1 // SPDX-License-Identifier: GPL-2.0
3 * Shared application/kernel submission and completion ring pairs, for
4 * supporting fast/efficient IO.
6 * A note on the read/write ordering memory barriers that are matched between
7 * the application and kernel side.
9 * After the application reads the CQ ring tail, it must use an
10 * appropriate smp_rmb() to pair with the smp_wmb() the kernel uses
11 * before writing the tail (using smp_load_acquire to read the tail will
12 * do). It also needs a smp_mb() before updating CQ head (ordering the
13 * entry load(s) with the head store), pairing with an implicit barrier
14 * through a control-dependency in io_get_cqe (smp_store_release to
15 * store head will do). Failure to do so could lead to reading invalid
18 * Likewise, the application must use an appropriate smp_wmb() before
19 * writing the SQ tail (ordering SQ entry stores with the tail store),
20 * which pairs with smp_load_acquire in io_get_sqring (smp_store_release
21 * to store the tail will do). And it needs a barrier ordering the SQ
22 * head load before writing new SQ entries (smp_load_acquire to read
25 * When using the SQ poll thread (IORING_SETUP_SQPOLL), the application
26 * needs to check the SQ flags for IORING_SQ_NEED_WAKEUP *after*
27 * updating the SQ tail; a full memory barrier smp_mb() is needed
30 * Also see the examples in the liburing library:
32 * git://git.kernel.dk/liburing
34 * io_uring also uses READ/WRITE_ONCE() for _any_ store or load that happens
35 * from data shared between the kernel and application. This is done both
36 * for ordering purposes, but also to ensure that once a value is loaded from
37 * data that the application could potentially modify, it remains stable.
39 * Copyright (C) 2018-2019 Jens Axboe
40 * Copyright (c) 2018-2019 Christoph Hellwig
42 #include <linux/kernel.h>
43 #include <linux/init.h>
44 #include <linux/errno.h>
45 #include <linux/syscalls.h>
46 #include <net/compat.h>
47 #include <linux/refcount.h>
48 #include <linux/uio.h>
49 #include <linux/bits.h>
51 #include <linux/sched/signal.h>
53 #include <linux/file.h>
54 #include <linux/fdtable.h>
56 #include <linux/mman.h>
57 #include <linux/percpu.h>
58 #include <linux/slab.h>
59 #include <linux/bvec.h>
60 #include <linux/net.h>
62 #include <net/af_unix.h>
64 #include <linux/anon_inodes.h>
65 #include <linux/sched/mm.h>
66 #include <linux/uaccess.h>
67 #include <linux/nospec.h>
68 #include <linux/highmem.h>
69 #include <linux/fsnotify.h>
70 #include <linux/fadvise.h>
71 #include <linux/task_work.h>
72 #include <linux/io_uring.h>
73 #include <linux/audit.h>
74 #include <linux/security.h>
76 #define CREATE_TRACE_POINTS
77 #include <trace/events/io_uring.h>
79 #include <uapi/linux/io_uring.h>
97 #include "alloc_cache.h"
99 #define IORING_MAX_ENTRIES 32768
100 #define IORING_MAX_CQ_ENTRIES (2 * IORING_MAX_ENTRIES)
102 #define IORING_MAX_RESTRICTIONS (IORING_RESTRICTION_LAST + \
103 IORING_REGISTER_LAST + IORING_OP_LAST)
105 #define SQE_COMMON_FLAGS (IOSQE_FIXED_FILE | IOSQE_IO_LINK | \
106 IOSQE_IO_HARDLINK | IOSQE_ASYNC)
108 #define SQE_VALID_FLAGS (SQE_COMMON_FLAGS | IOSQE_BUFFER_SELECT | \
109 IOSQE_IO_DRAIN | IOSQE_CQE_SKIP_SUCCESS)
111 #define IO_REQ_CLEAN_FLAGS (REQ_F_BUFFER_SELECTED | REQ_F_NEED_CLEANUP | \
112 REQ_F_POLLED | REQ_F_INFLIGHT | REQ_F_CREDS | \
115 #define IO_REQ_CLEAN_SLOW_FLAGS (REQ_F_REFCOUNT | REQ_F_LINK | REQ_F_HARDLINK |\
118 #define IO_TCTX_REFS_CACHE_NR (1U << 10)
120 #define IO_COMPL_BATCH 32
121 #define IO_REQ_ALLOC_BATCH 8
124 IO_CHECK_CQ_OVERFLOW_BIT,
125 IO_CHECK_CQ_DROPPED_BIT,
129 IO_EVENTFD_OP_SIGNAL_BIT,
130 IO_EVENTFD_OP_FREE_BIT,
133 struct io_defer_entry {
134 struct list_head list;
135 struct io_kiocb *req;
139 /* requests with any of those set should undergo io_disarm_next() */
140 #define IO_DISARM_MASK (REQ_F_ARM_LTIMEOUT | REQ_F_LINK_TIMEOUT | REQ_F_FAIL)
141 #define IO_REQ_LINK_FLAGS (REQ_F_LINK | REQ_F_HARDLINK)
143 static bool io_uring_try_cancel_requests(struct io_ring_ctx *ctx,
144 struct task_struct *task,
147 static void io_dismantle_req(struct io_kiocb *req);
148 static void io_clean_op(struct io_kiocb *req);
149 static void io_queue_sqe(struct io_kiocb *req);
150 static void io_move_task_work_from_local(struct io_ring_ctx *ctx);
151 static void __io_submit_flush_completions(struct io_ring_ctx *ctx);
152 static __cold void io_fallback_tw(struct io_uring_task *tctx);
154 static struct kmem_cache *req_cachep;
156 struct sock *io_uring_get_socket(struct file *file)
158 #if defined(CONFIG_UNIX)
159 if (io_is_uring_fops(file)) {
160 struct io_ring_ctx *ctx = file->private_data;
162 return ctx->ring_sock->sk;
167 EXPORT_SYMBOL(io_uring_get_socket);
169 static inline void io_submit_flush_completions(struct io_ring_ctx *ctx)
171 if (!wq_list_empty(&ctx->submit_state.compl_reqs) ||
172 ctx->submit_state.cqes_count)
173 __io_submit_flush_completions(ctx);
176 static inline unsigned int __io_cqring_events(struct io_ring_ctx *ctx)
178 return ctx->cached_cq_tail - READ_ONCE(ctx->rings->cq.head);
181 static inline unsigned int __io_cqring_events_user(struct io_ring_ctx *ctx)
183 return READ_ONCE(ctx->rings->cq.tail) - READ_ONCE(ctx->rings->cq.head);
186 static bool io_match_linked(struct io_kiocb *head)
188 struct io_kiocb *req;
190 io_for_each_link(req, head) {
191 if (req->flags & REQ_F_INFLIGHT)
198 * As io_match_task() but protected against racing with linked timeouts.
199 * User must not hold timeout_lock.
201 bool io_match_task_safe(struct io_kiocb *head, struct task_struct *task,
206 if (task && head->task != task)
211 if (head->flags & REQ_F_LINK_TIMEOUT) {
212 struct io_ring_ctx *ctx = head->ctx;
214 /* protect against races with linked timeouts */
215 spin_lock_irq(&ctx->timeout_lock);
216 matched = io_match_linked(head);
217 spin_unlock_irq(&ctx->timeout_lock);
219 matched = io_match_linked(head);
224 static inline void req_fail_link_node(struct io_kiocb *req, int res)
227 io_req_set_res(req, res, 0);
230 static inline void io_req_add_to_cache(struct io_kiocb *req, struct io_ring_ctx *ctx)
232 wq_stack_add_head(&req->comp_list, &ctx->submit_state.free_list);
235 static __cold void io_ring_ctx_ref_free(struct percpu_ref *ref)
237 struct io_ring_ctx *ctx = container_of(ref, struct io_ring_ctx, refs);
239 complete(&ctx->ref_comp);
242 static __cold void io_fallback_req_func(struct work_struct *work)
244 struct io_ring_ctx *ctx = container_of(work, struct io_ring_ctx,
246 struct llist_node *node = llist_del_all(&ctx->fallback_llist);
247 struct io_kiocb *req, *tmp;
250 percpu_ref_get(&ctx->refs);
251 llist_for_each_entry_safe(req, tmp, node, io_task_work.node)
252 req->io_task_work.func(req, &locked);
255 io_submit_flush_completions(ctx);
256 mutex_unlock(&ctx->uring_lock);
258 percpu_ref_put(&ctx->refs);
261 static int io_alloc_hash_table(struct io_hash_table *table, unsigned bits)
263 unsigned hash_buckets = 1U << bits;
264 size_t hash_size = hash_buckets * sizeof(table->hbs[0]);
266 table->hbs = kmalloc(hash_size, GFP_KERNEL);
270 table->hash_bits = bits;
271 init_hash_table(table, hash_buckets);
275 static __cold struct io_ring_ctx *io_ring_ctx_alloc(struct io_uring_params *p)
277 struct io_ring_ctx *ctx;
280 ctx = kzalloc(sizeof(*ctx), GFP_KERNEL);
284 xa_init(&ctx->io_bl_xa);
287 * Use 5 bits less than the max cq entries, that should give us around
288 * 32 entries per hash list if totally full and uniformly spread, but
289 * don't keep too many buckets to not overconsume memory.
291 hash_bits = ilog2(p->cq_entries) - 5;
292 hash_bits = clamp(hash_bits, 1, 8);
293 if (io_alloc_hash_table(&ctx->cancel_table, hash_bits))
295 if (io_alloc_hash_table(&ctx->cancel_table_locked, hash_bits))
298 ctx->dummy_ubuf = kzalloc(sizeof(*ctx->dummy_ubuf), GFP_KERNEL);
299 if (!ctx->dummy_ubuf)
301 /* set invalid range, so io_import_fixed() fails meeting it */
302 ctx->dummy_ubuf->ubuf = -1UL;
304 if (percpu_ref_init(&ctx->refs, io_ring_ctx_ref_free,
308 ctx->flags = p->flags;
309 init_waitqueue_head(&ctx->sqo_sq_wait);
310 INIT_LIST_HEAD(&ctx->sqd_list);
311 INIT_LIST_HEAD(&ctx->cq_overflow_list);
312 INIT_LIST_HEAD(&ctx->io_buffers_cache);
313 io_alloc_cache_init(&ctx->apoll_cache);
314 io_alloc_cache_init(&ctx->netmsg_cache);
315 init_completion(&ctx->ref_comp);
316 xa_init_flags(&ctx->personalities, XA_FLAGS_ALLOC1);
317 mutex_init(&ctx->uring_lock);
318 init_waitqueue_head(&ctx->cq_wait);
319 spin_lock_init(&ctx->completion_lock);
320 spin_lock_init(&ctx->timeout_lock);
321 INIT_WQ_LIST(&ctx->iopoll_list);
322 INIT_LIST_HEAD(&ctx->io_buffers_pages);
323 INIT_LIST_HEAD(&ctx->io_buffers_comp);
324 INIT_LIST_HEAD(&ctx->defer_list);
325 INIT_LIST_HEAD(&ctx->timeout_list);
326 INIT_LIST_HEAD(&ctx->ltimeout_list);
327 spin_lock_init(&ctx->rsrc_ref_lock);
328 INIT_LIST_HEAD(&ctx->rsrc_ref_list);
329 INIT_DELAYED_WORK(&ctx->rsrc_put_work, io_rsrc_put_work);
330 init_task_work(&ctx->rsrc_put_tw, io_rsrc_put_tw);
331 init_llist_head(&ctx->rsrc_put_llist);
332 init_llist_head(&ctx->work_llist);
333 INIT_LIST_HEAD(&ctx->tctx_list);
334 ctx->submit_state.free_list.next = NULL;
335 INIT_WQ_LIST(&ctx->locked_free_list);
336 INIT_DELAYED_WORK(&ctx->fallback_work, io_fallback_req_func);
337 INIT_WQ_LIST(&ctx->submit_state.compl_reqs);
340 kfree(ctx->dummy_ubuf);
341 kfree(ctx->cancel_table.hbs);
342 kfree(ctx->cancel_table_locked.hbs);
344 xa_destroy(&ctx->io_bl_xa);
349 static void io_account_cq_overflow(struct io_ring_ctx *ctx)
351 struct io_rings *r = ctx->rings;
353 WRITE_ONCE(r->cq_overflow, READ_ONCE(r->cq_overflow) + 1);
357 static bool req_need_defer(struct io_kiocb *req, u32 seq)
359 if (unlikely(req->flags & REQ_F_IO_DRAIN)) {
360 struct io_ring_ctx *ctx = req->ctx;
362 return seq + READ_ONCE(ctx->cq_extra) != ctx->cached_cq_tail;
368 static inline void io_req_track_inflight(struct io_kiocb *req)
370 if (!(req->flags & REQ_F_INFLIGHT)) {
371 req->flags |= REQ_F_INFLIGHT;
372 atomic_inc(&req->task->io_uring->inflight_tracked);
376 static struct io_kiocb *__io_prep_linked_timeout(struct io_kiocb *req)
378 if (WARN_ON_ONCE(!req->link))
381 req->flags &= ~REQ_F_ARM_LTIMEOUT;
382 req->flags |= REQ_F_LINK_TIMEOUT;
384 /* linked timeouts should have two refs once prep'ed */
385 io_req_set_refcount(req);
386 __io_req_set_refcount(req->link, 2);
390 static inline struct io_kiocb *io_prep_linked_timeout(struct io_kiocb *req)
392 if (likely(!(req->flags & REQ_F_ARM_LTIMEOUT)))
394 return __io_prep_linked_timeout(req);
397 static noinline void __io_arm_ltimeout(struct io_kiocb *req)
399 io_queue_linked_timeout(__io_prep_linked_timeout(req));
402 static inline void io_arm_ltimeout(struct io_kiocb *req)
404 if (unlikely(req->flags & REQ_F_ARM_LTIMEOUT))
405 __io_arm_ltimeout(req);
408 static void io_prep_async_work(struct io_kiocb *req)
410 const struct io_op_def *def = &io_op_defs[req->opcode];
411 struct io_ring_ctx *ctx = req->ctx;
413 if (!(req->flags & REQ_F_CREDS)) {
414 req->flags |= REQ_F_CREDS;
415 req->creds = get_current_cred();
418 req->work.list.next = NULL;
420 req->work.cancel_seq = atomic_read(&ctx->cancel_seq);
421 if (req->flags & REQ_F_FORCE_ASYNC)
422 req->work.flags |= IO_WQ_WORK_CONCURRENT;
424 if (req->file && !io_req_ffs_set(req))
425 req->flags |= io_file_get_flags(req->file) << REQ_F_SUPPORT_NOWAIT_BIT;
427 if (req->flags & REQ_F_ISREG) {
428 if (def->hash_reg_file || (ctx->flags & IORING_SETUP_IOPOLL))
429 io_wq_hash_work(&req->work, file_inode(req->file));
430 } else if (!req->file || !S_ISBLK(file_inode(req->file)->i_mode)) {
431 if (def->unbound_nonreg_file)
432 req->work.flags |= IO_WQ_WORK_UNBOUND;
436 static void io_prep_async_link(struct io_kiocb *req)
438 struct io_kiocb *cur;
440 if (req->flags & REQ_F_LINK_TIMEOUT) {
441 struct io_ring_ctx *ctx = req->ctx;
443 spin_lock_irq(&ctx->timeout_lock);
444 io_for_each_link(cur, req)
445 io_prep_async_work(cur);
446 spin_unlock_irq(&ctx->timeout_lock);
448 io_for_each_link(cur, req)
449 io_prep_async_work(cur);
453 void io_queue_iowq(struct io_kiocb *req, bool *dont_use)
455 struct io_kiocb *link = io_prep_linked_timeout(req);
456 struct io_uring_task *tctx = req->task->io_uring;
459 BUG_ON(!tctx->io_wq);
461 /* init ->work of the whole link before punting */
462 io_prep_async_link(req);
465 * Not expected to happen, but if we do have a bug where this _can_
466 * happen, catch it here and ensure the request is marked as
467 * canceled. That will make io-wq go through the usual work cancel
468 * procedure rather than attempt to run this request (or create a new
471 if (WARN_ON_ONCE(!same_thread_group(req->task, current)))
472 req->work.flags |= IO_WQ_WORK_CANCEL;
474 trace_io_uring_queue_async_work(req, io_wq_is_hashed(&req->work));
475 io_wq_enqueue(tctx->io_wq, &req->work);
477 io_queue_linked_timeout(link);
480 static __cold void io_queue_deferred(struct io_ring_ctx *ctx)
482 while (!list_empty(&ctx->defer_list)) {
483 struct io_defer_entry *de = list_first_entry(&ctx->defer_list,
484 struct io_defer_entry, list);
486 if (req_need_defer(de->req, de->seq))
488 list_del_init(&de->list);
489 io_req_task_queue(de->req);
495 static void io_eventfd_ops(struct rcu_head *rcu)
497 struct io_ev_fd *ev_fd = container_of(rcu, struct io_ev_fd, rcu);
498 int ops = atomic_xchg(&ev_fd->ops, 0);
500 if (ops & BIT(IO_EVENTFD_OP_SIGNAL_BIT))
501 eventfd_signal_mask(ev_fd->cq_ev_fd, 1, EPOLL_URING_WAKE);
503 /* IO_EVENTFD_OP_FREE_BIT may not be set here depending on callback
504 * ordering in a race but if references are 0 we know we have to free
507 if (atomic_dec_and_test(&ev_fd->refs)) {
508 eventfd_ctx_put(ev_fd->cq_ev_fd);
513 static void io_eventfd_signal(struct io_ring_ctx *ctx)
515 struct io_ev_fd *ev_fd = NULL;
519 * rcu_dereference ctx->io_ev_fd once and use it for both for checking
522 ev_fd = rcu_dereference(ctx->io_ev_fd);
525 * Check again if ev_fd exists incase an io_eventfd_unregister call
526 * completed between the NULL check of ctx->io_ev_fd at the start of
527 * the function and rcu_read_lock.
