1 // SPDX-License-Identifier: GPL-2.0
3 * Shared application/kernel submission and completion ring pairs, for
4 * supporting fast/efficient IO.
6 * A note on the read/write ordering memory barriers that are matched between
7 * the application and kernel side.
9 * After the application reads the CQ ring tail, it must use an
10 * appropriate smp_rmb() to pair with the smp_wmb() the kernel uses
11 * before writing the tail (using smp_load_acquire to read the tail will
12 * do). It also needs a smp_mb() before updating CQ head (ordering the
13 * entry load(s) with the head store), pairing with an implicit barrier
14 * through a control-dependency in io_get_cqe (smp_store_release to
15 * store head will do). Failure to do so could lead to reading invalid
18 * Likewise, the application must use an appropriate smp_wmb() before
19 * writing the SQ tail (ordering SQ entry stores with the tail store),
20 * which pairs with smp_load_acquire in io_get_sqring (smp_store_release
21 * to store the tail will do). And it needs a barrier ordering the SQ
22 * head load before writing new SQ entries (smp_load_acquire to read
25 * When using the SQ poll thread (IORING_SETUP_SQPOLL), the application
26 * needs to check the SQ flags for IORING_SQ_NEED_WAKEUP *after*
27 * updating the SQ tail; a full memory barrier smp_mb() is needed
30 * Also see the examples in the liburing library:
32 * git://git.kernel.dk/liburing
34 * io_uring also uses READ/WRITE_ONCE() for _any_ store or load that happens
35 * from data shared between the kernel and application. This is done both
36 * for ordering purposes, but also to ensure that once a value is loaded from
37 * data that the application could potentially modify, it remains stable.
39 * Copyright (C) 2018-2019 Jens Axboe
40 * Copyright (c) 2018-2019 Christoph Hellwig
42 #include <linux/kernel.h>
43 #include <linux/init.h>
44 #include <linux/errno.h>
45 #include <linux/syscalls.h>
46 #include <net/compat.h>
47 #include <linux/refcount.h>
48 #include <linux/uio.h>
49 #include <linux/bits.h>
51 #include <linux/sched/signal.h>
53 #include <linux/file.h>
54 #include <linux/fdtable.h>
56 #include <linux/mman.h>
57 #include <linux/percpu.h>
58 #include <linux/slab.h>
59 #include <linux/bvec.h>
60 #include <linux/net.h>
62 #include <net/af_unix.h>
64 #include <linux/anon_inodes.h>
65 #include <linux/sched/mm.h>
66 #include <linux/uaccess.h>
67 #include <linux/nospec.h>
68 #include <linux/highmem.h>
69 #include <linux/fsnotify.h>
70 #include <linux/fadvise.h>
71 #include <linux/task_work.h>
72 #include <linux/io_uring.h>
73 #include <linux/audit.h>
74 #include <linux/security.h>
75 #include <asm/shmparam.h>
77 #define CREATE_TRACE_POINTS
78 #include <trace/events/io_uring.h>
80 #include <uapi/linux/io_uring.h>
99 #include "alloc_cache.h"
101 #define IORING_MAX_ENTRIES 32768
102 #define IORING_MAX_CQ_ENTRIES (2 * IORING_MAX_ENTRIES)
104 #define IORING_MAX_RESTRICTIONS (IORING_RESTRICTION_LAST + \
105 IORING_REGISTER_LAST + IORING_OP_LAST)
107 #define SQE_COMMON_FLAGS (IOSQE_FIXED_FILE | IOSQE_IO_LINK | \
108 IOSQE_IO_HARDLINK | IOSQE_ASYNC)
110 #define SQE_VALID_FLAGS (SQE_COMMON_FLAGS | IOSQE_BUFFER_SELECT | \
111 IOSQE_IO_DRAIN | IOSQE_CQE_SKIP_SUCCESS)
113 #define IO_REQ_CLEAN_FLAGS (REQ_F_BUFFER_SELECTED | REQ_F_NEED_CLEANUP | \
114 REQ_F_POLLED | REQ_F_INFLIGHT | REQ_F_CREDS | \
117 #define IO_REQ_CLEAN_SLOW_FLAGS (REQ_F_REFCOUNT | REQ_F_LINK | REQ_F_HARDLINK |\
120 #define IO_TCTX_REFS_CACHE_NR (1U << 10)
122 #define IO_COMPL_BATCH 32
123 #define IO_REQ_ALLOC_BATCH 8
126 IO_CHECK_CQ_OVERFLOW_BIT,
127 IO_CHECK_CQ_DROPPED_BIT,
131 IO_EVENTFD_OP_SIGNAL_BIT,
132 IO_EVENTFD_OP_FREE_BIT,
135 struct io_defer_entry {
136 struct list_head list;
137 struct io_kiocb *req;
141 /* requests with any of those set should undergo io_disarm_next() */
142 #define IO_DISARM_MASK (REQ_F_ARM_LTIMEOUT | REQ_F_LINK_TIMEOUT | REQ_F_FAIL)
143 #define IO_REQ_LINK_FLAGS (REQ_F_LINK | REQ_F_HARDLINK)
145 static bool io_uring_try_cancel_requests(struct io_ring_ctx *ctx,
146 struct task_struct *task,
149 static void io_queue_sqe(struct io_kiocb *req);
151 struct kmem_cache *req_cachep;
153 struct sock *io_uring_get_socket(struct file *file)
155 #if defined(CONFIG_UNIX)
156 if (io_is_uring_fops(file)) {
157 struct io_ring_ctx *ctx = file->private_data;
159 return ctx->ring_sock->sk;
164 EXPORT_SYMBOL(io_uring_get_socket);
166 static inline void io_submit_flush_completions(struct io_ring_ctx *ctx)
168 if (!wq_list_empty(&ctx->submit_state.compl_reqs) ||
169 ctx->submit_state.cqes_count)
170 __io_submit_flush_completions(ctx);
173 static inline unsigned int __io_cqring_events(struct io_ring_ctx *ctx)
175 return ctx->cached_cq_tail - READ_ONCE(ctx->rings->cq.head);
178 static inline unsigned int __io_cqring_events_user(struct io_ring_ctx *ctx)
180 return READ_ONCE(ctx->rings->cq.tail) - READ_ONCE(ctx->rings->cq.head);
183 static bool io_match_linked(struct io_kiocb *head)
185 struct io_kiocb *req;
187 io_for_each_link(req, head) {
188 if (req->flags & REQ_F_INFLIGHT)
195 * As io_match_task() but protected against racing with linked timeouts.
196 * User must not hold timeout_lock.
198 bool io_match_task_safe(struct io_kiocb *head, struct task_struct *task,
203 if (task && head->task != task)
208 if (head->flags & REQ_F_LINK_TIMEOUT) {
209 struct io_ring_ctx *ctx = head->ctx;
211 /* protect against races with linked timeouts */
212 spin_lock_irq(&ctx->timeout_lock);
213 matched = io_match_linked(head);
214 spin_unlock_irq(&ctx->timeout_lock);
216 matched = io_match_linked(head);
221 static inline void req_fail_link_node(struct io_kiocb *req, int res)
224 io_req_set_res(req, res, 0);
227 static inline void io_req_add_to_cache(struct io_kiocb *req, struct io_ring_ctx *ctx)
229 wq_stack_add_head(&req->comp_list, &ctx->submit_state.free_list);
232 static __cold void io_ring_ctx_ref_free(struct percpu_ref *ref)
234 struct io_ring_ctx *ctx = container_of(ref, struct io_ring_ctx, refs);
236 complete(&ctx->ref_comp);
239 static __cold void io_fallback_req_func(struct work_struct *work)
241 struct io_ring_ctx *ctx = container_of(work, struct io_ring_ctx,
243 struct llist_node *node = llist_del_all(&ctx->fallback_llist);
244 struct io_kiocb *req, *tmp;
245 struct io_tw_state ts = { .locked = true, };
247 mutex_lock(&ctx->uring_lock);
248 llist_for_each_entry_safe(req, tmp, node, io_task_work.node)
249 req->io_task_work.func(req, &ts);
250 if (WARN_ON_ONCE(!ts.locked))
252 io_submit_flush_completions(ctx);
253 mutex_unlock(&ctx->uring_lock);
256 static int io_alloc_hash_table(struct io_hash_table *table, unsigned bits)
258 unsigned hash_buckets = 1U << bits;
259 size_t hash_size = hash_buckets * sizeof(table->hbs[0]);
261 table->hbs = kmalloc(hash_size, GFP_KERNEL);
265 table->hash_bits = bits;
266 init_hash_table(table, hash_buckets);
270 static __cold struct io_ring_ctx *io_ring_ctx_alloc(struct io_uring_params *p)
272 struct io_ring_ctx *ctx;
275 ctx = kzalloc(sizeof(*ctx), GFP_KERNEL);
279 xa_init(&ctx->io_bl_xa);
282 * Use 5 bits less than the max cq entries, that should give us around
283 * 32 entries per hash list if totally full and uniformly spread, but
284 * don't keep too many buckets to not overconsume memory.
286 hash_bits = ilog2(p->cq_entries) - 5;
287 hash_bits = clamp(hash_bits, 1, 8);
288 if (io_alloc_hash_table(&ctx->cancel_table, hash_bits))
290 if (io_alloc_hash_table(&ctx->cancel_table_locked, hash_bits))
292 if (percpu_ref_init(&ctx->refs, io_ring_ctx_ref_free,
296 ctx->flags = p->flags;
297 init_waitqueue_head(&ctx->sqo_sq_wait);
298 INIT_LIST_HEAD(&ctx->sqd_list);
299 INIT_LIST_HEAD(&ctx->cq_overflow_list);
300 INIT_LIST_HEAD(&ctx->io_buffers_cache);
301 io_alloc_cache_init(&ctx->rsrc_node_cache, IO_NODE_ALLOC_CACHE_MAX,
302 sizeof(struct io_rsrc_node));
303 io_alloc_cache_init(&ctx->apoll_cache, IO_ALLOC_CACHE_MAX,
304 sizeof(struct async_poll));
305 io_alloc_cache_init(&ctx->netmsg_cache, IO_ALLOC_CACHE_MAX,
306 sizeof(struct io_async_msghdr));
307 init_completion(&ctx->ref_comp);
308 xa_init_flags(&ctx->personalities, XA_FLAGS_ALLOC1);
309 mutex_init(&ctx->uring_lock);
310 init_waitqueue_head(&ctx->cq_wait);
311 init_waitqueue_head(&ctx->poll_wq);
312 init_waitqueue_head(&ctx->rsrc_quiesce_wq);
313 spin_lock_init(&ctx->completion_lock);
314 spin_lock_init(&ctx->timeout_lock);
315 INIT_WQ_LIST(&ctx->iopoll_list);
316 INIT_LIST_HEAD(&ctx->io_buffers_pages);
317 INIT_LIST_HEAD(&ctx->io_buffers_comp);
318 INIT_LIST_HEAD(&ctx->defer_list);
319 INIT_LIST_HEAD(&ctx->timeout_list);
320 INIT_LIST_HEAD(&ctx->ltimeout_list);
321 INIT_LIST_HEAD(&ctx->rsrc_ref_list);
322 init_llist_head(&ctx->work_llist);
323 INIT_LIST_HEAD(&ctx->tctx_list);
324 ctx->submit_state.free_list.next = NULL;
325 INIT_WQ_LIST(&ctx->locked_free_list);
326 INIT_DELAYED_WORK(&ctx->fallback_work, io_fallback_req_func);
327 INIT_WQ_LIST(&ctx->submit_state.compl_reqs);
330 kfree(ctx->cancel_table.hbs);
331 kfree(ctx->cancel_table_locked.hbs);
333 xa_destroy(&ctx->io_bl_xa);
338 static void io_account_cq_overflow(struct io_ring_ctx *ctx)
340 struct io_rings *r = ctx->rings;
342 WRITE_ONCE(r->cq_overflow, READ_ONCE(r->cq_overflow) + 1);
346 static bool req_need_defer(struct io_kiocb *req, u32 seq)
348 if (unlikely(req->flags & REQ_F_IO_DRAIN)) {
349 struct io_ring_ctx *ctx = req->ctx;
351 return seq + READ_ONCE(ctx->cq_extra) != ctx->cached_cq_tail;
357 static void io_clean_op(struct io_kiocb *req)
359 if (req->flags & REQ_F_BUFFER_SELECTED) {
360 spin_lock(&req->ctx->completion_lock);
361 io_put_kbuf_comp(req);
362 spin_unlock(&req->ctx->completion_lock);
365 if (req->flags & REQ_F_NEED_CLEANUP) {
366 const struct io_cold_def *def = &io_cold_defs[req->opcode];
371 if ((req->flags & REQ_F_POLLED) && req->apoll) {
372 kfree(req->apoll->double_poll);
376 if (req->flags & REQ_F_INFLIGHT) {
377 struct io_uring_task *tctx = req->task->io_uring;
379 atomic_dec(&tctx->inflight_tracked);
381 if (req->flags & REQ_F_CREDS)
382 put_cred(req->creds);
383 if (req->flags & REQ_F_ASYNC_DATA) {
384 kfree(req->async_data);
385 req->async_data = NULL;
387 req->flags &= ~IO_REQ_CLEAN_FLAGS;
390 static inline void io_req_track_inflight(struct io_kiocb *req)
392 if (!(req->flags & REQ_F_INFLIGHT)) {
393 req->flags |= REQ_F_INFLIGHT;
394 atomic_inc(&req->task->io_uring->inflight_tracked);
398 static struct io_kiocb *__io_prep_linked_timeout(struct io_kiocb *req)
400 if (WARN_ON_ONCE(!req->link))
403 req->flags &= ~REQ_F_ARM_LTIMEOUT;
404 req->flags |= REQ_F_LINK_TIMEOUT;
406 /* linked timeouts should have two refs once prep'ed */
407 io_req_set_refcount(req);
408 __io_req_set_refcount(req->link, 2);
412 static inline struct io_kiocb *io_prep_linked_timeout(struct io_kiocb *req)
414 if (likely(!(req->flags & REQ_F_ARM_LTIMEOUT)))
