1 // SPDX-License-Identifier: GPL-2.0
3 * Shared application/kernel submission and completion ring pairs, for
4 * supporting fast/efficient IO.
6 * A note on the read/write ordering memory barriers that are matched between
7 * the application and kernel side.
9 * After the application reads the CQ ring tail, it must use an
10 * appropriate smp_rmb() to pair with the smp_wmb() the kernel uses
11 * before writing the tail (using smp_load_acquire to read the tail will
12 * do). It also needs a smp_mb() before updating CQ head (ordering the
13 * entry load(s) with the head store), pairing with an implicit barrier
14 * through a control-dependency in io_get_cqe (smp_store_release to
15 * store head will do). Failure to do so could lead to reading invalid
18 * Likewise, the application must use an appropriate smp_wmb() before
19 * writing the SQ tail (ordering SQ entry stores with the tail store),
20 * which pairs with smp_load_acquire in io_get_sqring (smp_store_release
21 * to store the tail will do). And it needs a barrier ordering the SQ
22 * head load before writing new SQ entries (smp_load_acquire to read
25 * When using the SQ poll thread (IORING_SETUP_SQPOLL), the application
26 * needs to check the SQ flags for IORING_SQ_NEED_WAKEUP *after*
27 * updating the SQ tail; a full memory barrier smp_mb() is needed
30 * Also see the examples in the liburing library:
32 * git://git.kernel.dk/liburing
34 * io_uring also uses READ/WRITE_ONCE() for _any_ store or load that happens
35 * from data shared between the kernel and application. This is done both
36 * for ordering purposes, but also to ensure that once a value is loaded from
37 * data that the application could potentially modify, it remains stable.
39 * Copyright (C) 2018-2019 Jens Axboe
40 * Copyright (c) 2018-2019 Christoph Hellwig
42 #include <linux/kernel.h>
43 #include <linux/init.h>
44 #include <linux/errno.h>
45 #include <linux/syscalls.h>
46 #include <net/compat.h>
47 #include <linux/refcount.h>
48 #include <linux/uio.h>
49 #include <linux/bits.h>
51 #include <linux/sched/signal.h>
53 #include <linux/file.h>
54 #include <linux/fdtable.h>
56 #include <linux/mman.h>
57 #include <linux/percpu.h>
58 #include <linux/slab.h>
59 #include <linux/bvec.h>
60 #include <linux/net.h>
62 #include <net/af_unix.h>
64 #include <linux/anon_inodes.h>
65 #include <linux/sched/mm.h>
66 #include <linux/uaccess.h>
67 #include <linux/nospec.h>
68 #include <linux/highmem.h>
69 #include <linux/fsnotify.h>
70 #include <linux/fadvise.h>
71 #include <linux/task_work.h>
72 #include <linux/io_uring.h>
73 #include <linux/audit.h>
74 #include <linux/security.h>
75 #include <asm/shmparam.h>
77 #define CREATE_TRACE_POINTS
78 #include <trace/events/io_uring.h>
80 #include <uapi/linux/io_uring.h>
99 #include "alloc_cache.h"
101 #define IORING_MAX_ENTRIES 32768
102 #define IORING_MAX_CQ_ENTRIES (2 * IORING_MAX_ENTRIES)
104 #define IORING_MAX_RESTRICTIONS (IORING_RESTRICTION_LAST + \
105 IORING_REGISTER_LAST + IORING_OP_LAST)
107 #define SQE_COMMON_FLAGS (IOSQE_FIXED_FILE | IOSQE_IO_LINK | \
108 IOSQE_IO_HARDLINK | IOSQE_ASYNC)
110 #define SQE_VALID_FLAGS (SQE_COMMON_FLAGS | IOSQE_BUFFER_SELECT | \
111 IOSQE_IO_DRAIN | IOSQE_CQE_SKIP_SUCCESS)
113 #define IO_REQ_CLEAN_FLAGS (REQ_F_BUFFER_SELECTED | REQ_F_NEED_CLEANUP | \
114 REQ_F_POLLED | REQ_F_INFLIGHT | REQ_F_CREDS | \
117 #define IO_REQ_CLEAN_SLOW_FLAGS (REQ_F_REFCOUNT | REQ_F_LINK | REQ_F_HARDLINK |\
120 #define IO_TCTX_REFS_CACHE_NR (1U << 10)
122 #define IO_COMPL_BATCH 32
123 #define IO_REQ_ALLOC_BATCH 8
126 IO_CHECK_CQ_OVERFLOW_BIT,
127 IO_CHECK_CQ_DROPPED_BIT,
131 IO_EVENTFD_OP_SIGNAL_BIT,
132 IO_EVENTFD_OP_FREE_BIT,
135 struct io_defer_entry {
136 struct list_head list;
137 struct io_kiocb *req;
141 /* requests with any of those set should undergo io_disarm_next() */
142 #define IO_DISARM_MASK (REQ_F_ARM_LTIMEOUT | REQ_F_LINK_TIMEOUT | REQ_F_FAIL)
143 #define IO_REQ_LINK_FLAGS (REQ_F_LINK | REQ_F_HARDLINK)
145 static bool io_uring_try_cancel_requests(struct io_ring_ctx *ctx,
146 struct task_struct *task,
149 static void io_queue_sqe(struct io_kiocb *req);
151 struct kmem_cache *req_cachep;
153 static int __read_mostly sysctl_io_uring_disabled;
154 static int __read_mostly sysctl_io_uring_group = -1;
157 static struct ctl_table kernel_io_uring_disabled_table[] = {
159 .procname = "io_uring_disabled",
160 .data = &sysctl_io_uring_disabled,
161 .maxlen = sizeof(sysctl_io_uring_disabled),
163 .proc_handler = proc_dointvec_minmax,
164 .extra1 = SYSCTL_ZERO,
165 .extra2 = SYSCTL_TWO,
168 .procname = "io_uring_group",
169 .data = &sysctl_io_uring_group,
170 .maxlen = sizeof(gid_t),
172 .proc_handler = proc_dointvec,
178 struct sock *io_uring_get_socket(struct file *file)
180 #if defined(CONFIG_UNIX)
181 if (io_is_uring_fops(file)) {
182 struct io_ring_ctx *ctx = file->private_data;
184 return ctx->ring_sock->sk;
189 EXPORT_SYMBOL(io_uring_get_socket);
191 static inline void io_submit_flush_completions(struct io_ring_ctx *ctx)
193 if (!wq_list_empty(&ctx->submit_state.compl_reqs) ||
194 ctx->submit_state.cqes_count)
195 __io_submit_flush_completions(ctx);
198 static inline unsigned int __io_cqring_events(struct io_ring_ctx *ctx)
200 return ctx->cached_cq_tail - READ_ONCE(ctx->rings->cq.head);
203 static inline unsigned int __io_cqring_events_user(struct io_ring_ctx *ctx)
205 return READ_ONCE(ctx->rings->cq.tail) - READ_ONCE(ctx->rings->cq.head);
208 static bool io_match_linked(struct io_kiocb *head)
210 struct io_kiocb *req;
212 io_for_each_link(req, head) {
213 if (req->flags & REQ_F_INFLIGHT)
220 * As io_match_task() but protected against racing with linked timeouts.
221 * User must not hold timeout_lock.
223 bool io_match_task_safe(struct io_kiocb *head, struct task_struct *task,
228 if (task && head->task != task)
233 if (head->flags & REQ_F_LINK_TIMEOUT) {
234 struct io_ring_ctx *ctx = head->ctx;
236 /* protect against races with linked timeouts */
237 spin_lock_irq(&ctx->timeout_lock);
238 matched = io_match_linked(head);
239 spin_unlock_irq(&ctx->timeout_lock);
241 matched = io_match_linked(head);
246 static inline void req_fail_link_node(struct io_kiocb *req, int res)
249 io_req_set_res(req, res, 0);
252 static inline void io_req_add_to_cache(struct io_kiocb *req, struct io_ring_ctx *ctx)
254 wq_stack_add_head(&req->comp_list, &ctx->submit_state.free_list);
257 static __cold void io_ring_ctx_ref_free(struct percpu_ref *ref)
259 struct io_ring_ctx *ctx = container_of(ref, struct io_ring_ctx, refs);
261 complete(&ctx->ref_comp);
264 static __cold void io_fallback_req_func(struct work_struct *work)
266 struct io_ring_ctx *ctx = container_of(work, struct io_ring_ctx,
268 struct llist_node *node = llist_del_all(&ctx->fallback_llist);
269 struct io_kiocb *req, *tmp;
270 struct io_tw_state ts = { .locked = true, };
272 mutex_lock(&ctx->uring_lock);
273 llist_for_each_entry_safe(req, tmp, node, io_task_work.node)
274 req->io_task_work.func(req, &ts);
275 if (WARN_ON_ONCE(!ts.locked))
277 io_submit_flush_completions(ctx);
278 mutex_unlock(&ctx->uring_lock);
281 static int io_alloc_hash_table(struct io_hash_table *table, unsigned bits)
283 unsigned hash_buckets = 1U << bits;
284 size_t hash_size = hash_buckets * sizeof(table->hbs[0]);
286 table->hbs = kmalloc(hash_size, GFP_KERNEL);
290 table->hash_bits = bits;
291 init_hash_table(table, hash_buckets);
295 static __cold struct io_ring_ctx *io_ring_ctx_alloc(struct io_uring_params *p)
297 struct io_ring_ctx *ctx;
300 ctx = kzalloc(sizeof(*ctx), GFP_KERNEL);
304 xa_init(&ctx->io_bl_xa);
307 * Use 5 bits less than the max cq entries, that should give us around
308 * 32 entries per hash list if totally full and uniformly spread, but
309 * don't keep too many buckets to not overconsume memory.
311 hash_bits = ilog2(p->cq_entries) - 5;
312 hash_bits = clamp(hash_bits, 1, 8);
313 if (io_alloc_hash_table(&ctx->cancel_table, hash_bits))
315 if (io_alloc_hash_table(&ctx->cancel_table_locked, hash_bits))
317 if (percpu_ref_init(&ctx->refs, io_ring_ctx_ref_free,
321 ctx->flags = p->flags;
322 init_waitqueue_head(&ctx->sqo_sq_wait);
323 INIT_LIST_HEAD(&ctx->sqd_list);
324 INIT_LIST_HEAD(&ctx->cq_overflow_list);
325 INIT_LIST_HEAD(&ctx->io_buffers_cache);
326 io_alloc_cache_init(&ctx->rsrc_node_cache, IO_NODE_ALLOC_CACHE_MAX,
327 sizeof(struct io_rsrc_node));
328 io_alloc_cache_init(&ctx->apoll_cache, IO_ALLOC_CACHE_MAX,
329 sizeof(struct async_poll));
330 io_alloc_cache_init(&ctx->netmsg_cache, IO_ALLOC_CACHE_MAX,
331 sizeof(struct io_async_msghdr));
332 init_completion(&ctx->ref_comp);
333 xa_init_flags(&ctx->personalities, XA_FLAGS_ALLOC1);
334 mutex_init(&ctx->uring_lock);
335 init_waitqueue_head(&ctx->cq_wait);
336 init_waitqueue_head(&ctx->poll_wq);
337 init_waitqueue_head(&ctx->rsrc_quiesce_wq);
338 spin_lock_init(&ctx->completion_lock);
339 spin_lock_init(&ctx->timeout_lock);
340 INIT_WQ_LIST(&ctx->iopoll_list);
341 INIT_LIST_HEAD(&ctx->io_buffers_pages);
342 INIT_LIST_HEAD(&ctx->io_buffers_comp);
343 INIT_LIST_HEAD(&ctx->defer_list);
344 INIT_LIST_HEAD(&ctx->timeout_list);
345 INIT_LIST_HEAD(&ctx->ltimeout_list);
346 INIT_LIST_HEAD(&ctx->rsrc_ref_list);
347 init_llist_head(&ctx->work_llist);
348 INIT_LIST_HEAD(&ctx->tctx_list);
349 ctx->submit_state.free_list.next = NULL;
350 INIT_WQ_LIST(&ctx->locked_free_list);
351 INIT_DELAYED_WORK(&ctx->fallback_work, io_fallback_req_func);
352 INIT_WQ_LIST(&ctx->submit_state.compl_reqs);
355 kfree(ctx->cancel_table.hbs);
356 kfree(ctx->cancel_table_locked.hbs);
358 xa_destroy(&ctx->io_bl_xa);
363 static void io_account_cq_overflow(struct io_ring_ctx *ctx)
365 struct io_rings *r = ctx->rings;
367 WRITE_ONCE(r->cq_overflow, READ_ONCE(r->cq_overflow) + 1);
371 static bool req_need_defer(struct io_kiocb *req, u32 seq)
373 if (unlikely(req->flags & REQ_F_IO_DRAIN)) {
374 struct io_ring_ctx *ctx = req->ctx;
376 return seq + READ_ONCE(ctx->cq_extra) != ctx->cached_cq_tail;
382 static void io_clean_op(struct io_kiocb *req)
384 if (req->flags & REQ_F_BUFFER_SELECTED) {
385 spin_lock(&req->ctx->completion_lock);
386 io_put_kbuf_comp(req);
387 spin_unlock(&req->ctx->completion_lock);
390 if (req->flags & REQ_F_NEED_CLEANUP) {
391 const struct io_cold_def *def = &io_cold_defs[req->opcode];
396 if ((req->flags & REQ_F_POLLED) && req->apoll) {
397 kfree(req->apoll->double_poll);
401 if (req->flags & REQ_F_INFLIGHT) {
402 struct io_uring_task *tctx = req->task->io_uring;
404 atomic_dec(&tctx->inflight_tracked);
406 if (req->flags & REQ_F_CREDS)
407 put_cred(req->creds);
408 if (req->flags & REQ_F_ASYNC_DATA) {
409 kfree(req->async_data);
410 req->async_data = NULL;
412 req->flags &= ~IO_REQ_CLEAN_FLAGS;
415 static inline void io_req_track_inflight(struct io_kiocb *req)
417 if (!(req->flags & REQ_F_INFLIGHT)) {
418 req->flags |= REQ_F_INFLIGHT;
419 atomic_inc(&req->task->io_uring->inflight_tracked);
423 static struct io_kiocb *__io_prep_linked_timeout(struct io_kiocb *req)
425 if (WARN_ON_ONCE(!req->link))
428 req->flags &= ~REQ_F_ARM_LTIMEOUT;
429 req->flags |= REQ_F_LINK_TIMEOUT;
431 /* linked timeouts should have two refs once prep'ed */
432 io_req_set_refcount(req);
433 __io_req_set_refcount(req->link, 2);
437 static inline struct io_kiocb *io_prep_linked_timeout(struct io_kiocb *req)
439 if (likely(!(req->flags & REQ_F_ARM_LTIMEOUT)))
441 return __io_prep_linked_timeout(req);
444 static noinline void __io_arm_ltimeout(struct io_kiocb *req)
446 io_queue_linked_timeout(__io_prep_linked_timeout(req));
449 static inline void io_arm_ltimeout(struct io_kiocb *req)
451 if (unlikely(req->flags & REQ_F_ARM_LTIMEOUT))
452 __io_arm_ltimeout(req);
455 static void io_prep_async_work(struct io_kiocb *req)
457 const struct io_issue_def *def = &io_issue_defs[req->opcode];
458 struct io_ring_ctx *ctx = req->ctx;
460 if (!(req->flags & REQ_F_CREDS)) {
461 req->flags |= REQ_F_CREDS;
462 req->creds = get_current_cred();
465 req->work.list.next = NULL;
467 req->work.cancel_seq = atomic_read(&ctx->cancel_seq);
468 if (req->flags & REQ_F_FORCE_ASYNC)
469 req->work.flags |= IO_WQ_WORK_CONCURRENT;
471 if (req->file && !(req->flags & REQ_F_FIXED_FILE))
472 req->flags |= io_file_get_flags(req->file);
474 if (req->file && (req->flags & REQ_F_ISREG)) {
475 bool should_hash = def->hash_reg_file;
477 /* don't serialize this request if the fs doesn't need it */
478 if (should_hash && (req->file->f_flags & O_DIRECT) &&
479 (req->file->f_mode & FMODE_DIO_PARALLEL_WRITE))
481 if (should_hash || (ctx->flags & IORING_SETUP_IOPOLL))
482 io_wq_hash_work(&req->work, file_inode(req->file));
483 } else if (!req->file || !S_ISBLK(file_inode(req->file)->i_mode)) {
484 if (def->unbound_nonreg_file)
485 req->work.flags |= IO_WQ_WORK_UNBOUND;
489 static void io_prep_async_link(struct io_kiocb *req)
491 struct io_kiocb *cur;
493 if (req->flags & REQ_F_LINK_TIMEOUT) {
494 struct io_ring_ctx *ctx = req->ctx;
496 spin_lock_irq(&ctx->timeout_lock);
497 io_for_each_link(cur, req)
498 io_prep_async_work(cur);
499 spin_unlock_irq(&ctx->timeout_lock);
501 io_for_each_link(cur, req)
502 io_prep_async_work(cur);
506 void io_queue_iowq(struct io_kiocb *req, struct io_tw_state *ts_dont_use)
508 struct io_kiocb *link = io_prep_linked_timeout(req);
509 struct io_uring_task *tctx = req->task->io_uring;
512 BUG_ON(!tctx->io_wq);
514 /* init ->work of the whole link before punting */
515 io_prep_async_link(req);
518 * Not expected to happen, but if we do have a bug where this _can_
519 * happen, catch it here and ensure the request is marked as
520 * canceled. That will make io-wq go through the usual work cancel
521 * procedure rather than attempt to run this request (or create a new
524 if (WARN_ON_ONCE(!same_thread_group(req->task, current)))
525 req->work.flags |= IO_WQ_WORK_CANCEL;
527 trace_io_uring_queue_async_work(req, io_wq_is_hashed(&req->work));
528 io_wq_enqueue(tctx->io_wq, &req->work);
530 io_queue_linked_timeout(link);
533 static __cold void io_queue_deferred(struct io_ring_ctx *ctx)
535 while (!list_empty(&ctx->defer_list)) {
536 struct io_defer_entry *de = list_first_entry(&ctx->defer_list,
537 struct io_defer_entry, list);
539 if (req_need_defer(de->req, de->seq))
541 list_del_init(&de->list);
542 io_req_task_queue(de->req);
548 static void io_eventfd_ops(struct rcu_head *rcu)
550 struct io_ev_fd *ev_fd = container_of(rcu, struct io_ev_fd, rcu);
551 int ops = atomic_xchg(&ev_fd->ops, 0);
553 if (ops & BIT(IO_EVENTFD_OP_SIGNAL_BIT))
554 eventfd_signal_mask(ev_fd->cq_ev_fd, 1, EPOLL_URING_WAKE);
556 /* IO_EVENTFD_OP_FREE_BIT may not be set here depending on callback
557 * ordering in a race but if references are 0 we know we have to free
560 if (atomic_dec_and_test(&ev_fd->refs)) {
561 eventfd_ctx_put(ev_fd->cq_ev_fd);
566 static void io_eventfd_signal(struct io_ring_ctx *ctx)
568 struct io_ev_fd *ev_fd = NULL;
572 * rcu_dereference ctx->io_ev_fd once and use it for both for checking
575 ev_fd = rcu_dereference(ctx->io_ev_fd);
578 * Check again if ev_fd exists incase an io_eventfd_unregister call
579 * completed between the NULL check of ctx->io_ev_fd at the start of
580 * the function and rcu_read_lock.
