx->uring_lock);
713 __io_cqring_overflow_flush(ctx);
714 if (ctx->flags & IORING_SETUP_IOPOLL)
715 mutex_unlock(&ctx->uring_lock);
718 static void io_cqring_overflow_flush(struct io_ring_ctx *ctx)
720 if (test_bit(IO_CHECK_CQ_OVERFLOW_BIT, &ctx->check_cq))
721 io_cqring_do_overflow_flush(ctx);
724 /* can be called by any task */
725 static void io_put_task_remote(struct task_struct *task, int nr)
727 struct io_uring_task *tctx = task->io_uring;
729 percpu_counter_sub(&tctx->inflight, nr);
730 if (unlikely(atomic_read(&tctx->in_cancel)))
731 wake_up(&tctx->wait);
732 put_task_struct_many(task, nr);
735 /* used by a task to put its own references */
736 static void io_put_task_local(struct task_struct *task, int nr)
738 task->io_uring->cached_refs += nr;
741 /* must to be called somewhat shortly after putting a request */
742 static inline void io_put_task(struct task_struct *task, int nr)
744 if (likely(task == current))
745 io_put_task_local(task, nr);
747 io_put_task_remote(task, nr);
750 void io_task_refs_refill(struct io_uring_task *tctx)
752 unsigned int refill = -tctx->cached_refs + IO_TCTX_REFS_CACHE_NR;
754 percpu_counter_add(&tctx->inflight, refill);
755 refcount_add(refill, ¤t->usage);
756 tctx->cached_refs += refill;
759 static __cold void io_uring_drop_tctx_refs(struct task_struct *task)
761 struct io_uring_task *tctx = task->io_uring;
762 unsigned int refs = tctx->cached_refs;
765 tctx->cached_refs = 0;
766 percpu_counter_sub(&tctx->inflight, refs);
767 put_task_struct_many(task, refs);
771 static bool io_cqring_event_overflow(struct io_ring_ctx *ctx, u64 user_data,
772 s32 res, u32 cflags, u64 extra1, u64 extra2)
774 struct io_overflow_cqe *ocqe;
775 size_t ocq_size = sizeof(struct io_overflow_cqe);
776 bool is_cqe32 = (ctx->flags & IORING_SETUP_CQE32);
778 lockdep_assert_held(&ctx->completion_lock);
781 ocq_size += sizeof(struct io_uring_cqe);
783 ocqe = kmalloc(ocq_size, GFP_ATOMIC | __GFP_ACCOUNT);
784 trace_io_uring_cqe_overflow(ctx, user_data, res, cflags, ocqe);
787 * If we're in ring overflow flush mode, or in task cancel mode,
788 * or cannot allocate an overflow entry, then we need to drop it
791 io_account_cq_overflow(ctx);
792 set_bit(IO_CHECK_CQ_DROPPED_BIT, &ctx->check_cq);
795 if (list_empty(&ctx->cq_overflow_list)) {
796 set_bit(IO_CHECK_CQ_OVERFLOW_BIT, &ctx->check_cq);
797 atomic_or(IORING_SQ_CQ_OVERFLOW, &ctx->rings->sq_flags);
800 ocqe->cqe.user_data = user_data;
802 ocqe->cqe.flags = cflags;
804 ocqe->cqe.big_cqe[0] = extra1;
805 ocqe->cqe.big_cqe[1] = extra2;
807 list_add_tail(&ocqe->list, &ctx->cq_overflow_list);
811 bool io_req_cqe_overflow(struct io_kiocb *req)
813 if (!(req->flags & REQ_F_CQE32_INIT)) {
817 return io_cqring_event_overflow(req->ctx, req->cqe.user_data,
818 req->cqe.res, req->cqe.flags,
819 req->extra1, req->extra2);
823 * writes to the cq entry need to come after reading head; the
824 * control dependency is enough as we're using WRITE_ONCE to
827 struct io_uring_cqe *__io_get_cqe(struct io_ring_ctx *ctx, bool overflow)
829 struct io_rings *rings = ctx->rings;
830 unsigned int off = ctx->cached_cq_tail & (ctx->cq_entries - 1);
831 unsigned int free, queued, len;
834 * Posting into the CQ when there are pending overflowed CQEs may break
835 * ordering guarantees, which will affect links, F_MORE users and more.
836 * Force overflow the completion.
838 if (!overflow && (ctx->check_cq & BIT(IO_CHECK_CQ_OVERFLOW_BIT)))
841 /* userspace may cheat modifying the tail, be safe and do min */
842 queued = min(__io_cqring_events(ctx), ctx->cq_entries);
843 free = ctx->cq_entries - queued;
844 /* we need a contiguous range, limit based on the current array offset */
845 len = min(free, ctx->cq_entries - off);
849 if (ctx->flags & IORING_SETUP_CQE32) {
854 ctx->cqe_cached = &rings->cqes[off];
855 ctx->cqe_sentinel = ctx->cqe_cached + len;
857 ctx->cached_cq_tail++;
859 if (ctx->flags & IORING_SETUP_CQE32)
861 return &rings->cqes[off];
864 static bool io_fill_cqe_aux(struct io_ring_ctx *ctx, u64 user_data, s32 res,
867 struct io_uring_cqe *cqe;
872 * If we can't get a cq entry, userspace overflowed the
873 * submission (by quite a lot). Increment the overflow count in
876 cqe = io_get_cqe(ctx);
878 trace_io_uring_complete(ctx, NULL, user_data, res, cflags, 0, 0);
880 WRITE_ONCE(cqe->user_data, user_data);
881 WRITE_ONCE(cqe->res, res);
882 WRITE_ONCE(cqe->flags, cflags);
884 if (ctx->flags & IORING_SETUP_CQE32) {
885 WRITE_ONCE(cqe->big_cqe[0], 0);
886 WRITE_ONCE(cqe->big_cqe[1], 0);
893 static void __io_flush_post_cqes(struct io_ring_ctx *ctx)
894 __must_hold(&ctx->uring_lock)
896 struct io_submit_state *state = &ctx->submit_state;
899 lockdep_assert_held(&ctx->uring_lock);
900 for (i = 0; i < state->cqes_count; i++) {
901 struct io_uring_cqe *cqe = &state->cqes[i];
903 if (!io_fill_cqe_aux(ctx, cqe->user_data, cqe->res, cqe->flags)) {
904 if (ctx->task_complete) {
905 spin_lock(&ctx->completion_lock);
906 io_cqring_event_overflow(ctx, cqe->user_data,
907 cqe->res, cqe->flags, 0, 0);
908 spin_unlock(&ctx->completion_lock);
910 io_cqring_event_overflow(ctx, cqe->user_data,
911 cqe->res, cqe->flags, 0, 0);
915 state->cqes_count = 0;
918 static bool __io_post_aux_cqe(struct io_ring_ctx *ctx, u64 user_data, s32 res, u32 cflags,
924 filled = io_fill_cqe_aux(ctx, user_data, res, cflags);
925 if (!filled && allow_overflow)
926 filled = io_cqring_event_overflow(ctx, user_data, res, cflags, 0, 0);
928 io_cq_unlock_post(ctx);
932 bool io_post_aux_cqe(struct io_ring_ctx *ctx, u64 user_data, s32 res, u32 cflags)
934 return __io_post_aux_cqe(ctx, user_data, res, cflags, true);
937 bool io_aux_cqe(struct io_ring_ctx *ctx, bool defer, u64 user_data, s32 res, u32 cflags,
940 struct io_uring_cqe *cqe;
944 return __io_post_aux_cqe(ctx, user_data, res, cflags, allow_overflow);
946 length = ARRAY_SIZE(ctx->submit_state.cqes);
948 lockdep_assert_held(&ctx->uring_lock);
950 if (ctx->submit_state.cqes_count == length) {
952 __io_flush_post_cqes(ctx);
953 /* no need to flush - flush is deferred */
954 __io_cq_unlock_post(ctx);
957 /* For defered completions this is not as strict as it is otherwise,
958 * however it's main job is to prevent unbounded posted completions,
959 * and in that it works just as well.
961 if (!allow_overflow && test_bit(IO_CHECK_CQ_OVERFLOW_BIT, &ctx->check_cq))
964 cqe = &ctx->submit_state.cqes[ctx->submit_state.cqes_count++];
965 cqe->user_data = user_data;
971 static void __io_req_complete_post(struct io_kiocb *req, unsigned issue_flags)
973 struct io_ring_ctx *ctx = req->ctx;
974 struct io_rsrc_node *rsrc_node = NULL;
977 if (!(req->flags & REQ_F_CQE_SKIP))
978 io_fill_cqe_req(ctx, req);
981 * If we're the last reference to this request, add to our locked
984 if (req_ref_put_and_test(req)) {
985 if (req->flags & IO_REQ_LINK_FLAGS) {
986 if (req->flags & IO_DISARM_MASK)
989 io_req_task_queue(req->link);
993 io_put_kbuf_comp(req);
994 io_dismantle_req(req);
995 rsrc_node = req->rsrc_node;
997 * Selected buffer deallocation in io_clean_op() assumes that
998 * we don't hold ->completion_lock. Clean them here to avoid
1001 io_put_task_remote(req->task, 1);
1002 wq_list_add_head(&req->comp_list, &ctx->locked_free_list);
1003 ctx->locked_free_nr++;
1005 io_cq_unlock_post(ctx);
1008 io_ring_submit_lock(ctx, issue_flags);
1009 io_put_rsrc_node(ctx, rsrc_node);
1010 io_ring_submit_unlock(ctx, issue_flags);
1014 void io_req_complete_post(struct io_kiocb *req, unsigned issue_flags)
1016 if (req->ctx->task_complete && req->ctx->submitter_task != current) {
1017 req->io_task_work.func = io_req_task_complete;
1018 io_req_task_work_add(req);
1019 } else if (!(issue_flags & IO_URING_F_UNLOCKED) ||
1020 !(req->ctx->flags & IORING_SETUP_IOPOLL)) {
1021 __io_req_complete_post(req, issue_flags);
1023 struct io_ring_ctx *ctx = req->ctx;
1025 mutex_lock(&ctx->uring_lock);
1026 __io_req_complete_post(req, issue_flags & ~IO_URING_F_UNLOCKED);
1027 mutex_unlock(&ctx->uring_lock);
1031 void io_req_defer_failed(struct io_kiocb *req, s32 res)
1032 __must_hold(&ctx->uring_lock)
1034 const struct io_cold_def *def = &io_cold_defs[req->opcode];
1036 lockdep_assert_held(&req->ctx->uring_lock);
1039 io_req_set_res(req, res, io_put_kbuf(req, IO_URING_F_UNLOCKED));
1042 io_req_complete_defer(req);
1046 * Don't initialise the fields below on every allocation, but do that in
1047 * advance and keep them valid across allocations.
1049 static void io_preinit_req(struct io_kiocb *req, struct io_ring_ctx *ctx)
1053 req->async_data = NULL;
1054 /* not necessary, but safer to zero */
1058 static void io_flush_cached_locked_reqs(struct io_ring_ctx *ctx,
1059 struct io_submit_state *state)
1061 spin_lock(&ctx->completion_lock);
1062 wq_list_splice(&ctx->locked_free_list, &state->free_list);
1063 ctx->locked_free_nr = 0;
1064 spin_unlock(&ctx->completion_lock);
1068 * A request might get retired back into the request caches even before opcode
1069 * handlers and io_issue_sqe() are done with it, e.g. inline completion path.
1070 * Because of that, io_alloc_req() should be called only under ->uring_lock
1071 * and with extra caution to not get a request that is still worked on.
1073 __cold bool __io_alloc_req_refill(struct io_ring_ctx *ctx)
1074 __must_hold(&ctx->uring_lock)
1076 gfp_t gfp = GFP_KERNEL | __GFP_NOWARN;
1077 void *reqs[IO_REQ_ALLOC_BATCH];
1081 * If we have more than a batch's worth of requests in our IRQ side
1082 * locked cache, grab the lock and move them over to our submission
1085 if (data_race(ctx->locked_free_nr) > IO_COMPL_BATCH) {
1086 io_flush_cached_locked_reqs(ctx, &ctx->submit_state);
1087 if (!io_req_cache_empty(ctx))
1091 ret = kmem_cache_alloc_bulk(req_cachep, gfp, ARRAY_SIZE(reqs), reqs);
1094 * Bulk alloc is all-or-nothing. If we fail to get a batch,
1095 * retry single alloc to be on the safe side.
1097 if (unlikely(ret <= 0)) {
1098 reqs[0] = kmem_cache_alloc(req_cachep, gfp);
1104 percpu_ref_get_many(&ctx->refs, ret);
1105 for (i = 0; i < ret; i++) {
1106 struct io_kiocb *req = reqs[i];
1108 io_preinit_req(req, ctx);
1109 io_req_add_to_cache(req, ctx);
1114 static inline void io_dismantle_req(struct io_kiocb *req)
1116 unsigned int flags = req->flags;
1118 if (unlikely(flags & IO_REQ_CLEAN_FLAGS))
1120 if (!(flags & REQ_F_FIXED_FILE))
1121 io_put_file(req->file);
1124 static __cold void io_free_req_tw(struct io_kiocb *req, struct io_tw_state *ts)
1126 struct io_ring_ctx *ctx = req->ctx;
1128 if (req->rsrc_node) {
1129 io_tw_lock(ctx, ts);
1130 io_put_rsrc_node(ctx, req->rsrc_node);
1132 io_dismantle_req(req);
1133 io_put_task_remote(req->task, 1);
1135 spin_lock(&ctx->completion_lock);
1136 wq_list_add_head(&req->comp_list, &ctx->locked_free_list);
1137 ctx->locked_free_nr++;
1138 spin_unlock(&ctx->completion_lock);
1141 __cold void io_free_req(struct io_kiocb *req)
1143 req->io_task_work.func = io_free_req_tw;
1144 io_req_task_work_add(req);
1147 static void __io_req_find_next_prep(struct io_kiocb *req)
1149 struct io_ring_ctx *ctx = req->ctx;
1151 spin_lock(&ctx->completion_lock);
1152 io_disarm_next(req);
1153 spin_unlock(&ctx->completion_lock);
1156 static inline struct io_kiocb *io_req_find_next(struct io_kiocb *req)
1158 struct io_kiocb *nxt;
1161 * If LINK is set, we have dependent requests in this chain. If we
1162 * didn't fail this request, queue the first one up, moving any other
1163 * dependencies to the next request. In case of failure, fail the rest
1166 if (unlikely(req->flags & IO_DISARM_MASK))
1167 __io_req_find_next_prep(req);
1173 static void ctx_flush_and_put(struct io_ring_ctx *ctx, struct io_tw_state *ts)
1177 if (ctx->flags & IORING_SETUP_TASKRUN_FLAG)
1178 atomic_andnot(IORING_SQ_TASKRUN, &ctx->rings->sq_flags);
1180 io_submit_flush_completions(ctx);
1181 mutex_unlock(&ctx->uring_lock);
1184 percpu_ref_put(&ctx->refs);
1187 static unsigned int handle_tw_list(struct llist_node *node,
1188 struct io_ring_ctx **ctx,
1189 struct io_tw_state *ts,
1190 struct llist_node *last)
1192 unsigned int count = 0;
1194 while (node && node != last) {
1195 struct llist_node *next = node->next;
1196 struct io_kiocb *req = container_of(node, struct io_kiocb,
1199 prefetch(container_of(next, struct io_kiocb, io_task_work.node));
1201 if (req->ctx != *ctx) {
1202 ctx_flush_and_put(*ctx, ts);
1204 /* if not contended, grab and improve batching */
1205 ts->locked = mutex_trylock(&(*ctx)->uring_lock);
1206 percpu_ref_get(&(*ctx)->refs);
1208 req->io_task_work.func(req, ts);
1211 if (unlikely(need_resched())) {
1212 ctx_flush_and_put(*ctx, ts);
1222 * io_llist_xchg - swap all entries in a lock-less list
1223 * @head: the head of lock-less list to delete all entries
1224 * @new: new entry as the head of the list
1226 * If list is empty, return NULL, otherwise, return the pointer to the first entry.