416 return __io_prep_linked_timeout(req);
419 static noinline void __io_arm_ltimeout(struct io_kiocb *req)
421 io_queue_linked_timeout(__io_prep_linked_timeout(req));
424 static inline void io_arm_ltimeout(struct io_kiocb *req)
426 if (unlikely(req->flags & REQ_F_ARM_LTIMEOUT))
427 __io_arm_ltimeout(req);
430 static void io_prep_async_work(struct io_kiocb *req)
432 const struct io_issue_def *def = &io_issue_defs[req->opcode];
433 struct io_ring_ctx *ctx = req->ctx;
435 if (!(req->flags & REQ_F_CREDS)) {
436 req->flags |= REQ_F_CREDS;
437 req->creds = get_current_cred();
440 req->work.list.next = NULL;
442 req->work.cancel_seq = atomic_read(&ctx->cancel_seq);
443 if (req->flags & REQ_F_FORCE_ASYNC)
444 req->work.flags |= IO_WQ_WORK_CONCURRENT;
446 if (req->file && !(req->flags & REQ_F_FIXED_FILE))
447 req->flags |= io_file_get_flags(req->file);
449 if (req->file && (req->flags & REQ_F_ISREG)) {
450 bool should_hash = def->hash_reg_file;
452 /* don't serialize this request if the fs doesn't need it */
453 if (should_hash && (req->file->f_flags & O_DIRECT) &&
454 (req->file->f_mode & FMODE_DIO_PARALLEL_WRITE))
456 if (should_hash || (ctx->flags & IORING_SETUP_IOPOLL))
457 io_wq_hash_work(&req->work, file_inode(req->file));
458 } else if (!req->file || !S_ISBLK(file_inode(req->file)->i_mode)) {
459 if (def->unbound_nonreg_file)
460 req->work.flags |= IO_WQ_WORK_UNBOUND;
464 static void io_prep_async_link(struct io_kiocb *req)
466 struct io_kiocb *cur;
468 if (req->flags & REQ_F_LINK_TIMEOUT) {
469 struct io_ring_ctx *ctx = req->ctx;
471 spin_lock_irq(&ctx->timeout_lock);
472 io_for_each_link(cur, req)
473 io_prep_async_work(cur);
474 spin_unlock_irq(&ctx->timeout_lock);
476 io_for_each_link(cur, req)
477 io_prep_async_work(cur);
481 void io_queue_iowq(struct io_kiocb *req, struct io_tw_state *ts_dont_use)
483 struct io_kiocb *link = io_prep_linked_timeout(req);
484 struct io_uring_task *tctx = req->task->io_uring;
487 BUG_ON(!tctx->io_wq);
489 /* init ->work of the whole link before punting */
490 io_prep_async_link(req);
493 * Not expected to happen, but if we do have a bug where this _can_
494 * happen, catch it here and ensure the request is marked as
495 * canceled. That will make io-wq go through the usual work cancel
496 * procedure rather than attempt to run this request (or create a new
499 if (WARN_ON_ONCE(!same_thread_group(req->task, current)))
500 req->work.flags |= IO_WQ_WORK_CANCEL;
502 trace_io_uring_queue_async_work(req, io_wq_is_hashed(&req->work));
503 io_wq_enqueue(tctx->io_wq, &req->work);
505 io_queue_linked_timeout(link);
508 static __cold void io_queue_deferred(struct io_ring_ctx *ctx)
510 while (!list_empty(&ctx->defer_list)) {
511 struct io_defer_entry *de = list_first_entry(&ctx->defer_list,
512 struct io_defer_entry, list);
514 if (req_need_defer(de->req, de->seq))
516 list_del_init(&de->list);
517 io_req_task_queue(de->req);
523 static void io_eventfd_ops(struct rcu_head *rcu)
525 struct io_ev_fd *ev_fd = container_of(rcu, struct io_ev_fd, rcu);
526 int ops = atomic_xchg(&ev_fd->ops, 0);
528 if (ops & BIT(IO_EVENTFD_OP_SIGNAL_BIT))
529 eventfd_signal_mask(ev_fd->cq_ev_fd, 1, EPOLL_URING_WAKE);
531 /* IO_EVENTFD_OP_FREE_BIT may not be set here depending on callback
532 * ordering in a race but if references are 0 we know we have to free
535 if (atomic_dec_and_test(&ev_fd->refs)) {
536 eventfd_ctx_put(ev_fd->cq_ev_fd);
541 static void io_eventfd_signal(struct io_ring_ctx *ctx)
543 struct io_ev_fd *ev_fd = NULL;
547 * rcu_dereference ctx->io_ev_fd once and use it for both for checking
550 ev_fd = rcu_dereference(ctx->io_ev_fd);
553 * Check again if ev_fd exists incase an io_eventfd_unregister call
554 * completed between the NULL check of ctx->io_ev_fd at the start of
555 * the function and rcu_read_lock.
557 if (unlikely(!ev_fd))
559 if (READ_ONCE(ctx->rings->cq_flags) & IORING_CQ_EVENTFD_DISABLED)
561 if (ev_fd->eventfd_async && !io_wq_current_is_worker())
564 if (likely(eventfd_signal_allowed())) {
565 eventfd_signal_mask(ev_fd->cq_ev_fd, 1, EPOLL_URING_WAKE);
567 atomic_inc(&ev_fd->refs);
568 if (!atomic_fetch_or(BIT(IO_EVENTFD_OP_SIGNAL_BIT), &ev_fd->ops))
569 call_rcu_hurry(&ev_fd->rcu, io_eventfd_ops);
571 atomic_dec(&ev_fd->refs);
578 static void io_eventfd_flush_signal(struct io_ring_ctx *ctx)
582 spin_lock(&ctx->completion_lock);
585 * Eventfd should only get triggered when at least one event has been
586 * posted. Some applications rely on the eventfd notification count
587 * only changing IFF a new CQE has been added to the CQ ring. There's
588 * no depedency on 1:1 relationship between how many times this
589 * function is called (and hence the eventfd count) and number of CQEs
590 * posted to the CQ ring.
592 skip = ctx->cached_cq_tail == ctx->evfd_last_cq_tail;
593 ctx->evfd_last_cq_tail = ctx->cached_cq_tail;
594 spin_unlock(&ctx->completion_lock);
598 io_eventfd_signal(ctx);
601 void __io_commit_cqring_flush(struct io_ring_ctx *ctx)
603 if (ctx->poll_activated)
604 io_poll_wq_wake(ctx);
605 if (ctx->off_timeout_used)
606 io_flush_timeouts(ctx);
607 if (ctx->drain_active) {
608 spin_lock(&ctx->completion_lock);
609 io_queue_deferred(ctx);
610 spin_unlock(&ctx->completion_lock);
613 io_eventfd_flush_signal(ctx);
616 static inline void __io_cq_lock(struct io_ring_ctx *ctx)
618 if (!ctx->lockless_cq)
619 spin_lock(&ctx->completion_lock);
622 static inline void io_cq_lock(struct io_ring_ctx *ctx)
623 __acquires(ctx->completion_lock)
625 spin_lock(&ctx->completion_lock);
628 static inline void __io_cq_unlock_post(struct io_ring_ctx *ctx)
630 io_commit_cqring(ctx);
631 if (!ctx->task_complete) {
632 if (!ctx->lockless_cq)
633 spin_unlock(&ctx->completion_lock);
634 /* IOPOLL rings only need to wake up if it's also SQPOLL */
635 if (!ctx->syscall_iopoll)
638 io_commit_cqring_flush(ctx);
641 static void io_cq_unlock_post(struct io_ring_ctx *ctx)
642 __releases(ctx->completion_lock)
644 io_commit_cqring(ctx);
645 spin_unlock(&ctx->completion_lock);
647 io_commit_cqring_flush(ctx);
650 /* Returns true if there are no backlogged entries after the flush */
651 static void io_cqring_overflow_kill(struct io_ring_ctx *ctx)
653 struct io_overflow_cqe *ocqe;
656 spin_lock(&ctx->completion_lock);
657 list_splice_init(&ctx->cq_overflow_list, &list);
658 clear_bit(IO_CHECK_CQ_OVERFLOW_BIT, &ctx->check_cq);
659 spin_unlock(&ctx->completion_lock);
661 while (!list_empty(&list)) {
662 ocqe = list_first_entry(&list, struct io_overflow_cqe, list);
663 list_del(&ocqe->list);
668 static void __io_cqring_overflow_flush(struct io_ring_ctx *ctx)
670 size_t cqe_size = sizeof(struct io_uring_cqe);
672 if (__io_cqring_events(ctx) == ctx->cq_entries)
675 if (ctx->flags & IORING_SETUP_CQE32)
679 while (!list_empty(&ctx->cq_overflow_list)) {
680 struct io_uring_cqe *cqe;
681 struct io_overflow_cqe *ocqe;
683 if (!io_get_cqe_overflow(ctx, &cqe, true))
685 ocqe = list_first_entry(&ctx->cq_overflow_list,
686 struct io_overflow_cqe, list);
687 memcpy(cqe, &ocqe->cqe, cqe_size);
688 list_del(&ocqe->list);
692 if (list_empty(&ctx->cq_overflow_list)) {
693 clear_bit(IO_CHECK_CQ_OVERFLOW_BIT, &ctx->check_cq);
694 atomic_andnot(IORING_SQ_CQ_OVERFLOW, &ctx->rings->sq_flags);
696 io_cq_unlock_post(ctx);
699 static void io_cqring_do_overflow_flush(struct io_ring_ctx *ctx)
701 /* iopoll syncs against uring_lock, not completion_lock */
702 if (ctx->flags & IORING_SETUP_IOPOLL)
703 mutex_lock(&ctx->uring_lock);
704 __io_cqring_overflow_flush(ctx);
705 if (ctx->flags & IORING_SETUP_IOPOLL)
706 mutex_unlock(&ctx->uring_lock);
709 static void io_cqring_overflow_flush(struct io_ring_ctx *ctx)
711 if (test_bit(IO_CHECK_CQ_OVERFLOW_BIT, &ctx->check_cq))
712 io_cqring_do_overflow_flush(ctx);
715 /* can be called by any task */
716 static void io_put_task_remote(struct task_struct *task)
718 struct io_uring_task *tctx = task->io_uring;
720 percpu_counter_sub(&tctx->inflight, 1);
721 if (unlikely(atomic_read(&tctx->in_cancel)))
722 wake_up(&tctx->wait);
723 put_task_struct(task);
726 /* used by a task to put its own references */
727 static void io_put_task_local(struct task_struct *task)
729 task->io_uring->cached_refs++;
732 /* must to be called somewhat shortly after putting a request */
733 static inline void io_put_task(struct task_struct *task)
735 if (likely(task == current))
736 io_put_task_local(task);
738 io_put_task_remote(task);
741 void io_task_refs_refill(struct io_uring_task *tctx)
743 unsigned int refill = -tctx->cached_refs + IO_TCTX_REFS_CACHE_NR;
745 percpu_counter_add(&tctx->inflight, refill);
746 refcount_add(refill, ¤t->usage);
747 tctx->cached_refs += refill;
750 static __cold void io_uring_drop_tctx_refs(struct task_struct *task)
752 struct io_uring_task *tctx = task->io_uring;
753 unsigned int refs = tctx->cached_refs;
756 tctx->cached_refs = 0;
757 percpu_counter_sub(&tctx->inflight, refs);
758 put_task_struct_many(task, refs);
762 static bool io_cqring_event_overflow(struct io_ring_ctx *ctx, u64 user_data,
763 s32 res, u32 cflags, u64 extra1, u64 extra2)
765 struct io_overflow_cqe *ocqe;
766 size_t ocq_size = sizeof(struct io_overflow_cqe);
767 bool is_cqe32 = (ctx->flags & IORING_SETUP_CQE32);
769 lockdep_assert_held(&ctx->completion_lock);
772 ocq_size += sizeof(struct io_uring_cqe);
774 ocqe = kmalloc(ocq_size, GFP_ATOMIC | __GFP_ACCOUNT);
775 trace_io_uring_cqe_overflow(ctx, user_data, res, cflags, ocqe);
778 * If we're in ring overflow flush mode, or in task cancel mode,
779 * or cannot allocate an overflow entry, then we need to drop it
782 io_account_cq_overflow(ctx);
783 set_bit(IO_CHECK_CQ_DROPPED_BIT, &ctx->check_cq);
786 if (list_empty(&ctx->cq_overflow_list)) {
787 set_bit(IO_CHECK_CQ_OVERFLOW_BIT, &ctx->check_cq);
788 atomic_or(IORING_SQ_CQ_OVERFLOW, &ctx->rings->sq_flags);
791 ocqe->cqe.user_data = user_data;
793 ocqe->cqe.flags = cflags;
795 ocqe->cqe.big_cqe[0] = extra1;
796 ocqe->cqe.big_cqe[1] = extra2;
798 list_add_tail(&ocqe->list, &ctx->cq_overflow_list);
802 void io_req_cqe_overflow(struct io_kiocb *req)
804 io_cqring_event_overflow(req->ctx, req->cqe.user_data,
805 req->cqe.res, req->cqe.flags,
806 req->big_cqe.extra1, req->big_cqe.extra2);
807 memset(&req->big_cqe, 0, sizeof(req->big_cqe));
811 * writes to the cq entry need to come after reading head; the
812 * control dependency is enough as we're using WRITE_ONCE to
815 bool io_cqe_cache_refill(struct io_ring_ctx *ctx, bool overflow)
817 struct io_rings *rings = ctx->rings;
818 unsigned int off = ctx->cached_cq_tail & (ctx->cq_entries - 1);
819 unsigned int free, queued, len;
822 * Posting into the CQ when there are pending overflowed CQEs may break
823 * ordering guarantees, which will affect links, F_MORE users and more.
824 * Force overflow the completion.