582 if (unlikely(!ev_fd))
584 if (READ_ONCE(ctx->rings->cq_flags) & IORING_CQ_EVENTFD_DISABLED)
586 if (ev_fd->eventfd_async && !io_wq_current_is_worker())
589 if (likely(eventfd_signal_allowed())) {
590 eventfd_signal_mask(ev_fd->cq_ev_fd, 1, EPOLL_URING_WAKE);
592 atomic_inc(&ev_fd->refs);
593 if (!atomic_fetch_or(BIT(IO_EVENTFD_OP_SIGNAL_BIT), &ev_fd->ops))
594 call_rcu_hurry(&ev_fd->rcu, io_eventfd_ops);
596 atomic_dec(&ev_fd->refs);
603 static void io_eventfd_flush_signal(struct io_ring_ctx *ctx)
607 spin_lock(&ctx->completion_lock);
610 * Eventfd should only get triggered when at least one event has been
611 * posted. Some applications rely on the eventfd notification count
612 * only changing IFF a new CQE has been added to the CQ ring. There's
613 * no depedency on 1:1 relationship between how many times this
614 * function is called (and hence the eventfd count) and number of CQEs
615 * posted to the CQ ring.
617 skip = ctx->cached_cq_tail == ctx->evfd_last_cq_tail;
618 ctx->evfd_last_cq_tail = ctx->cached_cq_tail;
619 spin_unlock(&ctx->completion_lock);
623 io_eventfd_signal(ctx);
626 void __io_commit_cqring_flush(struct io_ring_ctx *ctx)
628 if (ctx->poll_activated)
629 io_poll_wq_wake(ctx);
630 if (ctx->off_timeout_used)
631 io_flush_timeouts(ctx);
632 if (ctx->drain_active) {
633 spin_lock(&ctx->completion_lock);
634 io_queue_deferred(ctx);
635 spin_unlock(&ctx->completion_lock);
638 io_eventfd_flush_signal(ctx);
641 static inline void __io_cq_lock(struct io_ring_ctx *ctx)
643 if (!ctx->lockless_cq)
644 spin_lock(&ctx->completion_lock);
647 static inline void io_cq_lock(struct io_ring_ctx *ctx)
648 __acquires(ctx->completion_lock)
650 spin_lock(&ctx->completion_lock);
653 static inline void __io_cq_unlock_post(struct io_ring_ctx *ctx)
655 io_commit_cqring(ctx);
656 if (!ctx->task_complete) {
657 if (!ctx->lockless_cq)
658 spin_unlock(&ctx->completion_lock);
659 /* IOPOLL rings only need to wake up if it's also SQPOLL */
660 if (!ctx->syscall_iopoll)
663 io_commit_cqring_flush(ctx);
666 static void io_cq_unlock_post(struct io_ring_ctx *ctx)
667 __releases(ctx->completion_lock)
669 io_commit_cqring(ctx);
670 spin_unlock(&ctx->completion_lock);
672 io_commit_cqring_flush(ctx);
675 /* Returns true if there are no backlogged entries after the flush */
676 static void io_cqring_overflow_kill(struct io_ring_ctx *ctx)
678 struct io_overflow_cqe *ocqe;
681 spin_lock(&ctx->completion_lock);
682 list_splice_init(&ctx->cq_overflow_list, &list);
683 clear_bit(IO_CHECK_CQ_OVERFLOW_BIT, &ctx->check_cq);
684 spin_unlock(&ctx->completion_lock);
686 while (!list_empty(&list)) {
687 ocqe = list_first_entry(&list, struct io_overflow_cqe, list);
688 list_del(&ocqe->list);
693 static void __io_cqring_overflow_flush(struct io_ring_ctx *ctx)
695 size_t cqe_size = sizeof(struct io_uring_cqe);
697 if (__io_cqring_events(ctx) == ctx->cq_entries)
700 if (ctx->flags & IORING_SETUP_CQE32)
704 while (!list_empty(&ctx->cq_overflow_list)) {
705 struct io_uring_cqe *cqe;
706 struct io_overflow_cqe *ocqe;
708 if (!io_get_cqe_overflow(ctx, &cqe, true))
710 ocqe = list_first_entry(&ctx->cq_overflow_list,
711 struct io_overflow_cqe, list);
712 memcpy(cqe, &ocqe->cqe, cqe_size);
713 list_del(&ocqe->list);
717 if (list_empty(&ctx->cq_overflow_list)) {
718 clear_bit(IO_CHECK_CQ_OVERFLOW_BIT, &ctx->check_cq);
719 atomic_andnot(IORING_SQ_CQ_OVERFLOW, &ctx->rings->sq_flags);
721 io_cq_unlock_post(ctx);
724 static void io_cqring_do_overflow_flush(struct io_ring_ctx *ctx)
726 /* iopoll syncs against uring_lock, not completion_lock */
727 if (ctx->flags & IORING_SETUP_IOPOLL)
728 mutex_lock(&ctx->uring_lock);
729 __io_cqring_overflow_flush(ctx);
730 if (ctx->flags & IORING_SETUP_IOPOLL)
731 mutex_unlock(&ctx->uring_lock);
734 static void io_cqring_overflow_flush(struct io_ring_ctx *ctx)
736 if (test_bit(IO_CHECK_CQ_OVERFLOW_BIT, &ctx->check_cq))
737 io_cqring_do_overflow_flush(ctx);
740 /* can be called by any task */
741 static void io_put_task_remote(struct task_struct *task)
743 struct io_uring_task *tctx = task->io_uring;
745 percpu_counter_sub(&tctx->inflight, 1);
746 if (unlikely(atomic_read(&tctx->in_cancel)))
747 wake_up(&tctx->wait);
748 put_task_struct(task);
751 /* used by a task to put its own references */
752 static void io_put_task_local(struct task_struct *task)
754 task->io_uring->cached_refs++;
757 /* must to be called somewhat shortly after putting a request */
758 static inline void io_put_task(struct task_struct *task)
760 if (likely(task == current))
761 io_put_task_local(task);
763 io_put_task_remote(task);
766 void io_task_refs_refill(struct io_uring_task *tctx)
768 unsigned int refill = -tctx->cached_refs + IO_TCTX_REFS_CACHE_NR;
770 percpu_counter_add(&tctx->inflight, refill);
771 refcount_add(refill, ¤t->usage);
772 tctx->cached_refs += refill;
775 static __cold void io_uring_drop_tctx_refs(struct task_struct *task)
777 struct io_uring_task *tctx = task->io_uring;
778 unsigned int refs = tctx->cached_refs;
781 tctx->cached_refs = 0;
782 percpu_counter_sub(&tctx->inflight, refs);
783 put_task_struct_many(task, refs);
787 static bool io_cqring_event_overflow(struct io_ring_ctx *ctx, u64 user_data,
788 s32 res, u32 cflags, u64 extra1, u64 extra2)
790 struct io_overflow_cqe *ocqe;
791 size_t ocq_size = sizeof(struct io_overflow_cqe);
792 bool is_cqe32 = (ctx->flags & IORING_SETUP_CQE32);
794 lockdep_assert_held(&ctx->completion_lock);
797 ocq_size += sizeof(struct io_uring_cqe);
799 ocqe = kmalloc(ocq_size, GFP_ATOMIC | __GFP_ACCOUNT);
800 trace_io_uring_cqe_overflow(ctx, user_data, res, cflags, ocqe);
803 * If we're in ring overflow flush mode, or in task cancel mode,
804 * or cannot allocate an overflow entry, then we need to drop it
807 io_account_cq_overflow(ctx);
808 set_bit(IO_CHECK_CQ_DROPPED_BIT, &ctx->check_cq);
811 if (list_empty(&ctx->cq_overflow_list)) {
812 set_bit(IO_CHECK_CQ_OVERFLOW_BIT, &ctx->check_cq);
813 atomic_or(IORING_SQ_CQ_OVERFLOW, &ctx->rings->sq_flags);
816 ocqe->cqe.user_data = user_data;
818 ocqe->cqe.flags = cflags;
820 ocqe->cqe.big_cqe[0] = extra1;
821 ocqe->cqe.big_cqe[1] = extra2;
823 list_add_tail(&ocqe->list, &ctx->cq_overflow_list);
827 void io_req_cqe_overflow(struct io_kiocb *req)
829 io_cqring_event_overflow(req->ctx, req->cqe.user_data,
830 req->cqe.res, req->cqe.flags,
831 req->big_cqe.extra1, req->big_cqe.extra2);
832 memset(&req->big_cqe, 0, sizeof(req->big_cqe));
836 * writes to the cq entry need to come after reading head; the
837 * control dependency is enough as we're using WRITE_ONCE to
840 bool io_cqe_cache_refill(struct io_ring_ctx *ctx, bool overflow)
842 struct io_rings *rings = ctx->rings;
843 unsigned int off = ctx->cached_cq_tail & (ctx->cq_entries - 1);
844 unsigned int free, queued, len;
847 * Posting into the CQ when there are pending overflowed CQEs may break
848 * ordering guarantees, which will affect links, F_MORE users and more.
849 * Force overflow the completion.
851 if (!overflow && (ctx->check_cq & BIT(IO_CHECK_CQ_OVERFLOW_BIT)))
854 /* userspace may cheat modifying the tail, be safe and do min */
855 queued = min(__io_cqring_events(ctx), ctx->cq_entries);
856 free = ctx->cq_entries - queued;
857 /* we need a contiguous range, limit based on the current array offset */
858 len = min(free, ctx->cq_entries - off);
862 if (ctx->flags & IORING_SETUP_CQE32) {
867 ctx->cqe_cached = &rings->cqes[off];
868 ctx->cqe_sentinel = ctx->cqe_cached + len;
872 static bool io_fill_cqe_aux(struct io_ring_ctx *ctx, u64 user_data, s32 res,
875 struct io_uring_cqe *cqe;
880 * If we can't get a cq entry, userspace overflowed the
881 * submission (by quite a lot). Increment the overflow count in
884 if (likely(io_get_cqe(ctx, &cqe))) {
885 trace_io_uring_complete(ctx, NULL, user_data, res, cflags, 0, 0);
887 WRITE_ONCE(cqe->user_data, user_data);
888 WRITE_ONCE(cqe->res, res);
889 WRITE_ONCE(cqe->flags, cflags);
891 if (ctx->flags & IORING_SETUP_CQE32) {
892 WRITE_ONCE(cqe->big_cqe[0], 0);
893 WRITE_ONCE(cqe->big_cqe[1], 0);
900 static void __io_flush_post_cqes(struct io_ring_ctx *ctx)
901 __must_hold(&ctx->uring_lock)
903 struct io_submit_state *state = &ctx->submit_state;
906 lockdep_assert_held(&ctx->uring_lock);
907 for (i = 0; i < state->cqes_count; i++) {
908 struct io_uring_cqe *cqe = &ctx->completion_cqes[i];
910 if (!io_fill_cqe_aux(ctx, cqe->user_data, cqe->res, cqe->flags)) {
911 if (ctx->lockless_cq) {
912 spin_lock(&ctx->completion_lock);
913 io_cqring_event_overflow(ctx, cqe->user_data,
914 cqe->res, cqe->flags, 0, 0);
915 spin_unlock(&ctx->completion_lock);
917 io_cqring_event_overflow(ctx, cqe->user_data,
918 cqe->res, cqe->flags, 0, 0);
922 state->cqes_count = 0;
925 static bool __io_post_aux_cqe(struct io_ring_ctx *ctx, u64 user_data, s32 res, u32 cflags,
931 filled = io_fill_cqe_aux(ctx, user_data, res, cflags);
932 if (!filled && allow_overflow)
933 filled = io_cqring_event_overflow(ctx, user_data, res, cflags, 0, 0);
935 io_cq_unlock_post(ctx);
939 bool io_post_aux_cqe(struct io_ring_ctx *ctx, u64 user_data, s32 res, u32 cflags)
941 return __io_post_aux_cqe(ctx, user_data, res, cflags, true);
945 * A helper for multishot requests posting additional CQEs.
946 * Should only be used from a task_work including IO_URING_F_MULTISHOT.
948 bool io_fill_cqe_req_aux(struct io_kiocb *req, bool defer, s32 res, u32 cflags)
950 struct io_ring_ctx *ctx = req->ctx;
951 u64 user_data = req->cqe.user_data;
952 struct io_uring_cqe *cqe;
955 return __io_post_aux_cqe(ctx, user_data, res, cflags, false);
957 lockdep_assert_held(&ctx->uring_lock);
959 if (ctx->submit_state.cqes_count == ARRAY_SIZE(ctx->completion_cqes)) {
961 __io_flush_post_cqes(ctx);
962 /* no need to flush - flush is deferred */
963 __io_cq_unlock_post(ctx);
966 /* For defered completions this is not as strict as it is otherwise,
967 * however it's main job is to prevent unbounded posted completions,
968 * and in that it works just as well.
970 if (test_bit(IO_CHECK_CQ_OVERFLOW_BIT, &ctx->check_cq))
973 cqe = &ctx->completion_cqes[ctx->submit_state.cqes_count++];
974 cqe->user_data = user_data;
980 static void __io_req_complete_post(struct io_kiocb *req, unsigned issue_flags)
982 struct io_ring_ctx *ctx = req->ctx;
983 struct io_rsrc_node *rsrc_node = NULL;
986 if (!(req->flags & REQ_F_CQE_SKIP)) {
987 if (!io_fill_cqe_req(ctx, req))
988 io_req_cqe_overflow(req);
992 * If we're the last reference to this request, add to our locked
995 if (req_ref_put_and_test(req)) {
996 if (req->flags & IO_REQ_LINK_FLAGS) {
997 if (req->flags & IO_DISARM_MASK)
1000 io_req_task_queue(req->link);
1004 io_put_kbuf_comp(req);
1005 if (unlikely(req->flags & IO_REQ_CLEAN_FLAGS))
1009 rsrc_node = req->rsrc_node;
1011 * Selected buffer deallocation in io_clean_op() assumes that
1012 * we don't hold ->completion_lock. Clean them here to avoid
1015 io_put_task_remote(req->task);
1016 wq_list_add_head(&req->comp_list, &ctx->locked_free_list);
1017 ctx->locked_free_nr++;
1019 io_cq_unlock_post(ctx);
1022 io_ring_submit_lock(ctx, issue_flags);
1023 io_put_rsrc_node(ctx, rsrc_node);
1024 io_ring_submit_unlock(ctx, issue_flags);
1028 void io_req_complete_post(struct io_kiocb *req, unsigned issue_flags)
1030 if (req->ctx->task_complete && req->ctx->submitter_task != current) {
1031 req->io_task_work.func = io_req_task_complete;
1032 io_req_task_work_add(req);
1033 } else if (!(issue_flags & IO_URING_F_UNLOCKED) ||
1034 !(req->ctx->flags & IORING_SETUP_IOPOLL)) {
1035 __io_req_complete_post(req, issue_flags);
1037 struct io_ring_ctx *ctx = req->ctx;
1039 mutex_lock(&ctx->uring_lock);
1040 __io_req_complete_post(req, issue_flags & ~IO_URING_F_UNLOCKED);
1041 mutex_unlock(&ctx->uring_lock);
1045 void io_req_defer_failed(struct io_kiocb *req, s32 res)
1046 __must_hold(&ctx->uring_lock)
1048 const struct io_cold_def *def = &io_cold_defs[req->opcode];
1050 lockdep_assert_held(&req->ctx->uring_lock);
1053 io_req_set_res(req, res, io_put_kbuf(req, IO_URING_F_UNLOCKED));
1056 io_req_complete_defer(req);
1060 * Don't initialise the fields below on every allocation, but do that in
1061 * advance and keep them valid across allocations.
1063 static void io_preinit_req(struct io_kiocb *req, struct io_ring_ctx *ctx)
1067 req->async_data = NULL;
1068 /* not necessary, but safer to zero */
1069 memset(&req->cqe, 0, sizeof(req->cqe));
1070 memset(&req->big_cqe, 0, sizeof(req->big_cqe));
1073 static void io_flush_cached_locked_reqs(struct io_ring_ctx *ctx,
1074 struct io_submit_state *state)
1076 spin_lock(&ctx->completion_lock);
1077 wq_list_splice(&ctx->locked_free_list, &state->free_list);
1078 ctx->locked_free_nr = 0;
1079 spin_unlock(&ctx->completion_lock);
1083 * A request might get retired back into the request caches even before opcode
1084 * handlers and io_issue_sqe() are done with it, e.g. inline completion path.
1085 * Because of that, io_alloc_req() should be called only under ->uring_lock
1086 * and with extra caution to not get a request that is still worked on.
1088 __cold bool __io_alloc_req_refill(struct io_ring_ctx *ctx)
1089 __must_hold(&ctx->uring_lock)
1091 gfp_t gfp = GFP_KERNEL | __GFP_NOWARN;
1092 void *reqs[IO_REQ_ALLOC_BATCH];
1096 * If we have more than a batch's worth of requests in our IRQ side
1097 * locked cache, grab the lock and move them over to our submission
1100 if (data_race(ctx->locked_free_nr) > IO_COMPL_BATCH) {
1101 io_flush_cached_locked_reqs(ctx, &ctx->submit_state);
1102 if (!io_req_cache_empty(ctx))
1106 ret = kmem_cache_alloc_bulk(req_cachep, gfp, ARRAY_SIZE(reqs), reqs);
1109 * Bulk alloc is all-or-nothing. If we fail to get a batch,
1110 * retry single alloc to be on the safe side.