1227 * The order of entries returned is from the newest to the oldest added one.
1229 static inline struct llist_node *io_llist_xchg(struct llist_head *head,
1230 struct llist_node *new)
1232 return xchg(&head->first, new);
1236 * io_llist_cmpxchg - possibly swap all entries in a lock-less list
1237 * @head: the head of lock-less list to delete all entries
1238 * @old: expected old value of the first entry of the list
1239 * @new: new entry as the head of the list
1241 * perform a cmpxchg on the first entry of the list.
1244 static inline struct llist_node *io_llist_cmpxchg(struct llist_head *head,
1245 struct llist_node *old,
1246 struct llist_node *new)
1248 return cmpxchg(&head->first, old, new);
1251 void tctx_task_work(struct callback_head *cb)
1253 struct io_tw_state ts = {};
1254 struct io_ring_ctx *ctx = NULL;
1255 struct io_uring_task *tctx = container_of(cb, struct io_uring_task,
1257 struct llist_node fake = {};
1258 struct llist_node *node;
1259 unsigned int loops = 0;
1260 unsigned int count = 0;
1262 if (unlikely(current->flags & PF_EXITING)) {
1263 io_fallback_tw(tctx);
1269 node = io_llist_xchg(&tctx->task_list, &fake);
1270 count += handle_tw_list(node, &ctx, &ts, &fake);
1272 /* skip expensive cmpxchg if there are items in the list */
1273 if (READ_ONCE(tctx->task_list.first) != &fake)
1275 if (ts.locked && !wq_list_empty(&ctx->submit_state.compl_reqs)) {
1276 io_submit_flush_completions(ctx);
1277 if (READ_ONCE(tctx->task_list.first) != &fake)
1280 node = io_llist_cmpxchg(&tctx->task_list, &fake, NULL);
1281 } while (node != &fake);
1283 ctx_flush_and_put(ctx, &ts);
1285 /* relaxed read is enough as only the task itself sets ->in_cancel */
1286 if (unlikely(atomic_read(&tctx->in_cancel)))
1287 io_uring_drop_tctx_refs(current);
1289 trace_io_uring_task_work_run(tctx, count, loops);
1292 static __cold void io_fallback_tw(struct io_uring_task *tctx)
1294 struct llist_node *node = llist_del_all(&tctx->task_list);
1295 struct io_kiocb *req;
1298 req = container_of(node, struct io_kiocb, io_task_work.node);
1300 if (llist_add(&req->io_task_work.node,
1301 &req->ctx->fallback_llist))
1302 schedule_delayed_work(&req->ctx->fallback_work, 1);
1306 static void io_req_local_work_add(struct io_kiocb *req, unsigned flags)
1308 struct io_ring_ctx *ctx = req->ctx;
1309 unsigned nr_wait, nr_tw, nr_tw_prev;
1310 struct llist_node *first;
1312 if (req->flags & (REQ_F_LINK | REQ_F_HARDLINK))
1313 flags &= ~IOU_F_TWQ_LAZY_WAKE;
1315 first = READ_ONCE(ctx->work_llist.first);
1319 struct io_kiocb *first_req = container_of(first,
1323 * Might be executed at any moment, rely on
1324 * SLAB_TYPESAFE_BY_RCU to keep it alive.
1326 nr_tw_prev = READ_ONCE(first_req->nr_tw);
1328 nr_tw = nr_tw_prev + 1;
1329 /* Large enough to fail the nr_wait comparison below */
1330 if (!(flags & IOU_F_TWQ_LAZY_WAKE))
1334 req->io_task_work.node.next = first;
1335 } while (!try_cmpxchg(&ctx->work_llist.first, &first,
1336 &req->io_task_work.node));
1339 if (ctx->flags & IORING_SETUP_TASKRUN_FLAG)
1340 atomic_or(IORING_SQ_TASKRUN, &ctx->rings->sq_flags);
1342 io_eventfd_signal(ctx);
1345 nr_wait = atomic_read(&ctx->cq_wait_nr);
1346 /* no one is waiting */
1349 /* either not enough or the previous add has already woken it up */
1350 if (nr_wait > nr_tw || nr_tw_prev >= nr_wait)
1352 /* pairs with set_current_state() in io_cqring_wait() */
1353 smp_mb__after_atomic();
1354 wake_up_state(ctx->submitter_task, TASK_INTERRUPTIBLE);
1357 void __io_req_task_work_add(struct io_kiocb *req, unsigned flags)
1359 struct io_uring_task *tctx = req->task->io_uring;
1360 struct io_ring_ctx *ctx = req->ctx;
1362 if (!(flags & IOU_F_TWQ_FORCE_NORMAL) &&
1363 (ctx->flags & IORING_SETUP_DEFER_TASKRUN)) {
1365 io_req_local_work_add(req, flags);
1370 /* task_work already pending, we're done */
1371 if (!llist_add(&req->io_task_work.node, &tctx->task_list))
1374 if (ctx->flags & IORING_SETUP_TASKRUN_FLAG)
1375 atomic_or(IORING_SQ_TASKRUN, &ctx->rings->sq_flags);
1377 if (likely(!task_work_add(req->task, &tctx->task_work, ctx->notify_method)))
1380 io_fallback_tw(tctx);
1383 static void __cold io_move_task_work_from_local(struct io_ring_ctx *ctx)
1385 struct llist_node *node;
1387 node = llist_del_all(&ctx->work_llist);
1389 struct io_kiocb *req = container_of(node, struct io_kiocb,
1393 __io_req_task_work_add(req, IOU_F_TWQ_FORCE_NORMAL);
1397 static int __io_run_local_work(struct io_ring_ctx *ctx, struct io_tw_state *ts)
1399 struct llist_node *node;
1400 unsigned int loops = 0;
1403 if (WARN_ON_ONCE(ctx->submitter_task != current))
1405 if (ctx->flags & IORING_SETUP_TASKRUN_FLAG)
1406 atomic_andnot(IORING_SQ_TASKRUN, &ctx->rings->sq_flags);
1408 node = io_llist_xchg(&ctx->work_llist, NULL);
1410 struct llist_node *next = node->next;
1411 struct io_kiocb *req = container_of(node, struct io_kiocb,
1413 prefetch(container_of(next, struct io_kiocb, io_task_work.node));
1414 req->io_task_work.func(req, ts);
1420 if (!llist_empty(&ctx->work_llist))
1423 io_submit_flush_completions(ctx);
1424 if (!llist_empty(&ctx->work_llist))
1427 trace_io_uring_local_work_run(ctx, ret, loops);
1431 static inline int io_run_local_work_locked(struct io_ring_ctx *ctx)
1433 struct io_tw_state ts = { .locked = true, };
1436 if (llist_empty(&ctx->work_llist))
1439 ret = __io_run_local_work(ctx, &ts);
1440 /* shouldn't happen! */
1441 if (WARN_ON_ONCE(!ts.locked))
1442 mutex_lock(&ctx->uring_lock);
1446 static int io_run_local_work(struct io_ring_ctx *ctx)
1448 struct io_tw_state ts = {};
1451 ts.locked = mutex_trylock(&ctx->uring_lock);
1452 ret = __io_run_local_work(ctx, &ts);
1454 mutex_unlock(&ctx->uring_lock);
1459 static void io_req_task_cancel(struct io_kiocb *req, struct io_tw_state *ts)
1461 io_tw_lock(req->ctx, ts);
1462 io_req_defer_failed(req, req->cqe.res);
1465 void io_req_task_submit(struct io_kiocb *req, struct io_tw_state *ts)
1467 io_tw_lock(req->ctx, ts);
1468 /* req->task == current here, checking PF_EXITING is safe */
1469 if (unlikely(req->task->flags & PF_EXITING))
1470 io_req_defer_failed(req, -EFAULT);
1471 else if (req->flags & REQ_F_FORCE_ASYNC)
1472 io_queue_iowq(req, ts);
1477 void io_req_task_queue_fail(struct io_kiocb *req, int ret)
1479 io_req_set_res(req, ret, 0);
1480 req->io_task_work.func = io_req_task_cancel;
1481 io_req_task_work_add(req);
1484 void io_req_task_queue(struct io_kiocb *req)
1486 req->io_task_work.func = io_req_task_submit;
1487 io_req_task_work_add(req);
1490 void io_queue_next(struct io_kiocb *req)
1492 struct io_kiocb *nxt = io_req_find_next(req);
1495 io_req_task_queue(nxt);
1498 void io_free_batch_list(struct io_ring_ctx *ctx, struct io_wq_work_node *node)
1499 __must_hold(&ctx->uring_lock)
1501 struct task_struct *task = NULL;
1505 struct io_kiocb *req = container_of(node, struct io_kiocb,
1508 if (unlikely(req->flags & IO_REQ_CLEAN_SLOW_FLAGS)) {
1509 if (req->flags & REQ_F_REFCOUNT) {
1510 node = req->comp_list.next;
1511 if (!req_ref_put_and_test(req))
1514 if ((req->flags & REQ_F_POLLED) && req->apoll) {
1515 struct async_poll *apoll = req->apoll;
1517 if (apoll->double_poll)
1518 kfree(apoll->double_poll);
1519 if (!io_alloc_cache_put(&ctx->apoll_cache, &apoll->cache))
1521 req->flags &= ~REQ_F_POLLED;
1523 if (req->flags & IO_REQ_LINK_FLAGS)
1525 if (unlikely(req->flags & IO_REQ_CLEAN_FLAGS))
1528 if (!(req->flags & REQ_F_FIXED_FILE))
1529 io_put_file(req->file);
1531 io_req_put_rsrc_locked(req, ctx);
1533 if (req->task != task) {
1535 io_put_task(task, task_refs);
1540 node = req->comp_list.next;
1541 io_req_add_to_cache(req, ctx);
1545 io_put_task(task, task_refs);
1548 static void __io_submit_flush_completions(struct io_ring_ctx *ctx)
1549 __must_hold(&ctx->uring_lock)
1551 struct io_submit_state *state = &ctx->submit_state;
1552 struct io_wq_work_node *node;
1555 /* must come first to preserve CQE ordering in failure cases */
1556 if (state->cqes_count)
1557 __io_flush_post_cqes(ctx);
1558 __wq_list_for_each(node, &state->compl_reqs) {
1559 struct io_kiocb *req = container_of(node, struct io_kiocb,
1562 if (!(req->flags & REQ_F_CQE_SKIP) &&
1563 unlikely(!__io_fill_cqe_req(ctx, req))) {
1564 if (ctx->task_complete) {
1565 spin_lock(&ctx->completion_lock);
1566 io_req_cqe_overflow(req);
1567 spin_unlock(&ctx->completion_lock);
1569 io_req_cqe_overflow(req);
1573 __io_cq_unlock_post_flush(ctx);
1575 if (!wq_list_empty(&ctx->submit_state.compl_reqs)) {
1576 io_free_batch_list(ctx, state->compl_reqs.first);
1577 INIT_WQ_LIST(&state->compl_reqs);
1582 * Drop reference to request, return next in chain (if there is one) if this
1583 * was the last reference to this request.
1585 static inline struct io_kiocb *io_put_req_find_next(struct io_kiocb *req)
1587 struct io_kiocb *nxt = NULL;
1589 if (req_ref_put_and_test(req)) {
1590 if (unlikely(req->flags & IO_REQ_LINK_FLAGS))
1591 nxt = io_req_find_next(req);
1597 static unsigned io_cqring_events(struct io_ring_ctx *ctx)
1599 /* See comment at the top of this file */
1601 return __io_cqring_events(ctx);
1605 * We can't just wait for polled events to come to us, we have to actively
1606 * find and complete them.
1608 static __cold void io_iopoll_try_reap_events(struct io_ring_ctx *ctx)
1610 if (!(ctx->flags & IORING_SETUP_IOPOLL))
1613 mutex_lock(&ctx->uring_lock);
1614 while (!wq_list_empty(&ctx->iopoll_list)) {
1615 /* let it sleep and repeat later if can't complete a request */
1616 if (io_do_iopoll(ctx, true) == 0)
1619 * Ensure we allow local-to-the-cpu processing to take place,
1620 * in this case we need to ensure that we reap all events.
1621 * Also let task_work, etc. to progress by releasing the mutex
1623 if (need_resched()) {
1624 mutex_unlock(&ctx->uring_lock);
1626 mutex_lock(&ctx->uring_lock);
1629 mutex_unlock(&ctx->uring_lock);
1632 static int io_iopoll_check(struct io_ring_ctx *ctx, long min)
1634 unsigned int nr_events = 0;
1636 unsigned long check_cq;
1638 if (!io_allowed_run_tw(ctx))
1641 check_cq = READ_ONCE(ctx->check_cq);
1642 if (unlikely(check_cq)) {
1643 if (check_cq & BIT(IO_CHECK_CQ_OVERFLOW_BIT))
1644 __io_cqring_overflow_flush(ctx);
1646 * Similarly do not spin if we have not informed the user of any
1649 if (check_cq & BIT(IO_CHECK_CQ_DROPPED_BIT))
1653 * Don't enter poll loop if we already have events pending.
1654 * If we do, we can potentially be spinning for commands that
1655 * already triggered a CQE (eg in error).