529 if (unlikely(!ev_fd))
531 if (READ_ONCE(ctx->rings->cq_flags) & IORING_CQ_EVENTFD_DISABLED)
533 if (ev_fd->eventfd_async && !io_wq_current_is_worker())
536 if (likely(eventfd_signal_allowed())) {
537 eventfd_signal_mask(ev_fd->cq_ev_fd, 1, EPOLL_URING_WAKE);
539 atomic_inc(&ev_fd->refs);
540 if (!atomic_fetch_or(BIT(IO_EVENTFD_OP_SIGNAL_BIT), &ev_fd->ops))
541 call_rcu_hurry(&ev_fd->rcu, io_eventfd_ops);
543 atomic_dec(&ev_fd->refs);
550 static void io_eventfd_flush_signal(struct io_ring_ctx *ctx)
554 spin_lock(&ctx->completion_lock);
557 * Eventfd should only get triggered when at least one event has been
558 * posted. Some applications rely on the eventfd notification count
559 * only changing IFF a new CQE has been added to the CQ ring. There's
560 * no depedency on 1:1 relationship between how many times this
561 * function is called (and hence the eventfd count) and number of CQEs
562 * posted to the CQ ring.
564 skip = ctx->cached_cq_tail == ctx->evfd_last_cq_tail;
565 ctx->evfd_last_cq_tail = ctx->cached_cq_tail;
566 spin_unlock(&ctx->completion_lock);
570 io_eventfd_signal(ctx);
573 void __io_commit_cqring_flush(struct io_ring_ctx *ctx)
575 if (ctx->off_timeout_used)
576 io_flush_timeouts(ctx);
577 if (ctx->drain_active) {
578 spin_lock(&ctx->completion_lock);
579 io_queue_deferred(ctx);
580 spin_unlock(&ctx->completion_lock);
583 io_eventfd_flush_signal(ctx);
586 static inline void __io_cq_lock(struct io_ring_ctx *ctx)
587 __acquires(ctx->completion_lock)
589 if (!ctx->task_complete)
590 spin_lock(&ctx->completion_lock);
593 static inline void __io_cq_unlock(struct io_ring_ctx *ctx)
595 if (!ctx->task_complete)
596 spin_unlock(&ctx->completion_lock);
599 static inline void io_cq_lock(struct io_ring_ctx *ctx)
600 __acquires(ctx->completion_lock)
602 spin_lock(&ctx->completion_lock);
605 static inline void io_cq_unlock(struct io_ring_ctx *ctx)
606 __releases(ctx->completion_lock)
608 spin_unlock(&ctx->completion_lock);
611 /* keep it inlined for io_submit_flush_completions() */
612 static inline void __io_cq_unlock_post(struct io_ring_ctx *ctx)
613 __releases(ctx->completion_lock)
615 io_commit_cqring(ctx);
617 io_commit_cqring_flush(ctx);
621 void io_cq_unlock_post(struct io_ring_ctx *ctx)
622 __releases(ctx->completion_lock)
624 io_commit_cqring(ctx);
625 spin_unlock(&ctx->completion_lock);
626 io_commit_cqring_flush(ctx);
630 /* Returns true if there are no backlogged entries after the flush */
631 static void io_cqring_overflow_kill(struct io_ring_ctx *ctx)
633 struct io_overflow_cqe *ocqe;
637 list_splice_init(&ctx->cq_overflow_list, &list);
638 clear_bit(IO_CHECK_CQ_OVERFLOW_BIT, &ctx->check_cq);
641 while (!list_empty(&list)) {
642 ocqe = list_first_entry(&list, struct io_overflow_cqe, list);
643 list_del(&ocqe->list);
648 /* Returns true if there are no backlogged entries after the flush */
649 static void __io_cqring_overflow_flush(struct io_ring_ctx *ctx)
651 size_t cqe_size = sizeof(struct io_uring_cqe);
653 if (__io_cqring_events(ctx) == ctx->cq_entries)
656 if (ctx->flags & IORING_SETUP_CQE32)
660 while (!list_empty(&ctx->cq_overflow_list)) {
661 struct io_uring_cqe *cqe = io_get_cqe_overflow(ctx, true);
662 struct io_overflow_cqe *ocqe;
666 ocqe = list_first_entry(&ctx->cq_overflow_list,
667 struct io_overflow_cqe, list);
668 memcpy(cqe, &ocqe->cqe, cqe_size);
669 list_del(&ocqe->list);
673 if (list_empty(&ctx->cq_overflow_list)) {
674 clear_bit(IO_CHECK_CQ_OVERFLOW_BIT, &ctx->check_cq);
675 atomic_andnot(IORING_SQ_CQ_OVERFLOW, &ctx->rings->sq_flags);
677 io_cq_unlock_post(ctx);
680 static void io_cqring_do_overflow_flush(struct io_ring_ctx *ctx)
682 /* iopoll syncs against uring_lock, not completion_lock */
683 if (ctx->flags & IORING_SETUP_IOPOLL)
684 mutex_lock(&ctx->uring_lock);
685 __io_cqring_overflow_flush(ctx);
686 if (ctx->flags & IORING_SETUP_IOPOLL)
687 mutex_unlock(&ctx->uring_lock);
690 static void io_cqring_overflow_flush(struct io_ring_ctx *ctx)
692 if (test_bit(IO_CHECK_CQ_OVERFLOW_BIT, &ctx->check_cq))
693 io_cqring_do_overflow_flush(ctx);
696 void __io_put_task(struct task_struct *task, int nr)
698 struct io_uring_task *tctx = task->io_uring;
700 percpu_counter_sub(&tctx->inflight, nr);
701 if (unlikely(atomic_read(&tctx->in_idle)))
702 wake_up(&tctx->wait);
703 put_task_struct_many(task, nr);
706 void io_task_refs_refill(struct io_uring_task *tctx)
708 unsigned int refill = -tctx->cached_refs + IO_TCTX_REFS_CACHE_NR;
710 percpu_counter_add(&tctx->inflight, refill);
711 refcount_add(refill, ¤t->usage);
712 tctx->cached_refs += refill;
715 static __cold void io_uring_drop_tctx_refs(struct task_struct *task)
717 struct io_uring_task *tctx = task->io_uring;
718 unsigned int refs = tctx->cached_refs;
721 tctx->cached_refs = 0;
722 percpu_counter_sub(&tctx->inflight, refs);
723 put_task_struct_many(task, refs);
727 static bool io_cqring_event_overflow(struct io_ring_ctx *ctx, u64 user_data,
728 s32 res, u32 cflags, u64 extra1, u64 extra2)
730 struct io_overflow_cqe *ocqe;
731 size_t ocq_size = sizeof(struct io_overflow_cqe);
732 bool is_cqe32 = (ctx->flags & IORING_SETUP_CQE32);
734 lockdep_assert_held(&ctx->completion_lock);
737 ocq_size += sizeof(struct io_uring_cqe);
739 ocqe = kmalloc(ocq_size, GFP_ATOMIC | __GFP_ACCOUNT);
740 trace_io_uring_cqe_overflow(ctx, user_data, res, cflags, ocqe);
743 * If we're in ring overflow flush mode, or in task cancel mode,
744 * or cannot allocate an overflow entry, then we need to drop it
747 io_account_cq_overflow(ctx);
748 set_bit(IO_CHECK_CQ_DROPPED_BIT, &ctx->check_cq);
751 if (list_empty(&ctx->cq_overflow_list)) {
752 set_bit(IO_CHECK_CQ_OVERFLOW_BIT, &ctx->check_cq);
753 atomic_or(IORING_SQ_CQ_OVERFLOW, &ctx->rings->sq_flags);
756 ocqe->cqe.user_data = user_data;
758 ocqe->cqe.flags = cflags;
760 ocqe->cqe.big_cqe[0] = extra1;
761 ocqe->cqe.big_cqe[1] = extra2;
763 list_add_tail(&ocqe->list, &ctx->cq_overflow_list);
767 bool io_req_cqe_overflow(struct io_kiocb *req)
769 if (!(req->flags & REQ_F_CQE32_INIT)) {
773 return io_cqring_event_overflow(req->ctx, req->cqe.user_data,
774 req->cqe.res, req->cqe.flags,
775 req->extra1, req->extra2);
779 * writes to the cq entry need to come after reading head; the
780 * control dependency is enough as we're using WRITE_ONCE to
783 struct io_uring_cqe *__io_get_cqe(struct io_ring_ctx *ctx, bool overflow)
785 struct io_rings *rings = ctx->rings;
786 unsigned int off = ctx->cached_cq_tail & (ctx->cq_entries - 1);
787 unsigned int free, queued, len;
790 * Posting into the CQ when there are pending overflowed CQEs may break
791 * ordering guarantees, which will affect links, F_MORE users and more.
792 * Force overflow the completion.
794 if (!overflow && (ctx->check_cq & BIT(IO_CHECK_CQ_OVERFLOW_BIT)))
797 /* userspace may cheat modifying the tail, be safe and do min */
798 queued = min(__io_cqring_events(ctx), ctx->cq_entries);
799 free = ctx->cq_entries - queued;
800 /* we need a contiguous range, limit based on the current array offset */
801 len = min(free, ctx->cq_entries - off);
805 if (ctx->flags & IORING_SETUP_CQE32) {
810 ctx->cqe_cached = &rings->cqes[off];
811 ctx->cqe_sentinel = ctx->cqe_cached + len;
813 ctx->cached_cq_tail++;
815 if (ctx->flags & IORING_SETUP_CQE32)
817 return &rings->cqes[off];
820 static bool io_fill_cqe_aux(struct io_ring_ctx *ctx, u64 user_data, s32 res,
823 struct io_uring_cqe *cqe;
828 * If we can't get a cq entry, userspace overflowed the
829 * submission (by quite a lot). Increment the overflow count in
832 cqe = io_get_cqe(ctx);
834 trace_io_uring_complete(ctx, NULL, user_data, res, cflags, 0, 0);
836 WRITE_ONCE(cqe->user_data, user_data);
837 WRITE_ONCE(cqe->res, res);
838 WRITE_ONCE(cqe->flags, cflags);
840 if (ctx->flags & IORING_SETUP_CQE32) {
841 WRITE_ONCE(cqe->big_cqe[0], 0);
842 WRITE_ONCE(cqe->big_cqe[1], 0);
849 static void __io_flush_post_cqes(struct io_ring_ctx *ctx)
850 __must_hold(&ctx->uring_lock)
852 struct io_submit_state *state = &ctx->submit_state;
855 lockdep_assert_held(&ctx->uring_lock);
856 for (i = 0; i < state->cqes_count; i++) {
857 struct io_uring_cqe *cqe = &state->cqes[i];
859 if (!io_fill_cqe_aux(ctx, cqe->user_data, cqe->res, cqe->flags)) {
860 if (ctx->task_complete) {
861 spin_lock(&ctx->completion_lock);
862 io_cqring_event_overflow(ctx, cqe->user_data,
863 cqe->res, cqe->flags, 0, 0);
864 spin_unlock(&ctx->completion_lock);
866 io_cqring_event_overflow(ctx, cqe->user_data,
867 cqe->res, cqe->flags, 0, 0);
871 state->cqes_count = 0;
874 static bool __io_post_aux_cqe(struct io_ring_ctx *ctx, u64 user_data, s32 res, u32 cflags,
880 filled = io_fill_cqe_aux(ctx, user_data, res, cflags);
881 if (!filled && allow_overflow)
882 filled = io_cqring_event_overflow(ctx, user_data, res, cflags, 0, 0);
884 io_cq_unlock_post(ctx);
888 bool io_post_aux_cqe(struct io_ring_ctx *ctx, u64 user_data, s32 res, u32 cflags)
890 return __io_post_aux_cqe(ctx, user_data, res, cflags, true);
893 bool io_aux_cqe(struct io_ring_ctx *ctx, bool defer, u64 user_data, s32 res, u32 cflags,
896 struct io_uring_cqe *cqe;
900 return __io_post_aux_cqe(ctx, user_data, res, cflags, allow_overflow);
902 length = ARRAY_SIZE(ctx->submit_state.cqes);
904 lockdep_assert_held(&ctx->uring_lock);
906 if (ctx->submit_state.cqes_count == length) {
908 __io_flush_post_cqes(ctx);
909 /* no need to flush - flush is deferred */
910 __io_cq_unlock_post(ctx);
913 /* For defered completions this is not as strict as it is otherwise,
914 * however it's main job is to prevent unbounded posted completions,
915 * and in that it works just as well.
917 if (!allow_overflow && test_bit(IO_CHECK_CQ_OVERFLOW_BIT, &ctx->check_cq))
920 cqe = &ctx->submit_state.cqes[ctx->submit_state.cqes_count++];
921 cqe->user_data = user_data;
927 static void __io_req_complete_post(struct io_kiocb *req)
929 struct io_ring_ctx *ctx = req->ctx;
932 if (!(req->flags & REQ_F_CQE_SKIP))
933 io_fill_cqe_req(ctx, req);
936 * If we're the last reference to this request, add to our locked
939 if (req_ref_put_and_test(req)) {
940 if (req->flags & IO_REQ_LINK_FLAGS) {
941 if (req->flags & IO_DISARM_MASK)
944 io_req_task_queue(req->link);
948 io_req_put_rsrc(req);
950 * Selected buffer deallocation in io_clean_op() assumes that
951 * we don't hold ->completion_lock. Clean them here to avoid
954 io_put_kbuf_comp(req);
955 io_dismantle_req(req);
956 io_put_task(req->task, 1);
957 wq_list_add_head(&req->comp_list, &ctx->locked_free_list);
958 ctx->locked_free_nr++;
960 io_cq_unlock_post(ctx);
963 void io_req_complete_post(struct io_kiocb *req, unsigned issue_flags)
965 if (req->ctx->task_complete && (issue_flags & IO_URING_F_IOWQ)) {
966 req->io_task_work.func = io_req_task_complete;
967 io_req_task_work_add(req);
968 } else if (!(issue_flags & IO_URING_F_UNLOCKED) ||
969 !(req->ctx->flags & IORING_SETUP_IOPOLL)) {
970 __io_req_complete_post(req);
972 struct io_ring_ctx *ctx = req->ctx;
974 mutex_lock(&ctx->uring_lock);
975 __io_req_complete_post(req);
976 mutex_unlock(&ctx->uring_lock);
980 void io_req_defer_failed(struct io_kiocb *req, s32 res)
981 __must_hold(&ctx->uring_lock)
983 const struct io_op_def *def = &io_op_defs[req->opcode];
985 lockdep_assert_held(&req->ctx->uring_lock);
988 io_req_set_res(req, res, io_put_kbuf(req, IO_URING_F_UNLOCKED));
991 io_req_complete_defer(req);
995 * Don't initialise the fields below on every allocation, but do that in
996 * advance and keep them valid across allocations.
998 static void io_preinit_req(struct io_kiocb *req, struct io_ring_ctx *ctx)
1002 req->async_data = NULL;
1003 /* not necessary, but safer to zero */
1007 static void io_flush_cached_locked_reqs(struct io_ring_ctx *ctx,
1008 struct io_submit_state *state)
1010 spin_lock(&ctx->completion_lock);
1011 wq_list_splice(&ctx->locked_free_list, &state->free_list);
1012 ctx->locked_free_nr = 0;
1013 spin_unlock(&ctx->completion_lock);
1017 * A request might get retired back into the request caches even before opcode
1018 * handlers and io_issue_sqe() are done with it, e.g. inline completion path.
1019 * Because of that, io_alloc_req() should be called only under ->uring_lock
1020 * and with extra caution to not get a request that is still worked on.