826 if (!overflow && (ctx->check_cq & BIT(IO_CHECK_CQ_OVERFLOW_BIT)))
829 /* userspace may cheat modifying the tail, be safe and do min */
830 queued = min(__io_cqring_events(ctx), ctx->cq_entries);
831 free = ctx->cq_entries - queued;
832 /* we need a contiguous range, limit based on the current array offset */
833 len = min(free, ctx->cq_entries - off);
837 if (ctx->flags & IORING_SETUP_CQE32) {
842 ctx->cqe_cached = &rings->cqes[off];
843 ctx->cqe_sentinel = ctx->cqe_cached + len;
847 static bool io_fill_cqe_aux(struct io_ring_ctx *ctx, u64 user_data, s32 res,
850 struct io_uring_cqe *cqe;
855 * If we can't get a cq entry, userspace overflowed the
856 * submission (by quite a lot). Increment the overflow count in
859 if (likely(io_get_cqe(ctx, &cqe))) {
860 trace_io_uring_complete(ctx, NULL, user_data, res, cflags, 0, 0);
862 WRITE_ONCE(cqe->user_data, user_data);
863 WRITE_ONCE(cqe->res, res);
864 WRITE_ONCE(cqe->flags, cflags);
866 if (ctx->flags & IORING_SETUP_CQE32) {
867 WRITE_ONCE(cqe->big_cqe[0], 0);
868 WRITE_ONCE(cqe->big_cqe[1], 0);
875 static void __io_flush_post_cqes(struct io_ring_ctx *ctx)
876 __must_hold(&ctx->uring_lock)
878 struct io_submit_state *state = &ctx->submit_state;
881 lockdep_assert_held(&ctx->uring_lock);
882 for (i = 0; i < state->cqes_count; i++) {
883 struct io_uring_cqe *cqe = &ctx->completion_cqes[i];
885 if (!io_fill_cqe_aux(ctx, cqe->user_data, cqe->res, cqe->flags)) {
886 if (ctx->task_complete) {
887 spin_lock(&ctx->completion_lock);
888 io_cqring_event_overflow(ctx, cqe->user_data,
889 cqe->res, cqe->flags, 0, 0);
890 spin_unlock(&ctx->completion_lock);
892 io_cqring_event_overflow(ctx, cqe->user_data,
893 cqe->res, cqe->flags, 0, 0);
897 state->cqes_count = 0;
900 static bool __io_post_aux_cqe(struct io_ring_ctx *ctx, u64 user_data, s32 res, u32 cflags,
906 filled = io_fill_cqe_aux(ctx, user_data, res, cflags);
907 if (!filled && allow_overflow)
908 filled = io_cqring_event_overflow(ctx, user_data, res, cflags, 0, 0);
910 io_cq_unlock_post(ctx);
914 bool io_post_aux_cqe(struct io_ring_ctx *ctx, u64 user_data, s32 res, u32 cflags)
916 return __io_post_aux_cqe(ctx, user_data, res, cflags, true);
920 * A helper for multishot requests posting additional CQEs.
921 * Should only be used from a task_work including IO_URING_F_MULTISHOT.
923 bool io_fill_cqe_req_aux(struct io_kiocb *req, bool defer, s32 res, u32 cflags)
925 struct io_ring_ctx *ctx = req->ctx;
926 u64 user_data = req->cqe.user_data;
927 struct io_uring_cqe *cqe;
930 return __io_post_aux_cqe(ctx, user_data, res, cflags, false);
932 lockdep_assert_held(&ctx->uring_lock);
934 if (ctx->submit_state.cqes_count == ARRAY_SIZE(ctx->completion_cqes)) {
936 __io_flush_post_cqes(ctx);
937 /* no need to flush - flush is deferred */
938 __io_cq_unlock_post(ctx);
941 /* For defered completions this is not as strict as it is otherwise,
942 * however it's main job is to prevent unbounded posted completions,
943 * and in that it works just as well.
945 if (test_bit(IO_CHECK_CQ_OVERFLOW_BIT, &ctx->check_cq))
948 cqe = &ctx->completion_cqes[ctx->submit_state.cqes_count++];
949 cqe->user_data = user_data;
955 static void __io_req_complete_post(struct io_kiocb *req, unsigned issue_flags)
957 struct io_ring_ctx *ctx = req->ctx;
958 struct io_rsrc_node *rsrc_node = NULL;
961 if (!(req->flags & REQ_F_CQE_SKIP)) {
962 if (!io_fill_cqe_req(ctx, req))
963 io_req_cqe_overflow(req);
967 * If we're the last reference to this request, add to our locked
970 if (req_ref_put_and_test(req)) {
971 if (req->flags & IO_REQ_LINK_FLAGS) {
972 if (req->flags & IO_DISARM_MASK)
975 io_req_task_queue(req->link);
979 io_put_kbuf_comp(req);
980 if (unlikely(req->flags & IO_REQ_CLEAN_FLAGS))
984 rsrc_node = req->rsrc_node;
986 * Selected buffer deallocation in io_clean_op() assumes that
987 * we don't hold ->completion_lock. Clean them here to avoid
990 io_put_task_remote(req->task);
991 wq_list_add_head(&req->comp_list, &ctx->locked_free_list);
992 ctx->locked_free_nr++;
994 io_cq_unlock_post(ctx);
997 io_ring_submit_lock(ctx, issue_flags);
998 io_put_rsrc_node(ctx, rsrc_node);
999 io_ring_submit_unlock(ctx, issue_flags);
1003 void io_req_complete_post(struct io_kiocb *req, unsigned issue_flags)
1005 if (req->ctx->task_complete && req->ctx->submitter_task != current) {
1006 req->io_task_work.func = io_req_task_complete;
1007 io_req_task_work_add(req);
1008 } else if (!(issue_flags & IO_URING_F_UNLOCKED) ||
1009 !(req->ctx->flags & IORING_SETUP_IOPOLL)) {
1010 __io_req_complete_post(req, issue_flags);
1012 struct io_ring_ctx *ctx = req->ctx;
1014 mutex_lock(&ctx->uring_lock);
1015 __io_req_complete_post(req, issue_flags & ~IO_URING_F_UNLOCKED);
1016 mutex_unlock(&ctx->uring_lock);
1020 void io_req_defer_failed(struct io_kiocb *req, s32 res)
1021 __must_hold(&ctx->uring_lock)
1023 const struct io_cold_def *def = &io_cold_defs[req->opcode];
1025 lockdep_assert_held(&req->ctx->uring_lock);
1028 io_req_set_res(req, res, io_put_kbuf(req, IO_URING_F_UNLOCKED));
1031 io_req_complete_defer(req);
1035 * Don't initialise the fields below on every allocation, but do that in
1036 * advance and keep them valid across allocations.
1038 static void io_preinit_req(struct io_kiocb *req, struct io_ring_ctx *ctx)
1042 req->async_data = NULL;
1043 /* not necessary, but safer to zero */
1044 memset(&req->cqe, 0, sizeof(req->cqe));
1045 memset(&req->big_cqe, 0, sizeof(req->big_cqe));
1048 static void io_flush_cached_locked_reqs(struct io_ring_ctx *ctx,
1049 struct io_submit_state *state)
1051 spin_lock(&ctx->completion_lock);
1052 wq_list_splice(&ctx->locked_free_list, &state->free_list);
1053 ctx->locked_free_nr = 0;
1054 spin_unlock(&ctx->completion_lock);
1058 * A request might get retired back into the request caches even before opcode
1059 * handlers and io_issue_sqe() are done with it, e.g. inline completion path.
1060 * Because of that, io_alloc_req() should be called only under ->uring_lock
1061 * and with extra caution to not get a request that is still worked on.
1063 __cold bool __io_alloc_req_refill(struct io_ring_ctx *ctx)
1064 __must_hold(&ctx->uring_lock)
1066 gfp_t gfp = GFP_KERNEL | __GFP_NOWARN;
1067 void *reqs[IO_REQ_ALLOC_BATCH];
1071 * If we have more than a batch's worth of requests in our IRQ side
1072 * locked cache, grab the lock and move them over to our submission
1075 if (data_race(ctx->locked_free_nr) > IO_COMPL_BATCH) {
1076 io_flush_cached_locked_reqs(ctx, &ctx->submit_state);
1077 if (!io_req_cache_empty(ctx))
1081 ret = kmem_cache_alloc_bulk(req_cachep, gfp, ARRAY_SIZE(reqs), reqs);
1084 * Bulk alloc is all-or-nothing. If we fail to get a batch,
1085 * retry single alloc to be on the safe side.
1087 if (unlikely(ret <= 0)) {
1088 reqs[0] = kmem_cache_alloc(req_cachep, gfp);
1094 percpu_ref_get_many(&ctx->refs, ret);
1095 for (i = 0; i < ret; i++) {
1096 struct io_kiocb *req = reqs[i];
1098 io_preinit_req(req, ctx);
1099 io_req_add_to_cache(req, ctx);
1104 __cold void io_free_req(struct io_kiocb *req)
1106 /* refs were already put, restore them for io_req_task_complete() */
1107 req->flags &= ~REQ_F_REFCOUNT;
1108 /* we only want to free it, don't post CQEs */
1109 req->flags |= REQ_F_CQE_SKIP;
1110 req->io_task_work.func = io_req_task_complete;
1111 io_req_task_work_add(req);
1114 static void __io_req_find_next_prep(struct io_kiocb *req)
1116 struct io_ring_ctx *ctx = req->ctx;
1118 spin_lock(&ctx->completion_lock);
1119 io_disarm_next(req);
1120 spin_unlock(&ctx->completion_lock);
1123 static inline struct io_kiocb *io_req_find_next(struct io_kiocb *req)
1125 struct io_kiocb *nxt;
1128 * If LINK is set, we have dependent requests in this chain. If we
1129 * didn't fail this request, queue the first one up, moving any other
1130 * dependencies to the next request. In case of failure, fail the rest
1133 if (unlikely(req->flags & IO_DISARM_MASK))
1134 __io_req_find_next_prep(req);
1140 static void ctx_flush_and_put(struct io_ring_ctx *ctx, struct io_tw_state *ts)
1144 if (ctx->flags & IORING_SETUP_TASKRUN_FLAG)
1145 atomic_andnot(IORING_SQ_TASKRUN, &ctx->rings->sq_flags);
1147 io_submit_flush_completions(ctx);
1148 mutex_unlock(&ctx->uring_lock);
1151 percpu_ref_put(&ctx->refs);
1154 static unsigned int handle_tw_list(struct llist_node *node,
1155 struct io_ring_ctx **ctx,
1156 struct io_tw_state *ts,
1157 struct llist_node *last)
1159 unsigned int count = 0;
1161 while (node && node != last) {
1162 struct llist_node *next = node->next;
1163 struct io_kiocb *req = container_of(node, struct io_kiocb,
1166 prefetch(container_of(next, struct io_kiocb, io_task_work.node));
1168 if (req->ctx != *ctx) {
1169 ctx_flush_and_put(*ctx, ts);
1171 /* if not contended, grab and improve batching */
1172 ts->locked = mutex_trylock(&(*ctx)->uring_lock);
1173 percpu_ref_get(&(*ctx)->refs);
1175 INDIRECT_CALL_2(req->io_task_work.func,
1176 io_poll_task_func, io_req_rw_complete,
1180 if (unlikely(need_resched())) {
1181 ctx_flush_and_put(*ctx, ts);
1191 * io_llist_xchg - swap all entries in a lock-less list
1192 * @head: the head of lock-less list to delete all entries
1193 * @new: new entry as the head of the list
1195 * If list is empty, return NULL, otherwise, return the pointer to the first entry.
1196 * The order of entries returned is from the newest to the oldest added one.
1198 static inline struct llist_node *io_llist_xchg(struct llist_head *head,
1199 struct llist_node *new)
1201 return xchg(&head->first, new);
1205 * io_llist_cmpxchg - possibly swap all entries in a lock-less list
1206 * @head: the head of lock-less list to delete all entries
1207 * @old: expected old value of the first entry of the list
1208 * @new: new entry as the head of the list
1210 * perform a cmpxchg on the first entry of the list.
1213 static inline struct llist_node *io_llist_cmpxchg(struct llist_head *head,
1214 struct llist_node *old,
1215 struct llist_node *new)
1217 return cmpxchg(&head->first, old, new);
1220 static __cold void io_fallback_tw(struct io_uring_task *tctx, bool sync)
1222 struct llist_node *node = llist_del_all(&tctx->task_list);
1223 struct io_ring_ctx *last_ctx = NULL;
1224 struct io_kiocb *req;
1227 req = container_of(node, struct io_kiocb, io_task_work.node);
1229 if (sync && last_ctx != req->ctx) {
1231 flush_delayed_work(&last_ctx->fallback_work);
1232 percpu_ref_put(&last_ctx->refs);
1234 last_ctx = req->ctx;
1235 percpu_ref_get(&last_ctx->refs);
1237 if (llist_add(&req->io_task_work.node,
1238 &req->ctx->fallback_llist))
1239 schedule_delayed_work(&req->ctx->fallback_work, 1);
1243 flush_delayed_work(&last_ctx->fallback_work);
1244 percpu_ref_put(&last_ctx->refs);
1248 void tctx_task_work(struct callback_head *cb)
1250 struct io_tw_state ts = {};
1251 struct io_ring_ctx *ctx = NULL;
1252 struct io_uring_task *tctx = container_of(cb, struct io_uring_task,
1254 struct llist_node fake = {};
1255 struct llist_node *node;
1256 unsigned int loops = 0;
1257 unsigned int count = 0;
1259 if (unlikely(current->flags & PF_EXITING)) {
1260 io_fallback_tw(tctx, true);
1266 node = io_llist_xchg(&tctx->task_list, &fake);
1267 count += handle_tw_list(node, &ctx, &ts, &fake);
1269 /* skip expensive cmpxchg if there are items in the list */
1270 if (READ_ONCE(tctx->task_list.first) != &fake)
1272 if (ts.locked && !wq_list_empty(&ctx->submit_state.compl_reqs)) {
1273 io_submit_flush_completions(ctx);
1274 if (READ_ONCE(tctx->task_list.first) != &fake)
1277 node = io_llist_cmpxchg(&tctx->task_list, &fake, NULL);
1278 } while (node != &fake);
1280 ctx_flush_and_put(ctx, &ts);
1282 /* relaxed read is enough as only the task itself sets ->in_cancel */
1283 if (unlikely(atomic_read(&tctx->in_cancel)))
1284 io_uring_drop_tctx_refs(current);
1286 trace_io_uring_task_work_run(tctx, count, loops);
1289 static inline void io_req_local_work_add(struct io_kiocb *req, unsigned flags)
1291 struct io_ring_ctx *ctx = req->ctx;
1292 unsigned nr_wait, nr_tw, nr_tw_prev;
1293 struct llist_node *first;
1295 if (req->flags & (REQ_F_LINK | REQ_F_HARDLINK))
1296 flags &= ~IOU_F_TWQ_LAZY_WAKE;
1298 first = READ_ONCE(ctx->work_llist.first);
1302 struct io_kiocb *first_req = container_of(first,
1306 * Might be executed at any moment, rely on
1307 * SLAB_TYPESAFE_BY_RCU to keep it alive.