1657 if (io_cqring_events(ctx))
1662 * If a submit got punted to a workqueue, we can have the
1663 * application entering polling for a command before it gets
1664 * issued. That app will hold the uring_lock for the duration
1665 * of the poll right here, so we need to take a breather every
1666 * now and then to ensure that the issue has a chance to add
1667 * the poll to the issued list. Otherwise we can spin here
1668 * forever, while the workqueue is stuck trying to acquire the
1671 if (wq_list_empty(&ctx->iopoll_list) ||
1672 io_task_work_pending(ctx)) {
1673 u32 tail = ctx->cached_cq_tail;
1675 (void) io_run_local_work_locked(ctx);
1677 if (task_work_pending(current) ||
1678 wq_list_empty(&ctx->iopoll_list)) {
1679 mutex_unlock(&ctx->uring_lock);
1681 mutex_lock(&ctx->uring_lock);
1683 /* some requests don't go through iopoll_list */
1684 if (tail != ctx->cached_cq_tail ||
1685 wq_list_empty(&ctx->iopoll_list))
1688 ret = io_do_iopoll(ctx, !min);
1693 } while (nr_events < min && !need_resched());
1698 void io_req_task_complete(struct io_kiocb *req, struct io_tw_state *ts)
1701 io_req_complete_defer(req);
1703 io_req_complete_post(req, IO_URING_F_UNLOCKED);
1707 * After the iocb has been issued, it's safe to be found on the poll list.
1708 * Adding the kiocb to the list AFTER submission ensures that we don't
1709 * find it from a io_do_iopoll() thread before the issuer is done
1710 * accessing the kiocb cookie.
1712 static void io_iopoll_req_issued(struct io_kiocb *req, unsigned int issue_flags)
1714 struct io_ring_ctx *ctx = req->ctx;
1715 const bool needs_lock = issue_flags & IO_URING_F_UNLOCKED;
1717 /* workqueue context doesn't hold uring_lock, grab it now */
1718 if (unlikely(needs_lock))
1719 mutex_lock(&ctx->uring_lock);
1722 * Track whether we have multiple files in our lists. This will impact
1723 * how we do polling eventually, not spinning if we're on potentially
1724 * different devices.
1726 if (wq_list_empty(&ctx->iopoll_list)) {
1727 ctx->poll_multi_queue = false;
1728 } else if (!ctx->poll_multi_queue) {
1729 struct io_kiocb *list_req;
1731 list_req = container_of(ctx->iopoll_list.first, struct io_kiocb,
1733 if (list_req->file != req->file)
1734 ctx->poll_multi_queue = true;
1738 * For fast devices, IO may have already completed. If it has, add
1739 * it to the front so we find it first.
1741 if (READ_ONCE(req->iopoll_completed))
1742 wq_list_add_head(&req->comp_list, &ctx->iopoll_list);
1744 wq_list_add_tail(&req->comp_list, &ctx->iopoll_list);
1746 if (unlikely(needs_lock)) {
1748 * If IORING_SETUP_SQPOLL is enabled, sqes are either handle
1749 * in sq thread task context or in io worker task context. If
1750 * current task context is sq thread, we don't need to check
1751 * whether should wake up sq thread.
1753 if ((ctx->flags & IORING_SETUP_SQPOLL) &&
1754 wq_has_sleeper(&ctx->sq_data->wait))
1755 wake_up(&ctx->sq_data->wait);
1757 mutex_unlock(&ctx->uring_lock);
1762 * If we tracked the file through the SCM inflight mechanism, we could support
1763 * any file. For now, just ensure that anything potentially problematic is done
1766 static bool __io_file_supports_nowait(struct file *file, umode_t mode)
1768 /* any ->read/write should understand O_NONBLOCK */
1769 if (file->f_flags & O_NONBLOCK)
1771 return file->f_mode & FMODE_NOWAIT;
1775 * If we tracked the file through the SCM inflight mechanism, we could support
1776 * any file. For now, just ensure that anything potentially problematic is done
1779 unsigned int io_file_get_flags(struct file *file)
1781 umode_t mode = file_inode(file)->i_mode;
1782 unsigned int res = 0;
1786 if (__io_file_supports_nowait(file, mode))
1791 bool io_alloc_async_data(struct io_kiocb *req)
1793 WARN_ON_ONCE(!io_cold_defs[req->opcode].async_size);
1794 req->async_data = kmalloc(io_cold_defs[req->opcode].async_size, GFP_KERNEL);
1795 if (req->async_data) {
1796 req->flags |= REQ_F_ASYNC_DATA;
1802 int io_req_prep_async(struct io_kiocb *req)
1804 const struct io_cold_def *cdef = &io_cold_defs[req->opcode];
1805 const struct io_issue_def *def = &io_issue_defs[req->opcode];
1807 /* assign early for deferred execution for non-fixed file */
1808 if (def->needs_file && !(req->flags & REQ_F_FIXED_FILE) && !req->file)
1809 req->file = io_file_get_normal(req, req->cqe.fd);
1810 if (!cdef->prep_async)
1812 if (WARN_ON_ONCE(req_has_async_data(req)))
1814 if (!def->manual_alloc) {
1815 if (io_alloc_async_data(req))
1818 return cdef->prep_async(req);
1821 static u32 io_get_sequence(struct io_kiocb *req)
1823 u32 seq = req->ctx->cached_sq_head;
1824 struct io_kiocb *cur;
1826 /* need original cached_sq_head, but it was increased for each req */
1827 io_for_each_link(cur, req)
1832 static __cold void io_drain_req(struct io_kiocb *req)
1833 __must_hold(&ctx->uring_lock)
1835 struct io_ring_ctx *ctx = req->ctx;
1836 struct io_defer_entry *de;
1838 u32 seq = io_get_sequence(req);
1840 /* Still need defer if there is pending req in defer list. */
1841 spin_lock(&ctx->completion_lock);
1842 if (!req_need_defer(req, seq) && list_empty_careful(&ctx->defer_list)) {
1843 spin_unlock(&ctx->completion_lock);
1845 ctx->drain_active = false;
1846 io_req_task_queue(req);
1849 spin_unlock(&ctx->completion_lock);
1851 io_prep_async_link(req);
1852 de = kmalloc(sizeof(*de), GFP_KERNEL);
1855 io_req_defer_failed(req, ret);
1859 spin_lock(&ctx->completion_lock);
1860 if (!req_need_defer(req, seq) && list_empty(&ctx->defer_list)) {
1861 spin_unlock(&ctx->completion_lock);
1866 trace_io_uring_defer(req);
1869 list_add_tail(&de->list, &ctx->defer_list);
1870 spin_unlock(&ctx->completion_lock);
1873 static void io_clean_op(struct io_kiocb *req)
1875 if (req->flags & REQ_F_BUFFER_SELECTED) {
1876 spin_lock(&req->ctx->completion_lock);
1877 io_put_kbuf_comp(req);
1878 spin_unlock(&req->ctx->completion_lock);
1881 if (req->flags & REQ_F_NEED_CLEANUP) {
1882 const struct io_cold_def *def = &io_cold_defs[req->opcode];
1887 if ((req->flags & REQ_F_POLLED) && req->apoll) {
1888 kfree(req->apoll->double_poll);
1892 if (req->flags & REQ_F_INFLIGHT) {
1893 struct io_uring_task *tctx = req->task->io_uring;
1895 atomic_dec(&tctx->inflight_tracked);
1897 if (req->flags & REQ_F_CREDS)
1898 put_cred(req->creds);
1899 if (req->flags & REQ_F_ASYNC_DATA) {
1900 kfree(req->async_data);
1901 req->async_data = NULL;
1903 req->flags &= ~IO_REQ_CLEAN_FLAGS;
1906 static bool io_assign_file(struct io_kiocb *req, const struct io_issue_def *def,
1907 unsigned int issue_flags)
1909 if (req->file || !def->needs_file)
1912 if (req->flags & REQ_F_FIXED_FILE)
1913 req->file = io_file_get_fixed(req, req->cqe.fd, issue_flags);
1915 req->file = io_file_get_normal(req, req->cqe.fd);
1920 static int io_issue_sqe(struct io_kiocb *req, unsigned int issue_flags)
1922 const struct io_issue_def *def = &io_issue_defs[req->opcode];
1923 const struct cred *creds = NULL;
1926 if (unlikely(!io_assign_file(req, def, issue_flags)))
1929 if (unlikely((req->flags & REQ_F_CREDS) && req->creds != current_cred()))
1930 creds = override_creds(req->creds);
1932 if (!def->audit_skip)
1933 audit_uring_entry(req->opcode);
1935 ret = def->issue(req, issue_flags);
1937 if (!def->audit_skip)
1938 audit_uring_exit(!ret, ret);
1941 revert_creds(creds);
1943 if (ret == IOU_OK) {
1944 if (issue_flags & IO_URING_F_COMPLETE_DEFER)
1945 io_req_complete_defer(req);
1947 io_req_complete_post(req, issue_flags);
1948 } else if (ret != IOU_ISSUE_SKIP_COMPLETE)
1951 /* If the op doesn't have a file, we're not polling for it */
1952 if ((req->ctx->flags & IORING_SETUP_IOPOLL) && def->iopoll_queue)
1953 io_iopoll_req_issued(req, issue_flags);
1958 int io_poll_issue(struct io_kiocb *req, struct io_tw_state *ts)
1960 io_tw_lock(req->ctx, ts);
1961 return io_issue_sqe(req, IO_URING_F_NONBLOCK|IO_URING_F_MULTISHOT|
1962 IO_URING_F_COMPLETE_DEFER);
1965 struct io_wq_work *io_wq_free_work(struct io_wq_work *work)
1967 struct io_kiocb *req = container_of(work, struct io_kiocb, work);
1969 req = io_put_req_find_next(req);
1970 return req ? &req->work : NULL;
1973 void io_wq_submit_work(struct io_wq_work *work)
1975 struct io_kiocb *req = container_of(work, struct io_kiocb, work);
1976 const struct io_issue_def *def = &io_issue_defs[req->opcode];
1977 unsigned int issue_flags = IO_URING_F_UNLOCKED | IO_URING_F_IOWQ;
1978 bool needs_poll = false;
1979 int ret = 0, err = -ECANCELED;
1981 /* one will be dropped by ->io_wq_free_work() after returning to io-wq */
1982 if (!(req->flags & REQ_F_REFCOUNT))
1983 __io_req_set_refcount(req, 2);
1987 io_arm_ltimeout(req);
1989 /* either cancelled or io-wq is dying, so don't touch tctx->iowq */
1990 if (work->flags & IO_WQ_WORK_CANCEL) {
1992 io_req_task_queue_fail(req, err);
1995 if (!io_assign_file(req, def, issue_flags)) {
1997 work->flags |= IO_WQ_WORK_CANCEL;
2001 if (req->flags & REQ_F_FORCE_ASYNC) {
2002 bool opcode_poll = def->pollin || def->pollout;
2004 if (opcode_poll && file_can_poll(req->file)) {
2006 issue_flags |= IO_URING_F_NONBLOCK;
2011 ret = io_issue_sqe(req, issue_flags);
2015 * We can get EAGAIN for iopolled IO even though we're
2016 * forcing a sync submission from here, since we can't
2017 * wait for request slots on the block side.
2020 if (!(req->ctx->flags & IORING_SETUP_IOPOLL))
2026 if (io_arm_poll_handler(req, issue_flags) == IO_APOLL_OK)
2028 /* aborted or ready, in either case retry blocking */
2030 issue_flags &= ~IO_URING_F_NONBLOCK;
2033 /* avoid locking problems by failing it from a clean context */
2035 io_req_task_queue_fail(req, ret);
2038 inline struct file *io_file_get_fixed(struct io_kiocb *req, int fd,
2039 unsigned int issue_flags)
2041 struct io_ring_ctx *ctx = req->ctx;
2042 struct file *file = NULL;
2043 unsigned long file_ptr;
2045 io_ring_submit_lock(ctx, issue_flags);
2047 if (unlikely((unsigned int)fd >= ctx->nr_user_files))
2049 fd = array_index_nospec(fd, ctx->nr_user_files);
2050 file_ptr = io_fixed_file_slot(&ctx->file_table, fd)->file_ptr;
2051 file = (struct file *) (file_ptr & FFS_MASK);
2052 file_ptr &= ~FFS_MASK;
2053 /* mask in overlapping REQ_F and FFS bits */
2054 req->flags |= (file_ptr << REQ_F_SUPPORT_NOWAIT_BIT);
2055 io_req_set_rsrc_node(req, ctx, 0);
2057 io_ring_submit_unlock(ctx, issue_flags);
2061 struct file *io_file_get_normal(struct io_kiocb *req, int fd)
2063 struct file *file = fget(fd);
2065 trace_io_uring_file_get(req, fd);
2067 /* we don't allow fixed io_uring files */
2068 if (file && io_is_uring_fops(file))
2069 io_req_track_inflight(req);
2073 static void io_queue_async(struct io_kiocb *req, int ret)
2074 __must_hold(&req->ctx->uring_lock)
2076 struct io_kiocb *linked_timeout;
2078 if (ret != -EAGAIN || (req->flags & REQ_F_NOWAIT)) {
2079 io_req_defer_failed(req, ret);
2083 linked_timeout = io_prep_linked_timeout(req);
2085 switch (io_arm_poll_handler(req, 0)) {
2086 case IO_APOLL_READY:
2087 io_kbuf_recycle(req, 0);
2088 io_req_task_queue(req);
2090 case IO_APOLL_ABORTED:
2091 io_kbuf_recycle(req, 0);
2092 io_queue_iowq(req, NULL);
2099 io_queue_linked_timeout(linked_timeout);
2102 static inline void io_queue_sqe(struct io_kiocb *req)
2103 __must_hold(&req->ctx->uring_lock)
2107 ret = io_issue_sqe(req, IO_URING_F_NONBLOCK|IO_URING_F_COMPLETE_DEFER);
2110 * We async punt it if the file wasn't marked NOWAIT, or if the file
2111 * doesn't support non-blocking read/write attempts
2114 io_arm_ltimeout(req);
2116 io_queue_async(req, ret);
2119 static void io_queue_sqe_fallback(struct io_kiocb *req)
2120 __must_hold(&req->ctx->uring_lock)
2122 if (unlikely(req->flags & REQ_F_FAIL)) {
2124 * We don't submit, fail them all, for that replace hardlinks
2125 * with normal links. Extra REQ_F_LINK is tolerated.
2127 req->flags &= ~REQ_F_HARDLINK;
2128 req->flags |= REQ_F_LINK;
2129 io_req_defer_failed(req, req->cqe.res);
2131 int ret = io_req_prep_async(req);
2133 if (unlikely(ret)) {
2134 io_req_defer_failed(req, ret);
2138 if (unlikely(req->ctx->drain_active))
2141 io_queue_iowq(req, NULL);
2146 * Check SQE restrictions (opcode and flags).
2148 * Returns 'true' if SQE is allowed, 'false' otherwise.