1022 __cold bool __io_alloc_req_refill(struct io_ring_ctx *ctx)
1023 __must_hold(&ctx->uring_lock)
1025 gfp_t gfp = GFP_KERNEL | __GFP_NOWARN;
1026 void *reqs[IO_REQ_ALLOC_BATCH];
1030 * If we have more than a batch's worth of requests in our IRQ side
1031 * locked cache, grab the lock and move them over to our submission
1034 if (data_race(ctx->locked_free_nr) > IO_COMPL_BATCH) {
1035 io_flush_cached_locked_reqs(ctx, &ctx->submit_state);
1036 if (!io_req_cache_empty(ctx))
1040 ret = kmem_cache_alloc_bulk(req_cachep, gfp, ARRAY_SIZE(reqs), reqs);
1043 * Bulk alloc is all-or-nothing. If we fail to get a batch,
1044 * retry single alloc to be on the safe side.
1046 if (unlikely(ret <= 0)) {
1047 reqs[0] = kmem_cache_alloc(req_cachep, gfp);
1053 percpu_ref_get_many(&ctx->refs, ret);
1054 for (i = 0; i < ret; i++) {
1055 struct io_kiocb *req = reqs[i];
1057 io_preinit_req(req, ctx);
1058 io_req_add_to_cache(req, ctx);
1063 static inline void io_dismantle_req(struct io_kiocb *req)
1065 unsigned int flags = req->flags;
1067 if (unlikely(flags & IO_REQ_CLEAN_FLAGS))
1069 if (!(flags & REQ_F_FIXED_FILE))
1070 io_put_file(req->file);
1073 __cold void io_free_req(struct io_kiocb *req)
1075 struct io_ring_ctx *ctx = req->ctx;
1077 io_req_put_rsrc(req);
1078 io_dismantle_req(req);
1079 io_put_task(req->task, 1);
1081 spin_lock(&ctx->completion_lock);
1082 wq_list_add_head(&req->comp_list, &ctx->locked_free_list);
1083 ctx->locked_free_nr++;
1084 spin_unlock(&ctx->completion_lock);
1087 static void __io_req_find_next_prep(struct io_kiocb *req)
1089 struct io_ring_ctx *ctx = req->ctx;
1091 spin_lock(&ctx->completion_lock);
1092 io_disarm_next(req);
1093 spin_unlock(&ctx->completion_lock);
1096 static inline struct io_kiocb *io_req_find_next(struct io_kiocb *req)
1098 struct io_kiocb *nxt;
1101 * If LINK is set, we have dependent requests in this chain. If we
1102 * didn't fail this request, queue the first one up, moving any other
1103 * dependencies to the next request. In case of failure, fail the rest
1106 if (unlikely(req->flags & IO_DISARM_MASK))
1107 __io_req_find_next_prep(req);
1113 static void ctx_flush_and_put(struct io_ring_ctx *ctx, bool *locked)
1117 if (ctx->flags & IORING_SETUP_TASKRUN_FLAG)
1118 atomic_andnot(IORING_SQ_TASKRUN, &ctx->rings->sq_flags);
1120 io_submit_flush_completions(ctx);
1121 mutex_unlock(&ctx->uring_lock);
1124 percpu_ref_put(&ctx->refs);
1127 static unsigned int handle_tw_list(struct llist_node *node,
1128 struct io_ring_ctx **ctx, bool *locked,
1129 struct llist_node *last)
1131 unsigned int count = 0;
1133 while (node != last) {
1134 struct llist_node *next = node->next;
1135 struct io_kiocb *req = container_of(node, struct io_kiocb,
1138 prefetch(container_of(next, struct io_kiocb, io_task_work.node));
1140 if (req->ctx != *ctx) {
1141 ctx_flush_and_put(*ctx, locked);
1143 /* if not contended, grab and improve batching */
1144 *locked = mutex_trylock(&(*ctx)->uring_lock);
1145 percpu_ref_get(&(*ctx)->refs);
1147 req->io_task_work.func(req, locked);
1156 * io_llist_xchg - swap all entries in a lock-less list
1157 * @head: the head of lock-less list to delete all entries
1158 * @new: new entry as the head of the list
1160 * If list is empty, return NULL, otherwise, return the pointer to the first entry.
1161 * The order of entries returned is from the newest to the oldest added one.
1163 static inline struct llist_node *io_llist_xchg(struct llist_head *head,
1164 struct llist_node *new)
1166 return xchg(&head->first, new);
1170 * io_llist_cmpxchg - possibly swap all entries in a lock-less list
1171 * @head: the head of lock-less list to delete all entries
1172 * @old: expected old value of the first entry of the list
1173 * @new: new entry as the head of the list
1175 * perform a cmpxchg on the first entry of the list.
1178 static inline struct llist_node *io_llist_cmpxchg(struct llist_head *head,
1179 struct llist_node *old,
1180 struct llist_node *new)
1182 return cmpxchg(&head->first, old, new);
1185 void tctx_task_work(struct callback_head *cb)
1187 bool uring_locked = false;
1188 struct io_ring_ctx *ctx = NULL;
1189 struct io_uring_task *tctx = container_of(cb, struct io_uring_task,
1191 struct llist_node fake = {};
1192 struct llist_node *node;
1193 unsigned int loops = 1;
1196 if (unlikely(current->flags & PF_EXITING)) {
1197 io_fallback_tw(tctx);
1201 node = io_llist_xchg(&tctx->task_list, &fake);
1202 count = handle_tw_list(node, &ctx, &uring_locked, NULL);
1203 node = io_llist_cmpxchg(&tctx->task_list, &fake, NULL);
1204 while (node != &fake) {
1206 node = io_llist_xchg(&tctx->task_list, &fake);
1207 count += handle_tw_list(node, &ctx, &uring_locked, &fake);
1208 node = io_llist_cmpxchg(&tctx->task_list, &fake, NULL);
1211 ctx_flush_and_put(ctx, &uring_locked);
1213 /* relaxed read is enough as only the task itself sets ->in_idle */
1214 if (unlikely(atomic_read(&tctx->in_idle)))
1215 io_uring_drop_tctx_refs(current);
1217 trace_io_uring_task_work_run(tctx, count, loops);
1220 static __cold void io_fallback_tw(struct io_uring_task *tctx)
1222 struct llist_node *node = llist_del_all(&tctx->task_list);
1223 struct io_kiocb *req;
1226 req = container_of(node, struct io_kiocb, io_task_work.node);
1228 if (llist_add(&req->io_task_work.node,
1229 &req->ctx->fallback_llist))
1230 schedule_delayed_work(&req->ctx->fallback_work, 1);
1234 static void io_req_local_work_add(struct io_kiocb *req)
1236 struct io_ring_ctx *ctx = req->ctx;
1238 percpu_ref_get(&ctx->refs);
1240 if (!llist_add(&req->io_task_work.node, &ctx->work_llist)) {
1241 percpu_ref_put(&ctx->refs);
1244 /* need it for the following io_cqring_wake() */
1245 smp_mb__after_atomic();
1247 if (unlikely(atomic_read(&req->task->io_uring->in_idle))) {
1248 io_move_task_work_from_local(ctx);
1249 percpu_ref_put(&ctx->refs);
1253 if (ctx->flags & IORING_SETUP_TASKRUN_FLAG)
1254 atomic_or(IORING_SQ_TASKRUN, &ctx->rings->sq_flags);
1257 io_eventfd_signal(ctx);
1258 __io_cqring_wake(ctx);
1259 percpu_ref_put(&ctx->refs);
1262 void __io_req_task_work_add(struct io_kiocb *req, bool allow_local)
1264 struct io_uring_task *tctx = req->task->io_uring;
1265 struct io_ring_ctx *ctx = req->ctx;
1267 if (allow_local && ctx->flags & IORING_SETUP_DEFER_TASKRUN) {
1268 io_req_local_work_add(req);
1272 /* task_work already pending, we're done */
1273 if (!llist_add(&req->io_task_work.node, &tctx->task_list))
1276 if (ctx->flags & IORING_SETUP_TASKRUN_FLAG)
1277 atomic_or(IORING_SQ_TASKRUN, &ctx->rings->sq_flags);
1279 if (likely(!task_work_add(req->task, &tctx->task_work, ctx->notify_method)))
1282 io_fallback_tw(tctx);
1285 static void __cold io_move_task_work_from_local(struct io_ring_ctx *ctx)
1287 struct llist_node *node;
1289 node = llist_del_all(&ctx->work_llist);
1291 struct io_kiocb *req = container_of(node, struct io_kiocb,
1295 __io_req_task_work_add(req, false);
1299 int __io_run_local_work(struct io_ring_ctx *ctx, bool *locked)
1301 struct llist_node *node;
1302 struct llist_node fake;
1303 struct llist_node *current_final = NULL;
1305 unsigned int loops = 1;
1307 if (unlikely(ctx->submitter_task != current))
1310 node = io_llist_xchg(&ctx->work_llist, &fake);
1313 while (node != current_final) {
1314 struct llist_node *next = node->next;
1315 struct io_kiocb *req = container_of(node, struct io_kiocb,
1317 prefetch(container_of(next, struct io_kiocb, io_task_work.node));
1318 req->io_task_work.func(req, locked);
1323 if (ctx->flags & IORING_SETUP_TASKRUN_FLAG)
1324 atomic_andnot(IORING_SQ_TASKRUN, &ctx->rings->sq_flags);
1326 node = io_llist_cmpxchg(&ctx->work_llist, &fake, NULL);
1327 if (node != &fake) {
1329 current_final = &fake;
1330 node = io_llist_xchg(&ctx->work_llist, &fake);
1335 io_submit_flush_completions(ctx);
1336 trace_io_uring_local_work_run(ctx, ret, loops);
1341 int io_run_local_work(struct io_ring_ctx *ctx)
1346 if (llist_empty(&ctx->work_llist))
1349 __set_current_state(TASK_RUNNING);
1350 locked = mutex_trylock(&ctx->uring_lock);
1351 ret = __io_run_local_work(ctx, &locked);
1353 mutex_unlock(&ctx->uring_lock);
1358 static void io_req_task_cancel(struct io_kiocb *req, bool *locked)
1360 io_tw_lock(req->ctx, locked);
1361 io_req_defer_failed(req, req->cqe.res);
1364 void io_req_task_submit(struct io_kiocb *req, bool *locked)
1366 io_tw_lock(req->ctx, locked);
1367 /* req->task == current here, checking PF_EXITING is safe */
1368 if (likely(!(req->task->flags & PF_EXITING)))
1371 io_req_defer_failed(req, -EFAULT);
1374 void io_req_task_queue_fail(struct io_kiocb *req, int ret)
1376 io_req_set_res(req, ret, 0);
1377 req->io_task_work.func = io_req_task_cancel;
1378 io_req_task_work_add(req);
1381 void io_req_task_queue(struct io_kiocb *req)
1383 req->io_task_work.func = io_req_task_submit;
1384 io_req_task_work_add(req);
1387 void io_queue_next(struct io_kiocb *req)
1389 struct io_kiocb *nxt = io_req_find_next(req);
1392 io_req_task_queue(nxt);
1395 void io_free_batch_list(struct io_ring_ctx *ctx, struct io_wq_work_node *node)
1396 __must_hold(&ctx->uring_lock)
1398 struct task_struct *task = NULL;
1402 struct io_kiocb *req = container_of(node, struct io_kiocb,
1405 if (unlikely(req->flags & IO_REQ_CLEAN_SLOW_FLAGS)) {
1406 if (req->flags & REQ_F_REFCOUNT) {
1407 node = req->comp_list.next;
1408 if (!req_ref_put_and_test(req))
1411 if ((req->flags & REQ_F_POLLED) && req->apoll) {
1412 struct async_poll *apoll = req->apoll;
1414 if (apoll->double_poll)
1415 kfree(apoll->double_poll);
1416 if (!io_alloc_cache_put(&ctx->apoll_cache, &apoll->cache))
1418 req->flags &= ~REQ_F_POLLED;
1420 if (req->flags & IO_REQ_LINK_FLAGS)
1422 if (unlikely(req->flags & IO_REQ_CLEAN_FLAGS))
1425 if (!(req->flags & REQ_F_FIXED_FILE))
1426 io_put_file(req->file);
1428 io_req_put_rsrc_locked(req, ctx);
1430 if (req->task != task) {
1432 io_put_task(task, task_refs);
1437 node = req->comp_list.next;
1438 io_req_add_to_cache(req, ctx);
1442 io_put_task(task, task_refs);
1445 static void __io_submit_flush_completions(struct io_ring_ctx *ctx)
1446 __must_hold(&ctx->uring_lock)
1448 struct io_wq_work_node *node, *prev;
1449 struct io_submit_state *state = &ctx->submit_state;
1452 /* must come first to preserve CQE ordering in failure cases */
1453 if (state->cqes_count)
1454 __io_flush_post_cqes(ctx);
1455 wq_list_for_each(node, prev, &state->compl_reqs) {
1456 struct io_kiocb *req = container_of(node, struct io_kiocb,
1459 if (!(req->flags & REQ_F_CQE_SKIP) &&
1460 unlikely(!__io_fill_cqe_req(ctx, req))) {
1461 if (ctx->task_complete) {
1462 spin_lock(&ctx->completion_lock);
1463 io_req_cqe_overflow(req);
1464 spin_unlock(&ctx->completion_lock);
1466 io_req_cqe_overflow(req);
1470 __io_cq_unlock_post(ctx);
1472 if (!wq_list_empty(&ctx->submit_state.compl_reqs)) {
1473 io_free_batch_list(ctx, state->compl_reqs.first);
1474 INIT_WQ_LIST(&state->compl_reqs);
1479 * Drop reference to request, return next in chain (if there is one) if this
1480 * was the last reference to this request.
1482 static inline struct io_kiocb *io_put_req_find_next(struct io_kiocb *req)
1484 struct io_kiocb *nxt = NULL;
1486 if (req_ref_put_and_test(req)) {
1487 if (unlikely(req->flags & IO_REQ_LINK_FLAGS))
1488 nxt = io_req_find_next(req);
1494 static unsigned io_cqring_events(struct io_ring_ctx *ctx)
1496 /* See comment at the top of this file */
1498 return __io_cqring_events(ctx);
1502 * We can't just wait for polled events to come to us, we have to actively
1503 * find and complete them.
1505 static __cold void io_iopoll_try_reap_events(struct io_ring_ctx *ctx)
1507 if (!(ctx->flags & IORING_SETUP_IOPOLL))
1510 mutex_lock(&ctx->uring_lock);
1511 while (!wq_list_empty(&ctx->iopoll_list)) {
1512 /* let it sleep and repeat later if can't complete a request */
1513 if (io_do_iopoll(ctx, true) == 0)
1516 * Ensure we allow local-to-the-cpu processing to take place,
1517 * in this case we need to ensure that we reap all events.
1518 * Also let task_work, etc. to progress by releasing the mutex
1520 if (need_resched()) {
1521 mutex_unlock(&ctx->uring_lock);
1523 mutex_lock(&ctx->uring_lock);
1526 mutex_unlock(&ctx->uring_lock);
1529 static int io_iopoll_check(struct io_ring_ctx *ctx, long min)
1531 unsigned int nr_events = 0;
1533 unsigned long check_cq;
1535 if (!io_allowed_run_tw(ctx))
1538 check_cq = READ_ONCE(ctx->check_cq);
1539 if (unlikely(check_cq)) {
1540 if (check_cq & BIT(IO_CHECK_CQ_OVERFLOW_BIT))
1541 __io_cqring_overflow_flush(ctx);
1543 * Similarly do not spin if we have not informed the user of any
1546 if (check_cq & BIT(IO_CHECK_CQ_DROPPED_BIT))
1550 * Don't enter poll loop if we already have events pending.
1551 * If we do, we can potentially be spinning for commands that
1552 * already triggered a CQE (eg in error).
1554 if (io_cqring_events(ctx))
1559 * If a submit got punted to a workqueue, we can have the
1560 * application entering polling for a command before it gets
1561 * issued. That app will hold the uring_lock for the duration
1562 * of the poll right here, so we need to take a breather every
1563 * now and then to ensure that the issue has a chance to add
1564 * the poll to the issued list. Otherwise we can spin here
1565 * forever, while the workqueue is stuck trying to acquire the
1568 if (wq_list_empty(&ctx->iopoll_list) ||
1569 io_task_work_pending(ctx)) {
1570 u32 tail = ctx->cached_cq_tail;
1572 (void) io_run_local_work_locked(ctx);
1574 if (task_work_pending(current) ||
1575 wq_list_empty(&ctx->iopoll_list)) {
1576 mutex_unlock(&ctx->uring_lock);
1578 mutex_lock(&ctx->uring_lock);
1580 /* some requests don't go through iopoll_list */
1581 if (tail != ctx->cached_cq_tail ||
1582 wq_list_empty(&ctx->iopoll_list))
1585 ret = io_do_iopoll(ctx, !min);
1590 } while (nr_events < min && !need_resched());
1595 void io_req_task_complete(struct io_kiocb *req, bool *locked)
1598 io_req_complete_defer(req);
1600 io_req_complete_post(req, IO_URING_F_UNLOCKED);
1604 * After the iocb has been issued, it's safe to be found on the poll list.