1112 if (unlikely(ret <= 0)) {
1113 reqs[0] = kmem_cache_alloc(req_cachep, gfp);
1119 percpu_ref_get_many(&ctx->refs, ret);
1120 for (i = 0; i < ret; i++) {
1121 struct io_kiocb *req = reqs[i];
1123 io_preinit_req(req, ctx);
1124 io_req_add_to_cache(req, ctx);
1129 __cold void io_free_req(struct io_kiocb *req)
1131 /* refs were already put, restore them for io_req_task_complete() */
1132 req->flags &= ~REQ_F_REFCOUNT;
1133 /* we only want to free it, don't post CQEs */
1134 req->flags |= REQ_F_CQE_SKIP;
1135 req->io_task_work.func = io_req_task_complete;
1136 io_req_task_work_add(req);
1139 static void __io_req_find_next_prep(struct io_kiocb *req)
1141 struct io_ring_ctx *ctx = req->ctx;
1143 spin_lock(&ctx->completion_lock);
1144 io_disarm_next(req);
1145 spin_unlock(&ctx->completion_lock);
1148 static inline struct io_kiocb *io_req_find_next(struct io_kiocb *req)
1150 struct io_kiocb *nxt;
1153 * If LINK is set, we have dependent requests in this chain. If we
1154 * didn't fail this request, queue the first one up, moving any other
1155 * dependencies to the next request. In case of failure, fail the rest
1158 if (unlikely(req->flags & IO_DISARM_MASK))
1159 __io_req_find_next_prep(req);
1165 static void ctx_flush_and_put(struct io_ring_ctx *ctx, struct io_tw_state *ts)
1169 if (ctx->flags & IORING_SETUP_TASKRUN_FLAG)
1170 atomic_andnot(IORING_SQ_TASKRUN, &ctx->rings->sq_flags);
1172 io_submit_flush_completions(ctx);
1173 mutex_unlock(&ctx->uring_lock);
1176 percpu_ref_put(&ctx->refs);
1179 static unsigned int handle_tw_list(struct llist_node *node,
1180 struct io_ring_ctx **ctx,
1181 struct io_tw_state *ts,
1182 struct llist_node *last)
1184 unsigned int count = 0;
1186 while (node && node != last) {
1187 struct llist_node *next = node->next;
1188 struct io_kiocb *req = container_of(node, struct io_kiocb,
1191 prefetch(container_of(next, struct io_kiocb, io_task_work.node));
1193 if (req->ctx != *ctx) {
1194 ctx_flush_and_put(*ctx, ts);
1196 /* if not contended, grab and improve batching */
1197 ts->locked = mutex_trylock(&(*ctx)->uring_lock);
1198 percpu_ref_get(&(*ctx)->refs);
1200 INDIRECT_CALL_2(req->io_task_work.func,
1201 io_poll_task_func, io_req_rw_complete,
1205 if (unlikely(need_resched())) {
1206 ctx_flush_and_put(*ctx, ts);
1216 * io_llist_xchg - swap all entries in a lock-less list
1217 * @head: the head of lock-less list to delete all entries
1218 * @new: new entry as the head of the list
1220 * If list is empty, return NULL, otherwise, return the pointer to the first entry.
1221 * The order of entries returned is from the newest to the oldest added one.
1223 static inline struct llist_node *io_llist_xchg(struct llist_head *head,
1224 struct llist_node *new)
1226 return xchg(&head->first, new);
1230 * io_llist_cmpxchg - possibly swap all entries in a lock-less list
1231 * @head: the head of lock-less list to delete all entries
1232 * @old: expected old value of the first entry of the list
1233 * @new: new entry as the head of the list
1235 * perform a cmpxchg on the first entry of the list.
1238 static inline struct llist_node *io_llist_cmpxchg(struct llist_head *head,
1239 struct llist_node *old,
1240 struct llist_node *new)
1242 return cmpxchg(&head->first, old, new);
1245 static __cold void io_fallback_tw(struct io_uring_task *tctx, bool sync)
1247 struct llist_node *node = llist_del_all(&tctx->task_list);
1248 struct io_ring_ctx *last_ctx = NULL;
1249 struct io_kiocb *req;
1252 req = container_of(node, struct io_kiocb, io_task_work.node);
1254 if (sync && last_ctx != req->ctx) {
1256 flush_delayed_work(&last_ctx->fallback_work);
1257 percpu_ref_put(&last_ctx->refs);
1259 last_ctx = req->ctx;
1260 percpu_ref_get(&last_ctx->refs);
1262 if (llist_add(&req->io_task_work.node,
1263 &req->ctx->fallback_llist))
1264 schedule_delayed_work(&req->ctx->fallback_work, 1);
1268 flush_delayed_work(&last_ctx->fallback_work);
1269 percpu_ref_put(&last_ctx->refs);
1273 void tctx_task_work(struct callback_head *cb)
1275 struct io_tw_state ts = {};
1276 struct io_ring_ctx *ctx = NULL;
1277 struct io_uring_task *tctx = container_of(cb, struct io_uring_task,
1279 struct llist_node fake = {};
1280 struct llist_node *node;
1281 unsigned int loops = 0;
1282 unsigned int count = 0;
1284 if (unlikely(current->flags & PF_EXITING)) {
1285 io_fallback_tw(tctx, true);
1291 node = io_llist_xchg(&tctx->task_list, &fake);
1292 count += handle_tw_list(node, &ctx, &ts, &fake);
1294 /* skip expensive cmpxchg if there are items in the list */
1295 if (READ_ONCE(tctx->task_list.first) != &fake)
1297 if (ts.locked && !wq_list_empty(&ctx->submit_state.compl_reqs)) {
1298 io_submit_flush_completions(ctx);
1299 if (READ_ONCE(tctx->task_list.first) != &fake)
1302 node = io_llist_cmpxchg(&tctx->task_list, &fake, NULL);
1303 } while (node != &fake);
1305 ctx_flush_and_put(ctx, &ts);
1307 /* relaxed read is enough as only the task itself sets ->in_cancel */
1308 if (unlikely(atomic_read(&tctx->in_cancel)))
1309 io_uring_drop_tctx_refs(current);
1311 trace_io_uring_task_work_run(tctx, count, loops);
1314 static inline void io_req_local_work_add(struct io_kiocb *req, unsigned flags)
1316 struct io_ring_ctx *ctx = req->ctx;
1317 unsigned nr_wait, nr_tw, nr_tw_prev;
1318 struct llist_node *first;
1320 if (req->flags & (REQ_F_LINK | REQ_F_HARDLINK))
1321 flags &= ~IOU_F_TWQ_LAZY_WAKE;
1323 first = READ_ONCE(ctx->work_llist.first);
1327 struct io_kiocb *first_req = container_of(first,
1331 * Might be executed at any moment, rely on
1332 * SLAB_TYPESAFE_BY_RCU to keep it alive.
1334 nr_tw_prev = READ_ONCE(first_req->nr_tw);
1336 nr_tw = nr_tw_prev + 1;
1337 /* Large enough to fail the nr_wait comparison below */
1338 if (!(flags & IOU_F_TWQ_LAZY_WAKE))
1342 req->io_task_work.node.next = first;
1343 } while (!try_cmpxchg(&ctx->work_llist.first, &first,
1344 &req->io_task_work.node));
1347 if (ctx->flags & IORING_SETUP_TASKRUN_FLAG)
1348 atomic_or(IORING_SQ_TASKRUN, &ctx->rings->sq_flags);
1350 io_eventfd_signal(ctx);
1353 nr_wait = atomic_read(&ctx->cq_wait_nr);
1354 /* no one is waiting */
1357 /* either not enough or the previous add has already woken it up */
1358 if (nr_wait > nr_tw || nr_tw_prev >= nr_wait)
1360 /* pairs with set_current_state() in io_cqring_wait() */
1361 smp_mb__after_atomic();
1362 wake_up_state(ctx->submitter_task, TASK_INTERRUPTIBLE);
1365 static void io_req_normal_work_add(struct io_kiocb *req)
1367 struct io_uring_task *tctx = req->task->io_uring;
1368 struct io_ring_ctx *ctx = req->ctx;
1370 /* task_work already pending, we're done */
1371 if (!llist_add(&req->io_task_work.node, &tctx->task_list))
1374 if (ctx->flags & IORING_SETUP_TASKRUN_FLAG)
1375 atomic_or(IORING_SQ_TASKRUN, &ctx->rings->sq_flags);
1377 if (likely(!task_work_add(req->task, &tctx->task_work, ctx->notify_method)))
1380 io_fallback_tw(tctx, false);
1383 void __io_req_task_work_add(struct io_kiocb *req, unsigned flags)
1385 if (req->ctx->flags & IORING_SETUP_DEFER_TASKRUN) {
1387 io_req_local_work_add(req, flags);
1390 io_req_normal_work_add(req);
1394 static void __cold io_move_task_work_from_local(struct io_ring_ctx *ctx)
1396 struct llist_node *node;
1398 node = llist_del_all(&ctx->work_llist);
1400 struct io_kiocb *req = container_of(node, struct io_kiocb,
1404 io_req_normal_work_add(req);
1408 static int __io_run_local_work(struct io_ring_ctx *ctx, struct io_tw_state *ts)
1410 struct llist_node *node;
1411 unsigned int loops = 0;
1414 if (WARN_ON_ONCE(ctx->submitter_task != current))
1416 if (ctx->flags & IORING_SETUP_TASKRUN_FLAG)
1417 atomic_andnot(IORING_SQ_TASKRUN, &ctx->rings->sq_flags);
1420 * llists are in reverse order, flip it back the right way before
1421 * running the pending items.
1423 node = llist_reverse_order(io_llist_xchg(&ctx->work_llist, NULL));
1425 struct llist_node *next = node->next;
1426 struct io_kiocb *req = container_of(node, struct io_kiocb,
1428 prefetch(container_of(next, struct io_kiocb, io_task_work.node));
1429 INDIRECT_CALL_2(req->io_task_work.func,
1430 io_poll_task_func, io_req_rw_complete,
1437 if (!llist_empty(&ctx->work_llist))
1440 io_submit_flush_completions(ctx);
1441 if (!llist_empty(&ctx->work_llist))
1444 trace_io_uring_local_work_run(ctx, ret, loops);
1448 static inline int io_run_local_work_locked(struct io_ring_ctx *ctx)
1450 struct io_tw_state ts = { .locked = true, };
1453 if (llist_empty(&ctx->work_llist))
1456 ret = __io_run_local_work(ctx, &ts);
1457 /* shouldn't happen! */
1458 if (WARN_ON_ONCE(!ts.locked))
1459 mutex_lock(&ctx->uring_lock);
1463 static int io_run_local_work(struct io_ring_ctx *ctx)
1465 struct io_tw_state ts = {};
1468 ts.locked = mutex_trylock(&ctx->uring_lock);
1469 ret = __io_run_local_work(ctx, &ts);
1471 mutex_unlock(&ctx->uring_lock);
1476 static void io_req_task_cancel(struct io_kiocb *req, struct io_tw_state *ts)
1478 io_tw_lock(req->ctx, ts);
1479 io_req_defer_failed(req, req->cqe.res);
1482 void io_req_task_submit(struct io_kiocb *req, struct io_tw_state *ts)
1484 io_tw_lock(req->ctx, ts);
1485 /* req->task == current here, checking PF_EXITING is safe */
1486 if (unlikely(req->task->flags & PF_EXITING))
1487 io_req_defer_failed(req, -EFAULT);
1488 else if (req->flags & REQ_F_FORCE_ASYNC)
1489 io_queue_iowq(req, ts);
1494 void io_req_task_queue_fail(struct io_kiocb *req, int ret)
1496 io_req_set_res(req, ret, 0);
1497 req->io_task_work.func = io_req_task_cancel;
1498 io_req_task_work_add(req);
1501 void io_req_task_queue(struct io_kiocb *req)
1503 req->io_task_work.func = io_req_task_submit;
1504 io_req_task_work_add(req);
1507 void io_queue_next(struct io_kiocb *req)
1509 struct io_kiocb *nxt = io_req_find_next(req);
1512 io_req_task_queue(nxt);
1515 static void io_free_batch_list(struct io_ring_ctx *ctx,
1516 struct io_wq_work_node *node)
1517 __must_hold(&ctx->uring_lock)
1520 struct io_kiocb *req = container_of(node, struct io_kiocb,
1523 if (unlikely(req->flags & IO_REQ_CLEAN_SLOW_FLAGS)) {
1524 if (req->flags & REQ_F_REFCOUNT) {
1525 node = req->comp_list.next;
1526 if (!req_ref_put_and_test(req))
1529 if ((req->flags & REQ_F_POLLED) && req->apoll) {
1530 struct async_poll *apoll = req->apoll;
1532 if (apoll->double_poll)
1533 kfree(apoll->double_poll);
1534 if (!io_alloc_cache_put(&ctx->apoll_cache, &apoll->cache))
1536 req->flags &= ~REQ_F_POLLED;
1538 if (req->flags & IO_REQ_LINK_FLAGS)
1540 if (unlikely(req->flags & IO_REQ_CLEAN_FLAGS))
1545 io_req_put_rsrc_locked(req, ctx);
1547 io_put_task(req->task);
1548 node = req->comp_list.next;
1549 io_req_add_to_cache(req, ctx);
1553 void __io_submit_flush_completions(struct io_ring_ctx *ctx)
1554 __must_hold(&ctx->uring_lock)
1556 struct io_submit_state *state = &ctx->submit_state;
1557 struct io_wq_work_node *node;
1560 /* must come first to preserve CQE ordering in failure cases */
1561 if (state->cqes_count)
1562 __io_flush_post_cqes(ctx);
1563 __wq_list_for_each(node, &state->compl_reqs) {
1564 struct io_kiocb *req = container_of(node, struct io_kiocb,
1567 if (!(req->flags & REQ_F_CQE_SKIP) &&
1568 unlikely(!io_fill_cqe_req(ctx, req))) {
1569 if (ctx->lockless_cq) {
1570 spin_lock(&ctx->completion_lock);
1571 io_req_cqe_overflow(req);
1572 spin_unlock(&ctx->completion_lock);
1574 io_req_cqe_overflow(req);
1578 __io_cq_unlock_post(ctx);
1580 if (!wq_list_empty(&ctx->submit_state.compl_reqs)) {
1581 io_free_batch_list(ctx, state->compl_reqs.first);
1582 INIT_WQ_LIST(&state->compl_reqs);
1586 static unsigned io_cqring_events(struct io_ring_ctx *ctx)
1588 /* See comment at the top of this file */
1590 return __io_cqring_events(ctx);
1594 * We can't just wait for polled events to come to us, we have to actively
1595 * find and complete them.
1597 static __cold void io_iopoll_try_reap_events(struct io_ring_ctx *ctx)
1599 if (!(ctx->flags & IORING_SETUP_IOPOLL))
1602 mutex_lock(&ctx->uring_lock);
1603 while (!wq_list_empty(&ctx->iopoll_list)) {
1604 /* let it sleep and repeat later if can't complete a request */
1605 if (io_do_iopoll(ctx, true) == 0)
1608 * Ensure we allow local-to-the-cpu processing to take place,
1609 * in this case we need to ensure that we reap all events.
1610 * Also let task_work, etc. to progress by releasing the mutex
1612 if (need_resched()) {
1613 mutex_unlock(&ctx->uring_lock);
1615 mutex_lock(&ctx->uring_lock);
1618 mutex_unlock(&ctx->uring_lock);
1621 static int io_iopoll_check(struct io_ring_ctx *ctx, long min)
1623 unsigned int nr_events = 0;
1624 unsigned long check_cq;
1626 if (!io_allowed_run_tw(ctx))
1629 check_cq = READ_ONCE(ctx->check_cq);
1630 if (unlikely(check_cq)) {
1631 if (check_cq & BIT(IO_CHECK_CQ_OVERFLOW_BIT))
1632 __io_cqring_overflow_flush(ctx);
1634 * Similarly do not spin if we have not informed the user of any
1637 if (check_cq & BIT(IO_CHECK_CQ_DROPPED_BIT))
1641 * Don't enter poll loop if we already have events pending.
1642 * If we do, we can potentially be spinning for commands that
1643 * already triggered a CQE (eg in error).
1645 if (io_cqring_events(ctx))
1652 * If a submit got punted to a workqueue, we can have the
1653 * application entering polling for a command before it gets
1654 * issued. That app will hold the uring_lock for the duration
1655 * of the poll right here, so we need to take a breather every
1656 * now and then to ensure that the issue has a chance to add
1657 * the poll to the issued list. Otherwise we can spin here
1658 * forever, while the workqueue is stuck trying to acquire the
1661 if (wq_list_empty(&ctx->iopoll_list) ||
1662 io_task_work_pending(ctx)) {
1663 u32 tail = ctx->cached_cq_tail;
1665 (void) io_run_local_work_locked(ctx);
1667 if (task_work_pending(current) ||
1668 wq_list_empty(&ctx->iopoll_list)) {
1669 mutex_unlock(&ctx->uring_lock);
1671 mutex_lock(&ctx->uring_lock);
1673 /* some requests don't go through iopoll_list */
1674 if (tail != ctx->cached_cq_tail ||
1675 wq_list_empty(&ctx->iopoll_list))
1678 ret = io_do_iopoll(ctx, !min);
1679 if (unlikely(ret < 0))
1682 if (task_sigpending(current))
1688 } while (nr_events < min);
1693 void io_req_task_complete(struct io_kiocb *req, struct io_tw_state *ts)
1696 io_req_complete_defer(req);
1698 io_req_complete_post(req, IO_URING_F_UNLOCKED);
1702 * After the iocb has been issued, it's safe to be found on the poll list.
1703 * Adding the kiocb to the list AFTER submission ensures that we don't
1704 * find it from a io_do_iopoll() thread before the issuer is done
1705 * accessing the kiocb cookie.
1707 static void io_iopoll_req_issued(struct io_kiocb *req, unsigned int issue_flags)
1709 struct io_ring_ctx *ctx = req->ctx;
1710 const bool needs_lock = issue_flags & IO_URING_F_UNLOCKED;
1712 /* workqueue context doesn't hold uring_lock, grab it now */
1713 if (unlikely(needs_lock))
1714 mutex_lock(&ctx->uring_lock);
1717 * Track whether we have multiple files in our lists. This will impact
1718 * how we do polling eventually, not spinning if we're on potentially
1719 * different devices.
1721 if (wq_list_empty(&ctx->iopoll_list)) {
1722 ctx->poll_multi_queue = false;
1723 } else if (!ctx->poll_multi_queue) {
1724 struct io_kiocb *list_req;
1726 list_req = container_of(ctx->iopoll_list.first, struct io_kiocb,
1728 if (list_req->file != req->file)
1729 ctx->poll_multi_queue = true;
1733 * For fast devices, IO may have already completed. If it has, add
1734 * it to the front so we find it first.