2150 static inline bool io_check_restriction(struct io_ring_ctx *ctx,
2151 struct io_kiocb *req,
2152 unsigned int sqe_flags)
2154 if (!test_bit(req->opcode, ctx->restrictions.sqe_op))
2157 if ((sqe_flags & ctx->restrictions.sqe_flags_required) !=
2158 ctx->restrictions.sqe_flags_required)
2161 if (sqe_flags & ~(ctx->restrictions.sqe_flags_allowed |
2162 ctx->restrictions.sqe_flags_required))
2168 static void io_init_req_drain(struct io_kiocb *req)
2170 struct io_ring_ctx *ctx = req->ctx;
2171 struct io_kiocb *head = ctx->submit_state.link.head;
2173 ctx->drain_active = true;
2176 * If we need to drain a request in the middle of a link, drain
2177 * the head request and the next request/link after the current
2178 * link. Considering sequential execution of links,
2179 * REQ_F_IO_DRAIN will be maintained for every request of our
2182 head->flags |= REQ_F_IO_DRAIN | REQ_F_FORCE_ASYNC;
2183 ctx->drain_next = true;
2187 static int io_init_req(struct io_ring_ctx *ctx, struct io_kiocb *req,
2188 const struct io_uring_sqe *sqe)
2189 __must_hold(&ctx->uring_lock)
2191 const struct io_issue_def *def;
2192 unsigned int sqe_flags;
2196 /* req is partially pre-initialised, see io_preinit_req() */
2197 req->opcode = opcode = READ_ONCE(sqe->opcode);
2198 /* same numerical values with corresponding REQ_F_*, safe to copy */
2199 req->flags = sqe_flags = READ_ONCE(sqe->flags);
2200 req->cqe.user_data = READ_ONCE(sqe->user_data);
2202 req->rsrc_node = NULL;
2203 req->task = current;
2205 if (unlikely(opcode >= IORING_OP_LAST)) {
2209 def = &io_issue_defs[opcode];
2210 if (unlikely(sqe_flags & ~SQE_COMMON_FLAGS)) {
2211 /* enforce forwards compatibility on users */
2212 if (sqe_flags & ~SQE_VALID_FLAGS)
2214 if (sqe_flags & IOSQE_BUFFER_SELECT) {
2215 if (!def->buffer_select)
2217 req->buf_index = READ_ONCE(sqe->buf_group);
2219 if (sqe_flags & IOSQE_CQE_SKIP_SUCCESS)
2220 ctx->drain_disabled = true;
2221 if (sqe_flags & IOSQE_IO_DRAIN) {
2222 if (ctx->drain_disabled)
2224 io_init_req_drain(req);
2227 if (unlikely(ctx->restricted || ctx->drain_active || ctx->drain_next)) {
2228 if (ctx->restricted && !io_check_restriction(ctx, req, sqe_flags))
2230 /* knock it to the slow queue path, will be drained there */
2231 if (ctx->drain_active)
2232 req->flags |= REQ_F_FORCE_ASYNC;
2233 /* if there is no link, we're at "next" request and need to drain */
2234 if (unlikely(ctx->drain_next) && !ctx->submit_state.link.head) {
2235 ctx->drain_next = false;
2236 ctx->drain_active = true;
2237 req->flags |= REQ_F_IO_DRAIN | REQ_F_FORCE_ASYNC;
2241 if (!def->ioprio && sqe->ioprio)
2243 if (!def->iopoll && (ctx->flags & IORING_SETUP_IOPOLL))
2246 if (def->needs_file) {
2247 struct io_submit_state *state = &ctx->submit_state;
2249 req->cqe.fd = READ_ONCE(sqe->fd);
2252 * Plug now if we have more than 2 IO left after this, and the
2253 * target is potentially a read/write to block based storage.
2255 if (state->need_plug && def->plug) {
2256 state->plug_started = true;
2257 state->need_plug = false;
2258 blk_start_plug_nr_ios(&state->plug, state->submit_nr);
2262 personality = READ_ONCE(sqe->personality);
2266 req->creds = xa_load(&ctx->personalities, personality);
2269 get_cred(req->creds);
2270 ret = security_uring_override_creds(req->creds);
2272 put_cred(req->creds);
2275 req->flags |= REQ_F_CREDS;
2278 return def->prep(req, sqe);
2281 static __cold int io_submit_fail_init(const struct io_uring_sqe *sqe,
2282 struct io_kiocb *req, int ret)
2284 struct io_ring_ctx *ctx = req->ctx;
2285 struct io_submit_link *link = &ctx->submit_state.link;
2286 struct io_kiocb *head = link->head;
2288 trace_io_uring_req_failed(sqe, req, ret);
2291 * Avoid breaking links in the middle as it renders links with SQPOLL
2292 * unusable. Instead of failing eagerly, continue assembling the link if
2293 * applicable and mark the head with REQ_F_FAIL. The link flushing code
2294 * should find the flag and handle the rest.
2296 req_fail_link_node(req, ret);
2297 if (head && !(head->flags & REQ_F_FAIL))
2298 req_fail_link_node(head, -ECANCELED);
2300 if (!(req->flags & IO_REQ_LINK_FLAGS)) {
2302 link->last->link = req;
2306 io_queue_sqe_fallback(req);
2311 link->last->link = req;
2318 static inline int io_submit_sqe(struct io_ring_ctx *ctx, struct io_kiocb *req,
2319 const struct io_uring_sqe *sqe)
2320 __must_hold(&ctx->uring_lock)
2322 struct io_submit_link *link = &ctx->submit_state.link;
2325 ret = io_init_req(ctx, req, sqe);
2327 return io_submit_fail_init(sqe, req, ret);
2329 trace_io_uring_submit_req(req);
2332 * If we already have a head request, queue this one for async
2333 * submittal once the head completes. If we don't have a head but
2334 * IOSQE_IO_LINK is set in the sqe, start a new head. This one will be
2335 * submitted sync once the chain is complete. If none of those
2336 * conditions are true (normal request), then just queue it.
2338 if (unlikely(link->head)) {
2339 ret = io_req_prep_async(req);
2341 return io_submit_fail_init(sqe, req, ret);
2343 trace_io_uring_link(req, link->head);
2344 link->last->link = req;
2347 if (req->flags & IO_REQ_LINK_FLAGS)
2349 /* last request of the link, flush it */
2352 if (req->flags & (REQ_F_FORCE_ASYNC | REQ_F_FAIL))
2355 } else if (unlikely(req->flags & (IO_REQ_LINK_FLAGS |
2356 REQ_F_FORCE_ASYNC | REQ_F_FAIL))) {
2357 if (req->flags & IO_REQ_LINK_FLAGS) {
2362 io_queue_sqe_fallback(req);
2372 * Batched submission is done, ensure local IO is flushed out.
2374 static void io_submit_state_end(struct io_ring_ctx *ctx)
2376 struct io_submit_state *state = &ctx->submit_state;
2378 if (unlikely(state->link.head))
2379 io_queue_sqe_fallback(state->link.head);
2380 /* flush only after queuing links as they can generate completions */
2381 io_submit_flush_completions(ctx);
2382 if (state->plug_started)
2383 blk_finish_plug(&state->plug);
2387 * Start submission side cache.
2389 static void io_submit_state_start(struct io_submit_state *state,
2390 unsigned int max_ios)
2392 state->plug_started = false;
2393 state->need_plug = max_ios > 2;
2394 state->submit_nr = max_ios;
2395 /* set only head, no need to init link_last in advance */
2396 state->link.head = NULL;
2399 static void io_commit_sqring(struct io_ring_ctx *ctx)
2401 struct io_rings *rings = ctx->rings;
2404 * Ensure any loads from the SQEs are done at this point,
2405 * since once we write the new head, the application could
2406 * write new data to them.
2408 smp_store_release(&rings->sq.head, ctx->cached_sq_head);
2412 * Fetch an sqe, if one is available. Note this returns a pointer to memory
2413 * that is mapped by userspace. This means that care needs to be taken to
2414 * ensure that reads are stable, as we cannot rely on userspace always
2415 * being a good citizen. If members of the sqe are validated and then later
2416 * used, it's important that those reads are done through READ_ONCE() to
2417 * prevent a re-load down the line.
2419 static bool io_get_sqe(struct io_ring_ctx *ctx, const struct io_uring_sqe **sqe)
2421 unsigned head, mask = ctx->sq_entries - 1;
2422 unsigned sq_idx = ctx->cached_sq_head++ & mask;
2425 * The cached sq head (or cq tail) serves two purposes:
2427 * 1) allows us to batch the cost of updating the user visible
2429 * 2) allows the kernel side to track the head on its own, even
2430 * though the application is the one updating it.
2432 head = READ_ONCE(ctx->sq_array[sq_idx]);
2433 if (likely(head < ctx->sq_entries)) {
2434 /* double index for 128-byte SQEs, twice as long */
2435 if (ctx->flags & IORING_SETUP_SQE128)
2437 *sqe = &ctx->sq_sqes[head];
2441 /* drop invalid entries */
2443 WRITE_ONCE(ctx->rings->sq_dropped,
2444 READ_ONCE(ctx->rings->sq_dropped) + 1);
2448 int io_submit_sqes(struct io_ring_ctx *ctx, unsigned int nr)
2449 __must_hold(&ctx->uring_lock)
2451 unsigned int entries = io_sqring_entries(ctx);
2455 if (unlikely(!entries))
2457 /* make sure SQ entry isn't read before tail */
2458 ret = left = min(nr, entries);
2459 io_get_task_refs(left);
2460 io_submit_state_start(&ctx->submit_state, left);
2463 const struct io_uring_sqe *sqe;
2464 struct io_kiocb *req;
2466 if (unlikely(!io_alloc_req(ctx, &req)))
2468 if (unlikely(!io_get_sqe(ctx, &sqe))) {
2469 io_req_add_to_cache(req, ctx);
2474 * Continue submitting even for sqe failure if the
2475 * ring was setup with IORING_SETUP_SUBMIT_ALL
2477 if (unlikely(io_submit_sqe(ctx, req, sqe)) &&
2478 !(ctx->flags & IORING_SETUP_SUBMIT_ALL)) {
2484 if (unlikely(left)) {
2486 /* try again if it submitted nothing and can't allocate a req */
2487 if (!ret && io_req_cache_empty(ctx))
2489 current->io_uring->cached_refs += left;
2492 io_submit_state_end(ctx);
2493 /* Commit SQ ring head once we've consumed and submitted all SQEs */
2494 io_commit_sqring(ctx);
2498 struct io_wait_queue {
2499 struct wait_queue_entry wq;
2500 struct io_ring_ctx *ctx;
2502 unsigned nr_timeouts;
2506 static inline bool io_has_work(struct io_ring_ctx *ctx)
2508 return test_bit(IO_CHECK_CQ_OVERFLOW_BIT, &ctx->check_cq) ||
2509 !llist_empty(&ctx->work_llist);
2512 static inline bool io_should_wake(struct io_wait_queue *iowq)
2514 struct io_ring_ctx *ctx = iowq->ctx;
2515 int dist = READ_ONCE(ctx->rings->cq.tail) - (int) iowq->cq_tail;
2518 * Wake up if we have enough events, or if a timeout occurred since we
2519 * started waiting. For timeouts, we always want to return to userspace,
2520 * regardless of event count.
2522 return dist >= 0 || atomic_read(&ctx->cq_timeouts) != iowq->nr_timeouts;
2525 static int io_wake_function(struct wait_queue_entry *curr, unsigned int mode,
2526 int wake_flags, void *key)
2528 struct io_wait_queue *iowq = container_of(curr, struct io_wait_queue, wq);
2531 * Cannot safely flush overflowed CQEs from here, ensure we wake up
2532 * the task, and the next invocation will do it.
2534 if (io_should_wake(iowq) || io_has_work(iowq->ctx))
2535 return autoremove_wake_function(curr, mode, wake_flags, key);
2539 int io_run_task_work_sig(struct io_ring_ctx *ctx)
2541 if (!llist_empty(&ctx->work_llist)) {
2542 __set_current_state(TASK_RUNNING);
2543 if (io_run_local_work(ctx) > 0)
2546 if (io_run_task_work() > 0)
2548 if (task_sigpending(current))
2553 /* when returns >0, the caller should retry */
2554 static inline int io_cqring_wait_schedule(struct io_ring_ctx *ctx,
2555 struct io_wait_queue *iowq)
2557 if (unlikely(READ_ONCE(ctx->check_cq)))
2559 if (unlikely(!llist_empty(&ctx->work_llist)))
2561 if (unlikely(test_thread_flag(TIF_NOTIFY_SIGNAL)))
2563 if (unlikely(task_sigpending(current)))
2565 if (unlikely(io_should_wake(iowq)))
2567 if (iowq->timeout == KTIME_MAX)
2569 else if (!schedule_hrtimeout(&iowq->timeout, HRTIMER_MODE_ABS))
2575 * Wait until events become available, if we don't already have some. The
2576 * application must reap them itself, as they reside on the shared cq ring.
2578 static int io_cqring_wait(struct io_ring_ctx *ctx, int min_events,
2579 const sigset_t __user *sig, size_t sigsz,
2580 struct __kernel_timespec __user *uts)
2582 struct io_wait_queue iowq;
2583 struct io_rings *rings = ctx->rings;
2586 if (!io_allowed_run_tw(ctx))
2588 if (!llist_empty(&ctx->work_llist))
2589 io_run_local_work(ctx);
2591 io_cqring_overflow_flush(ctx);
2592 /* if user messes with these they will just get an early return */
2593 if (__io_cqring_events_user(ctx) >= min_events)
2597 #ifdef CONFIG_COMPAT
2598 if (in_compat_syscall())
2599 ret = set_compat_user_sigmask((const compat_sigset_t __user *)sig,
2603 ret = set_user_sigmask(sig, sigsz);
2609 init_waitqueue_func_entry(&iowq.wq, io_wake_function);
2610 iowq.wq.private = current;
2611 INIT_LIST_HEAD(&iowq.wq.entry);
2613 iowq.nr_timeouts = atomic_read(&ctx->cq_timeouts);
2614 iowq.cq_tail = READ_ONCE(ctx->rings->cq.head) + min_events;
2615 iowq.timeout = KTIME_MAX;
2618 struct timespec64 ts;
2620 if (get_timespec64(&ts, uts))
2622 iowq.timeout = ktime_add_ns(timespec64_to_ktime(ts), ktime_get_ns());
2625 trace_io_uring_cqring_wait(ctx, min_events);
2627 unsigned long check_cq;
2629 if (ctx->flags & IORING_SETUP_DEFER_TASKRUN) {
2630 int nr_wait = (int) iowq.cq_tail - READ_ONCE(ctx->rings->cq.tail);
2632 atomic_set(&ctx->cq_wait_nr, nr_wait);
2633 set_current_state(TASK_INTERRUPTIBLE);
2635 prepare_to_wait_exclusive(&ctx->cq_wait, &iowq.wq,
2636 TASK_INTERRUPTIBLE);
2639 ret = io_cqring_wait_schedule(ctx, &iowq);
2640 __set_current_state(TASK_RUNNING);
2641 atomic_set(&ctx->cq_wait_nr, 0);
2646 * Run task_work after scheduling and before io_should_wake().
2647 * If we got woken because of task_work being processed, run it
2648 * now rather than let the caller do another wait loop.