1309 nr_tw_prev = READ_ONCE(first_req->nr_tw);
1311 nr_tw = nr_tw_prev + 1;
1312 /* Large enough to fail the nr_wait comparison below */
1313 if (!(flags & IOU_F_TWQ_LAZY_WAKE))
1317 req->io_task_work.node.next = first;
1318 } while (!try_cmpxchg(&ctx->work_llist.first, &first,
1319 &req->io_task_work.node));
1322 if (ctx->flags & IORING_SETUP_TASKRUN_FLAG)
1323 atomic_or(IORING_SQ_TASKRUN, &ctx->rings->sq_flags);
1325 io_eventfd_signal(ctx);
1328 nr_wait = atomic_read(&ctx->cq_wait_nr);
1329 /* no one is waiting */
1332 /* either not enough or the previous add has already woken it up */
1333 if (nr_wait > nr_tw || nr_tw_prev >= nr_wait)
1335 /* pairs with set_current_state() in io_cqring_wait() */
1336 smp_mb__after_atomic();
1337 wake_up_state(ctx->submitter_task, TASK_INTERRUPTIBLE);
1340 static void io_req_normal_work_add(struct io_kiocb *req)
1342 struct io_uring_task *tctx = req->task->io_uring;
1343 struct io_ring_ctx *ctx = req->ctx;
1345 /* task_work already pending, we're done */
1346 if (!llist_add(&req->io_task_work.node, &tctx->task_list))
1349 if (ctx->flags & IORING_SETUP_TASKRUN_FLAG)
1350 atomic_or(IORING_SQ_TASKRUN, &ctx->rings->sq_flags);
1352 if (likely(!task_work_add(req->task, &tctx->task_work, ctx->notify_method)))
1355 io_fallback_tw(tctx, false);
1358 void __io_req_task_work_add(struct io_kiocb *req, unsigned flags)
1360 if (req->ctx->flags & IORING_SETUP_DEFER_TASKRUN) {
1362 io_req_local_work_add(req, flags);
1365 io_req_normal_work_add(req);
1369 static void __cold io_move_task_work_from_local(struct io_ring_ctx *ctx)
1371 struct llist_node *node;
1373 node = llist_del_all(&ctx->work_llist);
1375 struct io_kiocb *req = container_of(node, struct io_kiocb,
1379 io_req_normal_work_add(req);
1383 static int __io_run_local_work(struct io_ring_ctx *ctx, struct io_tw_state *ts)
1385 struct llist_node *node;
1386 unsigned int loops = 0;
1389 if (WARN_ON_ONCE(ctx->submitter_task != current))
1391 if (ctx->flags & IORING_SETUP_TASKRUN_FLAG)
1392 atomic_andnot(IORING_SQ_TASKRUN, &ctx->rings->sq_flags);
1395 * llists are in reverse order, flip it back the right way before
1396 * running the pending items.
1398 node = llist_reverse_order(io_llist_xchg(&ctx->work_llist, NULL));
1400 struct llist_node *next = node->next;
1401 struct io_kiocb *req = container_of(node, struct io_kiocb,
1403 prefetch(container_of(next, struct io_kiocb, io_task_work.node));
1404 INDIRECT_CALL_2(req->io_task_work.func,
1405 io_poll_task_func, io_req_rw_complete,
1412 if (!llist_empty(&ctx->work_llist))
1415 io_submit_flush_completions(ctx);
1416 if (!llist_empty(&ctx->work_llist))
1419 trace_io_uring_local_work_run(ctx, ret, loops);
1423 static inline int io_run_local_work_locked(struct io_ring_ctx *ctx)
1425 struct io_tw_state ts = { .locked = true, };
1428 if (llist_empty(&ctx->work_llist))
1431 ret = __io_run_local_work(ctx, &ts);
1432 /* shouldn't happen! */
1433 if (WARN_ON_ONCE(!ts.locked))
1434 mutex_lock(&ctx->uring_lock);
1438 static int io_run_local_work(struct io_ring_ctx *ctx)
1440 struct io_tw_state ts = {};
1443 ts.locked = mutex_trylock(&ctx->uring_lock);
1444 ret = __io_run_local_work(ctx, &ts);
1446 mutex_unlock(&ctx->uring_lock);
1451 static void io_req_task_cancel(struct io_kiocb *req, struct io_tw_state *ts)
1453 io_tw_lock(req->ctx, ts);
1454 io_req_defer_failed(req, req->cqe.res);
1457 void io_req_task_submit(struct io_kiocb *req, struct io_tw_state *ts)
1459 io_tw_lock(req->ctx, ts);
1460 /* req->task == current here, checking PF_EXITING is safe */
1461 if (unlikely(req->task->flags & PF_EXITING))
1462 io_req_defer_failed(req, -EFAULT);
1463 else if (req->flags & REQ_F_FORCE_ASYNC)
1464 io_queue_iowq(req, ts);
1469 void io_req_task_queue_fail(struct io_kiocb *req, int ret)
1471 io_req_set_res(req, ret, 0);
1472 req->io_task_work.func = io_req_task_cancel;
1473 io_req_task_work_add(req);
1476 void io_req_task_queue(struct io_kiocb *req)
1478 req->io_task_work.func = io_req_task_submit;
1479 io_req_task_work_add(req);
1482 void io_queue_next(struct io_kiocb *req)
1484 struct io_kiocb *nxt = io_req_find_next(req);
1487 io_req_task_queue(nxt);
1490 static void io_free_batch_list(struct io_ring_ctx *ctx,
1491 struct io_wq_work_node *node)
1492 __must_hold(&ctx->uring_lock)
1495 struct io_kiocb *req = container_of(node, struct io_kiocb,
1498 if (unlikely(req->flags & IO_REQ_CLEAN_SLOW_FLAGS)) {
1499 if (req->flags & REQ_F_REFCOUNT) {
1500 node = req->comp_list.next;
1501 if (!req_ref_put_and_test(req))
1504 if ((req->flags & REQ_F_POLLED) && req->apoll) {
1505 struct async_poll *apoll = req->apoll;
1507 if (apoll->double_poll)
1508 kfree(apoll->double_poll);
1509 if (!io_alloc_cache_put(&ctx->apoll_cache, &apoll->cache))
1511 req->flags &= ~REQ_F_POLLED;
1513 if (req->flags & IO_REQ_LINK_FLAGS)
1515 if (unlikely(req->flags & IO_REQ_CLEAN_FLAGS))
1520 io_req_put_rsrc_locked(req, ctx);
1522 io_put_task(req->task);
1523 node = req->comp_list.next;
1524 io_req_add_to_cache(req, ctx);
1528 void __io_submit_flush_completions(struct io_ring_ctx *ctx)
1529 __must_hold(&ctx->uring_lock)
1531 struct io_submit_state *state = &ctx->submit_state;
1532 struct io_wq_work_node *node;
1535 /* must come first to preserve CQE ordering in failure cases */
1536 if (state->cqes_count)
1537 __io_flush_post_cqes(ctx);
1538 __wq_list_for_each(node, &state->compl_reqs) {
1539 struct io_kiocb *req = container_of(node, struct io_kiocb,
1542 if (!(req->flags & REQ_F_CQE_SKIP) &&
1543 unlikely(!io_fill_cqe_req(ctx, req))) {
1544 if (ctx->task_complete) {
1545 spin_lock(&ctx->completion_lock);
1546 io_req_cqe_overflow(req);
1547 spin_unlock(&ctx->completion_lock);
1549 io_req_cqe_overflow(req);
1553 __io_cq_unlock_post(ctx);
1555 if (!wq_list_empty(&ctx->submit_state.compl_reqs)) {
1556 io_free_batch_list(ctx, state->compl_reqs.first);
1557 INIT_WQ_LIST(&state->compl_reqs);
1561 static unsigned io_cqring_events(struct io_ring_ctx *ctx)
1563 /* See comment at the top of this file */
1565 return __io_cqring_events(ctx);
1569 * We can't just wait for polled events to come to us, we have to actively
1570 * find and complete them.
1572 static __cold void io_iopoll_try_reap_events(struct io_ring_ctx *ctx)
1574 if (!(ctx->flags & IORING_SETUP_IOPOLL))
1577 mutex_lock(&ctx->uring_lock);
1578 while (!wq_list_empty(&ctx->iopoll_list)) {
1579 /* let it sleep and repeat later if can't complete a request */
1580 if (io_do_iopoll(ctx, true) == 0)
1583 * Ensure we allow local-to-the-cpu processing to take place,
1584 * in this case we need to ensure that we reap all events.
1585 * Also let task_work, etc. to progress by releasing the mutex
1587 if (need_resched()) {
1588 mutex_unlock(&ctx->uring_lock);
1590 mutex_lock(&ctx->uring_lock);
1593 mutex_unlock(&ctx->uring_lock);
1596 static int io_iopoll_check(struct io_ring_ctx *ctx, long min)
1598 unsigned int nr_events = 0;
1599 unsigned long check_cq;
1601 if (!io_allowed_run_tw(ctx))
1604 check_cq = READ_ONCE(ctx->check_cq);
1605 if (unlikely(check_cq)) {
1606 if (check_cq & BIT(IO_CHECK_CQ_OVERFLOW_BIT))
1607 __io_cqring_overflow_flush(ctx);
1609 * Similarly do not spin if we have not informed the user of any
1612 if (check_cq & BIT(IO_CHECK_CQ_DROPPED_BIT))
1616 * Don't enter poll loop if we already have events pending.
1617 * If we do, we can potentially be spinning for commands that
1618 * already triggered a CQE (eg in error).
1620 if (io_cqring_events(ctx))
1627 * If a submit got punted to a workqueue, we can have the
1628 * application entering polling for a command before it gets
1629 * issued. That app will hold the uring_lock for the duration
1630 * of the poll right here, so we need to take a breather every
1631 * now and then to ensure that the issue has a chance to add
1632 * the poll to the issued list. Otherwise we can spin here
1633 * forever, while the workqueue is stuck trying to acquire the
1636 if (wq_list_empty(&ctx->iopoll_list) ||
1637 io_task_work_pending(ctx)) {
1638 u32 tail = ctx->cached_cq_tail;
1640 (void) io_run_local_work_locked(ctx);
1642 if (task_work_pending(current) ||
1643 wq_list_empty(&ctx->iopoll_list)) {
1644 mutex_unlock(&ctx->uring_lock);
1646 mutex_lock(&ctx->uring_lock);
1648 /* some requests don't go through iopoll_list */
1649 if (tail != ctx->cached_cq_tail ||
1650 wq_list_empty(&ctx->iopoll_list))
1653 ret = io_do_iopoll(ctx, !min);
1654 if (unlikely(ret < 0))
1657 if (task_sigpending(current))
1663 } while (nr_events < min);
1668 void io_req_task_complete(struct io_kiocb *req, struct io_tw_state *ts)
1671 io_req_complete_defer(req);
1673 io_req_complete_post(req, IO_URING_F_UNLOCKED);
1677 * After the iocb has been issued, it's safe to be found on the poll list.
1678 * Adding the kiocb to the list AFTER submission ensures that we don't
1679 * find it from a io_do_iopoll() thread before the issuer is done
1680 * accessing the kiocb cookie.
1682 static void io_iopoll_req_issued(struct io_kiocb *req, unsigned int issue_flags)
1684 struct io_ring_ctx *ctx = req->ctx;
1685 const bool needs_lock = issue_flags & IO_URING_F_UNLOCKED;
1687 /* workqueue context doesn't hold uring_lock, grab it now */
1688 if (unlikely(needs_lock))
1689 mutex_lock(&ctx->uring_lock);
1692 * Track whether we have multiple files in our lists. This will impact
1693 * how we do polling eventually, not spinning if we're on potentially
1694 * different devices.
1696 if (wq_list_empty(&ctx->iopoll_list)) {
1697 ctx->poll_multi_queue = false;
1698 } else if (!ctx->poll_multi_queue) {
1699 struct io_kiocb *list_req;
1701 list_req = container_of(ctx->iopoll_list.first, struct io_kiocb,
1703 if (list_req->file != req->file)
1704 ctx->poll_multi_queue = true;
1708 * For fast devices, IO may have already completed. If it has, add
1709 * it to the front so we find it first.
1711 if (READ_ONCE(req->iopoll_completed))
1712 wq_list_add_head(&req->comp_list, &ctx->iopoll_list);
1714 wq_list_add_tail(&req->comp_list, &ctx->iopoll_list);
1716 if (unlikely(needs_lock)) {
1718 * If IORING_SETUP_SQPOLL is enabled, sqes are either handle
1719 * in sq thread task context or in io worker task context. If
1720 * current task context is sq thread, we don't need to check
1721 * whether should wake up sq thread.