1736 if (READ_ONCE(req->iopoll_completed))
1737 wq_list_add_head(&req->comp_list, &ctx->iopoll_list);
1739 wq_list_add_tail(&req->comp_list, &ctx->iopoll_list);
1741 if (unlikely(needs_lock)) {
1743 * If IORING_SETUP_SQPOLL is enabled, sqes are either handle
1744 * in sq thread task context or in io worker task context. If
1745 * current task context is sq thread, we don't need to check
1746 * whether should wake up sq thread.
1748 if ((ctx->flags & IORING_SETUP_SQPOLL) &&
1749 wq_has_sleeper(&ctx->sq_data->wait))
1750 wake_up(&ctx->sq_data->wait);
1752 mutex_unlock(&ctx->uring_lock);
1756 unsigned int io_file_get_flags(struct file *file)
1758 unsigned int res = 0;
1760 if (S_ISREG(file_inode(file)->i_mode))
1762 if ((file->f_flags & O_NONBLOCK) || (file->f_mode & FMODE_NOWAIT))
1763 res |= REQ_F_SUPPORT_NOWAIT;
1767 bool io_alloc_async_data(struct io_kiocb *req)
1769 WARN_ON_ONCE(!io_cold_defs[req->opcode].async_size);
1770 req->async_data = kmalloc(io_cold_defs[req->opcode].async_size, GFP_KERNEL);
1771 if (req->async_data) {
1772 req->flags |= REQ_F_ASYNC_DATA;
1778 int io_req_prep_async(struct io_kiocb *req)
1780 const struct io_cold_def *cdef = &io_cold_defs[req->opcode];
1781 const struct io_issue_def *def = &io_issue_defs[req->opcode];
1783 /* assign early for deferred execution for non-fixed file */
1784 if (def->needs_file && !(req->flags & REQ_F_FIXED_FILE) && !req->file)
1785 req->file = io_file_get_normal(req, req->cqe.fd);
1786 if (!cdef->prep_async)
1788 if (WARN_ON_ONCE(req_has_async_data(req)))
1790 if (!def->manual_alloc) {
1791 if (io_alloc_async_data(req))
1794 return cdef->prep_async(req);
1797 static u32 io_get_sequence(struct io_kiocb *req)
1799 u32 seq = req->ctx->cached_sq_head;
1800 struct io_kiocb *cur;
1802 /* need original cached_sq_head, but it was increased for each req */
1803 io_for_each_link(cur, req)
1808 static __cold void io_drain_req(struct io_kiocb *req)
1809 __must_hold(&ctx->uring_lock)
1811 struct io_ring_ctx *ctx = req->ctx;
1812 struct io_defer_entry *de;
1814 u32 seq = io_get_sequence(req);
1816 /* Still need defer if there is pending req in defer list. */
1817 spin_lock(&ctx->completion_lock);
1818 if (!req_need_defer(req, seq) && list_empty_careful(&ctx->defer_list)) {
1819 spin_unlock(&ctx->completion_lock);
1821 ctx->drain_active = false;
1822 io_req_task_queue(req);
1825 spin_unlock(&ctx->completion_lock);
1827 io_prep_async_link(req);
1828 de = kmalloc(sizeof(*de), GFP_KERNEL);
1831 io_req_defer_failed(req, ret);
1835 spin_lock(&ctx->completion_lock);
1836 if (!req_need_defer(req, seq) && list_empty(&ctx->defer_list)) {
1837 spin_unlock(&ctx->completion_lock);
1842 trace_io_uring_defer(req);
1845 list_add_tail(&de->list, &ctx->defer_list);
1846 spin_unlock(&ctx->completion_lock);
1849 static bool io_assign_file(struct io_kiocb *req, const struct io_issue_def *def,
1850 unsigned int issue_flags)
1852 if (req->file || !def->needs_file)
1855 if (req->flags & REQ_F_FIXED_FILE)
1856 req->file = io_file_get_fixed(req, req->cqe.fd, issue_flags);
1858 req->file = io_file_get_normal(req, req->cqe.fd);
1863 static int io_issue_sqe(struct io_kiocb *req, unsigned int issue_flags)
1865 const struct io_issue_def *def = &io_issue_defs[req->opcode];
1866 const struct cred *creds = NULL;
1869 if (unlikely(!io_assign_file(req, def, issue_flags)))
1872 if (unlikely((req->flags & REQ_F_CREDS) && req->creds != current_cred()))
1873 creds = override_creds(req->creds);
1875 if (!def->audit_skip)
1876 audit_uring_entry(req->opcode);
1878 ret = def->issue(req, issue_flags);
1880 if (!def->audit_skip)
1881 audit_uring_exit(!ret, ret);
1884 revert_creds(creds);
1886 if (ret == IOU_OK) {
1887 if (issue_flags & IO_URING_F_COMPLETE_DEFER)
1888 io_req_complete_defer(req);
1890 io_req_complete_post(req, issue_flags);
1891 } else if (ret != IOU_ISSUE_SKIP_COMPLETE)
1894 /* If the op doesn't have a file, we're not polling for it */
1895 if ((req->ctx->flags & IORING_SETUP_IOPOLL) && def->iopoll_queue)
1896 io_iopoll_req_issued(req, issue_flags);
1901 int io_poll_issue(struct io_kiocb *req, struct io_tw_state *ts)
1903 io_tw_lock(req->ctx, ts);
1904 return io_issue_sqe(req, IO_URING_F_NONBLOCK|IO_URING_F_MULTISHOT|
1905 IO_URING_F_COMPLETE_DEFER);
1908 struct io_wq_work *io_wq_free_work(struct io_wq_work *work)
1910 struct io_kiocb *req = container_of(work, struct io_kiocb, work);
1911 struct io_kiocb *nxt = NULL;
1913 if (req_ref_put_and_test(req)) {
1914 if (req->flags & IO_REQ_LINK_FLAGS)
1915 nxt = io_req_find_next(req);
1918 return nxt ? &nxt->work : NULL;
1921 void io_wq_submit_work(struct io_wq_work *work)
1923 struct io_kiocb *req = container_of(work, struct io_kiocb, work);
1924 const struct io_issue_def *def = &io_issue_defs[req->opcode];
1925 unsigned int issue_flags = IO_URING_F_UNLOCKED | IO_URING_F_IOWQ;
1926 bool needs_poll = false;
1927 int ret = 0, err = -ECANCELED;
1929 /* one will be dropped by ->io_wq_free_work() after returning to io-wq */
1930 if (!(req->flags & REQ_F_REFCOUNT))
1931 __io_req_set_refcount(req, 2);
1935 io_arm_ltimeout(req);
1937 /* either cancelled or io-wq is dying, so don't touch tctx->iowq */
1938 if (work->flags & IO_WQ_WORK_CANCEL) {
1940 io_req_task_queue_fail(req, err);
1943 if (!io_assign_file(req, def, issue_flags)) {
1945 work->flags |= IO_WQ_WORK_CANCEL;
1949 if (req->flags & REQ_F_FORCE_ASYNC) {
1950 bool opcode_poll = def->pollin || def->pollout;
1952 if (opcode_poll && file_can_poll(req->file)) {
1954 issue_flags |= IO_URING_F_NONBLOCK;
1959 ret = io_issue_sqe(req, issue_flags);
1964 * If REQ_F_NOWAIT is set, then don't wait or retry with
1965 * poll. -EAGAIN is final for that case.
1967 if (req->flags & REQ_F_NOWAIT)
1971 * We can get EAGAIN for iopolled IO even though we're
1972 * forcing a sync submission from here, since we can't
1973 * wait for request slots on the block side.
1976 if (!(req->ctx->flags & IORING_SETUP_IOPOLL))
1978 if (io_wq_worker_stopped())
1984 if (io_arm_poll_handler(req, issue_flags) == IO_APOLL_OK)
1986 /* aborted or ready, in either case retry blocking */
1988 issue_flags &= ~IO_URING_F_NONBLOCK;
1991 /* avoid locking problems by failing it from a clean context */
1993 io_req_task_queue_fail(req, ret);
1996 inline struct file *io_file_get_fixed(struct io_kiocb *req, int fd,
1997 unsigned int issue_flags)
1999 struct io_ring_ctx *ctx = req->ctx;
2000 struct io_fixed_file *slot;
2001 struct file *file = NULL;
2003 io_ring_submit_lock(ctx, issue_flags);
2005 if (unlikely((unsigned int)fd >= ctx->nr_user_files))
2007 fd = array_index_nospec(fd, ctx->nr_user_files);
2008 slot = io_fixed_file_slot(&ctx->file_table, fd);
2009 file = io_slot_file(slot);
2010 req->flags |= io_slot_flags(slot);
2011 io_req_set_rsrc_node(req, ctx, 0);
2013 io_ring_submit_unlock(ctx, issue_flags);
2017 struct file *io_file_get_normal(struct io_kiocb *req, int fd)
2019 struct file *file = fget(fd);
2021 trace_io_uring_file_get(req, fd);
2023 /* we don't allow fixed io_uring files */
2024 if (file && io_is_uring_fops(file))
2025 io_req_track_inflight(req);
2029 static void io_queue_async(struct io_kiocb *req, int ret)
2030 __must_hold(&req->ctx->uring_lock)
2032 struct io_kiocb *linked_timeout;
2034 if (ret != -EAGAIN || (req->flags & REQ_F_NOWAIT)) {
2035 io_req_defer_failed(req, ret);
2039 linked_timeout = io_prep_linked_timeout(req);
2041 switch (io_arm_poll_handler(req, 0)) {
2042 case IO_APOLL_READY:
2043 io_kbuf_recycle(req, 0);
2044 io_req_task_queue(req);
2046 case IO_APOLL_ABORTED:
2047 io_kbuf_recycle(req, 0);
2048 io_queue_iowq(req, NULL);
2055 io_queue_linked_timeout(linked_timeout);
2058 static inline void io_queue_sqe(struct io_kiocb *req)
2059 __must_hold(&req->ctx->uring_lock)
2063 ret = io_issue_sqe(req, IO_URING_F_NONBLOCK|IO_URING_F_COMPLETE_DEFER);
2066 * We async punt it if the file wasn't marked NOWAIT, or if the file
2067 * doesn't support non-blocking read/write attempts
2070 io_arm_ltimeout(req);
2072 io_queue_async(req, ret);
2075 static void io_queue_sqe_fallback(struct io_kiocb *req)
2076 __must_hold(&req->ctx->uring_lock)
2078 if (unlikely(req->flags & REQ_F_FAIL)) {
2080 * We don't submit, fail them all, for that replace hardlinks
2081 * with normal links. Extra REQ_F_LINK is tolerated.
2083 req->flags &= ~REQ_F_HARDLINK;
2084 req->flags |= REQ_F_LINK;
2085 io_req_defer_failed(req, req->cqe.res);
2087 int ret = io_req_prep_async(req);
2089 if (unlikely(ret)) {
2090 io_req_defer_failed(req, ret);
2094 if (unlikely(req->ctx->drain_active))
2097 io_queue_iowq(req, NULL);
2102 * Check SQE restrictions (opcode and flags).
2104 * Returns 'true' if SQE is allowed, 'false' otherwise.
2106 static inline bool io_check_restriction(struct io_ring_ctx *ctx,
2107 struct io_kiocb *req,
2108 unsigned int sqe_flags)
2110 if (!test_bit(req->opcode, ctx->restrictions.sqe_op))
2113 if ((sqe_flags & ctx->restrictions.sqe_flags_required) !=
2114 ctx->restrictions.sqe_flags_required)
2117 if (sqe_flags & ~(ctx->restrictions.sqe_flags_allowed |
2118 ctx->restrictions.sqe_flags_required))
2124 static void io_init_req_drain(struct io_kiocb *req)
2126 struct io_ring_ctx *ctx = req->ctx;
2127 struct io_kiocb *head = ctx->submit_state.link.head;
2129 ctx->drain_active = true;
2132 * If we need to drain a request in the middle of a link, drain
2133 * the head request and the next request/link after the current
2134 * link. Considering sequential execution of links,
2135 * REQ_F_IO_DRAIN will be maintained for every request of our
2138 head->flags |= REQ_F_IO_DRAIN | REQ_F_FORCE_ASYNC;
2139 ctx->drain_next = true;
2143 static int io_init_req(struct io_ring_ctx *ctx, struct io_kiocb *req,
2144 const struct io_uring_sqe *sqe)
2145 __must_hold(&ctx->uring_lock)
2147 const struct io_issue_def *def;
2148 unsigned int sqe_flags;
2152 /* req is partially pre-initialised, see io_preinit_req() */
2153 req->opcode = opcode = READ_ONCE(sqe->opcode);
2154 /* same numerical values with corresponding REQ_F_*, safe to copy */
2155 req->flags = sqe_flags = READ_ONCE(sqe->flags);
2156 req->cqe.user_data = READ_ONCE(sqe->user_data);
2158 req->rsrc_node = NULL;
2159 req->task = current;
2161 if (unlikely(opcode >= IORING_OP_LAST)) {
2165 def = &io_issue_defs[opcode];
2166 if (unlikely(sqe_flags & ~SQE_COMMON_FLAGS)) {
2167 /* enforce forwards compatibility on users */
2168 if (sqe_flags & ~SQE_VALID_FLAGS)
2170 if (sqe_flags & IOSQE_BUFFER_SELECT) {
2171 if (!def->buffer_select)
2173 req->buf_index = READ_ONCE(sqe->buf_group);
2175 if (sqe_flags & IOSQE_CQE_SKIP_SUCCESS)
2176 ctx->drain_disabled = true;
2177 if (sqe_flags & IOSQE_IO_DRAIN) {
2178 if (ctx->drain_disabled)
2180 io_init_req_drain(req);
2183 if (unlikely(ctx->restricted || ctx->drain_active || ctx->drain_next)) {
2184 if (ctx->restricted && !io_check_restriction(ctx, req, sqe_flags))
2186 /* knock it to the slow queue path, will be drained there */
2187 if (ctx->drain_active)
2188 req->flags |= REQ_F_FORCE_ASYNC;
2189 /* if there is no link, we're at "next" request and need to drain */
2190 if (unlikely(ctx->drain_next) && !ctx->submit_state.link.head) {
2191 ctx->drain_next = false;
2192 ctx->drain_active = true;
2193 req->flags |= REQ_F_IO_DRAIN | REQ_F_FORCE_ASYNC;
2197 if (!def->ioprio && sqe->ioprio)
2199 if (!def->iopoll && (ctx->flags & IORING_SETUP_IOPOLL))
2202 if (def->needs_file) {
2203 struct io_submit_state *state = &ctx->submit_state;
2205 req->cqe.fd = READ_ONCE(sqe->fd);
2208 * Plug now if we have more than 2 IO left after this, and the
2209 * target is potentially a read/write to block based storage.
2211 if (state->need_plug && def->plug) {
2212 state->plug_started = true;
2213 state->need_plug = false;
2214 blk_start_plug_nr_ios(&state->plug, state->submit_nr);
2218 personality = READ_ONCE(sqe->personality);
2222 req->creds = xa_load(&ctx->personalities, personality);
2225 get_cred(req->creds);
2226 ret = security_uring_override_creds(req->creds);
2228 put_cred(req->creds);
2231 req->flags |= REQ_F_CREDS;
2234 return def->prep(req, sqe);
2237 static __cold int io_submit_fail_init(const struct io_uring_sqe *sqe,
2238 struct io_kiocb *req, int ret)
2240 struct io_ring_ctx *ctx = req->ctx;
2241 struct io_submit_link *link = &ctx->submit_state.link;
2242 struct io_kiocb *head = link->head;
2244 trace_io_uring_req_failed(sqe, req, ret);
2247 * Avoid breaking links in the middle as it renders links with SQPOLL
2248 * unusable. Instead of failing eagerly, continue assembling the link if
2249 * applicable and mark the head with REQ_F_FAIL. The link flushing code
2250 * should find the flag and handle the rest.
2252 req_fail_link_node(req, ret);
2253 if (head && !(head->flags & REQ_F_FAIL))
2254 req_fail_link_node(head, -ECANCELED);
2256 if (!(req->flags & IO_REQ_LINK_FLAGS)) {
2258 link->last->link = req;
2262 io_queue_sqe_fallback(req);
2267 link->last->link = req;
2274 static inline int io_submit_sqe(struct io_ring_ctx *ctx, struct io_kiocb *req,
2275 const struct io_uring_sqe *sqe)
2276 __must_hold(&ctx->uring_lock)
2278 struct io_submit_link *link = &ctx->submit_state.link;
2281 ret = io_init_req(ctx, req, sqe);
2283 return io_submit_fail_init(sqe, req, ret);
2285 trace_io_uring_submit_req(req);
2288 * If we already have a head request, queue this one for async
2289 * submittal once the head completes. If we don't have a head but
2290 * IOSQE_IO_LINK is set in the sqe, start a new head. This one will be
2291 * submitted sync once the chain is complete. If none of those
2292 * conditions are true (normal request), then just queue it.
2294 if (unlikely(link->head)) {
2295 ret = io_req_prep_async(req);
2297 return io_submit_fail_init(sqe, req, ret);
2299 trace_io_uring_link(req, link->head);
2300 link->last->link = req;
2303 if (req->flags & IO_REQ_LINK_FLAGS)
2305 /* last request of the link, flush it */
2308 if (req->flags & (REQ_F_FORCE_ASYNC | REQ_F_FAIL))
2311 } else if (unlikely(req->flags & (IO_REQ_LINK_FLAGS |
2312 REQ_F_FORCE_ASYNC | REQ_F_FAIL))) {
2313 if (req->flags & IO_REQ_LINK_FLAGS) {
2318 io_queue_sqe_fallback(req);
2328 * Batched submission is done, ensure local IO is flushed out.
2330 static void io_submit_state_end(struct io_ring_ctx *ctx)
2332 struct io_submit_state *state = &ctx->submit_state;
2334 if (unlikely(state->link.head))
2335 io_queue_sqe_fallback(state->link.head);
2336 /* flush only after queuing links as they can generate completions */
2337 io_submit_flush_completions(ctx);
2338 if (state->plug_started)
2339 blk_finish_plug(&state->plug);
2343 * Start submission side cache.
2345 static void io_submit_state_start(struct io_submit_state *state,
2346 unsigned int max_ios)
2348 state->plug_started = false;
2349 state->need_plug = max_ios > 2;
2350 state->submit_nr = max_ios;
2351 /* set only head, no need to init link_last in advance */
2352 state->link.head = NULL;
2355 static void io_commit_sqring(struct io_ring_ctx *ctx)
2357 struct io_rings *rings = ctx->rings;
2360 * Ensure any loads from the SQEs are done at this point,
2361 * since once we write the new head, the application could
2362 * write new data to them.