2651 if (!llist_empty(&ctx->work_llist))
2652 io_run_local_work(ctx);
2654 check_cq = READ_ONCE(ctx->check_cq);
2655 if (unlikely(check_cq)) {
2656 /* let the caller flush overflows, retry */
2657 if (check_cq & BIT(IO_CHECK_CQ_OVERFLOW_BIT))
2658 io_cqring_do_overflow_flush(ctx);
2659 if (check_cq & BIT(IO_CHECK_CQ_DROPPED_BIT)) {
2665 if (io_should_wake(&iowq)) {
2672 if (!(ctx->flags & IORING_SETUP_DEFER_TASKRUN))
2673 finish_wait(&ctx->cq_wait, &iowq.wq);
2674 restore_saved_sigmask_unless(ret == -EINTR);
2676 return READ_ONCE(rings->cq.head) == READ_ONCE(rings->cq.tail) ? ret : 0;
2679 static void io_mem_free(void *ptr)
2686 page = virt_to_head_page(ptr);
2687 if (put_page_testzero(page))
2688 free_compound_page(page);
2691 static void *io_mem_alloc(size_t size)
2693 gfp_t gfp = GFP_KERNEL_ACCOUNT | __GFP_ZERO | __GFP_NOWARN | __GFP_COMP;
2696 ret = (void *) __get_free_pages(gfp, get_order(size));
2699 return ERR_PTR(-ENOMEM);
2702 static unsigned long rings_size(struct io_ring_ctx *ctx, unsigned int sq_entries,
2703 unsigned int cq_entries, size_t *sq_offset)
2705 struct io_rings *rings;
2706 size_t off, sq_array_size;
2708 off = struct_size(rings, cqes, cq_entries);
2709 if (off == SIZE_MAX)
2711 if (ctx->flags & IORING_SETUP_CQE32) {
2712 if (check_shl_overflow(off, 1, &off))
2717 off = ALIGN(off, SMP_CACHE_BYTES);
2725 sq_array_size = array_size(sizeof(u32), sq_entries);
2726 if (sq_array_size == SIZE_MAX)
2729 if (check_add_overflow(off, sq_array_size, &off))
2735 static int io_eventfd_register(struct io_ring_ctx *ctx, void __user *arg,
2736 unsigned int eventfd_async)
2738 struct io_ev_fd *ev_fd;
2739 __s32 __user *fds = arg;
2742 ev_fd = rcu_dereference_protected(ctx->io_ev_fd,
2743 lockdep_is_held(&ctx->uring_lock));
2747 if (copy_from_user(&fd, fds, sizeof(*fds)))
2750 ev_fd = kmalloc(sizeof(*ev_fd), GFP_KERNEL);
2754 ev_fd->cq_ev_fd = eventfd_ctx_fdget(fd);
2755 if (IS_ERR(ev_fd->cq_ev_fd)) {
2756 int ret = PTR_ERR(ev_fd->cq_ev_fd);
2761 spin_lock(&ctx->completion_lock);
2762 ctx->evfd_last_cq_tail = ctx->cached_cq_tail;
2763 spin_unlock(&ctx->completion_lock);
2765 ev_fd->eventfd_async = eventfd_async;
2766 ctx->has_evfd = true;
2767 rcu_assign_pointer(ctx->io_ev_fd, ev_fd);
2768 atomic_set(&ev_fd->refs, 1);
2769 atomic_set(&ev_fd->ops, 0);
2773 static int io_eventfd_unregister(struct io_ring_ctx *ctx)
2775 struct io_ev_fd *ev_fd;
2777 ev_fd = rcu_dereference_protected(ctx->io_ev_fd,
2778 lockdep_is_held(&ctx->uring_lock));
2780 ctx->has_evfd = false;
2781 rcu_assign_pointer(ctx->io_ev_fd, NULL);
2782 if (!atomic_fetch_or(BIT(IO_EVENTFD_OP_FREE_BIT), &ev_fd->ops))
2783 call_rcu(&ev_fd->rcu, io_eventfd_ops);
2790 static void io_req_caches_free(struct io_ring_ctx *ctx)
2792 struct io_kiocb *req;
2795 mutex_lock(&ctx->uring_lock);
2796 io_flush_cached_locked_reqs(ctx, &ctx->submit_state);
2798 while (!io_req_cache_empty(ctx)) {
2799 req = io_extract_req(ctx);
2800 kmem_cache_free(req_cachep, req);
2804 percpu_ref_put_many(&ctx->refs, nr);
2805 mutex_unlock(&ctx->uring_lock);
2808 static void io_rsrc_node_cache_free(struct io_cache_entry *entry)
2810 kfree(container_of(entry, struct io_rsrc_node, cache));
2813 static __cold void io_ring_ctx_free(struct io_ring_ctx *ctx)
2815 io_sq_thread_finish(ctx);
2816 /* __io_rsrc_put_work() may need uring_lock to progress, wait w/o it */
2817 if (WARN_ON_ONCE(!list_empty(&ctx->rsrc_ref_list)))
2820 mutex_lock(&ctx->uring_lock);
2822 __io_sqe_buffers_unregister(ctx);
2824 __io_sqe_files_unregister(ctx);
2825 io_cqring_overflow_kill(ctx);
2826 io_eventfd_unregister(ctx);
2827 io_alloc_cache_free(&ctx->apoll_cache, io_apoll_cache_free);
2828 io_alloc_cache_free(&ctx->netmsg_cache, io_netmsg_cache_free);
2829 io_destroy_buffers(ctx);
2830 mutex_unlock(&ctx->uring_lock);
2832 put_cred(ctx->sq_creds);
2833 if (ctx->submitter_task)
2834 put_task_struct(ctx->submitter_task);
2836 /* there are no registered resources left, nobody uses it */
2838 io_rsrc_node_destroy(ctx, ctx->rsrc_node);
2840 WARN_ON_ONCE(!list_empty(&ctx->rsrc_ref_list));
2842 #if defined(CONFIG_UNIX)
2843 if (ctx->ring_sock) {
2844 ctx->ring_sock->file = NULL; /* so that iput() is called */
2845 sock_release(ctx->ring_sock);
2848 WARN_ON_ONCE(!list_empty(&ctx->ltimeout_list));
2850 io_alloc_cache_free(&ctx->rsrc_node_cache, io_rsrc_node_cache_free);
2851 if (ctx->mm_account) {
2852 mmdrop(ctx->mm_account);
2853 ctx->mm_account = NULL;
2855 io_mem_free(ctx->rings);
2856 io_mem_free(ctx->sq_sqes);
2858 percpu_ref_exit(&ctx->refs);
2859 free_uid(ctx->user);
2860 io_req_caches_free(ctx);
2862 io_wq_put_hash(ctx->hash_map);
2863 kfree(ctx->cancel_table.hbs);
2864 kfree(ctx->cancel_table_locked.hbs);
2865 kfree(ctx->dummy_ubuf);
2867 xa_destroy(&ctx->io_bl_xa);
2871 static __cold void io_activate_pollwq_cb(struct callback_head *cb)
2873 struct io_ring_ctx *ctx = container_of(cb, struct io_ring_ctx,
2876 mutex_lock(&ctx->uring_lock);
2877 ctx->poll_activated = true;
2878 mutex_unlock(&ctx->uring_lock);
2881 * Wake ups for some events between start of polling and activation
2882 * might've been lost due to loose synchronisation.
2884 wake_up_all(&ctx->poll_wq);
2885 percpu_ref_put(&ctx->refs);
2888 static __cold void io_activate_pollwq(struct io_ring_ctx *ctx)
2890 spin_lock(&ctx->completion_lock);
2891 /* already activated or in progress */
2892 if (ctx->poll_activated || ctx->poll_wq_task_work.func)
2894 if (WARN_ON_ONCE(!ctx->task_complete))
2896 if (!ctx->submitter_task)
2899 * with ->submitter_task only the submitter task completes requests, we
2900 * only need to sync with it, which is done by injecting a tw
2902 init_task_work(&ctx->poll_wq_task_work, io_activate_pollwq_cb);
2903 percpu_ref_get(&ctx->refs);
2904 if (task_work_add(ctx->submitter_task, &ctx->poll_wq_task_work, TWA_SIGNAL))
2905 percpu_ref_put(&ctx->refs);
2907 spin_unlock(&ctx->completion_lock);
2910 static __poll_t io_uring_poll(struct file *file, poll_table *wait)
2912 struct io_ring_ctx *ctx = file->private_data;
2915 if (unlikely(!ctx->poll_activated))
2916 io_activate_pollwq(ctx);
2918 poll_wait(file, &ctx->poll_wq, wait);
2920 * synchronizes with barrier from wq_has_sleeper call in
2924 if (!io_sqring_full(ctx))
2925 mask |= EPOLLOUT | EPOLLWRNORM;
2928 * Don't flush cqring overflow list here, just do a simple check.
2929 * Otherwise there could possible be ABBA deadlock:
2932 * lock(&ctx->uring_lock);
2934 * lock(&ctx->uring_lock);
2937 * Users may get EPOLLIN meanwhile seeing nothing in cqring, this
2938 * pushes them to do the flush.
2941 if (__io_cqring_events_user(ctx) || io_has_work(ctx))
2942 mask |= EPOLLIN | EPOLLRDNORM;
2947 static int io_unregister_personality(struct io_ring_ctx *ctx, unsigned id)
2949 const struct cred *creds;
2951 creds = xa_erase(&ctx->personalities, id);
2960 struct io_tctx_exit {
2961 struct callback_head task_work;
2962 struct completion completion;
2963 struct io_ring_ctx *ctx;
2966 static __cold void io_tctx_exit_cb(struct callback_head *cb)
2968 struct io_uring_task *tctx = current->io_uring;
2969 struct io_tctx_exit *work;
2971 work = container_of(cb, struct io_tctx_exit, task_work);
2973 * When @in_cancel, we're in cancellation and it's racy to remove the
2974 * node. It'll be removed by the end of cancellation, just ignore it.
2975 * tctx can be NULL if the queueing of this task_work raced with
2976 * work cancelation off the exec path.
2978 if (tctx && !atomic_read(&tctx->in_cancel))
2979 io_uring_del_tctx_node((unsigned long)work->ctx);
2980 complete(&work->completion);
2983 static __cold bool io_cancel_ctx_cb(struct io_wq_work *work, void *data)
2985 struct io_kiocb *req = container_of(work, struct io_kiocb, work);
2987 return req->ctx == data;
2990 static __cold void io_ring_exit_work(struct work_struct *work)
2992 struct io_ring_ctx *ctx = container_of(work, struct io_ring_ctx, exit_work);
2993 unsigned long timeout = jiffies + HZ * 60 * 5;
2994 unsigned long interval = HZ / 20;
2995 struct io_tctx_exit exit;
2996 struct io_tctx_node *node;
3000 * If we're doing polled IO and end up having requests being
3001 * submitted async (out-of-line), then completions can come in while
3002 * we're waiting for refs to drop. We need to reap these manually,
3003 * as nobody else will be looking for them.
3006 if (test_bit(IO_CHECK_CQ_OVERFLOW_BIT, &ctx->check_cq)) {
3007 mutex_lock(&ctx->uring_lock);
3008 io_cqring_overflow_kill(ctx);
3009 mutex_unlock(&ctx->uring_lock);
3012 if (ctx->flags & IORING_SETUP_DEFER_TASKRUN)
3013 io_move_task_work_from_local(ctx);
3015 while (io_uring_try_cancel_requests(ctx, NULL, true))
3019 struct io_sq_data *sqd = ctx->sq_data;
3020 struct task_struct *tsk;
3022 io_sq_thread_park(sqd);
3024 if (tsk && tsk->io_uring && tsk->io_uring->io_wq)
3025 io_wq_cancel_cb(tsk->io_uring->io_wq,
3026 io_cancel_ctx_cb, ctx, true);
3027 io_sq_thread_unpark(sqd);
3030 io_req_caches_free(ctx);
3032 if (WARN_ON_ONCE(time_after(jiffies, timeout))) {
3033 /* there is little hope left, don't run it too often */
3036 } while (!wait_for_completion_timeout(&ctx->ref_comp, interval));
3038 init_completion(&exit.completion);
3039 init_task_work(&exit.task_work, io_tctx_exit_cb);
3042 * Some may use context even when all refs and requests have been put,
3043 * and they are free to do so while still holding uring_lock or
3044 * completion_lock, see io_req_task_submit(). Apart from other work,
3045 * this lock/unlock section also waits them to finish.
3047 mutex_lock(&ctx->uring_lock);
3048 while (!list_empty(&ctx->tctx_list)) {
3049 WARN_ON_ONCE(time_after(jiffies, timeout));
3051 node = list_first_entry(&ctx->tctx_list, struct io_tctx_node,
3053 /* don't spin on a single task if cancellation failed */
3054 list_rotate_left(&ctx->tctx_list);
3055 ret = task_work_add(node->task, &exit.task_work, TWA_SIGNAL);
3056 if (WARN_ON_ONCE(ret))
3059 mutex_unlock(&ctx->uring_lock);
3060 wait_for_completion(&exit.completion);
3061 mutex_lock(&ctx->uring_lock);
3063 mutex_unlock(&ctx->uring_lock);
3064 spin_lock(&ctx->completion_lock);
3065 spin_unlock(&ctx->completion_lock);
3067 /* pairs with RCU read section in io_req_local_work_add() */
3068 if (ctx->flags & IORING_SETUP_DEFER_TASKRUN)
3071 io_ring_ctx_free(ctx);
3074 static __cold void io_ring_ctx_wait_and_kill(struct io_ring_ctx *ctx)
3076 unsigned long index;
3077 struct creds *creds;
3079 mutex_lock(&ctx->uring_lock);
3080 percpu_ref_kill(&ctx->refs);
3081 xa_for_each(&ctx->personalities, index, creds)
3082 io_unregister_personality(ctx, index);
3084 io_poll_remove_all(ctx, NULL, true);
3085 mutex_unlock(&ctx->uring_lock);
3088 * If we failed setting up the ctx, we might not have any rings
3089 * and therefore did not submit any requests
3092 io_kill_timeouts(ctx, NULL, true);
3094 INIT_WORK(&ctx->exit_work, io_ring_exit_work);
3096 * Use system_unbound_wq to avoid spawning tons of event kworkers
3097 * if we're exiting a ton of rings at the same time. It just adds
3098 * noise and overhead, there's no discernable change in runtime
3099 * over using system_wq.