1723 if ((ctx->flags & IORING_SETUP_SQPOLL) &&
1724 wq_has_sleeper(&ctx->sq_data->wait))
1725 wake_up(&ctx->sq_data->wait);
1727 mutex_unlock(&ctx->uring_lock);
1731 unsigned int io_file_get_flags(struct file *file)
1733 unsigned int res = 0;
1735 if (S_ISREG(file_inode(file)->i_mode))
1737 if ((file->f_flags & O_NONBLOCK) || (file->f_mode & FMODE_NOWAIT))
1738 res |= REQ_F_SUPPORT_NOWAIT;
1742 bool io_alloc_async_data(struct io_kiocb *req)
1744 WARN_ON_ONCE(!io_cold_defs[req->opcode].async_size);
1745 req->async_data = kmalloc(io_cold_defs[req->opcode].async_size, GFP_KERNEL);
1746 if (req->async_data) {
1747 req->flags |= REQ_F_ASYNC_DATA;
1753 int io_req_prep_async(struct io_kiocb *req)
1755 const struct io_cold_def *cdef = &io_cold_defs[req->opcode];
1756 const struct io_issue_def *def = &io_issue_defs[req->opcode];
1758 /* assign early for deferred execution for non-fixed file */
1759 if (def->needs_file && !(req->flags & REQ_F_FIXED_FILE) && !req->file)
1760 req->file = io_file_get_normal(req, req->cqe.fd);
1761 if (!cdef->prep_async)
1763 if (WARN_ON_ONCE(req_has_async_data(req)))
1765 if (!def->manual_alloc) {
1766 if (io_alloc_async_data(req))
1769 return cdef->prep_async(req);
1772 static u32 io_get_sequence(struct io_kiocb *req)
1774 u32 seq = req->ctx->cached_sq_head;
1775 struct io_kiocb *cur;
1777 /* need original cached_sq_head, but it was increased for each req */
1778 io_for_each_link(cur, req)
1783 static __cold void io_drain_req(struct io_kiocb *req)
1784 __must_hold(&ctx->uring_lock)
1786 struct io_ring_ctx *ctx = req->ctx;
1787 struct io_defer_entry *de;
1789 u32 seq = io_get_sequence(req);
1791 /* Still need defer if there is pending req in defer list. */
1792 spin_lock(&ctx->completion_lock);
1793 if (!req_need_defer(req, seq) && list_empty_careful(&ctx->defer_list)) {
1794 spin_unlock(&ctx->completion_lock);
1796 ctx->drain_active = false;
1797 io_req_task_queue(req);
1800 spin_unlock(&ctx->completion_lock);
1802 io_prep_async_link(req);
1803 de = kmalloc(sizeof(*de), GFP_KERNEL);
1806 io_req_defer_failed(req, ret);
1810 spin_lock(&ctx->completion_lock);
1811 if (!req_need_defer(req, seq) && list_empty(&ctx->defer_list)) {
1812 spin_unlock(&ctx->completion_lock);
1817 trace_io_uring_defer(req);
1820 list_add_tail(&de->list, &ctx->defer_list);
1821 spin_unlock(&ctx->completion_lock);
1824 static bool io_assign_file(struct io_kiocb *req, const struct io_issue_def *def,
1825 unsigned int issue_flags)
1827 if (req->file || !def->needs_file)
1830 if (req->flags & REQ_F_FIXED_FILE)
1831 req->file = io_file_get_fixed(req, req->cqe.fd, issue_flags);
1833 req->file = io_file_get_normal(req, req->cqe.fd);
1838 static int io_issue_sqe(struct io_kiocb *req, unsigned int issue_flags)
1840 const struct io_issue_def *def = &io_issue_defs[req->opcode];
1841 const struct cred *creds = NULL;
1844 if (unlikely(!io_assign_file(req, def, issue_flags)))
1847 if (unlikely((req->flags & REQ_F_CREDS) && req->creds != current_cred()))
1848 creds = override_creds(req->creds);
1850 if (!def->audit_skip)
1851 audit_uring_entry(req->opcode);
1853 ret = def->issue(req, issue_flags);
1855 if (!def->audit_skip)
1856 audit_uring_exit(!ret, ret);
1859 revert_creds(creds);
1861 if (ret == IOU_OK) {
1862 if (issue_flags & IO_URING_F_COMPLETE_DEFER)
1863 io_req_complete_defer(req);
1865 io_req_complete_post(req, issue_flags);
1866 } else if (ret != IOU_ISSUE_SKIP_COMPLETE)
1869 /* If the op doesn't have a file, we're not polling for it */
1870 if ((req->ctx->flags & IORING_SETUP_IOPOLL) && def->iopoll_queue)
1871 io_iopoll_req_issued(req, issue_flags);
1876 int io_poll_issue(struct io_kiocb *req, struct io_tw_state *ts)
1878 io_tw_lock(req->ctx, ts);
1879 return io_issue_sqe(req, IO_URING_F_NONBLOCK|IO_URING_F_MULTISHOT|
1880 IO_URING_F_COMPLETE_DEFER);
1883 struct io_wq_work *io_wq_free_work(struct io_wq_work *work)
1885 struct io_kiocb *req = container_of(work, struct io_kiocb, work);
1886 struct io_kiocb *nxt = NULL;
1888 if (req_ref_put_and_test(req)) {
1889 if (req->flags & IO_REQ_LINK_FLAGS)
1890 nxt = io_req_find_next(req);
1893 return nxt ? &nxt->work : NULL;
1896 void io_wq_submit_work(struct io_wq_work *work)
1898 struct io_kiocb *req = container_of(work, struct io_kiocb, work);
1899 const struct io_issue_def *def = &io_issue_defs[req->opcode];
1900 unsigned int issue_flags = IO_URING_F_UNLOCKED | IO_URING_F_IOWQ;
1901 bool needs_poll = false;
1902 int ret = 0, err = -ECANCELED;
1904 /* one will be dropped by ->io_wq_free_work() after returning to io-wq */
1905 if (!(req->flags & REQ_F_REFCOUNT))
1906 __io_req_set_refcount(req, 2);
1910 io_arm_ltimeout(req);
1912 /* either cancelled or io-wq is dying, so don't touch tctx->iowq */
1913 if (work->flags & IO_WQ_WORK_CANCEL) {
1915 io_req_task_queue_fail(req, err);
1918 if (!io_assign_file(req, def, issue_flags)) {
1920 work->flags |= IO_WQ_WORK_CANCEL;
1924 if (req->flags & REQ_F_FORCE_ASYNC) {
1925 bool opcode_poll = def->pollin || def->pollout;
1927 if (opcode_poll && file_can_poll(req->file)) {
1929 issue_flags |= IO_URING_F_NONBLOCK;
1934 ret = io_issue_sqe(req, issue_flags);
1939 * If REQ_F_NOWAIT is set, then don't wait or retry with
1940 * poll. -EAGAIN is final for that case.
1942 if (req->flags & REQ_F_NOWAIT)
1946 * We can get EAGAIN for iopolled IO even though we're
1947 * forcing a sync submission from here, since we can't
1948 * wait for request slots on the block side.
1951 if (!(req->ctx->flags & IORING_SETUP_IOPOLL))
1957 if (io_arm_poll_handler(req, issue_flags) == IO_APOLL_OK)
1959 /* aborted or ready, in either case retry blocking */
1961 issue_flags &= ~IO_URING_F_NONBLOCK;
1964 /* avoid locking problems by failing it from a clean context */
1966 io_req_task_queue_fail(req, ret);
1969 inline struct file *io_file_get_fixed(struct io_kiocb *req, int fd,
1970 unsigned int issue_flags)
1972 struct io_ring_ctx *ctx = req->ctx;
1973 struct io_fixed_file *slot;
1974 struct file *file = NULL;
1976 io_ring_submit_lock(ctx, issue_flags);
1978 if (unlikely((unsigned int)fd >= ctx->nr_user_files))
1980 fd = array_index_nospec(fd, ctx->nr_user_files);
1981 slot = io_fixed_file_slot(&ctx->file_table, fd);
1982 file = io_slot_file(slot);
1983 req->flags |= io_slot_flags(slot);
1984 io_req_set_rsrc_node(req, ctx, 0);
1986 io_ring_submit_unlock(ctx, issue_flags);
1990 struct file *io_file_get_normal(struct io_kiocb *req, int fd)
1992 struct file *file = fget(fd);
1994 trace_io_uring_file_get(req, fd);
1996 /* we don't allow fixed io_uring files */
1997 if (file && io_is_uring_fops(file))
1998 io_req_track_inflight(req);
2002 static void io_queue_async(struct io_kiocb *req, int ret)
2003 __must_hold(&req->ctx->uring_lock)
2005 struct io_kiocb *linked_timeout;
2007 if (ret != -EAGAIN || (req->flags & REQ_F_NOWAIT)) {
2008 io_req_defer_failed(req, ret);
2012 linked_timeout = io_prep_linked_timeout(req);
2014 switch (io_arm_poll_handler(req, 0)) {
2015 case IO_APOLL_READY:
2016 io_kbuf_recycle(req, 0);
2017 io_req_task_queue(req);
2019 case IO_APOLL_ABORTED:
2020 io_kbuf_recycle(req, 0);
2021 io_queue_iowq(req, NULL);
2028 io_queue_linked_timeout(linked_timeout);
2031 static inline void io_queue_sqe(struct io_kiocb *req)
2032 __must_hold(&req->ctx->uring_lock)
2036 ret = io_issue_sqe(req, IO_URING_F_NONBLOCK|IO_URING_F_COMPLETE_DEFER);
2039 * We async punt it if the file wasn't marked NOWAIT, or if the file
2040 * doesn't support non-blocking read/write attempts
2043 io_arm_ltimeout(req);
2045 io_queue_async(req, ret);
2048 static void io_queue_sqe_fallback(struct io_kiocb *req)
2049 __must_hold(&req->ctx->uring_lock)
2051 if (unlikely(req->flags & REQ_F_FAIL)) {
2053 * We don't submit, fail them all, for that replace hardlinks
2054 * with normal links. Extra REQ_F_LINK is tolerated.
2056 req->flags &= ~REQ_F_HARDLINK;
2057 req->flags |= REQ_F_LINK;
2058 io_req_defer_failed(req, req->cqe.res);
2060 int ret = io_req_prep_async(req);
2062 if (unlikely(ret)) {
2063 io_req_defer_failed(req, ret);
2067 if (unlikely(req->ctx->drain_active))
2070 io_queue_iowq(req, NULL);
2075 * Check SQE restrictions (opcode and flags).
2077 * Returns 'true' if SQE is allowed, 'false' otherwise.
2079 static inline bool io_check_restriction(struct io_ring_ctx *ctx,
2080 struct io_kiocb *req,
2081 unsigned int sqe_flags)
2083 if (!test_bit(req->opcode, ctx->restrictions.sqe_op))
2086 if ((sqe_flags & ctx->restrictions.sqe_flags_required) !=
2087 ctx->restrictions.sqe_flags_required)
2090 if (sqe_flags & ~(ctx->restrictions.sqe_flags_allowed |
2091 ctx->restrictions.sqe_flags_required))
2097 static void io_init_req_drain(struct io_kiocb *req)
2099 struct io_ring_ctx *ctx = req->ctx;
2100 struct io_kiocb *head = ctx->submit_state.link.head;
2102 ctx->drain_active = true;
2105 * If we need to drain a request in the middle of a link, drain
2106 * the head request and the next request/link after the current
2107 * link. Considering sequential execution of links,
2108 * REQ_F_IO_DRAIN will be maintained for every request of our
2111 head->flags |= REQ_F_IO_DRAIN | REQ_F_FORCE_ASYNC;
2112 ctx->drain_next = true;
2116 static int io_init_req(struct io_ring_ctx *ctx, struct io_kiocb *req,
2117 const struct io_uring_sqe *sqe)
2118 __must_hold(&ctx->uring_lock)
2120 const struct io_issue_def *def;
2121 unsigned int sqe_flags;
2125 /* req is partially pre-initialised, see io_preinit_req() */
2126 req->opcode = opcode = READ_ONCE(sqe->opcode);
2127 /* same numerical values with corresponding REQ_F_*, safe to copy */
2128 req->flags = sqe_flags = READ_ONCE(sqe->flags);
2129 req->cqe.user_data = READ_ONCE(sqe->user_data);
2131 req->rsrc_node = NULL;
2132 req->task = current;
2134 if (unlikely(opcode >= IORING_OP_LAST)) {
2138 def = &io_issue_defs[opcode];
2139 if (unlikely(sqe_flags & ~SQE_COMMON_FLAGS)) {
2140 /* enforce forwards compatibility on users */
2141 if (sqe_flags & ~SQE_VALID_FLAGS)
2143 if (sqe_flags & IOSQE_BUFFER_SELECT) {
2144 if (!def->buffer_select)
2146 req->buf_index = READ_ONCE(sqe->buf_group);
2148 if (sqe_flags & IOSQE_CQE_SKIP_SUCCESS)
2149 ctx->drain_disabled = true;
2150 if (sqe_flags & IOSQE_IO_DRAIN) {
2151 if (ctx->drain_disabled)
2153 io_init_req_drain(req);
2156 if (unlikely(ctx->restricted || ctx->drain_active || ctx->drain_next)) {
2157 if (ctx->restricted && !io_check_restriction(ctx, req, sqe_flags))
2159 /* knock it to the slow queue path, will be drained there */
2160 if (ctx->drain_active)
2161 req->flags |= REQ_F_FORCE_ASYNC;
2162 /* if there is no link, we're at "next" request and need to drain */
2163 if (unlikely(ctx->drain_next) && !ctx->submit_state.link.head) {
2164 ctx->drain_next = false;
2165 ctx->drain_active = true;
2166 req->flags |= REQ_F_IO_DRAIN | REQ_F_FORCE_ASYNC;
2170 if (!def->ioprio && sqe->ioprio)
2172 if (!def->iopoll && (ctx->flags & IORING_SETUP_IOPOLL))
2175 if (def->needs_file) {
2176 struct io_submit_state *state = &ctx->submit_state;
2178 req->cqe.fd = READ_ONCE(sqe->fd);
2181 * Plug now if we have more than 2 IO left after this, and the
2182 * target is potentially a read/write to block based storage.