2364 smp_store_release(&rings->sq.head, ctx->cached_sq_head);
2368 * Fetch an sqe, if one is available. Note this returns a pointer to memory
2369 * that is mapped by userspace. This means that care needs to be taken to
2370 * ensure that reads are stable, as we cannot rely on userspace always
2371 * being a good citizen. If members of the sqe are validated and then later
2372 * used, it's important that those reads are done through READ_ONCE() to
2373 * prevent a re-load down the line.
2375 static bool io_get_sqe(struct io_ring_ctx *ctx, const struct io_uring_sqe **sqe)
2377 unsigned mask = ctx->sq_entries - 1;
2378 unsigned head = ctx->cached_sq_head++ & mask;
2380 if (!(ctx->flags & IORING_SETUP_NO_SQARRAY)) {
2381 head = READ_ONCE(ctx->sq_array[head]);
2382 if (unlikely(head >= ctx->sq_entries)) {
2383 /* drop invalid entries */
2384 spin_lock(&ctx->completion_lock);
2386 spin_unlock(&ctx->completion_lock);
2387 WRITE_ONCE(ctx->rings->sq_dropped,
2388 READ_ONCE(ctx->rings->sq_dropped) + 1);
2394 * The cached sq head (or cq tail) serves two purposes:
2396 * 1) allows us to batch the cost of updating the user visible
2398 * 2) allows the kernel side to track the head on its own, even
2399 * though the application is the one updating it.
2402 /* double index for 128-byte SQEs, twice as long */
2403 if (ctx->flags & IORING_SETUP_SQE128)
2405 *sqe = &ctx->sq_sqes[head];
2409 int io_submit_sqes(struct io_ring_ctx *ctx, unsigned int nr)
2410 __must_hold(&ctx->uring_lock)
2412 unsigned int entries = io_sqring_entries(ctx);
2416 if (unlikely(!entries))
2418 /* make sure SQ entry isn't read before tail */
2419 ret = left = min(nr, entries);
2420 io_get_task_refs(left);
2421 io_submit_state_start(&ctx->submit_state, left);
2424 const struct io_uring_sqe *sqe;
2425 struct io_kiocb *req;
2427 if (unlikely(!io_alloc_req(ctx, &req)))
2429 if (unlikely(!io_get_sqe(ctx, &sqe))) {
2430 io_req_add_to_cache(req, ctx);
2435 * Continue submitting even for sqe failure if the
2436 * ring was setup with IORING_SETUP_SUBMIT_ALL
2438 if (unlikely(io_submit_sqe(ctx, req, sqe)) &&
2439 !(ctx->flags & IORING_SETUP_SUBMIT_ALL)) {
2445 if (unlikely(left)) {
2447 /* try again if it submitted nothing and can't allocate a req */
2448 if (!ret && io_req_cache_empty(ctx))
2450 current->io_uring->cached_refs += left;
2453 io_submit_state_end(ctx);
2454 /* Commit SQ ring head once we've consumed and submitted all SQEs */
2455 io_commit_sqring(ctx);
2459 struct io_wait_queue {
2460 struct wait_queue_entry wq;
2461 struct io_ring_ctx *ctx;
2463 unsigned nr_timeouts;
2467 static inline bool io_has_work(struct io_ring_ctx *ctx)
2469 return test_bit(IO_CHECK_CQ_OVERFLOW_BIT, &ctx->check_cq) ||
2470 !llist_empty(&ctx->work_llist);
2473 static inline bool io_should_wake(struct io_wait_queue *iowq)
2475 struct io_ring_ctx *ctx = iowq->ctx;
2476 int dist = READ_ONCE(ctx->rings->cq.tail) - (int) iowq->cq_tail;
2479 * Wake up if we have enough events, or if a timeout occurred since we
2480 * started waiting. For timeouts, we always want to return to userspace,
2481 * regardless of event count.
2483 return dist >= 0 || atomic_read(&ctx->cq_timeouts) != iowq->nr_timeouts;
2486 static int io_wake_function(struct wait_queue_entry *curr, unsigned int mode,
2487 int wake_flags, void *key)
2489 struct io_wait_queue *iowq = container_of(curr, struct io_wait_queue, wq);
2492 * Cannot safely flush overflowed CQEs from here, ensure we wake up
2493 * the task, and the next invocation will do it.
2495 if (io_should_wake(iowq) || io_has_work(iowq->ctx))
2496 return autoremove_wake_function(curr, mode, wake_flags, key);
2500 int io_run_task_work_sig(struct io_ring_ctx *ctx)
2502 if (!llist_empty(&ctx->work_llist)) {
2503 __set_current_state(TASK_RUNNING);
2504 if (io_run_local_work(ctx) > 0)
2507 if (io_run_task_work() > 0)
2509 if (task_sigpending(current))
2514 static bool current_pending_io(void)
2516 struct io_uring_task *tctx = current->io_uring;
2520 return percpu_counter_read_positive(&tctx->inflight);
2523 /* when returns >0, the caller should retry */
2524 static inline int io_cqring_wait_schedule(struct io_ring_ctx *ctx,
2525 struct io_wait_queue *iowq)
2529 if (unlikely(READ_ONCE(ctx->check_cq)))
2531 if (unlikely(!llist_empty(&ctx->work_llist)))
2533 if (unlikely(test_thread_flag(TIF_NOTIFY_SIGNAL)))
2535 if (unlikely(task_sigpending(current)))
2537 if (unlikely(io_should_wake(iowq)))
2541 * Mark us as being in io_wait if we have pending requests, so cpufreq
2542 * can take into account that the task is waiting for IO - turns out
2543 * to be important for low QD IO.
2545 io_wait = current->in_iowait;
2546 if (current_pending_io())
2547 current->in_iowait = 1;
2549 if (iowq->timeout == KTIME_MAX)
2551 else if (!schedule_hrtimeout(&iowq->timeout, HRTIMER_MODE_ABS))
2553 current->in_iowait = io_wait;
2558 * Wait until events become available, if we don't already have some. The
2559 * application must reap them itself, as they reside on the shared cq ring.
2561 static int io_cqring_wait(struct io_ring_ctx *ctx, int min_events,
2562 const sigset_t __user *sig, size_t sigsz,
2563 struct __kernel_timespec __user *uts)
2565 struct io_wait_queue iowq;
2566 struct io_rings *rings = ctx->rings;
2569 if (!io_allowed_run_tw(ctx))
2571 if (!llist_empty(&ctx->work_llist))
2572 io_run_local_work(ctx);
2574 io_cqring_overflow_flush(ctx);
2575 /* if user messes with these they will just get an early return */
2576 if (__io_cqring_events_user(ctx) >= min_events)
2580 #ifdef CONFIG_COMPAT
2581 if (in_compat_syscall())
2582 ret = set_compat_user_sigmask((const compat_sigset_t __user *)sig,
2586 ret = set_user_sigmask(sig, sigsz);
2592 init_waitqueue_func_entry(&iowq.wq, io_wake_function);
2593 iowq.wq.private = current;
2594 INIT_LIST_HEAD(&iowq.wq.entry);
2596 iowq.nr_timeouts = atomic_read(&ctx->cq_timeouts);
2597 iowq.cq_tail = READ_ONCE(ctx->rings->cq.head) + min_events;
2598 iowq.timeout = KTIME_MAX;
2601 struct timespec64 ts;
2603 if (get_timespec64(&ts, uts))
2605 iowq.timeout = ktime_add_ns(timespec64_to_ktime(ts), ktime_get_ns());
2608 trace_io_uring_cqring_wait(ctx, min_events);
2610 unsigned long check_cq;
2612 if (ctx->flags & IORING_SETUP_DEFER_TASKRUN) {
2613 int nr_wait = (int) iowq.cq_tail - READ_ONCE(ctx->rings->cq.tail);
2615 atomic_set(&ctx->cq_wait_nr, nr_wait);
2616 set_current_state(TASK_INTERRUPTIBLE);
2618 prepare_to_wait_exclusive(&ctx->cq_wait, &iowq.wq,
2619 TASK_INTERRUPTIBLE);
2622 ret = io_cqring_wait_schedule(ctx, &iowq);
2623 __set_current_state(TASK_RUNNING);
2624 atomic_set(&ctx->cq_wait_nr, 0);
2629 * Run task_work after scheduling and before io_should_wake().
2630 * If we got woken because of task_work being processed, run it
2631 * now rather than let the caller do another wait loop.
2634 if (!llist_empty(&ctx->work_llist))
2635 io_run_local_work(ctx);
2637 check_cq = READ_ONCE(ctx->check_cq);
2638 if (unlikely(check_cq)) {
2639 /* let the caller flush overflows, retry */
2640 if (check_cq & BIT(IO_CHECK_CQ_OVERFLOW_BIT))
2641 io_cqring_do_overflow_flush(ctx);
2642 if (check_cq & BIT(IO_CHECK_CQ_DROPPED_BIT)) {
2648 if (io_should_wake(&iowq)) {
2655 if (!(ctx->flags & IORING_SETUP_DEFER_TASKRUN))
2656 finish_wait(&ctx->cq_wait, &iowq.wq);
2657 restore_saved_sigmask_unless(ret == -EINTR);
2659 return READ_ONCE(rings->cq.head) == READ_ONCE(rings->cq.tail) ? ret : 0;
2662 static void io_mem_free(void *ptr)
2667 folio_put(virt_to_folio(ptr));
2670 static void io_pages_free(struct page ***pages, int npages)
2672 struct page **page_array;
2677 page_array = *pages;
2678 for (i = 0; i < npages; i++)
2679 unpin_user_page(page_array[i]);
2684 static void *__io_uaddr_map(struct page ***pages, unsigned short *npages,
2685 unsigned long uaddr, size_t size)
2687 struct page **page_array;
2688 unsigned int nr_pages;
2693 if (uaddr & (PAGE_SIZE - 1) || !size)
2694 return ERR_PTR(-EINVAL);
2696 nr_pages = (size + PAGE_SIZE - 1) >> PAGE_SHIFT;
2697 if (nr_pages > USHRT_MAX)
2698 return ERR_PTR(-EINVAL);
2699 page_array = kvmalloc_array(nr_pages, sizeof(struct page *), GFP_KERNEL);
2701 return ERR_PTR(-ENOMEM);
2703 ret = pin_user_pages_fast(uaddr, nr_pages, FOLL_WRITE | FOLL_LONGTERM,
2705 if (ret != nr_pages) {
2707 io_pages_free(&page_array, ret > 0 ? ret : 0);
2708 return ret < 0 ? ERR_PTR(ret) : ERR_PTR(-EFAULT);
2711 * Should be a single page. If the ring is small enough that we can
2712 * use a normal page, that is fine. If we need multiple pages, then
2713 * userspace should use a huge page. That's the only way to guarantee
2714 * that we get contigious memory, outside of just being lucky or
2715 * (currently) having low memory fragmentation.
2717 if (page_array[0] != page_array[ret - 1])
2721 * Can't support mapping user allocated ring memory on 32-bit archs
2722 * where it could potentially reside in highmem. Just fail those with
2723 * -EINVAL, just like we did on kernels that didn't support this
2726 for (i = 0; i < nr_pages; i++) {
2727 if (PageHighMem(page_array[i])) {
2733 *pages = page_array;
2735 return page_to_virt(page_array[0]);
2738 static void *io_rings_map(struct io_ring_ctx *ctx, unsigned long uaddr,
2741 return __io_uaddr_map(&ctx->ring_pages, &ctx->n_ring_pages, uaddr,
2745 static void *io_sqes_map(struct io_ring_ctx *ctx, unsigned long uaddr,
2748 return __io_uaddr_map(&ctx->sqe_pages, &ctx->n_sqe_pages, uaddr,
2752 static void io_rings_free(struct io_ring_ctx *ctx)
2754 if (!(ctx->flags & IORING_SETUP_NO_MMAP)) {
2755 io_mem_free(ctx->rings);
2756 io_mem_free(ctx->sq_sqes);
2758 ctx->sq_sqes = NULL;
2760 io_pages_free(&ctx->ring_pages, ctx->n_ring_pages);
2761 io_pages_free(&ctx->sqe_pages, ctx->n_sqe_pages);
2765 static void *io_mem_alloc(size_t size)
2767 gfp_t gfp = GFP_KERNEL_ACCOUNT | __GFP_ZERO | __GFP_NOWARN | __GFP_COMP;
2770 ret = (void *) __get_free_pages(gfp, get_order(size));
2773 return ERR_PTR(-ENOMEM);
2776 static unsigned long rings_size(struct io_ring_ctx *ctx, unsigned int sq_entries,
2777 unsigned int cq_entries, size_t *sq_offset)
2779 struct io_rings *rings;
2780 size_t off, sq_array_size;
2782 off = struct_size(rings, cqes, cq_entries);
2783 if (off == SIZE_MAX)
2785 if (ctx->flags & IORING_SETUP_CQE32) {
2786 if (check_shl_overflow(off, 1, &off))
2791 off = ALIGN(off, SMP_CACHE_BYTES);
2796 if (ctx->flags & IORING_SETUP_NO_SQARRAY) {
2798 *sq_offset = SIZE_MAX;
2805 sq_array_size = array_size(sizeof(u32), sq_entries);
2806 if (sq_array_size == SIZE_MAX)
2809 if (check_add_overflow(off, sq_array_size, &off))
2815 static int io_eventfd_register(struct io_ring_ctx *ctx, void __user *arg,
2816 unsigned int eventfd_async)
2818 struct io_ev_fd *ev_fd;
2819 __s32 __user *fds = arg;
2822 ev_fd = rcu_dereference_protected(ctx->io_ev_fd,
2823 lockdep_is_held(&ctx->uring_lock));
2827 if (copy_from_user(&fd, fds, sizeof(*fds)))
2830 ev_fd = kmalloc(sizeof(*ev_fd), GFP_KERNEL);
2834 ev_fd->cq_ev_fd = eventfd_ctx_fdget(fd);
2835 if (IS_ERR(ev_fd->cq_ev_fd)) {
2836 int ret = PTR_ERR(ev_fd->cq_ev_fd);
2841 spin_lock(&ctx->completion_lock);
2842 ctx->evfd_last_cq_tail = ctx->cached_cq_tail;
2843 spin_unlock(&ctx->completion_lock);
2845 ev_fd->eventfd_async = eventfd_async;
2846 ctx->has_evfd = true;
2847 rcu_assign_pointer(ctx->io_ev_fd, ev_fd);
2848 atomic_set(&ev_fd->refs, 1);
2849 atomic_set(&ev_fd->ops, 0);
2853 static int io_eventfd_unregister(struct io_ring_ctx *ctx)
2855 struct io_ev_fd *ev_fd;
2857 ev_fd = rcu_dereference_protected(ctx->io_ev_fd,
2858 lockdep_is_held(&ctx->uring_lock));
2860 ctx->has_evfd = false;
2861 rcu_assign_pointer(ctx->io_ev_fd, NULL);
2862 if (!atomic_fetch_or(BIT(IO_EVENTFD_OP_FREE_BIT), &ev_fd->ops))
2863 call_rcu(&ev_fd->rcu, io_eventfd_ops);
2870 static void io_req_caches_free(struct io_ring_ctx *ctx)
2872 struct io_kiocb *req;
2875 mutex_lock(&ctx->uring_lock);
2876 io_flush_cached_locked_reqs(ctx, &ctx->submit_state);
2878 while (!io_req_cache_empty(ctx)) {
2879 req = io_extract_req(ctx);
2880 kmem_cache_free(req_cachep, req);
2884 percpu_ref_put_many(&ctx->refs, nr);
2885 mutex_unlock(&ctx->uring_lock);
2888 static void io_rsrc_node_cache_free(struct io_cache_entry *entry)
2890 kfree(container_of(entry, struct io_rsrc_node, cache));
2893 static __cold void io_ring_ctx_free(struct io_ring_ctx *ctx)
2895 io_sq_thread_finish(ctx);
2896 /* __io_rsrc_put_work() may need uring_lock to progress, wait w/o it */
2897 if (WARN_ON_ONCE(!list_empty(&ctx->rsrc_ref_list)))
2900 mutex_lock(&ctx->uring_lock);
2902 __io_sqe_buffers_unregister(ctx);
2904 __io_sqe_files_unregister(ctx);
2905 io_cqring_overflow_kill(ctx);
2906 io_eventfd_unregister(ctx);
2907 io_alloc_cache_free(&ctx->apoll_cache, io_apoll_cache_free);
2908 io_alloc_cache_free(&ctx->netmsg_cache, io_netmsg_cache_free);
2909 io_destroy_buffers(ctx);
2910 mutex_unlock(&ctx->uring_lock);
2912 put_cred(ctx->sq_creds);
2913 if (ctx->submitter_task)
2914 put_task_struct(ctx->submitter_task);
2916 /* there are no registered resources left, nobody uses it */
2918 io_rsrc_node_destroy(ctx, ctx->rsrc_node);
2920 WARN_ON_ONCE(!list_empty(&ctx->rsrc_ref_list));
2922 #if defined(CONFIG_UNIX)
2923 if (ctx->ring_sock) {
2924 ctx->ring_sock->file = NULL; /* so that iput() is called */
2925 sock_release(ctx->ring_sock);
2928 WARN_ON_ONCE(!list_empty(&ctx->ltimeout_list));
2930 io_alloc_cache_free(&ctx->rsrc_node_cache, io_rsrc_node_cache_free);
2931 if (ctx->mm_account) {
2932 mmdrop(ctx->mm_account);
2933 ctx->mm_account = NULL;
2937 percpu_ref_exit(&ctx->refs);
2938 free_uid(ctx->user);
2939 io_req_caches_free(ctx);
2941 io_wq_put_hash(ctx->hash_map);
2942 kfree(ctx->cancel_table.hbs);
2943 kfree(ctx->cancel_table_locked.hbs);
2945 xa_destroy(&ctx->io_bl_xa);
2949 static __cold void io_activate_pollwq_cb(struct callback_head *cb)
2951 struct io_ring_ctx *ctx = container_of(cb, struct io_ring_ctx,
2954 mutex_lock(&ctx->uring_lock);
2955 ctx->poll_activated = true;
2956 mutex_unlock(&ctx->uring_lock);
2959 * Wake ups for some events between start of polling and activation
2960 * might've been lost due to loose synchronisation.