3101 queue_work(system_unbound_wq, &ctx->exit_work);
3104 static int io_uring_release(struct inode *inode, struct file *file)
3106 struct io_ring_ctx *ctx = file->private_data;
3108 file->private_data = NULL;
3109 io_ring_ctx_wait_and_kill(ctx);
3113 struct io_task_cancel {
3114 struct task_struct *task;
3118 static bool io_cancel_task_cb(struct io_wq_work *work, void *data)
3120 struct io_kiocb *req = container_of(work, struct io_kiocb, work);
3121 struct io_task_cancel *cancel = data;
3123 return io_match_task_safe(req, cancel->task, cancel->all);
3126 static __cold bool io_cancel_defer_files(struct io_ring_ctx *ctx,
3127 struct task_struct *task,
3130 struct io_defer_entry *de;
3133 spin_lock(&ctx->completion_lock);
3134 list_for_each_entry_reverse(de, &ctx->defer_list, list) {
3135 if (io_match_task_safe(de->req, task, cancel_all)) {
3136 list_cut_position(&list, &ctx->defer_list, &de->list);
3140 spin_unlock(&ctx->completion_lock);
3141 if (list_empty(&list))
3144 while (!list_empty(&list)) {
3145 de = list_first_entry(&list, struct io_defer_entry, list);
3146 list_del_init(&de->list);
3147 io_req_task_queue_fail(de->req, -ECANCELED);
3153 static __cold bool io_uring_try_cancel_iowq(struct io_ring_ctx *ctx)
3155 struct io_tctx_node *node;
3156 enum io_wq_cancel cret;
3159 mutex_lock(&ctx->uring_lock);
3160 list_for_each_entry(node, &ctx->tctx_list, ctx_node) {
3161 struct io_uring_task *tctx = node->task->io_uring;
3164 * io_wq will stay alive while we hold uring_lock, because it's
3165 * killed after ctx nodes, which requires to take the lock.
3167 if (!tctx || !tctx->io_wq)
3169 cret = io_wq_cancel_cb(tctx->io_wq, io_cancel_ctx_cb, ctx, true);
3170 ret |= (cret != IO_WQ_CANCEL_NOTFOUND);
3172 mutex_unlock(&ctx->uring_lock);
3177 static __cold bool io_uring_try_cancel_requests(struct io_ring_ctx *ctx,
3178 struct task_struct *task,
3181 struct io_task_cancel cancel = { .task = task, .all = cancel_all, };
3182 struct io_uring_task *tctx = task ? task->io_uring : NULL;
3183 enum io_wq_cancel cret;
3186 /* set it so io_req_local_work_add() would wake us up */
3187 if (ctx->flags & IORING_SETUP_DEFER_TASKRUN) {
3188 atomic_set(&ctx->cq_wait_nr, 1);
3192 /* failed during ring init, it couldn't have issued any requests */
3197 ret |= io_uring_try_cancel_iowq(ctx);
3198 } else if (tctx && tctx->io_wq) {
3200 * Cancels requests of all rings, not only @ctx, but
3201 * it's fine as the task is in exit/exec.
3203 cret = io_wq_cancel_cb(tctx->io_wq, io_cancel_task_cb,
3205 ret |= (cret != IO_WQ_CANCEL_NOTFOUND);
3208 /* SQPOLL thread does its own polling */
3209 if ((!(ctx->flags & IORING_SETUP_SQPOLL) && cancel_all) ||
3210 (ctx->sq_data && ctx->sq_data->thread == current)) {
3211 while (!wq_list_empty(&ctx->iopoll_list)) {
3212 io_iopoll_try_reap_events(ctx);
3218 if ((ctx->flags & IORING_SETUP_DEFER_TASKRUN) &&
3219 io_allowed_defer_tw_run(ctx))
3220 ret |= io_run_local_work(ctx) > 0;
3221 ret |= io_cancel_defer_files(ctx, task, cancel_all);
3222 mutex_lock(&ctx->uring_lock);
3223 ret |= io_poll_remove_all(ctx, task, cancel_all);
3224 mutex_unlock(&ctx->uring_lock);
3225 ret |= io_kill_timeouts(ctx, task, cancel_all);
3227 ret |= io_run_task_work() > 0;
3231 static s64 tctx_inflight(struct io_uring_task *tctx, bool tracked)
3234 return atomic_read(&tctx->inflight_tracked);
3235 return percpu_counter_sum(&tctx->inflight);
3239 * Find any io_uring ctx that this task has registered or done IO on, and cancel
3240 * requests. @sqd should be not-null IFF it's an SQPOLL thread cancellation.
3242 __cold void io_uring_cancel_generic(bool cancel_all, struct io_sq_data *sqd)
3244 struct io_uring_task *tctx = current->io_uring;
3245 struct io_ring_ctx *ctx;
3246 struct io_tctx_node *node;
3247 unsigned long index;
3251 WARN_ON_ONCE(sqd && sqd->thread != current);
3253 if (!current->io_uring)
3256 io_wq_exit_start(tctx->io_wq);
3258 atomic_inc(&tctx->in_cancel);
3262 io_uring_drop_tctx_refs(current);
3263 /* read completions before cancelations */
3264 inflight = tctx_inflight(tctx, !cancel_all);
3269 xa_for_each(&tctx->xa, index, node) {
3270 /* sqpoll task will cancel all its requests */
3271 if (node->ctx->sq_data)
3273 loop |= io_uring_try_cancel_requests(node->ctx,
3274 current, cancel_all);
3277 list_for_each_entry(ctx, &sqd->ctx_list, sqd_list)
3278 loop |= io_uring_try_cancel_requests(ctx,
3288 prepare_to_wait(&tctx->wait, &wait, TASK_INTERRUPTIBLE);
3290 io_uring_drop_tctx_refs(current);
3291 xa_for_each(&tctx->xa, index, node) {
3292 if (!llist_empty(&node->ctx->work_llist)) {
3293 WARN_ON_ONCE(node->ctx->submitter_task &&
3294 node->ctx->submitter_task != current);
3299 * If we've seen completions, retry without waiting. This
3300 * avoids a race where a completion comes in before we did
3301 * prepare_to_wait().
3303 if (inflight == tctx_inflight(tctx, !cancel_all))
3306 finish_wait(&tctx->wait, &wait);
3309 io_uring_clean_tctx(tctx);
3312 * We shouldn't run task_works after cancel, so just leave
3313 * ->in_cancel set for normal exit.
3315 atomic_dec(&tctx->in_cancel);
3316 /* for exec all current's requests should be gone, kill tctx */
3317 __io_uring_free(current);
3321 void __io_uring_cancel(bool cancel_all)
3323 io_uring_cancel_generic(cancel_all, NULL);
3326 static void *io_uring_validate_mmap_request(struct file *file,
3327 loff_t pgoff, size_t sz)
3329 struct io_ring_ctx *ctx = file->private_data;
3330 loff_t offset = pgoff << PAGE_SHIFT;
3334 switch (offset & IORING_OFF_MMAP_MASK) {
3335 case IORING_OFF_SQ_RING:
3336 case IORING_OFF_CQ_RING:
3339 case IORING_OFF_SQES:
3342 case IORING_OFF_PBUF_RING: {
3345 bgid = (offset & ~IORING_OFF_MMAP_MASK) >> IORING_OFF_PBUF_SHIFT;
3346 mutex_lock(&ctx->uring_lock);
3347 ptr = io_pbuf_get_address(ctx, bgid);
3348 mutex_unlock(&ctx->uring_lock);
3350 return ERR_PTR(-EINVAL);
3354 return ERR_PTR(-EINVAL);
3357 page = virt_to_head_page(ptr);
3358 if (sz > page_size(page))
3359 return ERR_PTR(-EINVAL);
3366 static __cold int io_uring_mmap(struct file *file, struct vm_area_struct *vma)
3368 size_t sz = vma->vm_end - vma->vm_start;
3372 ptr = io_uring_validate_mmap_request(file, vma->vm_pgoff, sz);
3374 return PTR_ERR(ptr);
3376 pfn = virt_to_phys(ptr) >> PAGE_SHIFT;
3377 return remap_pfn_range(vma, vma->vm_start, pfn, sz, vma->vm_page_prot);
3380 static unsigned long io_uring_mmu_get_unmapped_area(struct file *filp,
3381 unsigned long addr, unsigned long len,
3382 unsigned long pgoff, unsigned long flags)
3384 const unsigned long mmap_end = arch_get_mmap_end(addr, len, flags);
3385 struct vm_unmapped_area_info info;
3389 * Do not allow to map to user-provided address to avoid breaking the
3390 * aliasing rules. Userspace is not able to guess the offset address of
3391 * kernel kmalloc()ed memory area.
3396 ptr = io_uring_validate_mmap_request(filp, pgoff, len);
3400 info.flags = VM_UNMAPPED_AREA_TOPDOWN;
3402 info.low_limit = max(PAGE_SIZE, mmap_min_addr);
3403 info.high_limit = arch_get_mmap_base(addr, current->mm->mmap_base);
3405 info.align_mask = PAGE_MASK & (SHM_COLOUR - 1UL);
3407 info.align_mask = PAGE_MASK & (SHMLBA - 1UL);
3409 info.align_offset = (unsigned long) ptr;
3412 * A failed mmap() very likely causes application failure,
3413 * so fall back to the bottom-up function here. This scenario
3414 * can happen with large stack limits and large mmap()
3417 addr = vm_unmapped_area(&info);
3418 if (offset_in_page(addr)) {
3420 info.low_limit = TASK_UNMAPPED_BASE;
3421 info.high_limit = mmap_end;
3422 addr = vm_unmapped_area(&info);
3428 #else /* !CONFIG_MMU */
3430 static int io_uring_mmap(struct file *file, struct vm_area_struct *vma)
3432 return is_nommu_shared_mapping(vma->vm_flags) ? 0 : -EINVAL;
3435 static unsigned int io_uring_nommu_mmap_capabilities(struct file *file)
3437 return NOMMU_MAP_DIRECT | NOMMU_MAP_READ | NOMMU_MAP_WRITE;
3440 static unsigned long io_uring_nommu_get_unmapped_area(struct file *file,
3441 unsigned long addr, unsigned long len,
3442 unsigned long pgoff, unsigned long flags)
3446 ptr = io_uring_validate_mmap_request(file, pgoff, len);
3448 return PTR_ERR(ptr);
3450 return (unsigned long) ptr;
3453 #endif /* !CONFIG_MMU */
3455 static int io_validate_ext_arg(unsigned flags, const void __user *argp, size_t argsz)
3457 if (flags & IORING_ENTER_EXT_ARG) {
3458 struct io_uring_getevents_arg arg;
3460 if (argsz != sizeof(arg))
3462 if (copy_from_user(&arg, argp, sizeof(arg)))
3468 static int io_get_ext_arg(unsigned flags, const void __user *argp, size_t *argsz,
3469 struct __kernel_timespec __user **ts,
3470 const sigset_t __user **sig)
3472 struct io_uring_getevents_arg arg;
3475 * If EXT_ARG isn't set, then we have no timespec and the argp pointer
3476 * is just a pointer to the sigset_t.
3478 if (!(flags & IORING_ENTER_EXT_ARG)) {
3479 *sig = (const sigset_t __user *) argp;
3485 * EXT_ARG is set - ensure we agree on the size of it and copy in our
3486 * timespec and sigset_t pointers if good.
3488 if (*argsz != sizeof(arg))
3490 if (copy_from_user(&arg, argp, sizeof(arg)))
3494 *sig = u64_to_user_ptr(arg.sigmask);
3495 *argsz = arg.sigmask_sz;
3496 *ts = u64_to_user_ptr(arg.ts);
3500 SYSCALL_DEFINE6(io_uring_enter, unsigned int, fd, u32, to_submit,
3501 u32, min_complete, u32, flags, const void __user *, argp,
3504 struct io_ring_ctx *ctx;
3508 if (unlikely(flags & ~(IORING_ENTER_GETEVENTS | IORING_ENTER_SQ_WAKEUP |
3509 IORING_ENTER_SQ_WAIT | IORING_ENTER_EXT_ARG |
3510 IORING_ENTER_REGISTERED_RING)))
3514 * Ring fd has been registered via IORING_REGISTER_RING_FDS, we
3515 * need only dereference our task private array to find it.
3517 if (flags & IORING_ENTER_REGISTERED_RING) {
3518 struct io_uring_task *tctx = current->io_uring;
3520 if (unlikely(!tctx || fd >= IO_RINGFD_REG_MAX))
3522 fd = array_index_nospec(fd, IO_RINGFD_REG_MAX);
3523 f.file = tctx->registered_rings[fd];
3525 if (unlikely(!f.file))
3529 if (unlikely(!f.file))
3532 if (unlikely(!io_is_uring_fops(f.file)))
3536 ctx = f.file->private_data;
3538 if (unlikely(ctx->flags & IORING_SETUP_R_DISABLED))
3542 * For SQ polling, the thread will do all submissions and completions.
3543 * Just return the requested submit count, and wake the thread if
3547 if (ctx->flags & IORING_SETUP_SQPOLL) {
3548 io_cqring_overflow_flush(ctx);
3550 if (unlikely(ctx->sq_data->thread == NULL)) {
3554 if (flags & IORING_ENTER_SQ_WAKEUP)
3555 wake_up(&ctx->sq_data->wait);
3556 if (flags & IORING_ENTER_SQ_WAIT)
3557 io_sqpoll_wait_sq(ctx);
3560 } else if (to_submit) {
3561 ret = io_uring_add_tctx_node(ctx);
3565 mutex_lock(&ctx->uring_lock);
3566 ret = io_submit_sqes(ctx, to_submit);
3567 if (ret != to_submit) {
3568 mutex_unlock(&ctx->uring_lock);
3571 if (flags & IORING_ENTER_GETEVENTS) {
3572 if (ctx->syscall_iopoll)
3575 * Ignore errors, we'll soon call io_cqring_wait() and
3576 * it should handle ownership problems if any.
3578 if (ctx->flags & IORING_SETUP_DEFER_TASKRUN)
3579 (void)io_run_local_work_locked(ctx);
3581 mutex_unlock(&ctx->uring_lock);
3584 if (flags & IORING_ENTER_GETEVENTS) {
3587 if (ctx->syscall_iopoll) {
3589 * We disallow the app entering submit/complete with
3590 * polling, but we still need to lock the ring to
3591 * prevent racing with polled issue that got punted to
3594 mutex_lock(&ctx->uring_lock);
3596 ret2 = io_validate_ext_arg(flags, argp, argsz);
3597 if (likely(!ret2)) {
3598 min_complete = min(min_complete,
3600 ret2 = io_iopoll_check(ctx, min_complete);
3602 mutex_unlock(&ctx->uring_lock);
3604 const sigset_t __user *sig;
3605 struct __kernel_timespec __user *ts;
3607 ret2 = io_get_ext_arg(flags, argp, &argsz, &ts, &sig);
3608 if (likely(!ret2)) {
3609 min_complete = min(min_complete,
3611 ret2 = io_cqring_wait(ctx, min_complete, sig,
3620 * EBADR indicates that one or more CQE were dropped.
3621 * Once the user has been informed we can clear the bit
3622 * as they are obviously ok with those drops.