1605 * Adding the kiocb to the list AFTER submission ensures that we don't
1606 * find it from a io_do_iopoll() thread before the issuer is done
1607 * accessing the kiocb cookie.
1609 static void io_iopoll_req_issued(struct io_kiocb *req, unsigned int issue_flags)
1611 struct io_ring_ctx *ctx = req->ctx;
1612 const bool needs_lock = issue_flags & IO_URING_F_UNLOCKED;
1614 /* workqueue context doesn't hold uring_lock, grab it now */
1615 if (unlikely(needs_lock))
1616 mutex_lock(&ctx->uring_lock);
1619 * Track whether we have multiple files in our lists. This will impact
1620 * how we do polling eventually, not spinning if we're on potentially
1621 * different devices.
1623 if (wq_list_empty(&ctx->iopoll_list)) {
1624 ctx->poll_multi_queue = false;
1625 } else if (!ctx->poll_multi_queue) {
1626 struct io_kiocb *list_req;
1628 list_req = container_of(ctx->iopoll_list.first, struct io_kiocb,
1630 if (list_req->file != req->file)
1631 ctx->poll_multi_queue = true;
1635 * For fast devices, IO may have already completed. If it has, add
1636 * it to the front so we find it first.
1638 if (READ_ONCE(req->iopoll_completed))
1639 wq_list_add_head(&req->comp_list, &ctx->iopoll_list);
1641 wq_list_add_tail(&req->comp_list, &ctx->iopoll_list);
1643 if (unlikely(needs_lock)) {
1645 * If IORING_SETUP_SQPOLL is enabled, sqes are either handle
1646 * in sq thread task context or in io worker task context. If
1647 * current task context is sq thread, we don't need to check
1648 * whether should wake up sq thread.
1650 if ((ctx->flags & IORING_SETUP_SQPOLL) &&
1651 wq_has_sleeper(&ctx->sq_data->wait))
1652 wake_up(&ctx->sq_data->wait);
1654 mutex_unlock(&ctx->uring_lock);
1658 static bool io_bdev_nowait(struct block_device *bdev)
1660 return !bdev || bdev_nowait(bdev);
1664 * If we tracked the file through the SCM inflight mechanism, we could support
1665 * any file. For now, just ensure that anything potentially problematic is done
1668 static bool __io_file_supports_nowait(struct file *file, umode_t mode)
1670 if (S_ISBLK(mode)) {
1671 if (IS_ENABLED(CONFIG_BLOCK) &&
1672 io_bdev_nowait(I_BDEV(file->f_mapping->host)))
1678 if (S_ISREG(mode)) {
1679 if (IS_ENABLED(CONFIG_BLOCK) &&
1680 io_bdev_nowait(file->f_inode->i_sb->s_bdev) &&
1681 !io_is_uring_fops(file))
1686 /* any ->read/write should understand O_NONBLOCK */
1687 if (file->f_flags & O_NONBLOCK)
1689 return file->f_mode & FMODE_NOWAIT;
1693 * If we tracked the file through the SCM inflight mechanism, we could support
1694 * any file. For now, just ensure that anything potentially problematic is done
1697 unsigned int io_file_get_flags(struct file *file)
1699 umode_t mode = file_inode(file)->i_mode;
1700 unsigned int res = 0;
1704 if (__io_file_supports_nowait(file, mode))
1709 bool io_alloc_async_data(struct io_kiocb *req)
1711 WARN_ON_ONCE(!io_op_defs[req->opcode].async_size);
1712 req->async_data = kmalloc(io_op_defs[req->opcode].async_size, GFP_KERNEL);
1713 if (req->async_data) {
1714 req->flags |= REQ_F_ASYNC_DATA;
1720 int io_req_prep_async(struct io_kiocb *req)
1722 const struct io_op_def *def = &io_op_defs[req->opcode];
1724 /* assign early for deferred execution for non-fixed file */
1725 if (def->needs_file && !(req->flags & REQ_F_FIXED_FILE))
1726 req->file = io_file_get_normal(req, req->cqe.fd);
1727 if (!def->prep_async)
1729 if (WARN_ON_ONCE(req_has_async_data(req)))
1731 if (!io_op_defs[req->opcode].manual_alloc) {
1732 if (io_alloc_async_data(req))
1735 return def->prep_async(req);
1738 static u32 io_get_sequence(struct io_kiocb *req)
1740 u32 seq = req->ctx->cached_sq_head;
1741 struct io_kiocb *cur;
1743 /* need original cached_sq_head, but it was increased for each req */
1744 io_for_each_link(cur, req)
1749 static __cold void io_drain_req(struct io_kiocb *req)
1750 __must_hold(&ctx->uring_lock)
1752 struct io_ring_ctx *ctx = req->ctx;
1753 struct io_defer_entry *de;
1755 u32 seq = io_get_sequence(req);
1757 /* Still need defer if there is pending req in defer list. */
1758 spin_lock(&ctx->completion_lock);
1759 if (!req_need_defer(req, seq) && list_empty_careful(&ctx->defer_list)) {
1760 spin_unlock(&ctx->completion_lock);
1762 ctx->drain_active = false;
1763 io_req_task_queue(req);
1766 spin_unlock(&ctx->completion_lock);
1768 ret = io_req_prep_async(req);
1771 io_req_defer_failed(req, ret);
1774 io_prep_async_link(req);
1775 de = kmalloc(sizeof(*de), GFP_KERNEL);
1781 spin_lock(&ctx->completion_lock);
1782 if (!req_need_defer(req, seq) && list_empty(&ctx->defer_list)) {
1783 spin_unlock(&ctx->completion_lock);
1788 trace_io_uring_defer(req);
1791 list_add_tail(&de->list, &ctx->defer_list);
1792 spin_unlock(&ctx->completion_lock);
1795 static void io_clean_op(struct io_kiocb *req)
1797 if (req->flags & REQ_F_BUFFER_SELECTED) {
1798 spin_lock(&req->ctx->completion_lock);
1799 io_put_kbuf_comp(req);
1800 spin_unlock(&req->ctx->completion_lock);
1803 if (req->flags & REQ_F_NEED_CLEANUP) {
1804 const struct io_op_def *def = &io_op_defs[req->opcode];
1809 if ((req->flags & REQ_F_POLLED) && req->apoll) {
1810 kfree(req->apoll->double_poll);
1814 if (req->flags & REQ_F_INFLIGHT) {
1815 struct io_uring_task *tctx = req->task->io_uring;
1817 atomic_dec(&tctx->inflight_tracked);
1819 if (req->flags & REQ_F_CREDS)
1820 put_cred(req->creds);
1821 if (req->flags & REQ_F_ASYNC_DATA) {
1822 kfree(req->async_data);
1823 req->async_data = NULL;
1825 req->flags &= ~IO_REQ_CLEAN_FLAGS;
1828 static bool io_assign_file(struct io_kiocb *req, unsigned int issue_flags)
1830 if (req->file || !io_op_defs[req->opcode].needs_file)
1833 if (req->flags & REQ_F_FIXED_FILE)
1834 req->file = io_file_get_fixed(req, req->cqe.fd, issue_flags);
1836 req->file = io_file_get_normal(req, req->cqe.fd);
1841 static int io_issue_sqe(struct io_kiocb *req, unsigned int issue_flags)
1843 const struct io_op_def *def = &io_op_defs[req->opcode];
1844 const struct cred *creds = NULL;
1847 if (unlikely(!io_assign_file(req, issue_flags)))
1850 if (unlikely((req->flags & REQ_F_CREDS) && req->creds != current_cred()))
1851 creds = override_creds(req->creds);
1853 if (!def->audit_skip)
1854 audit_uring_entry(req->opcode);
1856 ret = def->issue(req, issue_flags);
1858 if (!def->audit_skip)
1859 audit_uring_exit(!ret, ret);
1862 revert_creds(creds);
1864 if (ret == IOU_OK) {
1865 if (issue_flags & IO_URING_F_COMPLETE_DEFER)
1866 io_req_complete_defer(req);
1868 io_req_complete_post(req, issue_flags);
1869 } else if (ret != IOU_ISSUE_SKIP_COMPLETE)
1872 /* If the op doesn't have a file, we're not polling for it */
1873 if ((req->ctx->flags & IORING_SETUP_IOPOLL) && def->iopoll_queue)
1874 io_iopoll_req_issued(req, issue_flags);
1879 int io_poll_issue(struct io_kiocb *req, bool *locked)
1881 io_tw_lock(req->ctx, locked);
1882 return io_issue_sqe(req, IO_URING_F_NONBLOCK|IO_URING_F_MULTISHOT|
1883 IO_URING_F_COMPLETE_DEFER);
1886 struct io_wq_work *io_wq_free_work(struct io_wq_work *work)
1888 struct io_kiocb *req = container_of(work, struct io_kiocb, work);
1890 req = io_put_req_find_next(req);
1891 return req ? &req->work : NULL;
1894 void io_wq_submit_work(struct io_wq_work *work)
1896 struct io_kiocb *req = container_of(work, struct io_kiocb, work);
1897 const struct io_op_def *def = &io_op_defs[req->opcode];
1898 unsigned int issue_flags = IO_URING_F_UNLOCKED | IO_URING_F_IOWQ;
1899 bool needs_poll = false;
1900 int ret = 0, err = -ECANCELED;
1902 /* one will be dropped by ->io_wq_free_work() after returning to io-wq */
1903 if (!(req->flags & REQ_F_REFCOUNT))
1904 __io_req_set_refcount(req, 2);
1908 io_arm_ltimeout(req);
1910 /* either cancelled or io-wq is dying, so don't touch tctx->iowq */
1911 if (work->flags & IO_WQ_WORK_CANCEL) {
1913 io_req_task_queue_fail(req, err);
1916 if (!io_assign_file(req, issue_flags)) {
1918 work->flags |= IO_WQ_WORK_CANCEL;
1922 if (req->flags & REQ_F_FORCE_ASYNC) {
1923 bool opcode_poll = def->pollin || def->pollout;
1925 if (opcode_poll && file_can_poll(req->file)) {
1927 issue_flags |= IO_URING_F_NONBLOCK;
1932 ret = io_issue_sqe(req, issue_flags);
1936 * We can get EAGAIN for iopolled IO even though we're
1937 * forcing a sync submission from here, since we can't
1938 * wait for request slots on the block side.
1941 if (!(req->ctx->flags & IORING_SETUP_IOPOLL))
1947 if (io_arm_poll_handler(req, issue_flags) == IO_APOLL_OK)
1949 /* aborted or ready, in either case retry blocking */
1951 issue_flags &= ~IO_URING_F_NONBLOCK;
1954 /* avoid locking problems by failing it from a clean context */
1956 io_req_task_queue_fail(req, ret);
1959 inline struct file *io_file_get_fixed(struct io_kiocb *req, int fd,
1960 unsigned int issue_flags)
1962 struct io_ring_ctx *ctx = req->ctx;
1963 struct file *file = NULL;
1964 unsigned long file_ptr;
1966 io_ring_submit_lock(ctx, issue_flags);
1968 if (unlikely((unsigned int)fd >= ctx->nr_user_files))
1970 fd = array_index_nospec(fd, ctx->nr_user_files);
1971 file_ptr = io_fixed_file_slot(&ctx->file_table, fd)->file_ptr;
1972 file = (struct file *) (file_ptr & FFS_MASK);
1973 file_ptr &= ~FFS_MASK;
1974 /* mask in overlapping REQ_F and FFS bits */
1975 req->flags |= (file_ptr << REQ_F_SUPPORT_NOWAIT_BIT);
1976 io_req_set_rsrc_node(req, ctx, 0);
1978 io_ring_submit_unlock(ctx, issue_flags);
1982 struct file *io_file_get_normal(struct io_kiocb *req, int fd)
1984 struct file *file = fget(fd);
1986 trace_io_uring_file_get(req, fd);
1988 /* we don't allow fixed io_uring files */
1989 if (file && io_is_uring_fops(file))
1990 io_req_track_inflight(req);
1994 static void io_queue_async(struct io_kiocb *req, int ret)
1995 __must_hold(&req->ctx->uring_lock)
1997 struct io_kiocb *linked_timeout;
1999 if (ret != -EAGAIN || (req->flags & REQ_F_NOWAIT)) {
2000 io_req_defer_failed(req, ret);
2004 linked_timeout = io_prep_linked_timeout(req);
2006 switch (io_arm_poll_handler(req, 0)) {
2007 case IO_APOLL_READY:
2008 io_kbuf_recycle(req, 0);
2009 io_req_task_queue(req);
2011 case IO_APOLL_ABORTED:
2012 io_kbuf_recycle(req, 0);
2013 io_queue_iowq(req, NULL);
2020 io_queue_linked_timeout(linked_timeout);
2023 static inline void io_queue_sqe(struct io_kiocb *req)
2024 __must_hold(&req->ctx->uring_lock)
2028 ret = io_issue_sqe(req, IO_URING_F_NONBLOCK|IO_URING_F_COMPLETE_DEFER);
2031 * We async punt it if the file wasn't marked NOWAIT, or if the file
2032 * doesn't support non-blocking read/write attempts
2035 io_arm_ltimeout(req);
2037 io_queue_async(req, ret);
2040 static void io_queue_sqe_fallback(struct io_kiocb *req)
2041 __must_hold(&req->ctx->uring_lock)
2043 if (unlikely(req->flags & REQ_F_FAIL)) {
2045 * We don't submit, fail them all, for that replace hardlinks
2046 * with normal links. Extra REQ_F_LINK is tolerated.
2048 req->flags &= ~REQ_F_HARDLINK;
2049 req->flags |= REQ_F_LINK;
2050 io_req_defer_failed(req, req->cqe.res);
2051 } else if (unlikely(req->ctx->drain_active)) {
2054 int ret = io_req_prep_async(req);
2057 io_req_defer_failed(req, ret);
2059 io_queue_iowq(req, NULL);
2064 * Check SQE restrictions (opcode and flags).
2066 * Returns 'true' if SQE is allowed, 'false' otherwise.
2068 static inline bool io_check_restriction(struct io_ring_ctx *ctx,
2069 struct io_kiocb *req,
2070 unsigned int sqe_flags)
2072 if (!test_bit(req->opcode, ctx->restrictions.sqe_op))
2075 if ((sqe_flags & ctx->restrictions.sqe_flags_required) !=
2076 ctx->restrictions.sqe_flags_required)
2079 if (sqe_flags & ~(ctx->restrictions.sqe_flags_allowed |
2080 ctx->restrictions.sqe_flags_required))
2086 static void io_init_req_drain(struct io_kiocb *req)
2088 struct io_ring_ctx *ctx = req->ctx;
2089 struct io_kiocb *head = ctx->submit_state.link.head;
2091 ctx->drain_active = true;
2094 * If we need to drain a request in the middle of a link, drain
2095 * the head request and the next request/link after the current
2096 * link. Considering sequential execution of links,
2097 * REQ_F_IO_DRAIN will be maintained for every request of our
2100 head->flags |= REQ_F_IO_DRAIN | REQ_F_FORCE_ASYNC;
2101 ctx->drain_next = true;
2105 static int io_init_req(struct io_ring_ctx *ctx, struct io_kiocb *req,
2106 const struct io_uring_sqe *sqe)
2107 __must_hold(&ctx->uring_lock)
2109 const struct io_op_def *def;
2110 unsigned int sqe_flags;
2114 /* req is partially pre-initialised, see io_preinit_req() */
2115 req->opcode = opcode = READ_ONCE(sqe->opcode);
2116 /* same numerical values with corresponding REQ_F_*, safe to copy */
2117 req->flags = sqe_flags = READ_ONCE(sqe->flags);
2118 req->cqe.user_data = READ_ONCE(sqe->user_data);
2120 req->rsrc_node = NULL;
2121 req->task = current;
2123 if (unlikely(opcode >= IORING_OP_LAST)) {
2127 def = &io_op_defs[opcode];
2128 if (unlikely(sqe_flags & ~SQE_COMMON_FLAGS)) {
2129 /* enforce forwards compatibility on users */
2130 if (sqe_flags & ~SQE_VALID_FLAGS)
2132 if (sqe_flags & IOSQE_BUFFER_SELECT) {
2133 if (!def->buffer_select)
2135 req->buf_index = READ_ONCE(sqe->buf_group);
2137 if (sqe_flags & IOSQE_CQE_SKIP_SUCCESS)
2138 ctx->drain_disabled = true;
2139 if (sqe_flags & IOSQE_IO_DRAIN) {
2140 if (ctx->drain_disabled)
2142 io_init_req_drain(req);
2145 if (unlikely(ctx->restricted || ctx->drain_active || ctx->drain_next)) {
2146 if (ctx->restricted && !io_check_restriction(ctx, req, sqe_flags))
2148 /* knock it to the slow queue path, will be drained there */
2149 if (ctx->drain_active)
2150 req->flags |= REQ_F_FORCE_ASYNC;
2151 /* if there is no link, we're at "next" request and need to drain */
2152 if (unlikely(ctx->drain_next) && !ctx->submit_state.link.head) {
2153 ctx->drain_next = false;
2154 ctx->drain_active = true;
2155 req->flags |= REQ_F_IO_DRAIN | REQ_F_FORCE_ASYNC;
2159 if (!def->ioprio && sqe->ioprio)
2161 if (!def->iopoll && (ctx->flags & IORING_SETUP_IOPOLL))
2164 if (def->needs_file) {
2165 struct io_submit_state *state = &ctx->submit_state;
2167 req->cqe.fd = READ_ONCE(sqe->fd);
2170 * Plug now if we have more than 2 IO left after this, and the
2171 * target is potentially a read/write to block based storage.