2184 if (state->need_plug && def->plug) {
2185 state->plug_started = true;
2186 state->need_plug = false;
2187 blk_start_plug_nr_ios(&state->plug, state->submit_nr);
2191 personality = READ_ONCE(sqe->personality);
2195 req->creds = xa_load(&ctx->personalities, personality);
2198 get_cred(req->creds);
2199 ret = security_uring_override_creds(req->creds);
2201 put_cred(req->creds);
2204 req->flags |= REQ_F_CREDS;
2207 return def->prep(req, sqe);
2210 static __cold int io_submit_fail_init(const struct io_uring_sqe *sqe,
2211 struct io_kiocb *req, int ret)
2213 struct io_ring_ctx *ctx = req->ctx;
2214 struct io_submit_link *link = &ctx->submit_state.link;
2215 struct io_kiocb *head = link->head;
2217 trace_io_uring_req_failed(sqe, req, ret);
2220 * Avoid breaking links in the middle as it renders links with SQPOLL
2221 * unusable. Instead of failing eagerly, continue assembling the link if
2222 * applicable and mark the head with REQ_F_FAIL. The link flushing code
2223 * should find the flag and handle the rest.
2225 req_fail_link_node(req, ret);
2226 if (head && !(head->flags & REQ_F_FAIL))
2227 req_fail_link_node(head, -ECANCELED);
2229 if (!(req->flags & IO_REQ_LINK_FLAGS)) {
2231 link->last->link = req;
2235 io_queue_sqe_fallback(req);
2240 link->last->link = req;
2247 static inline int io_submit_sqe(struct io_ring_ctx *ctx, struct io_kiocb *req,
2248 const struct io_uring_sqe *sqe)
2249 __must_hold(&ctx->uring_lock)
2251 struct io_submit_link *link = &ctx->submit_state.link;
2254 ret = io_init_req(ctx, req, sqe);
2256 return io_submit_fail_init(sqe, req, ret);
2258 trace_io_uring_submit_req(req);
2261 * If we already have a head request, queue this one for async
2262 * submittal once the head completes. If we don't have a head but
2263 * IOSQE_IO_LINK is set in the sqe, start a new head. This one will be
2264 * submitted sync once the chain is complete. If none of those
2265 * conditions are true (normal request), then just queue it.
2267 if (unlikely(link->head)) {
2268 ret = io_req_prep_async(req);
2270 return io_submit_fail_init(sqe, req, ret);
2272 trace_io_uring_link(req, link->head);
2273 link->last->link = req;
2276 if (req->flags & IO_REQ_LINK_FLAGS)
2278 /* last request of the link, flush it */
2281 if (req->flags & (REQ_F_FORCE_ASYNC | REQ_F_FAIL))
2284 } else if (unlikely(req->flags & (IO_REQ_LINK_FLAGS |
2285 REQ_F_FORCE_ASYNC | REQ_F_FAIL))) {
2286 if (req->flags & IO_REQ_LINK_FLAGS) {
2291 io_queue_sqe_fallback(req);
2301 * Batched submission is done, ensure local IO is flushed out.
2303 static void io_submit_state_end(struct io_ring_ctx *ctx)
2305 struct io_submit_state *state = &ctx->submit_state;
2307 if (unlikely(state->link.head))
2308 io_queue_sqe_fallback(state->link.head);
2309 /* flush only after queuing links as they can generate completions */
2310 io_submit_flush_completions(ctx);
2311 if (state->plug_started)
2312 blk_finish_plug(&state->plug);
2316 * Start submission side cache.
2318 static void io_submit_state_start(struct io_submit_state *state,
2319 unsigned int max_ios)
2321 state->plug_started = false;
2322 state->need_plug = max_ios > 2;
2323 state->submit_nr = max_ios;
2324 /* set only head, no need to init link_last in advance */
2325 state->link.head = NULL;
2328 static void io_commit_sqring(struct io_ring_ctx *ctx)
2330 struct io_rings *rings = ctx->rings;
2333 * Ensure any loads from the SQEs are done at this point,
2334 * since once we write the new head, the application could
2335 * write new data to them.
2337 smp_store_release(&rings->sq.head, ctx->cached_sq_head);
2341 * Fetch an sqe, if one is available. Note this returns a pointer to memory
2342 * that is mapped by userspace. This means that care needs to be taken to
2343 * ensure that reads are stable, as we cannot rely on userspace always
2344 * being a good citizen. If members of the sqe are validated and then later
2345 * used, it's important that those reads are done through READ_ONCE() to
2346 * prevent a re-load down the line.
2348 static bool io_get_sqe(struct io_ring_ctx *ctx, const struct io_uring_sqe **sqe)
2350 unsigned mask = ctx->sq_entries - 1;
2351 unsigned head = ctx->cached_sq_head++ & mask;
2353 if (!(ctx->flags & IORING_SETUP_NO_SQARRAY)) {
2354 head = READ_ONCE(ctx->sq_array[head]);
2355 if (unlikely(head >= ctx->sq_entries)) {
2356 /* drop invalid entries */
2357 spin_lock(&ctx->completion_lock);
2359 spin_unlock(&ctx->completion_lock);
2360 WRITE_ONCE(ctx->rings->sq_dropped,
2361 READ_ONCE(ctx->rings->sq_dropped) + 1);
2367 * The cached sq head (or cq tail) serves two purposes:
2369 * 1) allows us to batch the cost of updating the user visible
2371 * 2) allows the kernel side to track the head on its own, even
2372 * though the application is the one updating it.
2375 /* double index for 128-byte SQEs, twice as long */
2376 if (ctx->flags & IORING_SETUP_SQE128)
2378 *sqe = &ctx->sq_sqes[head];
2382 int io_submit_sqes(struct io_ring_ctx *ctx, unsigned int nr)
2383 __must_hold(&ctx->uring_lock)
2385 unsigned int entries = io_sqring_entries(ctx);
2389 if (unlikely(!entries))
2391 /* make sure SQ entry isn't read before tail */
2392 ret = left = min(nr, entries);
2393 io_get_task_refs(left);
2394 io_submit_state_start(&ctx->submit_state, left);
2397 const struct io_uring_sqe *sqe;
2398 struct io_kiocb *req;
2400 if (unlikely(!io_alloc_req(ctx, &req)))
2402 if (unlikely(!io_get_sqe(ctx, &sqe))) {
2403 io_req_add_to_cache(req, ctx);
2408 * Continue submitting even for sqe failure if the
2409 * ring was setup with IORING_SETUP_SUBMIT_ALL
2411 if (unlikely(io_submit_sqe(ctx, req, sqe)) &&
2412 !(ctx->flags & IORING_SETUP_SUBMIT_ALL)) {
2418 if (unlikely(left)) {
2420 /* try again if it submitted nothing and can't allocate a req */
2421 if (!ret && io_req_cache_empty(ctx))
2423 current->io_uring->cached_refs += left;
2426 io_submit_state_end(ctx);
2427 /* Commit SQ ring head once we've consumed and submitted all SQEs */
2428 io_commit_sqring(ctx);
2432 struct io_wait_queue {
2433 struct wait_queue_entry wq;
2434 struct io_ring_ctx *ctx;
2436 unsigned nr_timeouts;
2440 static inline bool io_has_work(struct io_ring_ctx *ctx)
2442 return test_bit(IO_CHECK_CQ_OVERFLOW_BIT, &ctx->check_cq) ||
2443 !llist_empty(&ctx->work_llist);
2446 static inline bool io_should_wake(struct io_wait_queue *iowq)
2448 struct io_ring_ctx *ctx = iowq->ctx;
2449 int dist = READ_ONCE(ctx->rings->cq.tail) - (int) iowq->cq_tail;
2452 * Wake up if we have enough events, or if a timeout occurred since we
2453 * started waiting. For timeouts, we always want to return to userspace,
2454 * regardless of event count.
2456 return dist >= 0 || atomic_read(&ctx->cq_timeouts) != iowq->nr_timeouts;
2459 static int io_wake_function(struct wait_queue_entry *curr, unsigned int mode,
2460 int wake_flags, void *key)
2462 struct io_wait_queue *iowq = container_of(curr, struct io_wait_queue, wq);
2465 * Cannot safely flush overflowed CQEs from here, ensure we wake up
2466 * the task, and the next invocation will do it.
2468 if (io_should_wake(iowq) || io_has_work(iowq->ctx))
2469 return autoremove_wake_function(curr, mode, wake_flags, key);
2473 int io_run_task_work_sig(struct io_ring_ctx *ctx)
2475 if (!llist_empty(&ctx->work_llist)) {
2476 __set_current_state(TASK_RUNNING);
2477 if (io_run_local_work(ctx) > 0)
2480 if (io_run_task_work() > 0)
2482 if (task_sigpending(current))
2487 static bool current_pending_io(void)
2489 struct io_uring_task *tctx = current->io_uring;
2493 return percpu_counter_read_positive(&tctx->inflight);
2496 /* when returns >0, the caller should retry */
2497 static inline int io_cqring_wait_schedule(struct io_ring_ctx *ctx,
2498 struct io_wait_queue *iowq)
2502 if (unlikely(READ_ONCE(ctx->check_cq)))
2504 if (unlikely(!llist_empty(&ctx->work_llist)))
2506 if (unlikely(test_thread_flag(TIF_NOTIFY_SIGNAL)))
2508 if (unlikely(task_sigpending(current)))
2510 if (unlikely(io_should_wake(iowq)))
2514 * Mark us as being in io_wait if we have pending requests, so cpufreq
2515 * can take into account that the task is waiting for IO - turns out
2516 * to be important for low QD IO.
2518 io_wait = current->in_iowait;
2519 if (current_pending_io())
2520 current->in_iowait = 1;
2522 if (iowq->timeout == KTIME_MAX)
2524 else if (!schedule_hrtimeout(&iowq->timeout, HRTIMER_MODE_ABS))
2526 current->in_iowait = io_wait;
2531 * Wait until events become available, if we don't already have some. The
2532 * application must reap them itself, as they reside on the shared cq ring.
2534 static int io_cqring_wait(struct io_ring_ctx *ctx, int min_events,
2535 const sigset_t __user *sig, size_t sigsz,
2536 struct __kernel_timespec __user *uts)
2538 struct io_wait_queue iowq;
2539 struct io_rings *rings = ctx->rings;
2542 if (!io_allowed_run_tw(ctx))
2544 if (!llist_empty(&ctx->work_llist))
2545 io_run_local_work(ctx);
2547 io_cqring_overflow_flush(ctx);
2548 /* if user messes with these they will just get an early return */
2549 if (__io_cqring_events_user(ctx) >= min_events)
2553 #ifdef CONFIG_COMPAT
2554 if (in_compat_syscall())
2555 ret = set_compat_user_sigmask((const compat_sigset_t __user *)sig,
2559 ret = set_user_sigmask(sig, sigsz);
2565 init_waitqueue_func_entry(&iowq.wq, io_wake_function);
2566 iowq.wq.private = current;
2567 INIT_LIST_HEAD(&iowq.wq.entry);
2569 iowq.nr_timeouts = atomic_read(&ctx->cq_timeouts);
2570 iowq.cq_tail = READ_ONCE(ctx->rings->cq.head) + min_events;
2571 iowq.timeout = KTIME_MAX;
2574 struct timespec64 ts;
2576 if (get_timespec64(&ts, uts))
2578 iowq.timeout = ktime_add_ns(timespec64_to_ktime(ts), ktime_get_ns());
2581 trace_io_uring_cqring_wait(ctx, min_events);
2583 unsigned long check_cq;
2585 if (ctx->flags & IORING_SETUP_DEFER_TASKRUN) {
2586 int nr_wait = (int) iowq.cq_tail - READ_ONCE(ctx->rings->cq.tail);
2588 atomic_set(&ctx->cq_wait_nr, nr_wait);
2589 set_current_state(TASK_INTERRUPTIBLE);
2591 prepare_to_wait_exclusive(&ctx->cq_wait, &iowq.wq,
2592 TASK_INTERRUPTIBLE);
2595 ret = io_cqring_wait_schedule(ctx, &iowq);
2596 __set_current_state(TASK_RUNNING);
2597 atomic_set(&ctx->cq_wait_nr, 0);
2602 * Run task_work after scheduling and before io_should_wake().
2603 * If we got woken because of task_work being processed, run it
2604 * now rather than let the caller do another wait loop.
2607 if (!llist_empty(&ctx->work_llist))
2608 io_run_local_work(ctx);
2610 check_cq = READ_ONCE(ctx->check_cq);
2611 if (unlikely(check_cq)) {
2612 /* let the caller flush overflows, retry */
2613 if (check_cq & BIT(IO_CHECK_CQ_OVERFLOW_BIT))
2614 io_cqring_do_overflow_flush(ctx);
2615 if (check_cq & BIT(IO_CHECK_CQ_DROPPED_BIT)) {
2621 if (io_should_wake(&iowq)) {
2628 if (!(ctx->flags & IORING_SETUP_DEFER_TASKRUN))
2629 finish_wait(&ctx->cq_wait, &iowq.wq);
2630 restore_saved_sigmask_unless(ret == -EINTR);
2632 return READ_ONCE(rings->cq.head) == READ_ONCE(rings->cq.tail) ? ret : 0;
2635 static void io_mem_free(void *ptr)
2640 folio_put(virt_to_folio(ptr));
2643 static void io_pages_free(struct page ***pages, int npages)
2645 struct page **page_array;
2650 page_array = *pages;
2651 for (i = 0; i < npages; i++)
2652 unpin_user_page(page_array[i]);
2657 static void *__io_uaddr_map(struct page ***pages, unsigned short *npages,
2658 unsigned long uaddr, size_t size)
2660 struct page **page_array;
2661 unsigned int nr_pages;
2666 if (uaddr & (PAGE_SIZE - 1) || !size)
2667 return ERR_PTR(-EINVAL);
2669 nr_pages = (size + PAGE_SIZE - 1) >> PAGE_SHIFT;
2670 if (nr_pages > USHRT_MAX)
2671 return ERR_PTR(-EINVAL);
2672 page_array = kvmalloc_array(nr_pages, sizeof(struct page *), GFP_KERNEL);
2674 return ERR_PTR(-ENOMEM);
2676 ret = pin_user_pages_fast(uaddr, nr_pages, FOLL_WRITE | FOLL_LONGTERM,
2678 if (ret != nr_pages) {
2680 io_pages_free(&page_array, ret > 0 ? ret : 0);
2681 return ret < 0 ? ERR_PTR(ret) : ERR_PTR(-EFAULT);
2684 * Should be a single page. If the ring is small enough that we can
2685 * use a normal page, that is fine. If we need multiple pages, then
2686 * userspace should use a huge page. That's the only way to guarantee
2687 * that we get contigious memory, outside of just being lucky or
2688 * (currently) having low memory fragmentation.