3624 if (unlikely(ret2 == -EBADR))
3625 clear_bit(IO_CHECK_CQ_DROPPED_BIT,
3634 static const struct file_operations io_uring_fops = {
3635 .release = io_uring_release,
3636 .mmap = io_uring_mmap,
3638 .get_unmapped_area = io_uring_nommu_get_unmapped_area,
3639 .mmap_capabilities = io_uring_nommu_mmap_capabilities,
3641 .get_unmapped_area = io_uring_mmu_get_unmapped_area,
3643 .poll = io_uring_poll,
3644 #ifdef CONFIG_PROC_FS
3645 .show_fdinfo = io_uring_show_fdinfo,
3649 bool io_is_uring_fops(struct file *file)
3651 return file->f_op == &io_uring_fops;
3654 static __cold int io_allocate_scq_urings(struct io_ring_ctx *ctx,
3655 struct io_uring_params *p)
3657 struct io_rings *rings;
3658 size_t size, sq_array_offset;
3661 /* make sure these are sane, as we already accounted them */
3662 ctx->sq_entries = p->sq_entries;
3663 ctx->cq_entries = p->cq_entries;
3665 size = rings_size(ctx, p->sq_entries, p->cq_entries, &sq_array_offset);
3666 if (size == SIZE_MAX)
3669 rings = io_mem_alloc(size);
3671 return PTR_ERR(rings);
3674 ctx->sq_array = (u32 *)((char *)rings + sq_array_offset);
3675 rings->sq_ring_mask = p->sq_entries - 1;
3676 rings->cq_ring_mask = p->cq_entries - 1;
3677 rings->sq_ring_entries = p->sq_entries;
3678 rings->cq_ring_entries = p->cq_entries;
3680 if (p->flags & IORING_SETUP_SQE128)
3681 size = array_size(2 * sizeof(struct io_uring_sqe), p->sq_entries);
3683 size = array_size(sizeof(struct io_uring_sqe), p->sq_entries);
3684 if (size == SIZE_MAX) {
3685 io_mem_free(ctx->rings);
3690 ptr = io_mem_alloc(size);
3692 io_mem_free(ctx->rings);
3694 return PTR_ERR(ptr);
3701 static int io_uring_install_fd(struct io_ring_ctx *ctx, struct file *file)
3705 fd = get_unused_fd_flags(O_RDWR | O_CLOEXEC);
3709 ret = __io_uring_add_tctx_node(ctx);
3714 fd_install(fd, file);
3719 * Allocate an anonymous fd, this is what constitutes the application
3720 * visible backing of an io_uring instance. The application mmaps this
3721 * fd to gain access to the SQ/CQ ring details. If UNIX sockets are enabled,
3722 * we have to tie this fd to a socket for file garbage collection purposes.
3724 static struct file *io_uring_get_file(struct io_ring_ctx *ctx)
3727 #if defined(CONFIG_UNIX)
3730 ret = sock_create_kern(&init_net, PF_UNIX, SOCK_RAW, IPPROTO_IP,
3733 return ERR_PTR(ret);
3736 file = anon_inode_getfile_secure("[io_uring]", &io_uring_fops, ctx,
3737 O_RDWR | O_CLOEXEC, NULL);
3738 #if defined(CONFIG_UNIX)
3740 sock_release(ctx->ring_sock);
3741 ctx->ring_sock = NULL;
3743 ctx->ring_sock->file = file;
3749 static __cold int io_uring_create(unsigned entries, struct io_uring_params *p,
3750 struct io_uring_params __user *params)
3752 struct io_ring_ctx *ctx;
3758 if (entries > IORING_MAX_ENTRIES) {
3759 if (!(p->flags & IORING_SETUP_CLAMP))
3761 entries = IORING_MAX_ENTRIES;
3765 * Use twice as many entries for the CQ ring. It's possible for the
3766 * application to drive a higher depth than the size of the SQ ring,
3767 * since the sqes are only used at submission time. This allows for
3768 * some flexibility in overcommitting a bit. If the application has
3769 * set IORING_SETUP_CQSIZE, it will have passed in the desired number
3770 * of CQ ring entries manually.
3772 p->sq_entries = roundup_pow_of_two(entries);
3773 if (p->flags & IORING_SETUP_CQSIZE) {
3775 * If IORING_SETUP_CQSIZE is set, we do the same roundup
3776 * to a power-of-two, if it isn't already. We do NOT impose
3777 * any cq vs sq ring sizing.
3781 if (p->cq_entries > IORING_MAX_CQ_ENTRIES) {
3782 if (!(p->flags & IORING_SETUP_CLAMP))
3784 p->cq_entries = IORING_MAX_CQ_ENTRIES;
3786 p->cq_entries = roundup_pow_of_two(p->cq_entries);
3787 if (p->cq_entries < p->sq_entries)
3790 p->cq_entries = 2 * p->sq_entries;
3793 ctx = io_ring_ctx_alloc(p);
3797 if ((ctx->flags & IORING_SETUP_DEFER_TASKRUN) &&
3798 !(ctx->flags & IORING_SETUP_IOPOLL) &&
3799 !(ctx->flags & IORING_SETUP_SQPOLL))
3800 ctx->task_complete = true;
3803 * lazy poll_wq activation relies on ->task_complete for synchronisation
3804 * purposes, see io_activate_pollwq()
3806 if (!ctx->task_complete)
3807 ctx->poll_activated = true;
3810 * When SETUP_IOPOLL and SETUP_SQPOLL are both enabled, user
3811 * space applications don't need to do io completion events
3812 * polling again, they can rely on io_sq_thread to do polling
3813 * work, which can reduce cpu usage and uring_lock contention.
3815 if (ctx->flags & IORING_SETUP_IOPOLL &&
3816 !(ctx->flags & IORING_SETUP_SQPOLL))
3817 ctx->syscall_iopoll = 1;
3819 ctx->compat = in_compat_syscall();
3820 if (!capable(CAP_IPC_LOCK))
3821 ctx->user = get_uid(current_user());
3824 * For SQPOLL, we just need a wakeup, always. For !SQPOLL, if
3825 * COOP_TASKRUN is set, then IPIs are never needed by the app.
3828 if (ctx->flags & IORING_SETUP_SQPOLL) {
3829 /* IPI related flags don't make sense with SQPOLL */
3830 if (ctx->flags & (IORING_SETUP_COOP_TASKRUN |
3831 IORING_SETUP_TASKRUN_FLAG |
3832 IORING_SETUP_DEFER_TASKRUN))
3834 ctx->notify_method = TWA_SIGNAL_NO_IPI;
3835 } else if (ctx->flags & IORING_SETUP_COOP_TASKRUN) {
3836 ctx->notify_method = TWA_SIGNAL_NO_IPI;
3838 if (ctx->flags & IORING_SETUP_TASKRUN_FLAG &&
3839 !(ctx->flags & IORING_SETUP_DEFER_TASKRUN))
3841 ctx->notify_method = TWA_SIGNAL;
3845 * For DEFER_TASKRUN we require the completion task to be the same as the
3846 * submission task. This implies that there is only one submitter, so enforce
3849 if (ctx->flags & IORING_SETUP_DEFER_TASKRUN &&
3850 !(ctx->flags & IORING_SETUP_SINGLE_ISSUER)) {
3855 * This is just grabbed for accounting purposes. When a process exits,
3856 * the mm is exited and dropped before the files, hence we need to hang
3857 * on to this mm purely for the purposes of being able to unaccount
3858 * memory (locked/pinned vm). It's not used for anything else.
3860 mmgrab(current->mm);
3861 ctx->mm_account = current->mm;
3863 ret = io_allocate_scq_urings(ctx, p);
3867 ret = io_sq_offload_create(ctx, p);
3871 ret = io_rsrc_init(ctx);
3875 p->sq_off.head = offsetof(struct io_rings, sq.head);
3876 p->sq_off.tail = offsetof(struct io_rings, sq.tail);
3877 p->sq_off.ring_mask = offsetof(struct io_rings, sq_ring_mask);
3878 p->sq_off.ring_entries = offsetof(struct io_rings, sq_ring_entries);
3879 p->sq_off.flags = offsetof(struct io_rings, sq_flags);
3880 p->sq_off.dropped = offsetof(struct io_rings, sq_dropped);
3881 p->sq_off.array = (char *)ctx->sq_array - (char *)ctx->rings;
3882 p->sq_off.resv1 = 0;
3883 p->sq_off.resv2 = 0;
3885 p->cq_off.head = offsetof(struct io_rings, cq.head);
3886 p->cq_off.tail = offsetof(struct io_rings, cq.tail);
3887 p->cq_off.ring_mask = offsetof(struct io_rings, cq_ring_mask);
3888 p->cq_off.ring_entries = offsetof(struct io_rings, cq_ring_entries);
3889 p->cq_off.overflow = offsetof(struct io_rings, cq_overflow);
3890 p->cq_off.cqes = offsetof(struct io_rings, cqes);
3891 p->cq_off.flags = offsetof(struct io_rings, cq_flags);
3892 p->cq_off.resv1 = 0;
3893 p->cq_off.resv2 = 0;
3895 p->features = IORING_FEAT_SINGLE_MMAP | IORING_FEAT_NODROP |
3896 IORING_FEAT_SUBMIT_STABLE | IORING_FEAT_RW_CUR_POS |
3897 IORING_FEAT_CUR_PERSONALITY | IORING_FEAT_FAST_POLL |
3898 IORING_FEAT_POLL_32BITS | IORING_FEAT_SQPOLL_NONFIXED |
3899 IORING_FEAT_EXT_ARG | IORING_FEAT_NATIVE_WORKERS |
3900 IORING_FEAT_RSRC_TAGS | IORING_FEAT_CQE_SKIP |
3901 IORING_FEAT_LINKED_FILE | IORING_FEAT_REG_REG_RING;
3903 if (copy_to_user(params, p, sizeof(*p))) {
3908 if (ctx->flags & IORING_SETUP_SINGLE_ISSUER
3909 && !(ctx->flags & IORING_SETUP_R_DISABLED))
3910 WRITE_ONCE(ctx->submitter_task, get_task_struct(current));
3912 file = io_uring_get_file(ctx);
3914 ret = PTR_ERR(file);
3919 * Install ring fd as the very last thing, so we don't risk someone
3920 * having closed it before we finish setup
3922 ret = io_uring_install_fd(ctx, file);
3924 /* fput will clean it up */
3929 trace_io_uring_create(ret, ctx, p->sq_entries, p->cq_entries, p->flags);
3932 io_ring_ctx_wait_and_kill(ctx);
3937 * Sets up an aio uring context, and returns the fd. Applications asks for a
3938 * ring size, we return the actual sq/cq ring sizes (among other things) in the
3939 * params structure passed in.
3941 static long io_uring_setup(u32 entries, struct io_uring_params __user *params)
3943 struct io_uring_params p;
3946 if (copy_from_user(&p, params, sizeof(p)))
3948 for (i = 0; i < ARRAY_SIZE(p.resv); i++) {
3953 if (p.flags & ~(IORING_SETUP_IOPOLL | IORING_SETUP_SQPOLL |
3954 IORING_SETUP_SQ_AFF | IORING_SETUP_CQSIZE |
3955 IORING_SETUP_CLAMP | IORING_SETUP_ATTACH_WQ |
3956 IORING_SETUP_R_DISABLED | IORING_SETUP_SUBMIT_ALL |
3957 IORING_SETUP_COOP_TASKRUN | IORING_SETUP_TASKRUN_FLAG |
3958 IORING_SETUP_SQE128 | IORING_SETUP_CQE32 |
3959 IORING_SETUP_SINGLE_ISSUER | IORING_SETUP_DEFER_TASKRUN))
3962 return io_uring_create(entries, &p, params);
3965 SYSCALL_DEFINE2(io_uring_setup, u32, entries,
3966 struct io_uring_params __user *, params)
3968 return io_uring_setup(entries, params);
3971 static __cold int io_probe(struct io_ring_ctx *ctx, void __user *arg,
3974 struct io_uring_probe *p;
3978 size = struct_size(p, ops, nr_args);
3979 if (size == SIZE_MAX)
3981 p = kzalloc(size, GFP_KERNEL);
3986 if (copy_from_user(p, arg, size))
3989 if (memchr_inv(p, 0, size))
3992 p->last_op = IORING_OP_LAST - 1;
3993 if (nr_args > IORING_OP_LAST)
3994 nr_args = IORING_OP_LAST;
3996 for (i = 0; i < nr_args; i++) {
3998 if (!io_issue_defs[i].not_supported)
3999 p->ops[i].flags = IO_URING_OP_SUPPORTED;
4004 if (copy_to_user(arg, p, size))
4011 static int io_register_personality(struct io_ring_ctx *ctx)
4013 const struct cred *creds;
4017 creds = get_current_cred();
4019 ret = xa_alloc_cyclic(&ctx->personalities, &id, (void *)creds,
4020 XA_LIMIT(0, USHRT_MAX), &ctx->pers_next, GFP_KERNEL);
4028 static __cold int io_register_restrictions(struct io_ring_ctx *ctx,
4029 void __user *arg, unsigned int nr_args)
4031 struct io_uring_restriction *res;
4035 /* Restrictions allowed only if rings started disabled */
4036 if (!(ctx->flags & IORING_SETUP_R_DISABLED))
4039 /* We allow only a single restrictions registration */
4040 if (ctx->restrictions.registered)
4043 if (!arg || nr_args > IORING_MAX_RESTRICTIONS)
4046 size = array_size(nr_args, sizeof(*res));
4047 if (size == SIZE_MAX)
4050 res = memdup_user(arg, size);
4052 return PTR_ERR(res);
4056 for (i = 0; i < nr_args; i++) {
4057 switch (res[i].opcode) {
4058 case IORING_RESTRICTION_REGISTER_OP:
4059 if (res[i].register_op >= IORING_REGISTER_LAST) {
4064 __set_bit(res[i].register_op,
4065 ctx->restrictions.register_op);
4067 case IORING_RESTRICTION_SQE_OP:
4068 if (res[i].sqe_op >= IORING_OP_LAST) {
4073 __set_bit(res[i].sqe_op, ctx->restrictions.sqe_op);
4075 case IORING_RESTRICTION_SQE_FLAGS_ALLOWED:
4076 ctx->restrictions.sqe_flags_allowed = res[i].sqe_flags;
4078 case IORING_RESTRICTION_SQE_FLAGS_REQUIRED:
4079 ctx->restrictions.sqe_flags_required = res[i].sqe_flags;
4088 /* Reset all restrictions if an error happened */
4090 memset(&ctx->restrictions, 0, sizeof(ctx->restrictions));
4092 ctx->restrictions.registered = true;
4098 static int io_register_enable_rings(struct io_ring_ctx *ctx)
4100 if (!(ctx->flags & IORING_SETUP_R_DISABLED))
4103 if (ctx->flags & IORING_SETUP_SINGLE_ISSUER && !ctx->submitter_task) {
4104 WRITE_ONCE(ctx->submitter_task, get_task_struct(current));
4106 * Lazy activation attempts would fail if it was polled before
4107 * submitter_task is set.