2173 if (state->need_plug && def->plug) {
2174 state->plug_started = true;
2175 state->need_plug = false;
2176 blk_start_plug_nr_ios(&state->plug, state->submit_nr);
2180 personality = READ_ONCE(sqe->personality);
2184 req->creds = xa_load(&ctx->personalities, personality);
2187 get_cred(req->creds);
2188 ret = security_uring_override_creds(req->creds);
2190 put_cred(req->creds);
2193 req->flags |= REQ_F_CREDS;
2196 return def->prep(req, sqe);
2199 static __cold int io_submit_fail_init(const struct io_uring_sqe *sqe,
2200 struct io_kiocb *req, int ret)
2202 struct io_ring_ctx *ctx = req->ctx;
2203 struct io_submit_link *link = &ctx->submit_state.link;
2204 struct io_kiocb *head = link->head;
2206 trace_io_uring_req_failed(sqe, req, ret);
2209 * Avoid breaking links in the middle as it renders links with SQPOLL
2210 * unusable. Instead of failing eagerly, continue assembling the link if
2211 * applicable and mark the head with REQ_F_FAIL. The link flushing code
2212 * should find the flag and handle the rest.
2214 req_fail_link_node(req, ret);
2215 if (head && !(head->flags & REQ_F_FAIL))
2216 req_fail_link_node(head, -ECANCELED);
2218 if (!(req->flags & IO_REQ_LINK_FLAGS)) {
2220 link->last->link = req;
2224 io_queue_sqe_fallback(req);
2229 link->last->link = req;
2236 static inline int io_submit_sqe(struct io_ring_ctx *ctx, struct io_kiocb *req,
2237 const struct io_uring_sqe *sqe)
2238 __must_hold(&ctx->uring_lock)
2240 struct io_submit_link *link = &ctx->submit_state.link;
2243 ret = io_init_req(ctx, req, sqe);
2245 return io_submit_fail_init(sqe, req, ret);
2247 /* don't need @sqe from now on */
2248 trace_io_uring_submit_sqe(req, true);
2251 * If we already have a head request, queue this one for async
2252 * submittal once the head completes. If we don't have a head but
2253 * IOSQE_IO_LINK is set in the sqe, start a new head. This one will be
2254 * submitted sync once the chain is complete. If none of those
2255 * conditions are true (normal request), then just queue it.
2257 if (unlikely(link->head)) {
2258 ret = io_req_prep_async(req);
2260 return io_submit_fail_init(sqe, req, ret);
2262 trace_io_uring_link(req, link->head);
2263 link->last->link = req;
2266 if (req->flags & IO_REQ_LINK_FLAGS)
2268 /* last request of the link, flush it */
2271 if (req->flags & (REQ_F_FORCE_ASYNC | REQ_F_FAIL))
2274 } else if (unlikely(req->flags & (IO_REQ_LINK_FLAGS |
2275 REQ_F_FORCE_ASYNC | REQ_F_FAIL))) {
2276 if (req->flags & IO_REQ_LINK_FLAGS) {
2281 io_queue_sqe_fallback(req);
2291 * Batched submission is done, ensure local IO is flushed out.
2293 static void io_submit_state_end(struct io_ring_ctx *ctx)
2295 struct io_submit_state *state = &ctx->submit_state;
2297 if (unlikely(state->link.head))
2298 io_queue_sqe_fallback(state->link.head);
2299 /* flush only after queuing links as they can generate completions */
2300 io_submit_flush_completions(ctx);
2301 if (state->plug_started)
2302 blk_finish_plug(&state->plug);
2306 * Start submission side cache.
2308 static void io_submit_state_start(struct io_submit_state *state,
2309 unsigned int max_ios)
2311 state->plug_started = false;
2312 state->need_plug = max_ios > 2;
2313 state->submit_nr = max_ios;
2314 /* set only head, no need to init link_last in advance */
2315 state->link.head = NULL;
2318 static void io_commit_sqring(struct io_ring_ctx *ctx)
2320 struct io_rings *rings = ctx->rings;
2323 * Ensure any loads from the SQEs are done at this point,
2324 * since once we write the new head, the application could
2325 * write new data to them.
2327 smp_store_release(&rings->sq.head, ctx->cached_sq_head);
2331 * Fetch an sqe, if one is available. Note this returns a pointer to memory
2332 * that is mapped by userspace. This means that care needs to be taken to
2333 * ensure that reads are stable, as we cannot rely on userspace always
2334 * being a good citizen. If members of the sqe are validated and then later
2335 * used, it's important that those reads are done through READ_ONCE() to
2336 * prevent a re-load down the line.
2338 static const struct io_uring_sqe *io_get_sqe(struct io_ring_ctx *ctx)
2340 unsigned head, mask = ctx->sq_entries - 1;
2341 unsigned sq_idx = ctx->cached_sq_head++ & mask;
2344 * The cached sq head (or cq tail) serves two purposes:
2346 * 1) allows us to batch the cost of updating the user visible
2348 * 2) allows the kernel side to track the head on its own, even
2349 * though the application is the one updating it.
2351 head = READ_ONCE(ctx->sq_array[sq_idx]);
2352 if (likely(head < ctx->sq_entries)) {
2353 /* double index for 128-byte SQEs, twice as long */
2354 if (ctx->flags & IORING_SETUP_SQE128)
2356 return &ctx->sq_sqes[head];
2359 /* drop invalid entries */
2361 WRITE_ONCE(ctx->rings->sq_dropped,
2362 READ_ONCE(ctx->rings->sq_dropped) + 1);
2366 int io_submit_sqes(struct io_ring_ctx *ctx, unsigned int nr)
2367 __must_hold(&ctx->uring_lock)
2369 unsigned int entries = io_sqring_entries(ctx);
2373 if (unlikely(!entries))
2375 /* make sure SQ entry isn't read before tail */
2376 ret = left = min3(nr, ctx->sq_entries, entries);
2377 io_get_task_refs(left);
2378 io_submit_state_start(&ctx->submit_state, left);
2381 const struct io_uring_sqe *sqe;
2382 struct io_kiocb *req;
2384 if (unlikely(!io_alloc_req_refill(ctx)))
2386 req = io_alloc_req(ctx);
2387 sqe = io_get_sqe(ctx);
2388 if (unlikely(!sqe)) {
2389 io_req_add_to_cache(req, ctx);
2394 * Continue submitting even for sqe failure if the
2395 * ring was setup with IORING_SETUP_SUBMIT_ALL
2397 if (unlikely(io_submit_sqe(ctx, req, sqe)) &&
2398 !(ctx->flags & IORING_SETUP_SUBMIT_ALL)) {
2404 if (unlikely(left)) {
2406 /* try again if it submitted nothing and can't allocate a req */
2407 if (!ret && io_req_cache_empty(ctx))
2409 current->io_uring->cached_refs += left;
2412 io_submit_state_end(ctx);
2413 /* Commit SQ ring head once we've consumed and submitted all SQEs */
2414 io_commit_sqring(ctx);
2418 struct io_wait_queue {
2419 struct wait_queue_entry wq;
2420 struct io_ring_ctx *ctx;
2422 unsigned nr_timeouts;
2425 static inline bool io_has_work(struct io_ring_ctx *ctx)
2427 return test_bit(IO_CHECK_CQ_OVERFLOW_BIT, &ctx->check_cq) ||
2428 ((ctx->flags & IORING_SETUP_DEFER_TASKRUN) &&
2429 !llist_empty(&ctx->work_llist));
2432 static inline bool io_should_wake(struct io_wait_queue *iowq)
2434 struct io_ring_ctx *ctx = iowq->ctx;
2435 int dist = READ_ONCE(ctx->rings->cq.tail) - (int) iowq->cq_tail;
2438 * Wake up if we have enough events, or if a timeout occurred since we
2439 * started waiting. For timeouts, we always want to return to userspace,
2440 * regardless of event count.
2442 return dist >= 0 || atomic_read(&ctx->cq_timeouts) != iowq->nr_timeouts;
2445 static int io_wake_function(struct wait_queue_entry *curr, unsigned int mode,
2446 int wake_flags, void *key)
2448 struct io_wait_queue *iowq = container_of(curr, struct io_wait_queue,
2450 struct io_ring_ctx *ctx = iowq->ctx;
2453 * Cannot safely flush overflowed CQEs from here, ensure we wake up
2454 * the task, and the next invocation will do it.
2456 if (io_should_wake(iowq) || io_has_work(ctx))
2457 return autoremove_wake_function(curr, mode, wake_flags, key);
2461 int io_run_task_work_sig(struct io_ring_ctx *ctx)
2463 if (io_run_task_work_ctx(ctx) > 0)
2465 if (task_sigpending(current))
2470 /* when returns >0, the caller should retry */
2471 static inline int io_cqring_wait_schedule(struct io_ring_ctx *ctx,
2472 struct io_wait_queue *iowq,
2476 unsigned long check_cq;
2478 /* make sure we run task_work before checking for signals */
2479 ret = io_run_task_work_sig(ctx);
2480 if (ret || io_should_wake(iowq))
2483 check_cq = READ_ONCE(ctx->check_cq);
2484 if (unlikely(check_cq)) {
2485 /* let the caller flush overflows, retry */
2486 if (check_cq & BIT(IO_CHECK_CQ_OVERFLOW_BIT))
2488 if (check_cq & BIT(IO_CHECK_CQ_DROPPED_BIT))
2491 if (!schedule_hrtimeout(timeout, HRTIMER_MODE_ABS))
2495 * Run task_work after scheduling. If we got woken because of
2496 * task_work being processed, run it now rather than let the caller
2497 * do another wait loop.
2499 ret = io_run_task_work_sig(ctx);
2500 return ret < 0 ? ret : 1;
2504 * Wait until events become available, if we don't already have some. The
2505 * application must reap them itself, as they reside on the shared cq ring.
2507 static int io_cqring_wait(struct io_ring_ctx *ctx, int min_events,
2508 const sigset_t __user *sig, size_t sigsz,
2509 struct __kernel_timespec __user *uts)
2511 struct io_wait_queue iowq;
2512 struct io_rings *rings = ctx->rings;
2513 ktime_t timeout = KTIME_MAX;
2516 if (!io_allowed_run_tw(ctx))
2520 /* always run at least 1 task work to process local work */
2521 ret = io_run_task_work_ctx(ctx);
2524 io_cqring_overflow_flush(ctx);
2526 /* if user messes with these they will just get an early return */
2527 if (__io_cqring_events_user(ctx) >= min_events)
2532 #ifdef CONFIG_COMPAT
2533 if (in_compat_syscall())
2534 ret = set_compat_user_sigmask((const compat_sigset_t __user *)sig,
2538 ret = set_user_sigmask(sig, sigsz);
2545 struct timespec64 ts;
2547 if (get_timespec64(&ts, uts))
2549 timeout = ktime_add_ns(timespec64_to_ktime(ts), ktime_get_ns());
2552 init_waitqueue_func_entry(&iowq.wq, io_wake_function);
2553 iowq.wq.private = current;
2554 INIT_LIST_HEAD(&iowq.wq.entry);
2556 iowq.nr_timeouts = atomic_read(&ctx->cq_timeouts);
2557 iowq.cq_tail = READ_ONCE(ctx->rings->cq.head) + min_events;
2559 trace_io_uring_cqring_wait(ctx, min_events);
2561 if (test_bit(IO_CHECK_CQ_OVERFLOW_BIT, &ctx->check_cq)) {
2562 finish_wait(&ctx->cq_wait, &iowq.wq);
2563 io_cqring_do_overflow_flush(ctx);
2565 prepare_to_wait_exclusive(&ctx->cq_wait, &iowq.wq,
2566 TASK_INTERRUPTIBLE);
2567 ret = io_cqring_wait_schedule(ctx, &iowq, &timeout);
2568 if (__io_cqring_events_user(ctx) >= min_events)
2573 finish_wait(&ctx->cq_wait, &iowq.wq);
2574 restore_saved_sigmask_unless(ret == -EINTR);
2576 return READ_ONCE(rings->cq.head) == READ_ONCE(rings->cq.tail) ? ret : 0;
2579 static void io_mem_free(void *ptr)
2586 page = virt_to_head_page(ptr);
2587 if (put_page_testzero(page))
2588 free_compound_page(page);
2591 static void *io_mem_alloc(size_t size)
2593 gfp_t gfp = GFP_KERNEL_ACCOUNT | __GFP_ZERO | __GFP_NOWARN | __GFP_COMP;
2595 return (void *) __get_free_pages(gfp, get_order(size));
2598 static unsigned long rings_size(struct io_ring_ctx *ctx, unsigned int sq_entries,
2599 unsigned int cq_entries, size_t *sq_offset)
2601 struct io_rings *rings;
2602 size_t off, sq_array_size;
2604 off = struct_size(rings, cqes, cq_entries);
2605 if (off == SIZE_MAX)
2607 if (ctx->flags & IORING_SETUP_CQE32) {
2608 if (check_shl_overflow(off, 1, &off))
2613 off = ALIGN(off, SMP_CACHE_BYTES);
2621 sq_array_size = array_size(sizeof(u32), sq_entries);
2622 if (sq_array_size == SIZE_MAX)
2625 if (check_add_overflow(off, sq_array_size, &off))
2631 static int io_eventfd_register(struct io_ring_ctx *ctx, void __user *arg,
2632 unsigned int eventfd_async)
2634 struct io_ev_fd *ev_fd;
2635 __s32 __user *fds = arg;
2638 ev_fd = rcu_dereference_protected(ctx->io_ev_fd,
2639 lockdep_is_held(&ctx->uring_lock));
2643 if (copy_from_user(&fd, fds, sizeof(*fds)))
2646 ev_fd = kmalloc(sizeof(*ev_fd), GFP_KERNEL);
2650 ev_fd->cq_ev_fd = eventfd_ctx_fdget(fd);
2651 if (IS_ERR(ev_fd->cq_ev_fd)) {
2652 int ret = PTR_ERR(ev_fd->cq_ev_fd);
2657 spin_lock(&ctx->completion_lock);
2658 ctx->evfd_last_cq_tail = ctx->cached_cq_tail;
2659 spin_unlock(&ctx->completion_lock);
2661 ev_fd->eventfd_async = eventfd_async;
2662 ctx->has_evfd = true;
2663 rcu_assign_pointer(ctx->io_ev_fd, ev_fd);
2664 atomic_set(&ev_fd->refs, 1);
2665 atomic_set(&ev_fd->ops, 0);
2669 static int io_eventfd_unregister(struct io_ring_ctx *ctx)
2671 struct io_ev_fd *ev_fd;
2673 ev_fd = rcu_dereference_protected(ctx->io_ev_fd,
2674 lockdep_is_held(&ctx->uring_lock));
2676 ctx->has_evfd = false;
2677 rcu_assign_pointer(ctx->io_ev_fd, NULL);
2678 if (!atomic_fetch_or(BIT(IO_EVENTFD_OP_FREE_BIT), &ev_fd->ops))
2679 call_rcu(&ev_fd->rcu, io_eventfd_ops);
2686 static void io_req_caches_free(struct io_ring_ctx *ctx)
2690 mutex_lock(&ctx->uring_lock);
2691 io_flush_cached_locked_reqs(ctx, &ctx->submit_state);
2693 while (!io_req_cache_empty(ctx)) {
2694 struct io_kiocb *req = io_alloc_req(ctx);
2696 kmem_cache_free(req_cachep, req);
2700 percpu_ref_put_many(&ctx->refs, nr);
2701 mutex_unlock(&ctx->uring_lock);
2704 static __cold void io_ring_ctx_free(struct io_ring_ctx *ctx)
2706 io_sq_thread_finish(ctx);
2707 io_rsrc_refs_drop(ctx);
2708 /* __io_rsrc_put_work() may need uring_lock to progress, wait w/o it */
2709 io_wait_rsrc_data(ctx->buf_data);
2710 io_wait_rsrc_data(ctx->file_data);
2712 mutex_lock(&ctx->uring_lock);
2714 __io_sqe_buffers_unregister(ctx);
2716 __io_sqe_files_unregister(ctx);
2717 io_cqring_overflow_kill(ctx);
2718 io_eventfd_unregister(ctx);
2719 io_alloc_cache_free(&ctx->apoll_cache, io_apoll_cache_free);
2720 io_alloc_cache_free(&ctx->netmsg_cache, io_netmsg_cache_free);
2721 mutex_unlock(&ctx->uring_lock);
2722 io_destroy_buffers(ctx);
2724 put_cred(ctx->sq_creds);
2725 if (ctx->submitter_task)
2726 put_task_struct(ctx->submitter_task);
2728 /* there are no registered resources left, nobody uses it */
2730 io_rsrc_node_destroy(ctx->rsrc_node);
2731 if (ctx->rsrc_backup_node)
2732 io_rsrc_node_destroy(ctx->rsrc_backup_node);
2733 flush_delayed_work(&ctx->rsrc_put_work);
2734 flush_delayed_work(&ctx->fallback_work);
2736 WARN_ON_ONCE(!list_empty(&ctx->rsrc_ref_list));
2737 WARN_ON_ONCE(!llist_empty(&ctx->rsrc_put_llist));
2739 #if defined(CONFIG_UNIX)
2740 if (ctx->ring_sock) {
2741 ctx->ring_sock->file = NULL; /* so that iput() is called */
2742 sock_release(ctx->ring_sock);
2745 WARN_ON_ONCE(!list_empty(&ctx->ltimeout_list));
2747 if (ctx->mm_account) {
2748 mmdrop(ctx->mm_account);
2749 ctx->mm_account = NULL;
2751 io_mem_free(ctx->rings);
2752 io_mem_free(ctx->sq_sqes);
2754 percpu_ref_exit(&ctx->refs);
2755 free_uid(ctx->user);
2756 io_req_caches_free(ctx);
2758 io_wq_put_hash(ctx->hash_map);
2759 kfree(ctx->cancel_table.hbs);
2760 kfree(ctx->cancel_table_locked.hbs);
2761 kfree(ctx->dummy_ubuf);
2763 xa_destroy(&ctx->io_bl_xa);
2767 static __poll_t io_uring_poll(struct file *file, poll_table *wait)
2769 struct io_ring_ctx *ctx = file->private_data;
2772 poll_wait(file, &ctx->cq_wait, wait);
2774 * synchronizes with barrier from wq_has_sleeper call in
2778 if (!io_sqring_full(ctx))
2779 mask |= EPOLLOUT | EPOLLWRNORM;
2782 * Don't flush cqring overflow list here, just do a simple check.