2690 if (page_array[0] != page_array[ret - 1])
2692 *pages = page_array;
2694 return page_to_virt(page_array[0]);
2697 static void *io_rings_map(struct io_ring_ctx *ctx, unsigned long uaddr,
2700 return __io_uaddr_map(&ctx->ring_pages, &ctx->n_ring_pages, uaddr,
2704 static void *io_sqes_map(struct io_ring_ctx *ctx, unsigned long uaddr,
2707 return __io_uaddr_map(&ctx->sqe_pages, &ctx->n_sqe_pages, uaddr,
2711 static void io_rings_free(struct io_ring_ctx *ctx)
2713 if (!(ctx->flags & IORING_SETUP_NO_MMAP)) {
2714 io_mem_free(ctx->rings);
2715 io_mem_free(ctx->sq_sqes);
2717 ctx->sq_sqes = NULL;
2719 io_pages_free(&ctx->ring_pages, ctx->n_ring_pages);
2720 io_pages_free(&ctx->sqe_pages, ctx->n_sqe_pages);
2724 static void *io_mem_alloc(size_t size)
2726 gfp_t gfp = GFP_KERNEL_ACCOUNT | __GFP_ZERO | __GFP_NOWARN | __GFP_COMP;
2729 ret = (void *) __get_free_pages(gfp, get_order(size));
2732 return ERR_PTR(-ENOMEM);
2735 static unsigned long rings_size(struct io_ring_ctx *ctx, unsigned int sq_entries,
2736 unsigned int cq_entries, size_t *sq_offset)
2738 struct io_rings *rings;
2739 size_t off, sq_array_size;
2741 off = struct_size(rings, cqes, cq_entries);
2742 if (off == SIZE_MAX)
2744 if (ctx->flags & IORING_SETUP_CQE32) {
2745 if (check_shl_overflow(off, 1, &off))
2750 off = ALIGN(off, SMP_CACHE_BYTES);
2755 if (ctx->flags & IORING_SETUP_NO_SQARRAY) {
2757 *sq_offset = SIZE_MAX;
2764 sq_array_size = array_size(sizeof(u32), sq_entries);
2765 if (sq_array_size == SIZE_MAX)
2768 if (check_add_overflow(off, sq_array_size, &off))
2774 static int io_eventfd_register(struct io_ring_ctx *ctx, void __user *arg,
2775 unsigned int eventfd_async)
2777 struct io_ev_fd *ev_fd;
2778 __s32 __user *fds = arg;
2781 ev_fd = rcu_dereference_protected(ctx->io_ev_fd,
2782 lockdep_is_held(&ctx->uring_lock));
2786 if (copy_from_user(&fd, fds, sizeof(*fds)))
2789 ev_fd = kmalloc(sizeof(*ev_fd), GFP_KERNEL);
2793 ev_fd->cq_ev_fd = eventfd_ctx_fdget(fd);
2794 if (IS_ERR(ev_fd->cq_ev_fd)) {
2795 int ret = PTR_ERR(ev_fd->cq_ev_fd);
2800 spin_lock(&ctx->completion_lock);
2801 ctx->evfd_last_cq_tail = ctx->cached_cq_tail;
2802 spin_unlock(&ctx->completion_lock);
2804 ev_fd->eventfd_async = eventfd_async;
2805 ctx->has_evfd = true;
2806 rcu_assign_pointer(ctx->io_ev_fd, ev_fd);
2807 atomic_set(&ev_fd->refs, 1);
2808 atomic_set(&ev_fd->ops, 0);
2812 static int io_eventfd_unregister(struct io_ring_ctx *ctx)
2814 struct io_ev_fd *ev_fd;
2816 ev_fd = rcu_dereference_protected(ctx->io_ev_fd,
2817 lockdep_is_held(&ctx->uring_lock));
2819 ctx->has_evfd = false;
2820 rcu_assign_pointer(ctx->io_ev_fd, NULL);
2821 if (!atomic_fetch_or(BIT(IO_EVENTFD_OP_FREE_BIT), &ev_fd->ops))
2822 call_rcu(&ev_fd->rcu, io_eventfd_ops);
2829 static void io_req_caches_free(struct io_ring_ctx *ctx)
2831 struct io_kiocb *req;
2834 mutex_lock(&ctx->uring_lock);
2835 io_flush_cached_locked_reqs(ctx, &ctx->submit_state);
2837 while (!io_req_cache_empty(ctx)) {
2838 req = io_extract_req(ctx);
2839 kmem_cache_free(req_cachep, req);
2843 percpu_ref_put_many(&ctx->refs, nr);
2844 mutex_unlock(&ctx->uring_lock);
2847 static void io_rsrc_node_cache_free(struct io_cache_entry *entry)
2849 kfree(container_of(entry, struct io_rsrc_node, cache));
2852 static __cold void io_ring_ctx_free(struct io_ring_ctx *ctx)
2854 io_sq_thread_finish(ctx);
2855 /* __io_rsrc_put_work() may need uring_lock to progress, wait w/o it */
2856 if (WARN_ON_ONCE(!list_empty(&ctx->rsrc_ref_list)))
2859 mutex_lock(&ctx->uring_lock);
2861 __io_sqe_buffers_unregister(ctx);
2863 __io_sqe_files_unregister(ctx);
2864 io_cqring_overflow_kill(ctx);
2865 io_eventfd_unregister(ctx);
2866 io_alloc_cache_free(&ctx->apoll_cache, io_apoll_cache_free);
2867 io_alloc_cache_free(&ctx->netmsg_cache, io_netmsg_cache_free);
2868 io_destroy_buffers(ctx);
2869 mutex_unlock(&ctx->uring_lock);
2871 put_cred(ctx->sq_creds);
2872 if (ctx->submitter_task)
2873 put_task_struct(ctx->submitter_task);
2875 /* there are no registered resources left, nobody uses it */
2877 io_rsrc_node_destroy(ctx, ctx->rsrc_node);
2879 WARN_ON_ONCE(!list_empty(&ctx->rsrc_ref_list));
2881 #if defined(CONFIG_UNIX)
2882 if (ctx->ring_sock) {
2883 ctx->ring_sock->file = NULL; /* so that iput() is called */
2884 sock_release(ctx->ring_sock);
2887 WARN_ON_ONCE(!list_empty(&ctx->ltimeout_list));
2889 io_alloc_cache_free(&ctx->rsrc_node_cache, io_rsrc_node_cache_free);
2890 if (ctx->mm_account) {
2891 mmdrop(ctx->mm_account);
2892 ctx->mm_account = NULL;
2896 percpu_ref_exit(&ctx->refs);
2897 free_uid(ctx->user);
2898 io_req_caches_free(ctx);
2900 io_wq_put_hash(ctx->hash_map);
2901 kfree(ctx->cancel_table.hbs);
2902 kfree(ctx->cancel_table_locked.hbs);
2904 xa_destroy(&ctx->io_bl_xa);
2908 static __cold void io_activate_pollwq_cb(struct callback_head *cb)
2910 struct io_ring_ctx *ctx = container_of(cb, struct io_ring_ctx,
2913 mutex_lock(&ctx->uring_lock);
2914 ctx->poll_activated = true;
2915 mutex_unlock(&ctx->uring_lock);
2918 * Wake ups for some events between start of polling and activation
2919 * might've been lost due to loose synchronisation.
2921 wake_up_all(&ctx->poll_wq);
2922 percpu_ref_put(&ctx->refs);
2925 static __cold void io_activate_pollwq(struct io_ring_ctx *ctx)
2927 spin_lock(&ctx->completion_lock);
2928 /* already activated or in progress */
2929 if (ctx->poll_activated || ctx->poll_wq_task_work.func)
2931 if (WARN_ON_ONCE(!ctx->task_complete))
2933 if (!ctx->submitter_task)
2936 * with ->submitter_task only the submitter task completes requests, we
2937 * only need to sync with it, which is done by injecting a tw
2939 init_task_work(&ctx->poll_wq_task_work, io_activate_pollwq_cb);
2940 percpu_ref_get(&ctx->refs);
2941 if (task_work_add(ctx->submitter_task, &ctx->poll_wq_task_work, TWA_SIGNAL))
2942 percpu_ref_put(&ctx->refs);
2944 spin_unlock(&ctx->completion_lock);
2947 static __poll_t io_uring_poll(struct file *file, poll_table *wait)
2949 struct io_ring_ctx *ctx = file->private_data;
2952 if (unlikely(!ctx->poll_activated))
2953 io_activate_pollwq(ctx);
2955 poll_wait(file, &ctx->poll_wq, wait);
2957 * synchronizes with barrier from wq_has_sleeper call in
2961 if (!io_sqring_full(ctx))
2962 mask |= EPOLLOUT | EPOLLWRNORM;
2965 * Don't flush cqring overflow list here, just do a simple check.
2966 * Otherwise there could possible be ABBA deadlock:
2969 * lock(&ctx->uring_lock);
2971 * lock(&ctx->uring_lock);
2974 * Users may get EPOLLIN meanwhile seeing nothing in cqring, this
2975 * pushes them to do the flush.
2978 if (__io_cqring_events_user(ctx) || io_has_work(ctx))
2979 mask |= EPOLLIN | EPOLLRDNORM;
2984 static int io_unregister_personality(struct io_ring_ctx *ctx, unsigned id)
2986 const struct cred *creds;
2988 creds = xa_erase(&ctx->personalities, id);
2997 struct io_tctx_exit {
2998 struct callback_head task_work;
2999 struct completion completion;
3000 struct io_ring_ctx *ctx;
3003 static __cold void io_tctx_exit_cb(struct callback_head *cb)
3005 struct io_uring_task *tctx = current->io_uring;
3006 struct io_tctx_exit *work;
3008 work = container_of(cb, struct io_tctx_exit, task_work);
3010 * When @in_cancel, we're in cancellation and it's racy to remove the
3011 * node. It'll be removed by the end of cancellation, just ignore it.
3012 * tctx can be NULL if the queueing of this task_work raced with
3013 * work cancelation off the exec path.
3015 if (tctx && !atomic_read(&tctx->in_cancel))
3016 io_uring_del_tctx_node((unsigned long)work->ctx);
3017 complete(&work->completion);
3020 static __cold bool io_cancel_ctx_cb(struct io_wq_work *work, void *data)
3022 struct io_kiocb *req = container_of(work, struct io_kiocb, work);
3024 return req->ctx == data;
3027 static __cold void io_ring_exit_work(struct work_struct *work)
3029 struct io_ring_ctx *ctx = container_of(work, struct io_ring_ctx, exit_work);
3030 unsigned long timeout = jiffies + HZ * 60 * 5;
3031 unsigned long interval = HZ / 20;
3032 struct io_tctx_exit exit;
3033 struct io_tctx_node *node;
3037 * If we're doing polled IO and end up having requests being
3038 * submitted async (out-of-line), then completions can come in while
3039 * we're waiting for refs to drop. We need to reap these manually,
3040 * as nobody else will be looking for them.
3043 if (test_bit(IO_CHECK_CQ_OVERFLOW_BIT, &ctx->check_cq)) {
3044 mutex_lock(&ctx->uring_lock);
3045 io_cqring_overflow_kill(ctx);
3046 mutex_unlock(&ctx->uring_lock);
3049 if (ctx->flags & IORING_SETUP_DEFER_TASKRUN)
3050 io_move_task_work_from_local(ctx);
3052 while (io_uring_try_cancel_requests(ctx, NULL, true))
3056 struct io_sq_data *sqd = ctx->sq_data;
3057 struct task_struct *tsk;
3059 io_sq_thread_park(sqd);
3061 if (tsk && tsk->io_uring && tsk->io_uring->io_wq)
3062 io_wq_cancel_cb(tsk->io_uring->io_wq,
3063 io_cancel_ctx_cb, ctx, true);
3064 io_sq_thread_unpark(sqd);
3067 io_req_caches_free(ctx);
3069 if (WARN_ON_ONCE(time_after(jiffies, timeout))) {
3070 /* there is little hope left, don't run it too often */
3074 * This is really an uninterruptible wait, as it has to be
3075 * complete. But it's also run from a kworker, which doesn't
3076 * take signals, so it's fine to make it interruptible. This
3077 * avoids scenarios where we knowingly can wait much longer
3078 * on completions, for example if someone does a SIGSTOP on
3079 * a task that needs to finish task_work to make this loop
3080 * complete. That's a synthetic situation that should not
3081 * cause a stuck task backtrace, and hence a potential panic
3082 * on stuck tasks if that is enabled.
3084 } while (!wait_for_completion_interruptible_timeout(&ctx->ref_comp, interval));
3086 init_completion(&exit.completion);
3087 init_task_work(&exit.task_work, io_tctx_exit_cb);
3090 * Some may use context even when all refs and requests have been put,
3091 * and they are free to do so while still holding uring_lock or
3092 * completion_lock, see io_req_task_submit(). Apart from other work,
3093 * this lock/unlock section also waits them to finish.
3095 mutex_lock(&ctx->uring_lock);
3096 while (!list_empty(&ctx->tctx_list)) {
3097 WARN_ON_ONCE(time_after(jiffies, timeout));
3099 node = list_first_entry(&ctx->tctx_list, struct io_tctx_node,
3101 /* don't spin on a single task if cancellation failed */
3102 list_rotate_left(&ctx->tctx_list);
3103 ret = task_work_add(node->task, &exit.task_work, TWA_SIGNAL);
3104 if (WARN_ON_ONCE(ret))
3107 mutex_unlock(&ctx->uring_lock);
3109 * See comment above for
3110 * wait_for_completion_interruptible_timeout() on why this
3111 * wait is marked as interruptible.