2962 wake_up_all(&ctx->poll_wq);
2963 percpu_ref_put(&ctx->refs);
2966 static __cold void io_activate_pollwq(struct io_ring_ctx *ctx)
2968 spin_lock(&ctx->completion_lock);
2969 /* already activated or in progress */
2970 if (ctx->poll_activated || ctx->poll_wq_task_work.func)
2972 if (WARN_ON_ONCE(!ctx->task_complete))
2974 if (!ctx->submitter_task)
2977 * with ->submitter_task only the submitter task completes requests, we
2978 * only need to sync with it, which is done by injecting a tw
2980 init_task_work(&ctx->poll_wq_task_work, io_activate_pollwq_cb);
2981 percpu_ref_get(&ctx->refs);
2982 if (task_work_add(ctx->submitter_task, &ctx->poll_wq_task_work, TWA_SIGNAL))
2983 percpu_ref_put(&ctx->refs);
2985 spin_unlock(&ctx->completion_lock);
2988 static __poll_t io_uring_poll(struct file *file, poll_table *wait)
2990 struct io_ring_ctx *ctx = file->private_data;
2993 if (unlikely(!ctx->poll_activated))
2994 io_activate_pollwq(ctx);
2996 poll_wait(file, &ctx->poll_wq, wait);
2998 * synchronizes with barrier from wq_has_sleeper call in
3002 if (!io_sqring_full(ctx))
3003 mask |= EPOLLOUT | EPOLLWRNORM;
3006 * Don't flush cqring overflow list here, just do a simple check.
3007 * Otherwise there could possible be ABBA deadlock:
3010 * lock(&ctx->uring_lock);
3012 * lock(&ctx->uring_lock);
3015 * Users may get EPOLLIN meanwhile seeing nothing in cqring, this
3016 * pushes them to do the flush.
3019 if (__io_cqring_events_user(ctx) || io_has_work(ctx))
3020 mask |= EPOLLIN | EPOLLRDNORM;
3025 static int io_unregister_personality(struct io_ring_ctx *ctx, unsigned id)
3027 const struct cred *creds;
3029 creds = xa_erase(&ctx->personalities, id);
3038 struct io_tctx_exit {
3039 struct callback_head task_work;
3040 struct completion completion;
3041 struct io_ring_ctx *ctx;
3044 static __cold void io_tctx_exit_cb(struct callback_head *cb)
3046 struct io_uring_task *tctx = current->io_uring;
3047 struct io_tctx_exit *work;
3049 work = container_of(cb, struct io_tctx_exit, task_work);
3051 * When @in_cancel, we're in cancellation and it's racy to remove the
3052 * node. It'll be removed by the end of cancellation, just ignore it.
3053 * tctx can be NULL if the queueing of this task_work raced with
3054 * work cancelation off the exec path.
3056 if (tctx && !atomic_read(&tctx->in_cancel))
3057 io_uring_del_tctx_node((unsigned long)work->ctx);
3058 complete(&work->completion);
3061 static __cold bool io_cancel_ctx_cb(struct io_wq_work *work, void *data)
3063 struct io_kiocb *req = container_of(work, struct io_kiocb, work);
3065 return req->ctx == data;
3068 static __cold void io_ring_exit_work(struct work_struct *work)
3070 struct io_ring_ctx *ctx = container_of(work, struct io_ring_ctx, exit_work);
3071 unsigned long timeout = jiffies + HZ * 60 * 5;
3072 unsigned long interval = HZ / 20;
3073 struct io_tctx_exit exit;
3074 struct io_tctx_node *node;
3078 * If we're doing polled IO and end up having requests being
3079 * submitted async (out-of-line), then completions can come in while
3080 * we're waiting for refs to drop. We need to reap these manually,
3081 * as nobody else will be looking for them.
3084 if (test_bit(IO_CHECK_CQ_OVERFLOW_BIT, &ctx->check_cq)) {
3085 mutex_lock(&ctx->uring_lock);
3086 io_cqring_overflow_kill(ctx);
3087 mutex_unlock(&ctx->uring_lock);
3090 if (ctx->flags & IORING_SETUP_DEFER_TASKRUN)
3091 io_move_task_work_from_local(ctx);
3093 while (io_uring_try_cancel_requests(ctx, NULL, true))
3097 struct io_sq_data *sqd = ctx->sq_data;
3098 struct task_struct *tsk;
3100 io_sq_thread_park(sqd);
3102 if (tsk && tsk->io_uring && tsk->io_uring->io_wq)
3103 io_wq_cancel_cb(tsk->io_uring->io_wq,
3104 io_cancel_ctx_cb, ctx, true);
3105 io_sq_thread_unpark(sqd);
3108 io_req_caches_free(ctx);
3110 if (WARN_ON_ONCE(time_after(jiffies, timeout))) {
3111 /* there is little hope left, don't run it too often */
3115 * This is really an uninterruptible wait, as it has to be
3116 * complete. But it's also run from a kworker, which doesn't
3117 * take signals, so it's fine to make it interruptible. This
3118 * avoids scenarios where we knowingly can wait much longer
3119 * on completions, for example if someone does a SIGSTOP on
3120 * a task that needs to finish task_work to make this loop
3121 * complete. That's a synthetic situation that should not
3122 * cause a stuck task backtrace, and hence a potential panic
3123 * on stuck tasks if that is enabled.
3125 } while (!wait_for_completion_interruptible_timeout(&ctx->ref_comp, interval));
3127 init_completion(&exit.completion);
3128 init_task_work(&exit.task_work, io_tctx_exit_cb);
3131 * Some may use context even when all refs and requests have been put,
3132 * and they are free to do so while still holding uring_lock or
3133 * completion_lock, see io_req_task_submit(). Apart from other work,
3134 * this lock/unlock section also waits them to finish.
3136 mutex_lock(&ctx->uring_lock);
3137 while (!list_empty(&ctx->tctx_list)) {
3138 WARN_ON_ONCE(time_after(jiffies, timeout));
3140 node = list_first_entry(&ctx->tctx_list, struct io_tctx_node,
3142 /* don't spin on a single task if cancellation failed */
3143 list_rotate_left(&ctx->tctx_list);
3144 ret = task_work_add(node->task, &exit.task_work, TWA_SIGNAL);
3145 if (WARN_ON_ONCE(ret))
3148 mutex_unlock(&ctx->uring_lock);
3150 * See comment above for
3151 * wait_for_completion_interruptible_timeout() on why this
3152 * wait is marked as interruptible.
3154 wait_for_completion_interruptible(&exit.completion);
3155 mutex_lock(&ctx->uring_lock);
3157 mutex_unlock(&ctx->uring_lock);
3158 spin_lock(&ctx->completion_lock);
3159 spin_unlock(&ctx->completion_lock);
3161 /* pairs with RCU read section in io_req_local_work_add() */
3162 if (ctx->flags & IORING_SETUP_DEFER_TASKRUN)
3165 io_ring_ctx_free(ctx);
3168 static __cold void io_ring_ctx_wait_and_kill(struct io_ring_ctx *ctx)
3170 unsigned long index;
3171 struct creds *creds;
3173 mutex_lock(&ctx->uring_lock);
3174 percpu_ref_kill(&ctx->refs);
3175 xa_for_each(&ctx->personalities, index, creds)
3176 io_unregister_personality(ctx, index);
3178 io_poll_remove_all(ctx, NULL, true);
3179 mutex_unlock(&ctx->uring_lock);
3182 * If we failed setting up the ctx, we might not have any rings
3183 * and therefore did not submit any requests
3186 io_kill_timeouts(ctx, NULL, true);
3188 flush_delayed_work(&ctx->fallback_work);
3190 INIT_WORK(&ctx->exit_work, io_ring_exit_work);
3192 * Use system_unbound_wq to avoid spawning tons of event kworkers
3193 * if we're exiting a ton of rings at the same time. It just adds
3194 * noise and overhead, there's no discernable change in runtime
3195 * over using system_wq.
3197 queue_work(system_unbound_wq, &ctx->exit_work);
3200 static int io_uring_release(struct inode *inode, struct file *file)
3202 struct io_ring_ctx *ctx = file->private_data;
3204 file->private_data = NULL;
3205 io_ring_ctx_wait_and_kill(ctx);
3209 struct io_task_cancel {
3210 struct task_struct *task;
3214 static bool io_cancel_task_cb(struct io_wq_work *work, void *data)
3216 struct io_kiocb *req = container_of(work, struct io_kiocb, work);
3217 struct io_task_cancel *cancel = data;
3219 return io_match_task_safe(req, cancel->task, cancel->all);
3222 static __cold bool io_cancel_defer_files(struct io_ring_ctx *ctx,
3223 struct task_struct *task,
3226 struct io_defer_entry *de;
3229 spin_lock(&ctx->completion_lock);
3230 list_for_each_entry_reverse(de, &ctx->defer_list, list) {
3231 if (io_match_task_safe(de->req, task, cancel_all)) {
3232 list_cut_position(&list, &ctx->defer_list, &de->list);
3236 spin_unlock(&ctx->completion_lock);
3237 if (list_empty(&list))
3240 while (!list_empty(&list)) {
3241 de = list_first_entry(&list, struct io_defer_entry, list);
3242 list_del_init(&de->list);
3243 io_req_task_queue_fail(de->req, -ECANCELED);
3249 static __cold bool io_uring_try_cancel_iowq(struct io_ring_ctx *ctx)
3251 struct io_tctx_node *node;
3252 enum io_wq_cancel cret;
3255 mutex_lock(&ctx->uring_lock);
3256 list_for_each_entry(node, &ctx->tctx_list, ctx_node) {
3257 struct io_uring_task *tctx = node->task->io_uring;
3260 * io_wq will stay alive while we hold uring_lock, because it's
3261 * killed after ctx nodes, which requires to take the lock.
3263 if (!tctx || !tctx->io_wq)
3265 cret = io_wq_cancel_cb(tctx->io_wq, io_cancel_ctx_cb, ctx, true);
3266 ret |= (cret != IO_WQ_CANCEL_NOTFOUND);
3268 mutex_unlock(&ctx->uring_lock);
3273 static __cold bool io_uring_try_cancel_requests(struct io_ring_ctx *ctx,
3274 struct task_struct *task,
3277 struct io_task_cancel cancel = { .task = task, .all = cancel_all, };
3278 struct io_uring_task *tctx = task ? task->io_uring : NULL;
3279 enum io_wq_cancel cret;
3282 /* set it so io_req_local_work_add() would wake us up */
3283 if (ctx->flags & IORING_SETUP_DEFER_TASKRUN) {
3284 atomic_set(&ctx->cq_wait_nr, 1);
3288 /* failed during ring init, it couldn't have issued any requests */
3293 ret |= io_uring_try_cancel_iowq(ctx);
3294 } else if (tctx && tctx->io_wq) {
3296 * Cancels requests of all rings, not only @ctx, but
3297 * it's fine as the task is in exit/exec.
3299 cret = io_wq_cancel_cb(tctx->io_wq, io_cancel_task_cb,
3301 ret |= (cret != IO_WQ_CANCEL_NOTFOUND);
3304 /* SQPOLL thread does its own polling */
3305 if ((!(ctx->flags & IORING_SETUP_SQPOLL) && cancel_all) ||
3306 (ctx->sq_data && ctx->sq_data->thread == current)) {
3307 while (!wq_list_empty(&ctx->iopoll_list)) {
3308 io_iopoll_try_reap_events(ctx);
3314 if ((ctx->flags & IORING_SETUP_DEFER_TASKRUN) &&
3315 io_allowed_defer_tw_run(ctx))
3316 ret |= io_run_local_work(ctx) > 0;
3317 ret |= io_cancel_defer_files(ctx, task, cancel_all);
3318 mutex_lock(&ctx->uring_lock);
3319 ret |= io_poll_remove_all(ctx, task, cancel_all);
3320 mutex_unlock(&ctx->uring_lock);
3321 ret |= io_kill_timeouts(ctx, task, cancel_all);
3323 ret |= io_run_task_work() > 0;
3327 static s64 tctx_inflight(struct io_uring_task *tctx, bool tracked)
3330 return atomic_read(&tctx->inflight_tracked);
3331 return percpu_counter_sum(&tctx->inflight);
3335 * Find any io_uring ctx that this task has registered or done IO on, and cancel
3336 * requests. @sqd should be not-null IFF it's an SQPOLL thread cancellation.
3338 __cold void io_uring_cancel_generic(bool cancel_all, struct io_sq_data *sqd)
3340 struct io_uring_task *tctx = current->io_uring;
3341 struct io_ring_ctx *ctx;
3342 struct io_tctx_node *node;
3343 unsigned long index;
3347 WARN_ON_ONCE(sqd && sqd->thread != current);
3349 if (!current->io_uring)
3352 io_wq_exit_start(tctx->io_wq);
3354 atomic_inc(&tctx->in_cancel);
3358 io_uring_drop_tctx_refs(current);
3359 /* read completions before cancelations */
3360 inflight = tctx_inflight(tctx, !cancel_all);
3365 xa_for_each(&tctx->xa, index, node) {
3366 /* sqpoll task will cancel all its requests */
3367 if (node->ctx->sq_data)
3369 loop |= io_uring_try_cancel_requests(node->ctx,
3370 current, cancel_all);
3373 list_for_each_entry(ctx, &sqd->ctx_list, sqd_list)
3374 loop |= io_uring_try_cancel_requests(ctx,
3384 prepare_to_wait(&tctx->wait, &wait, TASK_INTERRUPTIBLE);
3386 io_uring_drop_tctx_refs(current);
3387 xa_for_each(&tctx->xa, index, node) {
3388 if (!llist_empty(&node->ctx->work_llist)) {
3389 WARN_ON_ONCE(node->ctx->submitter_task &&
3390 node->ctx->submitter_task != current);
3395 * If we've seen completions, retry without waiting. This
3396 * avoids a race where a completion comes in before we did
3397 * prepare_to_wait().
3399 if (inflight == tctx_inflight(tctx, !cancel_all))
3402 finish_wait(&tctx->wait, &wait);
3405 io_uring_clean_tctx(tctx);
3408 * We shouldn't run task_works after cancel, so just leave
3409 * ->in_cancel set for normal exit.
3411 atomic_dec(&tctx->in_cancel);
3412 /* for exec all current's requests should be gone, kill tctx */
3413 __io_uring_free(current);
3417 void __io_uring_cancel(bool cancel_all)
3419 io_uring_cancel_generic(cancel_all, NULL);
3422 static void *io_uring_validate_mmap_request(struct file *file,
3423 loff_t pgoff, size_t sz)
3425 struct io_ring_ctx *ctx = file->private_data;
3426 loff_t offset = pgoff << PAGE_SHIFT;
3430 /* Don't allow mmap if the ring was setup without it */
3431 if (ctx->flags & IORING_SETUP_NO_MMAP)
3432 return ERR_PTR(-EINVAL);
3434 switch (offset & IORING_OFF_MMAP_MASK) {
3435 case IORING_OFF_SQ_RING:
3436 case IORING_OFF_CQ_RING:
3439 case IORING_OFF_SQES:
3442 case IORING_OFF_PBUF_RING: {
3445 bgid = (offset & ~IORING_OFF_MMAP_MASK) >> IORING_OFF_PBUF_SHIFT;
3446 mutex_lock(&ctx->uring_lock);
3447 ptr = io_pbuf_get_address(ctx, bgid);
3448 mutex_unlock(&ctx->uring_lock);
3450 return ERR_PTR(-EINVAL);
3454 return ERR_PTR(-EINVAL);
3457 page = virt_to_head_page(ptr);
3458 if (sz > page_size(page))
3459 return ERR_PTR(-EINVAL);
3466 static __cold int io_uring_mmap(struct file *file, struct vm_area_struct *vma)
3468 size_t sz = vma->vm_end - vma->vm_start;
3472 ptr = io_uring_validate_mmap_request(file, vma->vm_pgoff, sz);
3474 return PTR_ERR(ptr);
3476 pfn = virt_to_phys(ptr) >> PAGE_SHIFT;
3477 return remap_pfn_range(vma, vma->vm_start, pfn, sz, vma->vm_page_prot);
3480 static unsigned long io_uring_mmu_get_unmapped_area(struct file *filp,
3481 unsigned long addr, unsigned long len,
3482 unsigned long pgoff, unsigned long flags)
3487 * Do not allow to map to user-provided address to avoid breaking the
3488 * aliasing rules. Userspace is not able to guess the offset address of
3489 * kernel kmalloc()ed memory area.
3494 ptr = io_uring_validate_mmap_request(filp, pgoff, len);
3499 * Some architectures have strong cache aliasing requirements.
3500 * For such architectures we need a coherent mapping which aliases
3501 * kernel memory *and* userspace memory. To achieve that:
3502 * - use a NULL file pointer to reference physical memory, and
3503 * - use the kernel virtual address of the shared io_uring context
3504 * (instead of the userspace-provided address, which has to be 0UL
3506 * - use the same pgoff which the get_unmapped_area() uses to
3507 * calculate the page colouring.
3508 * For architectures without such aliasing requirements, the
3509 * architecture will return any suitable mapping because addr is 0.
3512 flags |= MAP_SHARED;
3513 pgoff = 0; /* has been translated to ptr above */
3515 addr = (uintptr_t) ptr;
3516 pgoff = addr >> PAGE_SHIFT;
3520 return current->mm->get_unmapped_area(filp, addr, len, pgoff, flags);
3523 #else /* !CONFIG_MMU */
3525 static int io_uring_mmap(struct file *file, struct vm_area_struct *vma)
3527 return is_nommu_shared_mapping(vma->vm_flags) ? 0 : -EINVAL;
3530 static unsigned int io_uring_nommu_mmap_capabilities(struct file *file)
3532 return NOMMU_MAP_DIRECT | NOMMU_MAP_READ | NOMMU_MAP_WRITE;
3535 static unsigned long io_uring_nommu_get_unmapped_area(struct file *file,
3536 unsigned long addr, unsigned long len,
3537 unsigned long pgoff, unsigned long flags)
3541 ptr = io_uring_validate_mmap_request(file, pgoff, len);
3543 return PTR_ERR(ptr);
3545 return (unsigned long) ptr;
3548 #endif /* !CONFIG_MMU */
3550 static int io_validate_ext_arg(unsigned flags, const void __user *argp, size_t argsz)
3552 if (flags & IORING_ENTER_EXT_ARG) {
3553 struct io_uring_getevents_arg arg;
3555 if (argsz != sizeof(arg))
3557 if (copy_from_user(&arg, argp, sizeof(arg)))
3563 static int io_get_ext_arg(unsigned flags, const void __user *argp, size_t *argsz,
3564 struct __kernel_timespec __user **ts,
3565 const sigset_t __user **sig)
3567 struct io_uring_getevents_arg arg;
3570 * If EXT_ARG isn't set, then we have no timespec and the argp pointer
3571 * is just a pointer to the sigset_t.