2783 * Otherwise there could possible be ABBA deadlock:
2786 * lock(&ctx->uring_lock);
2788 * lock(&ctx->uring_lock);
2791 * Users may get EPOLLIN meanwhile seeing nothing in cqring, this
2792 * pushes them to do the flush.
2795 if (io_cqring_events(ctx) || io_has_work(ctx))
2796 mask |= EPOLLIN | EPOLLRDNORM;
2801 static int io_unregister_personality(struct io_ring_ctx *ctx, unsigned id)
2803 const struct cred *creds;
2805 creds = xa_erase(&ctx->personalities, id);
2814 struct io_tctx_exit {
2815 struct callback_head task_work;
2816 struct completion completion;
2817 struct io_ring_ctx *ctx;
2820 static __cold void io_tctx_exit_cb(struct callback_head *cb)
2822 struct io_uring_task *tctx = current->io_uring;
2823 struct io_tctx_exit *work;
2825 work = container_of(cb, struct io_tctx_exit, task_work);
2827 * When @in_idle, we're in cancellation and it's racy to remove the
2828 * node. It'll be removed by the end of cancellation, just ignore it.
2829 * tctx can be NULL if the queueing of this task_work raced with
2830 * work cancelation off the exec path.
2832 if (tctx && !atomic_read(&tctx->in_idle))
2833 io_uring_del_tctx_node((unsigned long)work->ctx);
2834 complete(&work->completion);
2837 static __cold bool io_cancel_ctx_cb(struct io_wq_work *work, void *data)
2839 struct io_kiocb *req = container_of(work, struct io_kiocb, work);
2841 return req->ctx == data;
2844 static __cold void io_ring_exit_work(struct work_struct *work)
2846 struct io_ring_ctx *ctx = container_of(work, struct io_ring_ctx, exit_work);
2847 unsigned long timeout = jiffies + HZ * 60 * 5;
2848 unsigned long interval = HZ / 20;
2849 struct io_tctx_exit exit;
2850 struct io_tctx_node *node;
2854 * If we're doing polled IO and end up having requests being
2855 * submitted async (out-of-line), then completions can come in while
2856 * we're waiting for refs to drop. We need to reap these manually,
2857 * as nobody else will be looking for them.
2860 if (test_bit(IO_CHECK_CQ_OVERFLOW_BIT, &ctx->check_cq)) {
2861 mutex_lock(&ctx->uring_lock);
2862 io_cqring_overflow_kill(ctx);
2863 mutex_unlock(&ctx->uring_lock);
2866 if (ctx->flags & IORING_SETUP_DEFER_TASKRUN)
2867 io_move_task_work_from_local(ctx);
2869 while (io_uring_try_cancel_requests(ctx, NULL, true))
2873 struct io_sq_data *sqd = ctx->sq_data;
2874 struct task_struct *tsk;
2876 io_sq_thread_park(sqd);
2878 if (tsk && tsk->io_uring && tsk->io_uring->io_wq)
2879 io_wq_cancel_cb(tsk->io_uring->io_wq,
2880 io_cancel_ctx_cb, ctx, true);
2881 io_sq_thread_unpark(sqd);
2884 io_req_caches_free(ctx);
2886 if (WARN_ON_ONCE(time_after(jiffies, timeout))) {
2887 /* there is little hope left, don't run it too often */
2890 } while (!wait_for_completion_timeout(&ctx->ref_comp, interval));
2892 init_completion(&exit.completion);
2893 init_task_work(&exit.task_work, io_tctx_exit_cb);
2896 * Some may use context even when all refs and requests have been put,
2897 * and they are free to do so while still holding uring_lock or
2898 * completion_lock, see io_req_task_submit(). Apart from other work,
2899 * this lock/unlock section also waits them to finish.
2901 mutex_lock(&ctx->uring_lock);
2902 while (!list_empty(&ctx->tctx_list)) {
2903 WARN_ON_ONCE(time_after(jiffies, timeout));
2905 node = list_first_entry(&ctx->tctx_list, struct io_tctx_node,
2907 /* don't spin on a single task if cancellation failed */
2908 list_rotate_left(&ctx->tctx_list);
2909 ret = task_work_add(node->task, &exit.task_work, TWA_SIGNAL);
2910 if (WARN_ON_ONCE(ret))
2913 mutex_unlock(&ctx->uring_lock);
2914 wait_for_completion(&exit.completion);
2915 mutex_lock(&ctx->uring_lock);
2917 mutex_unlock(&ctx->uring_lock);
2918 spin_lock(&ctx->completion_lock);
2919 spin_unlock(&ctx->completion_lock);
2921 io_ring_ctx_free(ctx);
2924 static __cold void io_ring_ctx_wait_and_kill(struct io_ring_ctx *ctx)
2926 unsigned long index;
2927 struct creds *creds;
2929 mutex_lock(&ctx->uring_lock);
2930 percpu_ref_kill(&ctx->refs);
2931 xa_for_each(&ctx->personalities, index, creds)
2932 io_unregister_personality(ctx, index);
2934 io_poll_remove_all(ctx, NULL, true);
2935 mutex_unlock(&ctx->uring_lock);
2938 * If we failed setting up the ctx, we might not have any rings
2939 * and therefore did not submit any requests
2942 io_kill_timeouts(ctx, NULL, true);
2944 INIT_WORK(&ctx->exit_work, io_ring_exit_work);
2946 * Use system_unbound_wq to avoid spawning tons of event kworkers
2947 * if we're exiting a ton of rings at the same time. It just adds
2948 * noise and overhead, there's no discernable change in runtime
2949 * over using system_wq.
2951 queue_work(system_unbound_wq, &ctx->exit_work);
2954 static int io_uring_release(struct inode *inode, struct file *file)
2956 struct io_ring_ctx *ctx = file->private_data;
2958 file->private_data = NULL;
2959 io_ring_ctx_wait_and_kill(ctx);
2963 struct io_task_cancel {
2964 struct task_struct *task;
2968 static bool io_cancel_task_cb(struct io_wq_work *work, void *data)
2970 struct io_kiocb *req = container_of(work, struct io_kiocb, work);
2971 struct io_task_cancel *cancel = data;
2973 return io_match_task_safe(req, cancel->task, cancel->all);
2976 static __cold bool io_cancel_defer_files(struct io_ring_ctx *ctx,
2977 struct task_struct *task,
2980 struct io_defer_entry *de;
2983 spin_lock(&ctx->completion_lock);
2984 list_for_each_entry_reverse(de, &ctx->defer_list, list) {
2985 if (io_match_task_safe(de->req, task, cancel_all)) {
2986 list_cut_position(&list, &ctx->defer_list, &de->list);
2990 spin_unlock(&ctx->completion_lock);
2991 if (list_empty(&list))
2994 while (!list_empty(&list)) {
2995 de = list_first_entry(&list, struct io_defer_entry, list);
2996 list_del_init(&de->list);
2997 io_req_task_queue_fail(de->req, -ECANCELED);
3003 static __cold bool io_uring_try_cancel_iowq(struct io_ring_ctx *ctx)
3005 struct io_tctx_node *node;
3006 enum io_wq_cancel cret;
3009 mutex_lock(&ctx->uring_lock);
3010 list_for_each_entry(node, &ctx->tctx_list, ctx_node) {
3011 struct io_uring_task *tctx = node->task->io_uring;
3014 * io_wq will stay alive while we hold uring_lock, because it's
3015 * killed after ctx nodes, which requires to take the lock.
3017 if (!tctx || !tctx->io_wq)
3019 cret = io_wq_cancel_cb(tctx->io_wq, io_cancel_ctx_cb, ctx, true);
3020 ret |= (cret != IO_WQ_CANCEL_NOTFOUND);
3022 mutex_unlock(&ctx->uring_lock);
3027 static __cold bool io_uring_try_cancel_requests(struct io_ring_ctx *ctx,
3028 struct task_struct *task,
3031 struct io_task_cancel cancel = { .task = task, .all = cancel_all, };
3032 struct io_uring_task *tctx = task ? task->io_uring : NULL;
3033 enum io_wq_cancel cret;
3036 /* failed during ring init, it couldn't have issued any requests */
3041 ret |= io_uring_try_cancel_iowq(ctx);
3042 } else if (tctx && tctx->io_wq) {
3044 * Cancels requests of all rings, not only @ctx, but
3045 * it's fine as the task is in exit/exec.
3047 cret = io_wq_cancel_cb(tctx->io_wq, io_cancel_task_cb,
3049 ret |= (cret != IO_WQ_CANCEL_NOTFOUND);
3052 /* SQPOLL thread does its own polling */
3053 if ((!(ctx->flags & IORING_SETUP_SQPOLL) && cancel_all) ||
3054 (ctx->sq_data && ctx->sq_data->thread == current)) {
3055 while (!wq_list_empty(&ctx->iopoll_list)) {
3056 io_iopoll_try_reap_events(ctx);
3061 if (ctx->flags & IORING_SETUP_DEFER_TASKRUN)
3062 ret |= io_run_local_work(ctx) > 0;
3063 ret |= io_cancel_defer_files(ctx, task, cancel_all);
3064 mutex_lock(&ctx->uring_lock);
3065 ret |= io_poll_remove_all(ctx, task, cancel_all);
3066 mutex_unlock(&ctx->uring_lock);
3067 ret |= io_kill_timeouts(ctx, task, cancel_all);
3069 ret |= io_run_task_work() > 0;
3073 static s64 tctx_inflight(struct io_uring_task *tctx, bool tracked)
3076 return atomic_read(&tctx->inflight_tracked);
3077 return percpu_counter_sum(&tctx->inflight);
3081 * Find any io_uring ctx that this task has registered or done IO on, and cancel
3082 * requests. @sqd should be not-null IFF it's an SQPOLL thread cancellation.
3084 __cold void io_uring_cancel_generic(bool cancel_all, struct io_sq_data *sqd)
3086 struct io_uring_task *tctx = current->io_uring;
3087 struct io_ring_ctx *ctx;
3091 WARN_ON_ONCE(sqd && sqd->thread != current);
3093 if (!current->io_uring)
3096 io_wq_exit_start(tctx->io_wq);
3098 atomic_inc(&tctx->in_idle);
3102 io_uring_drop_tctx_refs(current);
3103 /* read completions before cancelations */
3104 inflight = tctx_inflight(tctx, !cancel_all);
3109 struct io_tctx_node *node;
3110 unsigned long index;
3112 xa_for_each(&tctx->xa, index, node) {
3113 /* sqpoll task will cancel all its requests */
3114 if (node->ctx->sq_data)
3116 loop |= io_uring_try_cancel_requests(node->ctx,
3117 current, cancel_all);
3120 list_for_each_entry(ctx, &sqd->ctx_list, sqd_list)
3121 loop |= io_uring_try_cancel_requests(ctx,
3131 prepare_to_wait(&tctx->wait, &wait, TASK_INTERRUPTIBLE);
3133 io_uring_drop_tctx_refs(current);
3136 * If we've seen completions, retry without waiting. This
3137 * avoids a race where a completion comes in before we did
3138 * prepare_to_wait().
3140 if (inflight == tctx_inflight(tctx, !cancel_all))
3142 finish_wait(&tctx->wait, &wait);
3145 io_uring_clean_tctx(tctx);
3148 * We shouldn't run task_works after cancel, so just leave
3149 * ->in_idle set for normal exit.
3151 atomic_dec(&tctx->in_idle);
3152 /* for exec all current's requests should be gone, kill tctx */
3153 __io_uring_free(current);
3157 void __io_uring_cancel(bool cancel_all)
3159 io_uring_cancel_generic(cancel_all, NULL);
3162 static void *io_uring_validate_mmap_request(struct file *file,
3163 loff_t pgoff, size_t sz)
3165 struct io_ring_ctx *ctx = file->private_data;
3166 loff_t offset = pgoff << PAGE_SHIFT;
3171 case IORING_OFF_SQ_RING:
3172 case IORING_OFF_CQ_RING:
3175 case IORING_OFF_SQES:
3179 return ERR_PTR(-EINVAL);
3182 page = virt_to_head_page(ptr);
3183 if (sz > page_size(page))
3184 return ERR_PTR(-EINVAL);
3191 static __cold int io_uring_mmap(struct file *file, struct vm_area_struct *vma)
3193 size_t sz = vma->vm_end - vma->vm_start;
3197 ptr = io_uring_validate_mmap_request(file, vma->vm_pgoff, sz);
3199 return PTR_ERR(ptr);
3201 pfn = virt_to_phys(ptr) >> PAGE_SHIFT;
3202 return remap_pfn_range(vma, vma->vm_start, pfn, sz, vma->vm_page_prot);
3205 #else /* !CONFIG_MMU */
3207 static int io_uring_mmap(struct file *file, struct vm_area_struct *vma)
3209 return vma->vm_flags & (VM_SHARED | VM_MAYSHARE) ? 0 : -EINVAL;
3212 static unsigned int io_uring_nommu_mmap_capabilities(struct file *file)
3214 return NOMMU_MAP_DIRECT | NOMMU_MAP_READ | NOMMU_MAP_WRITE;
3217 static unsigned long io_uring_nommu_get_unmapped_area(struct file *file,
3218 unsigned long addr, unsigned long len,
3219 unsigned long pgoff, unsigned long flags)
3223 ptr = io_uring_validate_mmap_request(file, pgoff, len);
3225 return PTR_ERR(ptr);
3227 return (unsigned long) ptr;
3230 #endif /* !CONFIG_MMU */
3232 static int io_validate_ext_arg(unsigned flags, const void __user *argp, size_t argsz)
3234 if (flags & IORING_ENTER_EXT_ARG) {
3235 struct io_uring_getevents_arg arg;
3237 if (argsz != sizeof(arg))
3239 if (copy_from_user(&arg, argp, sizeof(arg)))
3245 static int io_get_ext_arg(unsigned flags, const void __user *argp, size_t *argsz,
3246 struct __kernel_timespec __user **ts,
3247 const sigset_t __user **sig)
3249 struct io_uring_getevents_arg arg;
3252 * If EXT_ARG isn't set, then we have no timespec and the argp pointer
3253 * is just a pointer to the sigset_t.