4109 if (wq_has_sleeper(&ctx->poll_wq))
4110 io_activate_pollwq(ctx);
4113 if (ctx->restrictions.registered)
4114 ctx->restricted = 1;
4116 ctx->flags &= ~IORING_SETUP_R_DISABLED;
4117 if (ctx->sq_data && wq_has_sleeper(&ctx->sq_data->wait))
4118 wake_up(&ctx->sq_data->wait);
4122 static __cold int io_register_iowq_aff(struct io_ring_ctx *ctx,
4123 void __user *arg, unsigned len)
4125 struct io_uring_task *tctx = current->io_uring;
4126 cpumask_var_t new_mask;
4129 if (!tctx || !tctx->io_wq)
4132 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
4135 cpumask_clear(new_mask);
4136 if (len > cpumask_size())
4137 len = cpumask_size();
4139 if (in_compat_syscall()) {
4140 ret = compat_get_bitmap(cpumask_bits(new_mask),
4141 (const compat_ulong_t __user *)arg,
4142 len * 8 /* CHAR_BIT */);
4144 ret = copy_from_user(new_mask, arg, len);
4148 free_cpumask_var(new_mask);
4152 ret = io_wq_cpu_affinity(tctx->io_wq, new_mask);
4153 free_cpumask_var(new_mask);
4157 static __cold int io_unregister_iowq_aff(struct io_ring_ctx *ctx)
4159 struct io_uring_task *tctx = current->io_uring;
4161 if (!tctx || !tctx->io_wq)
4164 return io_wq_cpu_affinity(tctx->io_wq, NULL);
4167 static __cold int io_register_iowq_max_workers(struct io_ring_ctx *ctx,
4169 __must_hold(&ctx->uring_lock)
4171 struct io_tctx_node *node;
4172 struct io_uring_task *tctx = NULL;
4173 struct io_sq_data *sqd = NULL;
4177 if (copy_from_user(new_count, arg, sizeof(new_count)))
4179 for (i = 0; i < ARRAY_SIZE(new_count); i++)
4180 if (new_count[i] > INT_MAX)
4183 if (ctx->flags & IORING_SETUP_SQPOLL) {
4187 * Observe the correct sqd->lock -> ctx->uring_lock
4188 * ordering. Fine to drop uring_lock here, we hold
4191 refcount_inc(&sqd->refs);
4192 mutex_unlock(&ctx->uring_lock);
4193 mutex_lock(&sqd->lock);
4194 mutex_lock(&ctx->uring_lock);
4196 tctx = sqd->thread->io_uring;
4199 tctx = current->io_uring;
4202 BUILD_BUG_ON(sizeof(new_count) != sizeof(ctx->iowq_limits));
4204 for (i = 0; i < ARRAY_SIZE(new_count); i++)
4206 ctx->iowq_limits[i] = new_count[i];
4207 ctx->iowq_limits_set = true;
4209 if (tctx && tctx->io_wq) {
4210 ret = io_wq_max_workers(tctx->io_wq, new_count);
4214 memset(new_count, 0, sizeof(new_count));
4218 mutex_unlock(&sqd->lock);
4219 io_put_sq_data(sqd);
4222 if (copy_to_user(arg, new_count, sizeof(new_count)))
4225 /* that's it for SQPOLL, only the SQPOLL task creates requests */
4229 /* now propagate the restriction to all registered users */
4230 list_for_each_entry(node, &ctx->tctx_list, ctx_node) {
4231 struct io_uring_task *tctx = node->task->io_uring;
4233 if (WARN_ON_ONCE(!tctx->io_wq))
4236 for (i = 0; i < ARRAY_SIZE(new_count); i++)
4237 new_count[i] = ctx->iowq_limits[i];
4238 /* ignore errors, it always returns zero anyway */
4239 (void)io_wq_max_workers(tctx->io_wq, new_count);
4244 mutex_unlock(&sqd->lock);
4245 io_put_sq_data(sqd);
4250 static int __io_uring_register(struct io_ring_ctx *ctx, unsigned opcode,
4251 void __user *arg, unsigned nr_args)
4252 __releases(ctx->uring_lock)
4253 __acquires(ctx->uring_lock)
4258 * We don't quiesce the refs for register anymore and so it can't be
4259 * dying as we're holding a file ref here.
4261 if (WARN_ON_ONCE(percpu_ref_is_dying(&ctx->refs)))
4264 if (ctx->submitter_task && ctx->submitter_task != current)
4267 if (ctx->restricted) {
4268 opcode = array_index_nospec(opcode, IORING_REGISTER_LAST);
4269 if (!test_bit(opcode, ctx->restrictions.register_op))
4274 case IORING_REGISTER_BUFFERS:
4278 ret = io_sqe_buffers_register(ctx, arg, nr_args, NULL);
4280 case IORING_UNREGISTER_BUFFERS:
4284 ret = io_sqe_buffers_unregister(ctx);
4286 case IORING_REGISTER_FILES:
4290 ret = io_sqe_files_register(ctx, arg, nr_args, NULL);
4292 case IORING_UNREGISTER_FILES:
4296 ret = io_sqe_files_unregister(ctx);
4298 case IORING_REGISTER_FILES_UPDATE:
4299 ret = io_register_files_update(ctx, arg, nr_args);
4301 case IORING_REGISTER_EVENTFD:
4305 ret = io_eventfd_register(ctx, arg, 0);
4307 case IORING_REGISTER_EVENTFD_ASYNC:
4311 ret = io_eventfd_register(ctx, arg, 1);
4313 case IORING_UNREGISTER_EVENTFD:
4317 ret = io_eventfd_unregister(ctx);
4319 case IORING_REGISTER_PROBE:
4321 if (!arg || nr_args > 256)
4323 ret = io_probe(ctx, arg, nr_args);
4325 case IORING_REGISTER_PERSONALITY:
4329 ret = io_register_personality(ctx);
4331 case IORING_UNREGISTER_PERSONALITY:
4335 ret = io_unregister_personality(ctx, nr_args);
4337 case IORING_REGISTER_ENABLE_RINGS:
4341 ret = io_register_enable_rings(ctx);
4343 case IORING_REGISTER_RESTRICTIONS:
4344 ret = io_register_restrictions(ctx, arg, nr_args);
4346 case IORING_REGISTER_FILES2:
4347 ret = io_register_rsrc(ctx, arg, nr_args, IORING_RSRC_FILE);
4349 case IORING_REGISTER_FILES_UPDATE2:
4350 ret = io_register_rsrc_update(ctx, arg, nr_args,
4353 case IORING_REGISTER_BUFFERS2:
4354 ret = io_register_rsrc(ctx, arg, nr_args, IORING_RSRC_BUFFER);
4356 case IORING_REGISTER_BUFFERS_UPDATE:
4357 ret = io_register_rsrc_update(ctx, arg, nr_args,
4358 IORING_RSRC_BUFFER);
4360 case IORING_REGISTER_IOWQ_AFF:
4362 if (!arg || !nr_args)
4364 ret = io_register_iowq_aff(ctx, arg, nr_args);
4366 case IORING_UNREGISTER_IOWQ_AFF:
4370 ret = io_unregister_iowq_aff(ctx);
4372 case IORING_REGISTER_IOWQ_MAX_WORKERS:
4374 if (!arg || nr_args != 2)
4376 ret = io_register_iowq_max_workers(ctx, arg);
4378 case IORING_REGISTER_RING_FDS:
4379 ret = io_ringfd_register(ctx, arg, nr_args);
4381 case IORING_UNREGISTER_RING_FDS:
4382 ret = io_ringfd_unregister(ctx, arg, nr_args);
4384 case IORING_REGISTER_PBUF_RING:
4386 if (!arg || nr_args != 1)
4388 ret = io_register_pbuf_ring(ctx, arg);
4390 case IORING_UNREGISTER_PBUF_RING:
4392 if (!arg || nr_args != 1)
4394 ret = io_unregister_pbuf_ring(ctx, arg);
4396 case IORING_REGISTER_SYNC_CANCEL:
4398 if (!arg || nr_args != 1)
4400 ret = io_sync_cancel(ctx, arg);
4402 case IORING_REGISTER_FILE_ALLOC_RANGE:
4404 if (!arg || nr_args)
4406 ret = io_register_file_alloc_range(ctx, arg);
4416 SYSCALL_DEFINE4(io_uring_register, unsigned int, fd, unsigned int, opcode,
4417 void __user *, arg, unsigned int, nr_args)
4419 struct io_ring_ctx *ctx;
4422 bool use_registered_ring;
4424 use_registered_ring = !!(opcode & IORING_REGISTER_USE_REGISTERED_RING);
4425 opcode &= ~IORING_REGISTER_USE_REGISTERED_RING;
4427 if (opcode >= IORING_REGISTER_LAST)
4430 if (use_registered_ring) {
4432 * Ring fd has been registered via IORING_REGISTER_RING_FDS, we
4433 * need only dereference our task private array to find it.
4435 struct io_uring_task *tctx = current->io_uring;
4437 if (unlikely(!tctx || fd >= IO_RINGFD_REG_MAX))
4439 fd = array_index_nospec(fd, IO_RINGFD_REG_MAX);
4440 f.file = tctx->registered_rings[fd];
4442 if (unlikely(!f.file))
4446 if (unlikely(!f.file))
4449 if (!io_is_uring_fops(f.file))
4453 ctx = f.file->private_data;
4455 mutex_lock(&ctx->uring_lock);
4456 ret = __io_uring_register(ctx, opcode, arg, nr_args);
4457 mutex_unlock(&ctx->uring_lock);
4458 trace_io_uring_register(ctx, opcode, ctx->nr_user_files, ctx->nr_user_bufs, ret);
4464 static int __init io_uring_init(void)
4466 #define __BUILD_BUG_VERIFY_OFFSET_SIZE(stype, eoffset, esize, ename) do { \
4467 BUILD_BUG_ON(offsetof(stype, ename) != eoffset); \
4468 BUILD_BUG_ON(sizeof_field(stype, ename) != esize); \
4471 #define BUILD_BUG_SQE_ELEM(eoffset, etype, ename) \
4472 __BUILD_BUG_VERIFY_OFFSET_SIZE(struct io_uring_sqe, eoffset, sizeof(etype), ename)
4473 #define BUILD_BUG_SQE_ELEM_SIZE(eoffset, esize, ename) \
4474 __BUILD_BUG_VERIFY_OFFSET_SIZE(struct io_uring_sqe, eoffset, esize, ename)
4475 BUILD_BUG_ON(sizeof(struct io_uring_sqe) != 64);
4476 BUILD_BUG_SQE_ELEM(0, __u8, opcode);
4477 BUILD_BUG_SQE_ELEM(1, __u8, flags);
4478 BUILD_BUG_SQE_ELEM(2, __u16, ioprio);
4479 BUILD_BUG_SQE_ELEM(4, __s32, fd);
4480 BUILD_BUG_SQE_ELEM(8, __u64, off);
4481 BUILD_BUG_SQE_ELEM(8, __u64, addr2);
4482 BUILD_BUG_SQE_ELEM(8, __u32, cmd_op);
4483 BUILD_BUG_SQE_ELEM(12, __u32, __pad1);
4484 BUILD_BUG_SQE_ELEM(16, __u64, addr);
4485 BUILD_BUG_SQE_ELEM(16, __u64, splice_off_in);
4486 BUILD_BUG_SQE_ELEM(24, __u32, len);
4487 BUILD_BUG_SQE_ELEM(28, __kernel_rwf_t, rw_flags);
4488 BUILD_BUG_SQE_ELEM(28, /* compat */ int, rw_flags);
4489 BUILD_BUG_SQE_ELEM(28, /* compat */ __u32, rw_flags);
4490 BUILD_BUG_SQE_ELEM(28, __u32, fsync_flags);
4491 BUILD_BUG_SQE_ELEM(28, /* compat */ __u16, poll_events);
4492 BUILD_BUG_SQE_ELEM(28, __u32, poll32_events);
4493 BUILD_BUG_SQE_ELEM(28, __u32, sync_range_flags);
4494 BUILD_BUG_SQE_ELEM(28, __u32, msg_flags);
4495 BUILD_BUG_SQE_ELEM(28, __u32, timeout_flags);
4496 BUILD_BUG_SQE_ELEM(28, __u32, accept_flags);
4497 BUILD_BUG_SQE_ELEM(28, __u32, cancel_flags);
4498 BUILD_BUG_SQE_ELEM(28, __u32, open_flags);
4499 BUILD_BUG_SQE_ELEM(28, __u32, statx_flags);
4500 BUILD_BUG_SQE_ELEM(28, __u32, fadvise_advice);
4501 BUILD_BUG_SQE_ELEM(28, __u32, splice_flags);
4502 BUILD_BUG_SQE_ELEM(28, __u32, rename_flags);
4503 BUILD_BUG_SQE_ELEM(28, __u32, unlink_flags);
4504 BUILD_BUG_SQE_ELEM(28, __u32, hardlink_flags);
4505 BUILD_BUG_SQE_ELEM(28, __u32, xattr_flags);
4506 BUILD_BUG_SQE_ELEM(28, __u32, msg_ring_flags);
4507 BUILD_BUG_SQE_ELEM(32, __u64, user_data);
4508 BUILD_BUG_SQE_ELEM(40, __u16, buf_index);
4509 BUILD_BUG_SQE_ELEM(40, __u16, buf_group);
4510 BUILD_BUG_SQE_ELEM(42, __u16, personality);
4511 BUILD_BUG_SQE_ELEM(44, __s32, splice_fd_in);
4512 BUILD_BUG_SQE_ELEM(44, __u32, file_index);
4513 BUILD_BUG_SQE_ELEM(44, __u16, addr_len);
4514 BUILD_BUG_SQE_ELEM(46, __u16, __pad3[0]);
4515 BUILD_BUG_SQE_ELEM(48, __u64, addr3);
4516 BUILD_BUG_SQE_ELEM_SIZE(48, 0, cmd);
4517 BUILD_BUG_SQE_ELEM(56, __u64, __pad2);
4519 BUILD_BUG_ON(sizeof(struct io_uring_files_update) !=
4520 sizeof(struct io_uring_rsrc_update));
4521 BUILD_BUG_ON(sizeof(struct io_uring_rsrc_update) >
4522 sizeof(struct io_uring_rsrc_update2));
4524 /* ->buf_index is u16 */
4525 BUILD_BUG_ON(offsetof(struct io_uring_buf_ring, bufs) != 0);
4526 BUILD_BUG_ON(offsetof(struct io_uring_buf, resv) !=
4527 offsetof(struct io_uring_buf_ring, tail));
4529 /* should fit into one byte */
4530 BUILD_BUG_ON(SQE_VALID_FLAGS >= (1 << 8));
4531 BUILD_BUG_ON(SQE_COMMON_FLAGS >= (1 << 8));
4532 BUILD_BUG_ON((SQE_VALID_FLAGS | SQE_COMMON_FLAGS) != SQE_VALID_FLAGS);
4534 BUILD_BUG_ON(__REQ_F_LAST_BIT > 8 * sizeof(int));
4536 BUILD_BUG_ON(sizeof(atomic_t) != sizeof(u32));
4538 io_uring_optable_init();
4540 req_cachep = KMEM_CACHE(io_kiocb, SLAB_HWCACHE_ALIGN | SLAB_PANIC |
4541 SLAB_ACCOUNT | SLAB_TYPESAFE_BY_RCU);
4544 __initcall(io_uring_init);