3573 if (!(flags & IORING_ENTER_EXT_ARG)) {
3574 *sig = (const sigset_t __user *) argp;
3580 * EXT_ARG is set - ensure we agree on the size of it and copy in our
3581 * timespec and sigset_t pointers if good.
3583 if (*argsz != sizeof(arg))
3585 if (copy_from_user(&arg, argp, sizeof(arg)))
3589 *sig = u64_to_user_ptr(arg.sigmask);
3590 *argsz = arg.sigmask_sz;
3591 *ts = u64_to_user_ptr(arg.ts);
3595 SYSCALL_DEFINE6(io_uring_enter, unsigned int, fd, u32, to_submit,
3596 u32, min_complete, u32, flags, const void __user *, argp,
3599 struct io_ring_ctx *ctx;
3603 if (unlikely(flags & ~(IORING_ENTER_GETEVENTS | IORING_ENTER_SQ_WAKEUP |
3604 IORING_ENTER_SQ_WAIT | IORING_ENTER_EXT_ARG |
3605 IORING_ENTER_REGISTERED_RING)))
3609 * Ring fd has been registered via IORING_REGISTER_RING_FDS, we
3610 * need only dereference our task private array to find it.
3612 if (flags & IORING_ENTER_REGISTERED_RING) {
3613 struct io_uring_task *tctx = current->io_uring;
3615 if (unlikely(!tctx || fd >= IO_RINGFD_REG_MAX))
3617 fd = array_index_nospec(fd, IO_RINGFD_REG_MAX);
3618 f.file = tctx->registered_rings[fd];
3620 if (unlikely(!f.file))
3624 if (unlikely(!f.file))
3627 if (unlikely(!io_is_uring_fops(f.file)))
3631 ctx = f.file->private_data;
3633 if (unlikely(ctx->flags & IORING_SETUP_R_DISABLED))
3637 * For SQ polling, the thread will do all submissions and completions.
3638 * Just return the requested submit count, and wake the thread if
3642 if (ctx->flags & IORING_SETUP_SQPOLL) {
3643 io_cqring_overflow_flush(ctx);
3645 if (unlikely(ctx->sq_data->thread == NULL)) {
3649 if (flags & IORING_ENTER_SQ_WAKEUP)
3650 wake_up(&ctx->sq_data->wait);
3651 if (flags & IORING_ENTER_SQ_WAIT)
3652 io_sqpoll_wait_sq(ctx);
3655 } else if (to_submit) {
3656 ret = io_uring_add_tctx_node(ctx);
3660 mutex_lock(&ctx->uring_lock);
3661 ret = io_submit_sqes(ctx, to_submit);
3662 if (ret != to_submit) {
3663 mutex_unlock(&ctx->uring_lock);
3666 if (flags & IORING_ENTER_GETEVENTS) {
3667 if (ctx->syscall_iopoll)
3670 * Ignore errors, we'll soon call io_cqring_wait() and
3671 * it should handle ownership problems if any.
3673 if (ctx->flags & IORING_SETUP_DEFER_TASKRUN)
3674 (void)io_run_local_work_locked(ctx);
3676 mutex_unlock(&ctx->uring_lock);
3679 if (flags & IORING_ENTER_GETEVENTS) {
3682 if (ctx->syscall_iopoll) {
3684 * We disallow the app entering submit/complete with
3685 * polling, but we still need to lock the ring to
3686 * prevent racing with polled issue that got punted to
3689 mutex_lock(&ctx->uring_lock);
3691 ret2 = io_validate_ext_arg(flags, argp, argsz);
3692 if (likely(!ret2)) {
3693 min_complete = min(min_complete,
3695 ret2 = io_iopoll_check(ctx, min_complete);
3697 mutex_unlock(&ctx->uring_lock);
3699 const sigset_t __user *sig;
3700 struct __kernel_timespec __user *ts;
3702 ret2 = io_get_ext_arg(flags, argp, &argsz, &ts, &sig);
3703 if (likely(!ret2)) {
3704 min_complete = min(min_complete,
3706 ret2 = io_cqring_wait(ctx, min_complete, sig,
3715 * EBADR indicates that one or more CQE were dropped.
3716 * Once the user has been informed we can clear the bit
3717 * as they are obviously ok with those drops.
3719 if (unlikely(ret2 == -EBADR))
3720 clear_bit(IO_CHECK_CQ_DROPPED_BIT,
3729 static const struct file_operations io_uring_fops = {
3730 .release = io_uring_release,
3731 .mmap = io_uring_mmap,
3733 .get_unmapped_area = io_uring_nommu_get_unmapped_area,
3734 .mmap_capabilities = io_uring_nommu_mmap_capabilities,
3736 .get_unmapped_area = io_uring_mmu_get_unmapped_area,
3738 .poll = io_uring_poll,
3739 #ifdef CONFIG_PROC_FS
3740 .show_fdinfo = io_uring_show_fdinfo,
3744 bool io_is_uring_fops(struct file *file)
3746 return file->f_op == &io_uring_fops;
3749 static __cold int io_allocate_scq_urings(struct io_ring_ctx *ctx,
3750 struct io_uring_params *p)
3752 struct io_rings *rings;
3753 size_t size, sq_array_offset;
3756 /* make sure these are sane, as we already accounted them */
3757 ctx->sq_entries = p->sq_entries;
3758 ctx->cq_entries = p->cq_entries;
3760 size = rings_size(ctx, p->sq_entries, p->cq_entries, &sq_array_offset);
3761 if (size == SIZE_MAX)
3764 if (!(ctx->flags & IORING_SETUP_NO_MMAP))
3765 rings = io_mem_alloc(size);
3767 rings = io_rings_map(ctx, p->cq_off.user_addr, size);
3770 return PTR_ERR(rings);
3773 if (!(ctx->flags & IORING_SETUP_NO_SQARRAY))
3774 ctx->sq_array = (u32 *)((char *)rings + sq_array_offset);
3775 rings->sq_ring_mask = p->sq_entries - 1;
3776 rings->cq_ring_mask = p->cq_entries - 1;
3777 rings->sq_ring_entries = p->sq_entries;
3778 rings->cq_ring_entries = p->cq_entries;
3780 if (p->flags & IORING_SETUP_SQE128)
3781 size = array_size(2 * sizeof(struct io_uring_sqe), p->sq_entries);
3783 size = array_size(sizeof(struct io_uring_sqe), p->sq_entries);
3784 if (size == SIZE_MAX) {
3789 if (!(ctx->flags & IORING_SETUP_NO_MMAP))
3790 ptr = io_mem_alloc(size);
3792 ptr = io_sqes_map(ctx, p->sq_off.user_addr, size);
3796 return PTR_ERR(ptr);
3803 static int io_uring_install_fd(struct file *file)
3807 fd = get_unused_fd_flags(O_RDWR | O_CLOEXEC);
3810 fd_install(fd, file);
3815 * Allocate an anonymous fd, this is what constitutes the application
3816 * visible backing of an io_uring instance. The application mmaps this
3817 * fd to gain access to the SQ/CQ ring details. If UNIX sockets are enabled,
3818 * we have to tie this fd to a socket for file garbage collection purposes.
3820 static struct file *io_uring_get_file(struct io_ring_ctx *ctx)
3823 #if defined(CONFIG_UNIX)
3826 ret = sock_create_kern(&init_net, PF_UNIX, SOCK_RAW, IPPROTO_IP,
3829 return ERR_PTR(ret);
3832 file = anon_inode_getfile_secure("[io_uring]", &io_uring_fops, ctx,
3833 O_RDWR | O_CLOEXEC, NULL);
3834 #if defined(CONFIG_UNIX)
3836 sock_release(ctx->ring_sock);
3837 ctx->ring_sock = NULL;
3839 ctx->ring_sock->file = file;
3845 static __cold int io_uring_create(unsigned entries, struct io_uring_params *p,
3846 struct io_uring_params __user *params)
3848 struct io_ring_ctx *ctx;
3849 struct io_uring_task *tctx;
3855 if (entries > IORING_MAX_ENTRIES) {
3856 if (!(p->flags & IORING_SETUP_CLAMP))
3858 entries = IORING_MAX_ENTRIES;
3861 if ((p->flags & IORING_SETUP_REGISTERED_FD_ONLY)
3862 && !(p->flags & IORING_SETUP_NO_MMAP))
3866 * Use twice as many entries for the CQ ring. It's possible for the
3867 * application to drive a higher depth than the size of the SQ ring,
3868 * since the sqes are only used at submission time. This allows for
3869 * some flexibility in overcommitting a bit. If the application has
3870 * set IORING_SETUP_CQSIZE, it will have passed in the desired number
3871 * of CQ ring entries manually.
3873 p->sq_entries = roundup_pow_of_two(entries);
3874 if (p->flags & IORING_SETUP_CQSIZE) {
3876 * If IORING_SETUP_CQSIZE is set, we do the same roundup
3877 * to a power-of-two, if it isn't already. We do NOT impose
3878 * any cq vs sq ring sizing.
3882 if (p->cq_entries > IORING_MAX_CQ_ENTRIES) {
3883 if (!(p->flags & IORING_SETUP_CLAMP))
3885 p->cq_entries = IORING_MAX_CQ_ENTRIES;
3887 p->cq_entries = roundup_pow_of_two(p->cq_entries);
3888 if (p->cq_entries < p->sq_entries)
3891 p->cq_entries = 2 * p->sq_entries;
3894 ctx = io_ring_ctx_alloc(p);
3898 if ((ctx->flags & IORING_SETUP_DEFER_TASKRUN) &&
3899 !(ctx->flags & IORING_SETUP_IOPOLL) &&
3900 !(ctx->flags & IORING_SETUP_SQPOLL))
3901 ctx->task_complete = true;
3903 if (ctx->task_complete || (ctx->flags & IORING_SETUP_IOPOLL))
3904 ctx->lockless_cq = true;
3907 * lazy poll_wq activation relies on ->task_complete for synchronisation
3908 * purposes, see io_activate_pollwq()
3910 if (!ctx->task_complete)
3911 ctx->poll_activated = true;
3914 * When SETUP_IOPOLL and SETUP_SQPOLL are both enabled, user
3915 * space applications don't need to do io completion events
3916 * polling again, they can rely on io_sq_thread to do polling
3917 * work, which can reduce cpu usage and uring_lock contention.
3919 if (ctx->flags & IORING_SETUP_IOPOLL &&
3920 !(ctx->flags & IORING_SETUP_SQPOLL))
3921 ctx->syscall_iopoll = 1;
3923 ctx->compat = in_compat_syscall();
3924 if (!ns_capable_noaudit(&init_user_ns, CAP_IPC_LOCK))
3925 ctx->user = get_uid(current_user());
3928 * For SQPOLL, we just need a wakeup, always. For !SQPOLL, if
3929 * COOP_TASKRUN is set, then IPIs are never needed by the app.
3932 if (ctx->flags & IORING_SETUP_SQPOLL) {
3933 /* IPI related flags don't make sense with SQPOLL */
3934 if (ctx->flags & (IORING_SETUP_COOP_TASKRUN |
3935 IORING_SETUP_TASKRUN_FLAG |
3936 IORING_SETUP_DEFER_TASKRUN))
3938 ctx->notify_method = TWA_SIGNAL_NO_IPI;
3939 } else if (ctx->flags & IORING_SETUP_COOP_TASKRUN) {
3940 ctx->notify_method = TWA_SIGNAL_NO_IPI;
3942 if (ctx->flags & IORING_SETUP_TASKRUN_FLAG &&
3943 !(ctx->flags & IORING_SETUP_DEFER_TASKRUN))
3945 ctx->notify_method = TWA_SIGNAL;
3949 * For DEFER_TASKRUN we require the completion task to be the same as the
3950 * submission task. This implies that there is only one submitter, so enforce
3953 if (ctx->flags & IORING_SETUP_DEFER_TASKRUN &&
3954 !(ctx->flags & IORING_SETUP_SINGLE_ISSUER)) {
3959 * This is just grabbed for accounting purposes. When a process exits,
3960 * the mm is exited and dropped before the files, hence we need to hang
3961 * on to this mm purely for the purposes of being able to unaccount
3962 * memory (locked/pinned vm). It's not used for anything else.
3964 mmgrab(current->mm);
3965 ctx->mm_account = current->mm;
3967 ret = io_allocate_scq_urings(ctx, p);
3971 ret = io_sq_offload_create(ctx, p);
3975 ret = io_rsrc_init(ctx);
3979 p->sq_off.head = offsetof(struct io_rings, sq.head);
3980 p->sq_off.tail = offsetof(struct io_rings, sq.tail);
3981 p->sq_off.ring_mask = offsetof(struct io_rings, sq_ring_mask);
3982 p->sq_off.ring_entries = offsetof(struct io_rings, sq_ring_entries);
3983 p->sq_off.flags = offsetof(struct io_rings, sq_flags);
3984 p->sq_off.dropped = offsetof(struct io_rings, sq_dropped);
3985 if (!(ctx->flags & IORING_SETUP_NO_SQARRAY))
3986 p->sq_off.array = (char *)ctx->sq_array - (char *)ctx->rings;
3987 p->sq_off.resv1 = 0;
3988 if (!(ctx->flags & IORING_SETUP_NO_MMAP))
3989 p->sq_off.user_addr = 0;
3991 p->cq_off.head = offsetof(struct io_rings, cq.head);
3992 p->cq_off.tail = offsetof(struct io_rings, cq.tail);
3993 p->cq_off.ring_mask = offsetof(struct io_rings, cq_ring_mask);
3994 p->cq_off.ring_entries = offsetof(struct io_rings, cq_ring_entries);
3995 p->cq_off.overflow = offsetof(struct io_rings, cq_overflow);
3996 p->cq_off.cqes = offsetof(struct io_rings, cqes);
3997 p->cq_off.flags = offsetof(struct io_rings, cq_flags);
3998 p->cq_off.resv1 = 0;
3999 if (!(ctx->flags & IORING_SETUP_NO_MMAP))
4000 p->cq_off.user_addr = 0;
4002 p->features = IORING_FEAT_SINGLE_MMAP | IORING_FEAT_NODROP |
4003 IORING_FEAT_SUBMIT_STABLE | IORING_FEAT_RW_CUR_POS |
4004 IORING_FEAT_CUR_PERSONALITY | IORING_FEAT_FAST_POLL |
4005 IORING_FEAT_POLL_32BITS | IORING_FEAT_SQPOLL_NONFIXED |
4006 IORING_FEAT_EXT_ARG | IORING_FEAT_NATIVE_WORKERS |
4007 IORING_FEAT_RSRC_TAGS | IORING_FEAT_CQE_SKIP |
4008 IORING_FEAT_LINKED_FILE | IORING_FEAT_REG_REG_RING;
4010 if (copy_to_user(params, p, sizeof(*p))) {
4015 if (ctx->flags & IORING_SETUP_SINGLE_ISSUER
4016 && !(ctx->flags & IORING_SETUP_R_DISABLED))
4017 WRITE_ONCE(ctx->submitter_task, get_task_struct(current));
4019 file = io_uring_get_file(ctx);
4021 ret = PTR_ERR(file);
4025 ret = __io_uring_add_tctx_node(ctx);
4028 tctx = current->io_uring;
4031 * Install ring fd as the very last thing, so we don't risk someone
4032 * having closed it before we finish setup
4034 if (p->flags & IORING_SETUP_REGISTERED_FD_ONLY)
4035 ret = io_ring_add_registered_file(tctx, file, 0, IO_RINGFD_REG_MAX);
4037 ret = io_uring_install_fd(file);
4041 trace_io_uring_create(ret, ctx, p->sq_entries, p->cq_entries, p->flags);
4044 io_ring_ctx_wait_and_kill(ctx);
4052 * Sets up an aio uring context, and returns the fd. Applications asks for a
4053 * ring size, we return the actual sq/cq ring sizes (among other things) in the
4054 * params structure passed in.
4056 static long io_uring_setup(u32 entries, struct io_uring_params __user *params)
4058 struct io_uring_params p;
4061 if (copy_from_user(&p, params, sizeof(p)))
4063 for (i = 0; i < ARRAY_SIZE(p.resv); i++) {
4068 if (p.flags & ~(IORING_SETUP_IOPOLL | IORING_SETUP_SQPOLL |
4069 IORING_SETUP_SQ_AFF | IORING_SETUP_CQSIZE |
4070 IORING_SETUP_CLAMP | IORING_SETUP_ATTACH_WQ |
4071 IORING_SETUP_R_DISABLED | IORING_SETUP_SUBMIT_ALL |
4072 IORING_SETUP_COOP_TASKRUN | IORING_SETUP_TASKRUN_FLAG |
4073 IORING_SETUP_SQE128 | IORING_SETUP_CQE32 |
4074 IORING_SETUP_SINGLE_ISSUER | IORING_SETUP_DEFER_TASKRUN |
4075 IORING_SETUP_NO_MMAP | IORING_SETUP_REGISTERED_FD_ONLY |
4076 IORING_SETUP_NO_SQARRAY))
4079 return io_uring_create(entries, &p, params);
4082 static inline bool io_uring_allowed(void)
4084 int disabled = READ_ONCE(sysctl_io_uring_disabled);
4085 kgid_t io_uring_group;
4090 if (disabled == 0 || capable(CAP_SYS_ADMIN))
4093 io_uring_group = make_kgid(&init_user_ns, sysctl_io_uring_group);
4094 if (!gid_valid(io_uring_group))
4097 return in_group_p(io_uring_group);
4100 SYSCALL_DEFINE2(io_uring_setup, u32, entries,
4101 struct io_uring_params __user *, params)
4103 if (!io_uring_allowed())
4106 return io_uring_setup(entries, params);
4109 static __cold int io_probe(struct io_ring_ctx *ctx, void __user *arg,
4112 struct io_uring_probe *p;
4116 size = struct_size(p, ops, nr_args);
4117 if (size == SIZE_MAX)
4119 p = kzalloc(size, GFP_KERNEL);
4124 if (copy_from_user(p, arg, size))
4127 if (memchr_inv(p, 0, size))
4130 p->last_op = IORING_OP_LAST - 1;
4131 if (nr_args > IORING_OP_LAST)
4132 nr_args = IORING_OP_LAST;
4134 for (i = 0; i < nr_args; i++) {
4136 if (!io_issue_defs[i].not_supported)
4137 p->ops[i].flags = IO_URING_OP_SUPPORTED;
4142 if (copy_to_user(arg, p, size))
4149 static int io_register_personality(struct io_ring_ctx *ctx)
4151 const struct cred *creds;
4155 creds = get_current_cred();
4157 ret = xa_alloc_cyclic(&ctx->personalities, &id, (void *)creds,
4158 XA_LIMIT(0, USHRT_MAX), &ctx->pers_next, GFP_KERNEL);
4166 static __cold int io_register_restrictions(struct io_ring_ctx *ctx,
4167 void __user *arg, unsigned int nr_args)
4169 struct io_uring_restriction *res;
4173 /* Restrictions allowed only if rings started disabled */
4174 if (!(ctx->flags & IORING_SETUP_R_DISABLED))
4177 /* We allow only a single restrictions registration */
4178 if (ctx->restrictions.registered)
4181 if (!arg || nr_args > IORING_MAX_RESTRICTIONS)
4184 size = array_size(nr_args, sizeof(*res));
4185 if (size == SIZE_MAX)
4188 res = memdup_user(arg, size);
4190 return PTR_ERR(res);
4194 for (i = 0; i < nr_args; i++) {
4195 switch (res[i].opcode) {
4196 case IORING_RESTRICTION_REGISTER_OP:
4197 if (res[i].register_op >= IORING_REGISTER_LAST) {
4202 __set_bit(res[i].register_op,
4203 ctx->restrictions.register_op);
4205 case IORING_RESTRICTION_SQE_OP:
4206 if (res[i].sqe_op >= IORING_OP_LAST) {
4211 __set_bit(res[i].sqe_op, ctx->restrictions.sqe_op);
4213 case IORING_RESTRICTION_SQE_FLAGS_ALLOWED:
4214 ctx->restrictions.sqe_flags_allowed = res[i].sqe_flags;
4216 case IORING_RESTRICTION_SQE_FLAGS_REQUIRED:
4217 ctx->restrictions.sqe_flags_required = res[i].sqe_flags;
4226 /* Reset all restrictions if an error happened */
4228 memset(&ctx->restrictions, 0, sizeof(ctx->restrictions));
4230 ctx->restrictions.registered = true;
4236 static int io_register_enable_rings(struct io_ring_ctx *ctx)
4238 if (!(ctx->flags & IORING_SETUP_R_DISABLED))
4241 if (ctx->flags & IORING_SETUP_SINGLE_ISSUER && !ctx->submitter_task) {
4242 WRITE_ONCE(ctx->submitter_task, get_task_struct(current));
4244 * Lazy activation attempts would fail if it was polled before
4245 * submitter_task is set.