3255 if (!(flags & IORING_ENTER_EXT_ARG)) {
3256 *sig = (const sigset_t __user *) argp;
3262 * EXT_ARG is set - ensure we agree on the size of it and copy in our
3263 * timespec and sigset_t pointers if good.
3265 if (*argsz != sizeof(arg))
3267 if (copy_from_user(&arg, argp, sizeof(arg)))
3271 *sig = u64_to_user_ptr(arg.sigmask);
3272 *argsz = arg.sigmask_sz;
3273 *ts = u64_to_user_ptr(arg.ts);
3277 SYSCALL_DEFINE6(io_uring_enter, unsigned int, fd, u32, to_submit,
3278 u32, min_complete, u32, flags, const void __user *, argp,
3281 struct io_ring_ctx *ctx;
3285 if (unlikely(flags & ~(IORING_ENTER_GETEVENTS | IORING_ENTER_SQ_WAKEUP |
3286 IORING_ENTER_SQ_WAIT | IORING_ENTER_EXT_ARG |
3287 IORING_ENTER_REGISTERED_RING)))
3291 * Ring fd has been registered via IORING_REGISTER_RING_FDS, we
3292 * need only dereference our task private array to find it.
3294 if (flags & IORING_ENTER_REGISTERED_RING) {
3295 struct io_uring_task *tctx = current->io_uring;
3297 if (unlikely(!tctx || fd >= IO_RINGFD_REG_MAX))
3299 fd = array_index_nospec(fd, IO_RINGFD_REG_MAX);
3300 f.file = tctx->registered_rings[fd];
3302 if (unlikely(!f.file))
3306 if (unlikely(!f.file))
3309 if (unlikely(!io_is_uring_fops(f.file)))
3313 ctx = f.file->private_data;
3315 if (unlikely(ctx->flags & IORING_SETUP_R_DISABLED))
3319 * For SQ polling, the thread will do all submissions and completions.
3320 * Just return the requested submit count, and wake the thread if
3324 if (ctx->flags & IORING_SETUP_SQPOLL) {
3325 io_cqring_overflow_flush(ctx);
3327 if (unlikely(ctx->sq_data->thread == NULL)) {
3331 if (flags & IORING_ENTER_SQ_WAKEUP)
3332 wake_up(&ctx->sq_data->wait);
3333 if (flags & IORING_ENTER_SQ_WAIT) {
3334 ret = io_sqpoll_wait_sq(ctx);
3339 } else if (to_submit) {
3340 ret = io_uring_add_tctx_node(ctx);
3344 mutex_lock(&ctx->uring_lock);
3345 ret = io_submit_sqes(ctx, to_submit);
3346 if (ret != to_submit) {
3347 mutex_unlock(&ctx->uring_lock);
3350 if (flags & IORING_ENTER_GETEVENTS) {
3351 if (ctx->syscall_iopoll)
3354 * Ignore errors, we'll soon call io_cqring_wait() and
3355 * it should handle ownership problems if any.
3357 if (ctx->flags & IORING_SETUP_DEFER_TASKRUN)
3358 (void)io_run_local_work_locked(ctx);
3360 mutex_unlock(&ctx->uring_lock);
3363 if (flags & IORING_ENTER_GETEVENTS) {
3366 if (ctx->syscall_iopoll) {
3368 * We disallow the app entering submit/complete with
3369 * polling, but we still need to lock the ring to
3370 * prevent racing with polled issue that got punted to
3373 mutex_lock(&ctx->uring_lock);
3375 ret2 = io_validate_ext_arg(flags, argp, argsz);
3376 if (likely(!ret2)) {
3377 min_complete = min(min_complete,
3379 ret2 = io_iopoll_check(ctx, min_complete);
3381 mutex_unlock(&ctx->uring_lock);
3383 const sigset_t __user *sig;
3384 struct __kernel_timespec __user *ts;
3386 ret2 = io_get_ext_arg(flags, argp, &argsz, &ts, &sig);
3387 if (likely(!ret2)) {
3388 min_complete = min(min_complete,
3390 ret2 = io_cqring_wait(ctx, min_complete, sig,
3399 * EBADR indicates that one or more CQE were dropped.
3400 * Once the user has been informed we can clear the bit
3401 * as they are obviously ok with those drops.
3403 if (unlikely(ret2 == -EBADR))
3404 clear_bit(IO_CHECK_CQ_DROPPED_BIT,
3413 static const struct file_operations io_uring_fops = {
3414 .release = io_uring_release,
3415 .mmap = io_uring_mmap,
3417 .get_unmapped_area = io_uring_nommu_get_unmapped_area,
3418 .mmap_capabilities = io_uring_nommu_mmap_capabilities,
3420 .poll = io_uring_poll,
3421 #ifdef CONFIG_PROC_FS
3422 .show_fdinfo = io_uring_show_fdinfo,
3426 bool io_is_uring_fops(struct file *file)
3428 return file->f_op == &io_uring_fops;
3431 static __cold int io_allocate_scq_urings(struct io_ring_ctx *ctx,
3432 struct io_uring_params *p)
3434 struct io_rings *rings;
3435 size_t size, sq_array_offset;
3437 /* make sure these are sane, as we already accounted them */
3438 ctx->sq_entries = p->sq_entries;
3439 ctx->cq_entries = p->cq_entries;
3441 size = rings_size(ctx, p->sq_entries, p->cq_entries, &sq_array_offset);
3442 if (size == SIZE_MAX)
3445 rings = io_mem_alloc(size);
3450 ctx->sq_array = (u32 *)((char *)rings + sq_array_offset);
3451 rings->sq_ring_mask = p->sq_entries - 1;
3452 rings->cq_ring_mask = p->cq_entries - 1;
3453 rings->sq_ring_entries = p->sq_entries;
3454 rings->cq_ring_entries = p->cq_entries;
3456 if (p->flags & IORING_SETUP_SQE128)
3457 size = array_size(2 * sizeof(struct io_uring_sqe), p->sq_entries);
3459 size = array_size(sizeof(struct io_uring_sqe), p->sq_entries);
3460 if (size == SIZE_MAX) {
3461 io_mem_free(ctx->rings);
3466 ctx->sq_sqes = io_mem_alloc(size);
3467 if (!ctx->sq_sqes) {
3468 io_mem_free(ctx->rings);
3476 static int io_uring_install_fd(struct io_ring_ctx *ctx, struct file *file)
3480 fd = get_unused_fd_flags(O_RDWR | O_CLOEXEC);
3484 ret = __io_uring_add_tctx_node(ctx);
3489 fd_install(fd, file);
3494 * Allocate an anonymous fd, this is what constitutes the application
3495 * visible backing of an io_uring instance. The application mmaps this
3496 * fd to gain access to the SQ/CQ ring details. If UNIX sockets are enabled,
3497 * we have to tie this fd to a socket for file garbage collection purposes.
3499 static struct file *io_uring_get_file(struct io_ring_ctx *ctx)
3502 #if defined(CONFIG_UNIX)
3505 ret = sock_create_kern(&init_net, PF_UNIX, SOCK_RAW, IPPROTO_IP,
3508 return ERR_PTR(ret);
3511 file = anon_inode_getfile_secure("[io_uring]", &io_uring_fops, ctx,
3512 O_RDWR | O_CLOEXEC, NULL);
3513 #if defined(CONFIG_UNIX)
3515 sock_release(ctx->ring_sock);
3516 ctx->ring_sock = NULL;
3518 ctx->ring_sock->file = file;
3524 static __cold int io_uring_create(unsigned entries, struct io_uring_params *p,
3525 struct io_uring_params __user *params)
3527 struct io_ring_ctx *ctx;
3533 if (entries > IORING_MAX_ENTRIES) {
3534 if (!(p->flags & IORING_SETUP_CLAMP))
3536 entries = IORING_MAX_ENTRIES;
3540 * Use twice as many entries for the CQ ring. It's possible for the
3541 * application to drive a higher depth than the size of the SQ ring,
3542 * since the sqes are only used at submission time. This allows for
3543 * some flexibility in overcommitting a bit. If the application has
3544 * set IORING_SETUP_CQSIZE, it will have passed in the desired number
3545 * of CQ ring entries manually.
3547 p->sq_entries = roundup_pow_of_two(entries);
3548 if (p->flags & IORING_SETUP_CQSIZE) {
3550 * If IORING_SETUP_CQSIZE is set, we do the same roundup
3551 * to a power-of-two, if it isn't already. We do NOT impose
3552 * any cq vs sq ring sizing.
3556 if (p->cq_entries > IORING_MAX_CQ_ENTRIES) {
3557 if (!(p->flags & IORING_SETUP_CLAMP))
3559 p->cq_entries = IORING_MAX_CQ_ENTRIES;
3561 p->cq_entries = roundup_pow_of_two(p->cq_entries);
3562 if (p->cq_entries < p->sq_entries)
3565 p->cq_entries = 2 * p->sq_entries;
3568 ctx = io_ring_ctx_alloc(p);
3572 if ((ctx->flags & IORING_SETUP_DEFER_TASKRUN) &&
3573 !(ctx->flags & IORING_SETUP_IOPOLL) &&
3574 !(ctx->flags & IORING_SETUP_SQPOLL))
3575 ctx->task_complete = true;
3578 * When SETUP_IOPOLL and SETUP_SQPOLL are both enabled, user
3579 * space applications don't need to do io completion events
3580 * polling again, they can rely on io_sq_thread to do polling
3581 * work, which can reduce cpu usage and uring_lock contention.
3583 if (ctx->flags & IORING_SETUP_IOPOLL &&
3584 !(ctx->flags & IORING_SETUP_SQPOLL))
3585 ctx->syscall_iopoll = 1;
3587 ctx->compat = in_compat_syscall();
3588 if (!capable(CAP_IPC_LOCK))
3589 ctx->user = get_uid(current_user());
3592 * For SQPOLL, we just need a wakeup, always. For !SQPOLL, if
3593 * COOP_TASKRUN is set, then IPIs are never needed by the app.
3596 if (ctx->flags & IORING_SETUP_SQPOLL) {
3597 /* IPI related flags don't make sense with SQPOLL */
3598 if (ctx->flags & (IORING_SETUP_COOP_TASKRUN |
3599 IORING_SETUP_TASKRUN_FLAG |
3600 IORING_SETUP_DEFER_TASKRUN))
3602 ctx->notify_method = TWA_SIGNAL_NO_IPI;
3603 } else if (ctx->flags & IORING_SETUP_COOP_TASKRUN) {
3604 ctx->notify_method = TWA_SIGNAL_NO_IPI;
3606 if (ctx->flags & IORING_SETUP_TASKRUN_FLAG &&
3607 !(ctx->flags & IORING_SETUP_DEFER_TASKRUN))
3609 ctx->notify_method = TWA_SIGNAL;
3613 * For DEFER_TASKRUN we require the completion task to be the same as the
3614 * submission task. This implies that there is only one submitter, so enforce
3617 if (ctx->flags & IORING_SETUP_DEFER_TASKRUN &&
3618 !(ctx->flags & IORING_SETUP_SINGLE_ISSUER)) {
3623 * This is just grabbed for accounting purposes. When a process exits,
3624 * the mm is exited and dropped before the files, hence we need to hang
3625 * on to this mm purely for the purposes of being able to unaccount
3626 * memory (locked/pinned vm). It's not used for anything else.
3628 mmgrab(current->mm);
3629 ctx->mm_account = current->mm;
3631 ret = io_allocate_scq_urings(ctx, p);
3635 ret = io_sq_offload_create(ctx, p);
3638 /* always set a rsrc node */
3639 ret = io_rsrc_node_switch_start(ctx);
3642 io_rsrc_node_switch(ctx, NULL);
3644 memset(&p->sq_off, 0, sizeof(p->sq_off));
3645 p->sq_off.head = offsetof(struct io_rings, sq.head);
3646 p->sq_off.tail = offsetof(struct io_rings, sq.tail);
3647 p->sq_off.ring_mask = offsetof(struct io_rings, sq_ring_mask);
3648 p->sq_off.ring_entries = offsetof(struct io_rings, sq_ring_entries);
3649 p->sq_off.flags = offsetof(struct io_rings, sq_flags);
3650 p->sq_off.dropped = offsetof(struct io_rings, sq_dropped);
3651 p->sq_off.array = (char *)ctx->sq_array - (char *)ctx->rings;
3653 memset(&p->cq_off, 0, sizeof(p->cq_off));
3654 p->cq_off.head = offsetof(struct io_rings, cq.head);
3655 p->cq_off.tail = offsetof(struct io_rings, cq.tail);
3656 p->cq_off.ring_mask = offsetof(struct io_rings, cq_ring_mask);
3657 p->cq_off.ring_entries = offsetof(struct io_rings, cq_ring_entries);
3658 p->cq_off.overflow = offsetof(struct io_rings, cq_overflow);
3659 p->cq_off.cqes = offsetof(struct io_rings, cqes);
3660 p->cq_off.flags = offsetof(struct io_rings, cq_flags);
3662 p->features = IORING_FEAT_SINGLE_MMAP | IORING_FEAT_NODROP |
3663 IORING_FEAT_SUBMIT_STABLE | IORING_FEAT_RW_CUR_POS |
3664 IORING_FEAT_CUR_PERSONALITY | IORING_FEAT_FAST_POLL |
3665 IORING_FEAT_POLL_32BITS | IORING_FEAT_SQPOLL_NONFIXED |
3666 IORING_FEAT_EXT_ARG | IORING_FEAT_NATIVE_WORKERS |
3667 IORING_FEAT_RSRC_TAGS | IORING_FEAT_CQE_SKIP |
3668 IORING_FEAT_LINKED_FILE;
3670 if (copy_to_user(params, p, sizeof(*p))) {
3675 if (ctx->flags & IORING_SETUP_SINGLE_ISSUER
3676 && !(ctx->flags & IORING_SETUP_R_DISABLED))
3677 ctx->submitter_task = get_task_struct(current);
3679 file = io_uring_get_file(ctx);
3681 ret = PTR_ERR(file);
3686 * Install ring fd as the very last thing, so we don't risk someone
3687 * having closed it before we finish setup
3689 ret = io_uring_install_fd(ctx, file);
3691 /* fput will clean it up */
3696 trace_io_uring_create(ret, ctx, p->sq_entries, p->cq_entries, p->flags);
3699 io_ring_ctx_wait_and_kill(ctx);
3704 * Sets up an aio uring context, and returns the fd. Applications asks for a
3705 * ring size, we return the actual sq/cq ring sizes (among other things) in the
3706 * params structure passed in.
3708 static long io_uring_setup(u32 entries, struct io_uring_params __user *params)
3710 struct io_uring_params p;
3713 if (copy_from_user(&p, params, sizeof(p)))
3715 for (i = 0; i < ARRAY_SIZE(p.resv); i++) {
3720 if (p.flags & ~(IORING_SETUP_IOPOLL | IORING_SETUP_SQPOLL |
3721 IORING_SETUP_SQ_AFF | IORING_SETUP_CQSIZE |
3722 IORING_SETUP_CLAMP | IORING_SETUP_ATTACH_WQ |
3723 IORING_SETUP_R_DISABLED | IORING_SETUP_SUBMIT_ALL |
3724 IORING_SETUP_COOP_TASKRUN | IORING_SETUP_TASKRUN_FLAG |
3725 IORING_SETUP_SQE128 | IORING_SETUP_CQE32 |
3726 IORING_SETUP_SINGLE_ISSUER | IORING_SETUP_DEFER_TASKRUN))
3729 return io_uring_create(entries, &p, params);
3732 SYSCALL_DEFINE2(io_uring_setup, u32, entries,
3733 struct io_uring_params __user *, params)
3735 return io_uring_setup(entries, params);
3738 static __cold int io_probe(struct io_ring_ctx *ctx, void __user *arg,
3741 struct io_uring_probe *p;
3745 size = struct_size(p, ops, nr_args);
3746 if (size == SIZE_MAX)
3748 p = kzalloc(size, GFP_KERNEL);
3753 if (copy_from_user(p, arg, size))
3756 if (memchr_inv(p, 0, size))
3759 p->last_op = IORING_OP_LAST - 1;
3760 if (nr_args > IORING_OP_LAST)
3761 nr_args = IORING_OP_LAST;
3763 for (i = 0; i < nr_args; i++) {
3765 if (!io_op_defs[i].not_supported)
3766 p->ops[i].flags = IO_URING_OP_SUPPORTED;
3771 if (copy_to_user(arg, p, size))
3778 static int io_register_personality(struct io_ring_ctx *ctx)
3780 const struct cred *creds;
3784 creds = get_current_cred();
3786 ret = xa_alloc_cyclic(&ctx->personalities, &id, (void *)creds,
3787 XA_LIMIT(0, USHRT_MAX), &ctx->pers_next, GFP_KERNEL);
3795 static __cold int io_register_restrictions(struct io_ring_ctx *ctx,
3796 void __user *arg, unsigned int nr_args)
3798 struct io_uring_restriction *res;
3802 /* Restrictions allowed only if rings started disabled */
3803 if (!(ctx->flags & IORING_SETUP_R_DISABLED))
3806 /* We allow only a single restrictions registration */
3807 if (ctx->restrictions.registered)
3810 if (!arg || nr_args > IORING_MAX_RESTRICTIONS)
3813 size = array_size(nr_args, sizeof(*res));
3814 if (size == SIZE_MAX)
3817 res = memdup_user(arg, size);
3819 return PTR_ERR(res);
3823 for (i = 0; i < nr_args; i++) {
3824 switch (res[i].opcode) {
3825 case IORING_RESTRICTION_REGISTER_OP:
3826 if (res[i].register_op >= IORING_REGISTER_LAST) {
3831 __set_bit(res[i].register_op,
3832 ctx->restrictions.register_op);
3834 case IORING_RESTRICTION_SQE_OP:
3835 if (res[i].sqe_op >= IORING_OP_LAST) {
3840 __set_bit(res[i].sqe_op, ctx->restrictions.sqe_op);
3842 case IORING_RESTRICTION_SQE_FLAGS_ALLOWED:
3843 ctx->restrictions.sqe_flags_allowed = res[i].sqe_flags;
3845 case IORING_RESTRICTION_SQE_FLAGS_REQUIRED:
3846 ctx->restrictions.sqe_flags_required = res[i].sqe_flags;
3855 /* Reset all restrictions if an error happened */
3857 memset(&ctx->restrictions, 0, sizeof(ctx->restrictions));
3859 ctx->restrictions.registered = true;
3865 static int io_register_enable_rings(struct io_ring_ctx *ctx)
3867 if (!(ctx->flags & IORING_SETUP_R_DISABLED))
3870 if (ctx->flags & IORING_SETUP_SINGLE_ISSUER && !ctx->submitter_task)
3871 ctx->submitter_task = get_task_struct(current);
3873 if (ctx->restrictions.registered)
3874 ctx->restricted = 1;
3876 ctx->flags &= ~IORING_SETUP_R_DISABLED;
3877 if (ctx->sq_data && wq_has_sleeper(&ctx->sq_data->wait))
3878 wake_up(&ctx->sq_data->wait);
3882 static __cold int io_register_iowq_aff(struct io_ring_ctx *ctx,
3883 void __user *arg, unsigned len)
3885 struct io_uring_task *tctx = current->io_uring;
3886 cpumask_var_t new_mask;
3889 if (!tctx || !tctx->io_wq)
3892 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
3895 cpumask_clear(new_mask);
3896 if (len > cpumask_size())
3897 len = cpumask_size();
3899 if (in_compat_syscall()) {
3900 ret = compat_get_bitmap(cpumask_bits(new_mask),
3901 (const compat_ulong_t __user *)arg,
3902 len * 8 /* CHAR_BIT */);
3904 ret = copy_from_user(new_mask, arg, len);
3908 free_cpumask_var(new_mask);
3912 ret = io_wq_cpu_affinity(tctx->io_wq, new_mask);
3913 free_cpumask_var(new_mask);
3917 static __cold int io_unregister_iowq_aff(struct io_ring_ctx *ctx)
3919 struct io_uring_task *tctx = current->io_uring;
3921 if (!tctx || !tctx->io_wq)
3924 return io_wq_cpu_affinity(tctx->io_wq, NULL);
3927 static __cold int io_register_iowq_max_workers(struct io_ring_ctx *ctx,
3929 __must_hold(&ctx->uring_lock)
3931 struct io_tctx_node *node;
3932 struct io_uring_task *tctx = NULL;
3933 struct io_sq_data *sqd = NULL;
3937 if (copy_from_user(new_count, arg, sizeof(new_count)))
3939 for (i = 0; i < ARRAY_SIZE(new_count); i++)
3940 if (new_count[i] > INT_MAX)
3943 if (ctx->flags & IORING_SETUP_SQPOLL) {
3947 * Observe the correct sqd->lock -> ctx->uring_lock
3948 * ordering. Fine to drop uring_lock here, we hold
3951 refcount_inc(&sqd->refs);
3952 mutex_unlock(&ctx->uring_lock);
3953 mutex_lock(&sqd->lock);
3954 mutex_lock(&ctx->uring_lock);
3956 tctx = sqd->thread->io_uring;
3959 tctx = current->io_uring;
3962 BUILD_BUG_ON(sizeof(new_count) != sizeof(ctx->iowq_limits));
3964 for (i = 0; i < ARRAY_SIZE(new_count); i++)
3966 ctx->iowq_limits[i] = new_count[i];
3967 ctx->iowq_limits_set = true;
3969 if (tctx && tctx->io_wq) {
3970 ret = io_wq_max_workers(tctx->io_wq, new_count);
3974 memset(new_count, 0, sizeof(new_count));
3978 mutex_unlock(&sqd->lock);
3979 io_put_sq_data(sqd);
3982 if (copy_to_user(arg, new_count, sizeof(new_count)))
3985 /* that's it for SQPOLL, only the SQPOLL task creates requests */
3989 /* now propagate the restriction to all registered users */
3990 list_for_each_entry(node, &ctx->tctx_list, ctx_node) {
3991 struct io_uring_task *tctx = node->task->io_uring;
3993 if (WARN_ON_ONCE(!tctx->io_wq))
3996 for (i = 0; i < ARRAY_SIZE(new_count); i++)
3997 new_count[i] = ctx->iowq_limits[i];
3998 /* ignore errors, it always returns zero anyway */
3999 (void)io_wq_max_workers(tctx->io_wq, new_count);
4004 mutex_unlock(&sqd->lock);
4005 io_put_sq_data(sqd);
4010 static int __io_uring_register(struct io_ring_ctx *ctx, unsigned opcode,
4011 void __user *arg, unsigned nr_args)
4012 __releases(ctx->uring_lock)
4013 __acquires(ctx->uring_lock)
4018 * We don't quiesce the refs for register anymore and so it can't be
4019 * dying as we're holding a file ref here.
4021 if (WARN_ON_ONCE(percpu_ref_is_dying(&ctx->refs)))
4024 if (ctx->submitter_task && ctx->submitter_task != current)
4027 if (ctx->restricted) {
4028 opcode = array_index_nospec(opcode, IORING_REGISTER_LAST);
4029 if (!test_bit(opcode, ctx->restrictions.register_op))
4034 case IORING_REGISTER_BUFFERS:
4038 ret = io_sqe_buffers_register(ctx, arg, nr_args, NULL);
4040 case IORING_UNREGISTER_BUFFERS:
4044 ret = io_sqe_buffers_unregister(ctx);
4046 case IORING_REGISTER_FILES:
4050 ret = io_sqe_files_register(ctx, arg, nr_args, NULL);
4052 case IORING_UNREGISTER_FILES:
4056 ret = io_sqe_files_unregister(ctx);
4058 case IORING_REGISTER_FILES_UPDATE:
4059 ret = io_register_files_update(ctx, arg, nr_args);
4061 case IORING_REGISTER_EVENTFD:
4065 ret = io_eventfd_register(ctx, arg, 0);
4067 case IORING_REGISTER_EVENTFD_ASYNC:
4071 ret = io_eventfd_register(ctx, arg, 1);
4073 case IORING_UNREGISTER_EVENTFD:
4077 ret = io_eventfd_unregister(ctx);
4079 case IORING_REGISTER_PROBE:
4081 if (!arg || nr_args > 256)
4083 ret = io_probe(ctx, arg, nr_args);
4085 case IORING_REGISTER_PERSONALITY:
4089 ret = io_register_personality(ctx);
4091 case IORING_UNREGISTER_PERSONALITY:
4095 ret = io_unregister_personality(ctx, nr_args);
4097 case IORING_REGISTER_ENABLE_RINGS:
4101 ret = io_register_enable_rings(ctx);
4103 case IORING_REGISTER_RESTRICTIONS:
4104 ret = io_register_restrictions(ctx, arg, nr_args);
4106 case IORING_REGISTER_FILES2:
4107 ret = io_register_rsrc(ctx, arg, nr_args, IORING_RSRC_FILE);
4109 case IORING_REGISTER_FILES_UPDATE2:
4110 ret = io_register_rsrc_update(ctx, arg, nr_args,
4113 case IORING_REGISTER_BUFFERS2:
4114 ret = io_register_rsrc(ctx, arg, nr_args, IORING_RSRC_BUFFER);
4116 case IORING_REGISTER_BUFFERS_UPDATE:
4117 ret = io_register_rsrc_update(ctx, arg, nr_args,
4118 IORING_RSRC_BUFFER);
4120 case IORING_REGISTER_IOWQ_AFF:
4122 if (!arg || !nr_args)
4124 ret = io_register_iowq_aff(ctx, arg, nr_args);
4126 case IORING_UNREGISTER_IOWQ_AFF:
4130 ret = io_unregister_iowq_aff(ctx);
4132 case IORING_REGISTER_IOWQ_MAX_WORKERS:
4134 if (!arg || nr_args != 2)
4136 ret = io_register_iowq_max_workers(ctx, arg);
4138 case IORING_REGISTER_RING_FDS:
4139 ret = io_ringfd_register(ctx, arg, nr_args);
4141 case IORING_UNREGISTER_RING_FDS:
4142 ret = io_ringfd_unregister(ctx, arg, nr_args);
4144 case IORING_REGISTER_PBUF_RING:
4146 if (!arg || nr_args != 1)
4148 ret = io_register_pbuf_ring(ctx, arg);
4150 case IORING_UNREGISTER_PBUF_RING:
4152 if (!arg || nr_args != 1)
4154 ret = io_unregister_pbuf_ring(ctx, arg);
4156 case IORING_REGISTER_SYNC_CANCEL:
4158 if (!arg || nr_args != 1)
4160 ret = io_sync_cancel(ctx, arg);
4162 case IORING_REGISTER_FILE_ALLOC_RANGE:
4164 if (!arg || nr_args)
4166 ret = io_register_file_alloc_range(ctx, arg);
4176 SYSCALL_DEFINE4(io_uring_register, unsigned int, fd, unsigned int, opcode,
4177 void __user *, arg, unsigned int, nr_args)
4179 struct io_ring_ctx *ctx;
4183 if (opcode >= IORING_REGISTER_LAST)
4191 if (!io_is_uring_fops(f.file))
4194 ctx = f.file->private_data;
4196 mutex_lock(&ctx->uring_lock);
4197 ret = __io_uring_register(ctx, opcode, arg, nr_args);
4198 mutex_unlock(&ctx->uring_lock);
4199 trace_io_uring_register(ctx, opcode, ctx->nr_user_files, ctx->nr_user_bufs, ret);
4205 static int __init io_uring_init(void)
4207 #define __BUILD_BUG_VERIFY_OFFSET_SIZE(stype, eoffset, esize, ename) do { \
4208 BUILD_BUG_ON(offsetof(stype, ename) != eoffset); \
4209 BUILD_BUG_ON(sizeof_field(stype, ename) != esize); \
4212 #define BUILD_BUG_SQE_ELEM(eoffset, etype, ename) \
4213 __BUILD_BUG_VERIFY_OFFSET_SIZE(struct io_uring_sqe, eoffset, sizeof(etype), ename)
4214 #define BUILD_BUG_SQE_ELEM_SIZE(eoffset, esize, ename) \
4215 __BUILD_BUG_VERIFY_OFFSET_SIZE(struct io_uring_sqe, eoffset, esize, ename)
4216 BUILD_BUG_ON(sizeof(struct io_uring_sqe) != 64);
4217 BUILD_BUG_SQE_ELEM(0, __u8, opcode);
4218 BUILD_BUG_SQE_ELEM(1, __u8, flags);
4219 BUILD_BUG_SQE_ELEM(2, __u16, ioprio);
4220 BUILD_BUG_SQE_ELEM(4, __s32, fd);
4221 BUILD_BUG_SQE_ELEM(8, __u64, off);
4222 BUILD_BUG_SQE_ELEM(8, __u64, addr2);
4223 BUILD_BUG_SQE_ELEM(8, __u32, cmd_op);
4224 BUILD_BUG_SQE_ELEM(12, __u32, __pad1);
4225 BUILD_BUG_SQE_ELEM(16, __u64, addr);
4226 BUILD_BUG_SQE_ELEM(16, __u64, splice_off_in);
4227 BUILD_BUG_SQE_ELEM(24, __u32, len);
4228 BUILD_BUG_SQE_ELEM(28, __kernel_rwf_t, rw_flags);
4229 BUILD_BUG_SQE_ELEM(28, /* compat */ int, rw_flags);
4230 BUILD_BUG_SQE_ELEM(28, /* compat */ __u32, rw_flags);
4231 BUILD_BUG_SQE_ELEM(28, __u32, fsync_flags);
4232 BUILD_BUG_SQE_ELEM(28, /* compat */ __u16, poll_events);
4233 BUILD_BUG_SQE_ELEM(28, __u32, poll32_events);
4234 BUILD_BUG_SQE_ELEM(28, __u32, sync_range_flags);
4235 BUILD_BUG_SQE_ELEM(28, __u32, msg_flags);
4236 BUILD_BUG_SQE_ELEM(28, __u32, timeout_flags);
4237 BUILD_BUG_SQE_ELEM(28, __u32, accept_flags);
4238 BUILD_BUG_SQE_ELEM(28, __u32, cancel_flags);
4239 BUILD_BUG_SQE_ELEM(28, __u32, open_flags);
4240 BUILD_BUG_SQE_ELEM(28, __u32, statx_flags);
4241 BUILD_BUG_SQE_ELEM(28, __u32, fadvise_advice);
4242 BUILD_BUG_SQE_ELEM(28, __u32, splice_flags);
4243 BUILD_BUG_SQE_ELEM(28, __u32, rename_flags);
4244 BUILD_BUG_SQE_ELEM(28, __u32, unlink_flags);
4245 BUILD_BUG_SQE_ELEM(28, __u32, hardlink_flags);
4246 BUILD_BUG_SQE_ELEM(28, __u32, xattr_flags);
4247 BUILD_BUG_SQE_ELEM(28, __u32, msg_ring_flags);
4248 BUILD_BUG_SQE_ELEM(32, __u64, user_data);
4249 BUILD_BUG_SQE_ELEM(40, __u16, buf_index);
4250 BUILD_BUG_SQE_ELEM(40, __u16, buf_group);
4251 BUILD_BUG_SQE_ELEM(42, __u16, personality);
4252 BUILD_BUG_SQE_ELEM(44, __s32, splice_fd_in);
4253 BUILD_BUG_SQE_ELEM(44, __u32, file_index);
4254 BUILD_BUG_SQE_ELEM(44, __u16, addr_len);
4255 BUILD_BUG_SQE_ELEM(46, __u16, __pad3[0]);
4256 BUILD_BUG_SQE_ELEM(48, __u64, addr3);
4257 BUILD_BUG_SQE_ELEM_SIZE(48, 0, cmd);
4258 BUILD_BUG_SQE_ELEM(56, __u64, __pad2);
4260 BUILD_BUG_ON(sizeof(struct io_uring_files_update) !=
4261 sizeof(struct io_uring_rsrc_update));
4262 BUILD_BUG_ON(sizeof(struct io_uring_rsrc_update) >
4263 sizeof(struct io_uring_rsrc_update2));
4265 /* ->buf_index is u16 */
4266 BUILD_BUG_ON(offsetof(struct io_uring_buf_ring, bufs) != 0);
4267 BUILD_BUG_ON(offsetof(struct io_uring_buf, resv) !=
4268 offsetof(struct io_uring_buf_ring, tail));
4270 /* should fit into one byte */
4271 BUILD_BUG_ON(SQE_VALID_FLAGS >= (1 << 8));
4272 BUILD_BUG_ON(SQE_COMMON_FLAGS >= (1 << 8));
4273 BUILD_BUG_ON((SQE_VALID_FLAGS | SQE_COMMON_FLAGS) != SQE_VALID_FLAGS);
4275 BUILD_BUG_ON(__REQ_F_LAST_BIT > 8 * sizeof(int));
4277 BUILD_BUG_ON(sizeof(atomic_t) != sizeof(u32));
4279 io_uring_optable_init();
4281 req_cachep = KMEM_CACHE(io_kiocb, SLAB_HWCACHE_ALIGN | SLAB_PANIC |
4285 __initcall(io_uring_init);