4247 if (wq_has_sleeper(&ctx->poll_wq))
4248 io_activate_pollwq(ctx);
4251 if (ctx->restrictions.registered)
4252 ctx->restricted = 1;
4254 ctx->flags &= ~IORING_SETUP_R_DISABLED;
4255 if (ctx->sq_data && wq_has_sleeper(&ctx->sq_data->wait))
4256 wake_up(&ctx->sq_data->wait);
4260 static __cold int __io_register_iowq_aff(struct io_ring_ctx *ctx,
4261 cpumask_var_t new_mask)
4265 if (!(ctx->flags & IORING_SETUP_SQPOLL)) {
4266 ret = io_wq_cpu_affinity(current->io_uring, new_mask);
4268 mutex_unlock(&ctx->uring_lock);
4269 ret = io_sqpoll_wq_cpu_affinity(ctx, new_mask);
4270 mutex_lock(&ctx->uring_lock);
4276 static __cold int io_register_iowq_aff(struct io_ring_ctx *ctx,
4277 void __user *arg, unsigned len)
4279 cpumask_var_t new_mask;
4282 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
4285 cpumask_clear(new_mask);
4286 if (len > cpumask_size())
4287 len = cpumask_size();
4289 if (in_compat_syscall()) {
4290 ret = compat_get_bitmap(cpumask_bits(new_mask),
4291 (const compat_ulong_t __user *)arg,
4292 len * 8 /* CHAR_BIT */);
4294 ret = copy_from_user(new_mask, arg, len);
4298 free_cpumask_var(new_mask);
4302 ret = __io_register_iowq_aff(ctx, new_mask);
4303 free_cpumask_var(new_mask);
4307 static __cold int io_unregister_iowq_aff(struct io_ring_ctx *ctx)
4309 return __io_register_iowq_aff(ctx, NULL);
4312 static __cold int io_register_iowq_max_workers(struct io_ring_ctx *ctx,
4314 __must_hold(&ctx->uring_lock)
4316 struct io_tctx_node *node;
4317 struct io_uring_task *tctx = NULL;
4318 struct io_sq_data *sqd = NULL;
4322 if (copy_from_user(new_count, arg, sizeof(new_count)))
4324 for (i = 0; i < ARRAY_SIZE(new_count); i++)
4325 if (new_count[i] > INT_MAX)
4328 if (ctx->flags & IORING_SETUP_SQPOLL) {
4332 * Observe the correct sqd->lock -> ctx->uring_lock
4333 * ordering. Fine to drop uring_lock here, we hold
4336 refcount_inc(&sqd->refs);
4337 mutex_unlock(&ctx->uring_lock);
4338 mutex_lock(&sqd->lock);
4339 mutex_lock(&ctx->uring_lock);
4341 tctx = sqd->thread->io_uring;
4344 tctx = current->io_uring;
4347 BUILD_BUG_ON(sizeof(new_count) != sizeof(ctx->iowq_limits));
4349 for (i = 0; i < ARRAY_SIZE(new_count); i++)
4351 ctx->iowq_limits[i] = new_count[i];
4352 ctx->iowq_limits_set = true;
4354 if (tctx && tctx->io_wq) {
4355 ret = io_wq_max_workers(tctx->io_wq, new_count);
4359 memset(new_count, 0, sizeof(new_count));
4363 mutex_unlock(&sqd->lock);
4364 io_put_sq_data(sqd);
4367 if (copy_to_user(arg, new_count, sizeof(new_count)))
4370 /* that's it for SQPOLL, only the SQPOLL task creates requests */
4374 /* now propagate the restriction to all registered users */
4375 list_for_each_entry(node, &ctx->tctx_list, ctx_node) {
4376 struct io_uring_task *tctx = node->task->io_uring;
4378 if (WARN_ON_ONCE(!tctx->io_wq))
4381 for (i = 0; i < ARRAY_SIZE(new_count); i++)
4382 new_count[i] = ctx->iowq_limits[i];
4383 /* ignore errors, it always returns zero anyway */
4384 (void)io_wq_max_workers(tctx->io_wq, new_count);
4389 mutex_unlock(&sqd->lock);
4390 io_put_sq_data(sqd);
4395 static int __io_uring_register(struct io_ring_ctx *ctx, unsigned opcode,
4396 void __user *arg, unsigned nr_args)
4397 __releases(ctx->uring_lock)
4398 __acquires(ctx->uring_lock)
4403 * We don't quiesce the refs for register anymore and so it can't be
4404 * dying as we're holding a file ref here.
4406 if (WARN_ON_ONCE(percpu_ref_is_dying(&ctx->refs)))
4409 if (ctx->submitter_task && ctx->submitter_task != current)
4412 if (ctx->restricted) {
4413 opcode = array_index_nospec(opcode, IORING_REGISTER_LAST);
4414 if (!test_bit(opcode, ctx->restrictions.register_op))
4419 case IORING_REGISTER_BUFFERS:
4423 ret = io_sqe_buffers_register(ctx, arg, nr_args, NULL);
4425 case IORING_UNREGISTER_BUFFERS:
4429 ret = io_sqe_buffers_unregister(ctx);
4431 case IORING_REGISTER_FILES:
4435 ret = io_sqe_files_register(ctx, arg, nr_args, NULL);
4437 case IORING_UNREGISTER_FILES:
4441 ret = io_sqe_files_unregister(ctx);
4443 case IORING_REGISTER_FILES_UPDATE:
4444 ret = io_register_files_update(ctx, arg, nr_args);
4446 case IORING_REGISTER_EVENTFD:
4450 ret = io_eventfd_register(ctx, arg, 0);
4452 case IORING_REGISTER_EVENTFD_ASYNC:
4456 ret = io_eventfd_register(ctx, arg, 1);
4458 case IORING_UNREGISTER_EVENTFD:
4462 ret = io_eventfd_unregister(ctx);
4464 case IORING_REGISTER_PROBE:
4466 if (!arg || nr_args > 256)
4468 ret = io_probe(ctx, arg, nr_args);
4470 case IORING_REGISTER_PERSONALITY:
4474 ret = io_register_personality(ctx);
4476 case IORING_UNREGISTER_PERSONALITY:
4480 ret = io_unregister_personality(ctx, nr_args);
4482 case IORING_REGISTER_ENABLE_RINGS:
4486 ret = io_register_enable_rings(ctx);
4488 case IORING_REGISTER_RESTRICTIONS:
4489 ret = io_register_restrictions(ctx, arg, nr_args);
4491 case IORING_REGISTER_FILES2:
4492 ret = io_register_rsrc(ctx, arg, nr_args, IORING_RSRC_FILE);
4494 case IORING_REGISTER_FILES_UPDATE2:
4495 ret = io_register_rsrc_update(ctx, arg, nr_args,
4498 case IORING_REGISTER_BUFFERS2:
4499 ret = io_register_rsrc(ctx, arg, nr_args, IORING_RSRC_BUFFER);
4501 case IORING_REGISTER_BUFFERS_UPDATE:
4502 ret = io_register_rsrc_update(ctx, arg, nr_args,
4503 IORING_RSRC_BUFFER);
4505 case IORING_REGISTER_IOWQ_AFF:
4507 if (!arg || !nr_args)
4509 ret = io_register_iowq_aff(ctx, arg, nr_args);
4511 case IORING_UNREGISTER_IOWQ_AFF:
4515 ret = io_unregister_iowq_aff(ctx);
4517 case IORING_REGISTER_IOWQ_MAX_WORKERS:
4519 if (!arg || nr_args != 2)
4521 ret = io_register_iowq_max_workers(ctx, arg);
4523 case IORING_REGISTER_RING_FDS:
4524 ret = io_ringfd_register(ctx, arg, nr_args);
4526 case IORING_UNREGISTER_RING_FDS:
4527 ret = io_ringfd_unregister(ctx, arg, nr_args);
4529 case IORING_REGISTER_PBUF_RING:
4531 if (!arg || nr_args != 1)
4533 ret = io_register_pbuf_ring(ctx, arg);
4535 case IORING_UNREGISTER_PBUF_RING:
4537 if (!arg || nr_args != 1)
4539 ret = io_unregister_pbuf_ring(ctx, arg);
4541 case IORING_REGISTER_SYNC_CANCEL:
4543 if (!arg || nr_args != 1)
4545 ret = io_sync_cancel(ctx, arg);
4547 case IORING_REGISTER_FILE_ALLOC_RANGE:
4549 if (!arg || nr_args)
4551 ret = io_register_file_alloc_range(ctx, arg);
4561 SYSCALL_DEFINE4(io_uring_register, unsigned int, fd, unsigned int, opcode,
4562 void __user *, arg, unsigned int, nr_args)
4564 struct io_ring_ctx *ctx;
4567 bool use_registered_ring;
4569 use_registered_ring = !!(opcode & IORING_REGISTER_USE_REGISTERED_RING);
4570 opcode &= ~IORING_REGISTER_USE_REGISTERED_RING;
4572 if (opcode >= IORING_REGISTER_LAST)
4575 if (use_registered_ring) {
4577 * Ring fd has been registered via IORING_REGISTER_RING_FDS, we
4578 * need only dereference our task private array to find it.
4580 struct io_uring_task *tctx = current->io_uring;
4582 if (unlikely(!tctx || fd >= IO_RINGFD_REG_MAX))
4584 fd = array_index_nospec(fd, IO_RINGFD_REG_MAX);
4585 f.file = tctx->registered_rings[fd];
4587 if (unlikely(!f.file))
4591 if (unlikely(!f.file))
4594 if (!io_is_uring_fops(f.file))
4598 ctx = f.file->private_data;
4600 mutex_lock(&ctx->uring_lock);
4601 ret = __io_uring_register(ctx, opcode, arg, nr_args);
4602 mutex_unlock(&ctx->uring_lock);
4603 trace_io_uring_register(ctx, opcode, ctx->nr_user_files, ctx->nr_user_bufs, ret);
4609 static int __init io_uring_init(void)
4611 #define __BUILD_BUG_VERIFY_OFFSET_SIZE(stype, eoffset, esize, ename) do { \
4612 BUILD_BUG_ON(offsetof(stype, ename) != eoffset); \
4613 BUILD_BUG_ON(sizeof_field(stype, ename) != esize); \
4616 #define BUILD_BUG_SQE_ELEM(eoffset, etype, ename) \
4617 __BUILD_BUG_VERIFY_OFFSET_SIZE(struct io_uring_sqe, eoffset, sizeof(etype), ename)
4618 #define BUILD_BUG_SQE_ELEM_SIZE(eoffset, esize, ename) \
4619 __BUILD_BUG_VERIFY_OFFSET_SIZE(struct io_uring_sqe, eoffset, esize, ename)
4620 BUILD_BUG_ON(sizeof(struct io_uring_sqe) != 64);
4621 BUILD_BUG_SQE_ELEM(0, __u8, opcode);
4622 BUILD_BUG_SQE_ELEM(1, __u8, flags);
4623 BUILD_BUG_SQE_ELEM(2, __u16, ioprio);
4624 BUILD_BUG_SQE_ELEM(4, __s32, fd);
4625 BUILD_BUG_SQE_ELEM(8, __u64, off);
4626 BUILD_BUG_SQE_ELEM(8, __u64, addr2);
4627 BUILD_BUG_SQE_ELEM(8, __u32, cmd_op);
4628 BUILD_BUG_SQE_ELEM(12, __u32, __pad1);
4629 BUILD_BUG_SQE_ELEM(16, __u64, addr);
4630 BUILD_BUG_SQE_ELEM(16, __u64, splice_off_in);
4631 BUILD_BUG_SQE_ELEM(24, __u32, len);
4632 BUILD_BUG_SQE_ELEM(28, __kernel_rwf_t, rw_flags);
4633 BUILD_BUG_SQE_ELEM(28, /* compat */ int, rw_flags);
4634 BUILD_BUG_SQE_ELEM(28, /* compat */ __u32, rw_flags);
4635 BUILD_BUG_SQE_ELEM(28, __u32, fsync_flags);
4636 BUILD_BUG_SQE_ELEM(28, /* compat */ __u16, poll_events);
4637 BUILD_BUG_SQE_ELEM(28, __u32, poll32_events);
4638 BUILD_BUG_SQE_ELEM(28, __u32, sync_range_flags);
4639 BUILD_BUG_SQE_ELEM(28, __u32, msg_flags);
4640 BUILD_BUG_SQE_ELEM(28, __u32, timeout_flags);
4641 BUILD_BUG_SQE_ELEM(28, __u32, accept_flags);
4642 BUILD_BUG_SQE_ELEM(28, __u32, cancel_flags);
4643 BUILD_BUG_SQE_ELEM(28, __u32, open_flags);
4644 BUILD_BUG_SQE_ELEM(28, __u32, statx_flags);
4645 BUILD_BUG_SQE_ELEM(28, __u32, fadvise_advice);
4646 BUILD_BUG_SQE_ELEM(28, __u32, splice_flags);
4647 BUILD_BUG_SQE_ELEM(28, __u32, rename_flags);
4648 BUILD_BUG_SQE_ELEM(28, __u32, unlink_flags);
4649 BUILD_BUG_SQE_ELEM(28, __u32, hardlink_flags);
4650 BUILD_BUG_SQE_ELEM(28, __u32, xattr_flags);
4651 BUILD_BUG_SQE_ELEM(28, __u32, msg_ring_flags);
4652 BUILD_BUG_SQE_ELEM(32, __u64, user_data);
4653 BUILD_BUG_SQE_ELEM(40, __u16, buf_index);
4654 BUILD_BUG_SQE_ELEM(40, __u16, buf_group);
4655 BUILD_BUG_SQE_ELEM(42, __u16, personality);
4656 BUILD_BUG_SQE_ELEM(44, __s32, splice_fd_in);
4657 BUILD_BUG_SQE_ELEM(44, __u32, file_index);
4658 BUILD_BUG_SQE_ELEM(44, __u16, addr_len);
4659 BUILD_BUG_SQE_ELEM(46, __u16, __pad3[0]);
4660 BUILD_BUG_SQE_ELEM(48, __u64, addr3);
4661 BUILD_BUG_SQE_ELEM_SIZE(48, 0, cmd);
4662 BUILD_BUG_SQE_ELEM(56, __u64, __pad2);
4664 BUILD_BUG_ON(sizeof(struct io_uring_files_update) !=
4665 sizeof(struct io_uring_rsrc_update));
4666 BUILD_BUG_ON(sizeof(struct io_uring_rsrc_update) >
4667 sizeof(struct io_uring_rsrc_update2));
4669 /* ->buf_index is u16 */
4670 BUILD_BUG_ON(offsetof(struct io_uring_buf_ring, bufs) != 0);
4671 BUILD_BUG_ON(offsetof(struct io_uring_buf, resv) !=
4672 offsetof(struct io_uring_buf_ring, tail));
4674 /* should fit into one byte */
4675 BUILD_BUG_ON(SQE_VALID_FLAGS >= (1 << 8));
4676 BUILD_BUG_ON(SQE_COMMON_FLAGS >= (1 << 8));
4677 BUILD_BUG_ON((SQE_VALID_FLAGS | SQE_COMMON_FLAGS) != SQE_VALID_FLAGS);
4679 BUILD_BUG_ON(__REQ_F_LAST_BIT > 8 * sizeof(int));
4681 BUILD_BUG_ON(sizeof(atomic_t) != sizeof(u32));
4683 io_uring_optable_init();
4686 * Allow user copy in the per-command field, which starts after the
4687 * file in io_kiocb and until the opcode field. The openat2 handling
4688 * requires copying in user memory into the io_kiocb object in that
4689 * range, and HARDENED_USERCOPY will complain if we haven't
4690 * correctly annotated this range.
4692 req_cachep = kmem_cache_create_usercopy("io_kiocb",
4693 sizeof(struct io_kiocb), 0,
4694 SLAB_HWCACHE_ALIGN | SLAB_PANIC |
4695 SLAB_ACCOUNT | SLAB_TYPESAFE_BY_RCU,
4696 offsetof(struct io_kiocb, cmd.data),
4697 sizeof_field(struct io_kiocb, cmd.data), NULL);
4699 #ifdef CONFIG_SYSCTL
4700 register_sysctl_init("kernel", kernel_io_uring_disabled_table);
4705 __initcall(io_uring_init);