3113 wait_for_completion_interruptible(&exit.completion);
3114 mutex_lock(&ctx->uring_lock);
3116 mutex_unlock(&ctx->uring_lock);
3117 spin_lock(&ctx->completion_lock);
3118 spin_unlock(&ctx->completion_lock);
3120 /* pairs with RCU read section in io_req_local_work_add() */
3121 if (ctx->flags & IORING_SETUP_DEFER_TASKRUN)
3124 io_ring_ctx_free(ctx);
3127 static __cold void io_ring_ctx_wait_and_kill(struct io_ring_ctx *ctx)
3129 unsigned long index;
3130 struct creds *creds;
3132 mutex_lock(&ctx->uring_lock);
3133 percpu_ref_kill(&ctx->refs);
3134 xa_for_each(&ctx->personalities, index, creds)
3135 io_unregister_personality(ctx, index);
3137 io_poll_remove_all(ctx, NULL, true);
3138 mutex_unlock(&ctx->uring_lock);
3141 * If we failed setting up the ctx, we might not have any rings
3142 * and therefore did not submit any requests
3145 io_kill_timeouts(ctx, NULL, true);
3147 flush_delayed_work(&ctx->fallback_work);
3149 INIT_WORK(&ctx->exit_work, io_ring_exit_work);
3151 * Use system_unbound_wq to avoid spawning tons of event kworkers
3152 * if we're exiting a ton of rings at the same time. It just adds
3153 * noise and overhead, there's no discernable change in runtime
3154 * over using system_wq.
3156 queue_work(system_unbound_wq, &ctx->exit_work);
3159 static int io_uring_release(struct inode *inode, struct file *file)
3161 struct io_ring_ctx *ctx = file->private_data;
3163 file->private_data = NULL;
3164 io_ring_ctx_wait_and_kill(ctx);
3168 struct io_task_cancel {
3169 struct task_struct *task;
3173 static bool io_cancel_task_cb(struct io_wq_work *work, void *data)
3175 struct io_kiocb *req = container_of(work, struct io_kiocb, work);
3176 struct io_task_cancel *cancel = data;
3178 return io_match_task_safe(req, cancel->task, cancel->all);
3181 static __cold bool io_cancel_defer_files(struct io_ring_ctx *ctx,
3182 struct task_struct *task,
3185 struct io_defer_entry *de;
3188 spin_lock(&ctx->completion_lock);
3189 list_for_each_entry_reverse(de, &ctx->defer_list, list) {
3190 if (io_match_task_safe(de->req, task, cancel_all)) {
3191 list_cut_position(&list, &ctx->defer_list, &de->list);
3195 spin_unlock(&ctx->completion_lock);
3196 if (list_empty(&list))
3199 while (!list_empty(&list)) {
3200 de = list_first_entry(&list, struct io_defer_entry, list);
3201 list_del_init(&de->list);
3202 io_req_task_queue_fail(de->req, -ECANCELED);
3208 static __cold bool io_uring_try_cancel_iowq(struct io_ring_ctx *ctx)
3210 struct io_tctx_node *node;
3211 enum io_wq_cancel cret;
3214 mutex_lock(&ctx->uring_lock);
3215 list_for_each_entry(node, &ctx->tctx_list, ctx_node) {
3216 struct io_uring_task *tctx = node->task->io_uring;
3219 * io_wq will stay alive while we hold uring_lock, because it's
3220 * killed after ctx nodes, which requires to take the lock.
3222 if (!tctx || !tctx->io_wq)
3224 cret = io_wq_cancel_cb(tctx->io_wq, io_cancel_ctx_cb, ctx, true);
3225 ret |= (cret != IO_WQ_CANCEL_NOTFOUND);
3227 mutex_unlock(&ctx->uring_lock);
3232 static __cold bool io_uring_try_cancel_requests(struct io_ring_ctx *ctx,
3233 struct task_struct *task,
3236 struct io_task_cancel cancel = { .task = task, .all = cancel_all, };
3237 struct io_uring_task *tctx = task ? task->io_uring : NULL;
3238 enum io_wq_cancel cret;
3241 /* set it so io_req_local_work_add() would wake us up */
3242 if (ctx->flags & IORING_SETUP_DEFER_TASKRUN) {
3243 atomic_set(&ctx->cq_wait_nr, 1);
3247 /* failed during ring init, it couldn't have issued any requests */
3252 ret |= io_uring_try_cancel_iowq(ctx);
3253 } else if (tctx && tctx->io_wq) {
3255 * Cancels requests of all rings, not only @ctx, but
3256 * it's fine as the task is in exit/exec.
3258 cret = io_wq_cancel_cb(tctx->io_wq, io_cancel_task_cb,
3260 ret |= (cret != IO_WQ_CANCEL_NOTFOUND);
3263 /* SQPOLL thread does its own polling */
3264 if ((!(ctx->flags & IORING_SETUP_SQPOLL) && cancel_all) ||
3265 (ctx->sq_data && ctx->sq_data->thread == current)) {
3266 while (!wq_list_empty(&ctx->iopoll_list)) {
3267 io_iopoll_try_reap_events(ctx);
3273 if ((ctx->flags & IORING_SETUP_DEFER_TASKRUN) &&
3274 io_allowed_defer_tw_run(ctx))
3275 ret |= io_run_local_work(ctx) > 0;
3276 ret |= io_cancel_defer_files(ctx, task, cancel_all);
3277 mutex_lock(&ctx->uring_lock);
3278 ret |= io_poll_remove_all(ctx, task, cancel_all);
3279 mutex_unlock(&ctx->uring_lock);
3280 ret |= io_kill_timeouts(ctx, task, cancel_all);
3282 ret |= io_run_task_work() > 0;
3286 static s64 tctx_inflight(struct io_uring_task *tctx, bool tracked)
3289 return atomic_read(&tctx->inflight_tracked);
3290 return percpu_counter_sum(&tctx->inflight);
3294 * Find any io_uring ctx that this task has registered or done IO on, and cancel
3295 * requests. @sqd should be not-null IFF it's an SQPOLL thread cancellation.
3297 __cold void io_uring_cancel_generic(bool cancel_all, struct io_sq_data *sqd)
3299 struct io_uring_task *tctx = current->io_uring;
3300 struct io_ring_ctx *ctx;
3301 struct io_tctx_node *node;
3302 unsigned long index;
3306 WARN_ON_ONCE(sqd && sqd->thread != current);
3308 if (!current->io_uring)
3311 io_wq_exit_start(tctx->io_wq);
3313 atomic_inc(&tctx->in_cancel);
3317 io_uring_drop_tctx_refs(current);
3318 /* read completions before cancelations */
3319 inflight = tctx_inflight(tctx, !cancel_all);
3324 xa_for_each(&tctx->xa, index, node) {
3325 /* sqpoll task will cancel all its requests */
3326 if (node->ctx->sq_data)
3328 loop |= io_uring_try_cancel_requests(node->ctx,
3329 current, cancel_all);
3332 list_for_each_entry(ctx, &sqd->ctx_list, sqd_list)
3333 loop |= io_uring_try_cancel_requests(ctx,
3343 prepare_to_wait(&tctx->wait, &wait, TASK_INTERRUPTIBLE);
3345 io_uring_drop_tctx_refs(current);
3346 xa_for_each(&tctx->xa, index, node) {
3347 if (!llist_empty(&node->ctx->work_llist)) {
3348 WARN_ON_ONCE(node->ctx->submitter_task &&
3349 node->ctx->submitter_task != current);
3354 * If we've seen completions, retry without waiting. This
3355 * avoids a race where a completion comes in before we did
3356 * prepare_to_wait().
3358 if (inflight == tctx_inflight(tctx, !cancel_all))
3361 finish_wait(&tctx->wait, &wait);
3364 io_uring_clean_tctx(tctx);
3367 * We shouldn't run task_works after cancel, so just leave
3368 * ->in_cancel set for normal exit.
3370 atomic_dec(&tctx->in_cancel);
3371 /* for exec all current's requests should be gone, kill tctx */
3372 __io_uring_free(current);
3376 void __io_uring_cancel(bool cancel_all)
3378 io_uring_cancel_generic(cancel_all, NULL);
3381 static void *io_uring_validate_mmap_request(struct file *file,
3382 loff_t pgoff, size_t sz)
3384 struct io_ring_ctx *ctx = file->private_data;
3385 loff_t offset = pgoff << PAGE_SHIFT;
3389 /* Don't allow mmap if the ring was setup without it */
3390 if (ctx->flags & IORING_SETUP_NO_MMAP)
3391 return ERR_PTR(-EINVAL);
3393 switch (offset & IORING_OFF_MMAP_MASK) {
3394 case IORING_OFF_SQ_RING:
3395 case IORING_OFF_CQ_RING:
3398 case IORING_OFF_SQES:
3401 case IORING_OFF_PBUF_RING: {
3404 bgid = (offset & ~IORING_OFF_MMAP_MASK) >> IORING_OFF_PBUF_SHIFT;
3405 mutex_lock(&ctx->uring_lock);
3406 ptr = io_pbuf_get_address(ctx, bgid);
3407 mutex_unlock(&ctx->uring_lock);
3409 return ERR_PTR(-EINVAL);
3413 return ERR_PTR(-EINVAL);
3416 page = virt_to_head_page(ptr);
3417 if (sz > page_size(page))
3418 return ERR_PTR(-EINVAL);
3425 static __cold int io_uring_mmap(struct file *file, struct vm_area_struct *vma)
3427 size_t sz = vma->vm_end - vma->vm_start;
3431 ptr = io_uring_validate_mmap_request(file, vma->vm_pgoff, sz);
3433 return PTR_ERR(ptr);
3435 pfn = virt_to_phys(ptr) >> PAGE_SHIFT;
3436 return remap_pfn_range(vma, vma->vm_start, pfn, sz, vma->vm_page_prot);
3439 static unsigned long io_uring_mmu_get_unmapped_area(struct file *filp,
3440 unsigned long addr, unsigned long len,
3441 unsigned long pgoff, unsigned long flags)
3446 * Do not allow to map to user-provided address to avoid breaking the
3447 * aliasing rules. Userspace is not able to guess the offset address of
3448 * kernel kmalloc()ed memory area.
3453 ptr = io_uring_validate_mmap_request(filp, pgoff, len);
3458 * Some architectures have strong cache aliasing requirements.
3459 * For such architectures we need a coherent mapping which aliases
3460 * kernel memory *and* userspace memory. To achieve that:
3461 * - use a NULL file pointer to reference physical memory, and
3462 * - use the kernel virtual address of the shared io_uring context
3463 * (instead of the userspace-provided address, which has to be 0UL
3465 * - use the same pgoff which the get_unmapped_area() uses to
3466 * calculate the page colouring.
3467 * For architectures without such aliasing requirements, the
3468 * architecture will return any suitable mapping because addr is 0.
3471 flags |= MAP_SHARED;
3472 pgoff = 0; /* has been translated to ptr above */
3474 addr = (uintptr_t) ptr;
3475 pgoff = addr >> PAGE_SHIFT;
3479 return current->mm->get_unmapped_area(filp, addr, len, pgoff, flags);
3482 #else /* !CONFIG_MMU */
3484 static int io_uring_mmap(struct file *file, struct vm_area_struct *vma)
3486 return is_nommu_shared_mapping(vma->vm_flags) ? 0 : -EINVAL;
3489 static unsigned int io_uring_nommu_mmap_capabilities(struct file *file)
3491 return NOMMU_MAP_DIRECT | NOMMU_MAP_READ | NOMMU_MAP_WRITE;
3494 static unsigned long io_uring_nommu_get_unmapped_area(struct file *file,
3495 unsigned long addr, unsigned long len,
3496 unsigned long pgoff, unsigned long flags)
3500 ptr = io_uring_validate_mmap_request(file, pgoff, len);
3502 return PTR_ERR(ptr);
3504 return (unsigned long) ptr;
3507 #endif /* !CONFIG_MMU */
3509 static int io_validate_ext_arg(unsigned flags, const void __user *argp, size_t argsz)
3511 if (flags & IORING_ENTER_EXT_ARG) {
3512 struct io_uring_getevents_arg arg;
3514 if (argsz != sizeof(arg))
3516 if (copy_from_user(&arg, argp, sizeof(arg)))
3522 static int io_get_ext_arg(unsigned flags, const void __user *argp, size_t *argsz,
3523 struct __kernel_timespec __user **ts,
3524 const sigset_t __user **sig)
3526 struct io_uring_getevents_arg arg;
3529 * If EXT_ARG isn't set, then we have no timespec and the argp pointer
3530 * is just a pointer to the sigset_t.
3532 if (!(flags & IORING_ENTER_EXT_ARG)) {
3533 *sig = (const sigset_t __user *) argp;
3539 * EXT_ARG is set - ensure we agree on the size of it and copy in our
3540 * timespec and sigset_t pointers if good.
3542 if (*argsz != sizeof(arg))
3544 if (copy_from_user(&arg, argp, sizeof(arg)))
3548 *sig = u64_to_user_ptr(arg.sigmask);
3549 *argsz = arg.sigmask_sz;
3550 *ts = u64_to_user_ptr(arg.ts);
3554 SYSCALL_DEFINE6(io_uring_enter, unsigned int, fd, u32, to_submit,
3555 u32, min_complete, u32, flags, const void __user *, argp,
3558 struct io_ring_ctx *ctx;
3562 if (unlikely(flags & ~(IORING_ENTER_GETEVENTS | IORING_ENTER_SQ_WAKEUP |
3563 IORING_ENTER_SQ_WAIT | IORING_ENTER_EXT_ARG |
3564 IORING_ENTER_REGISTERED_RING)))
3568 * Ring fd has been registered via IORING_REGISTER_RING_FDS, we
3569 * need only dereference our task private array to find it.
3571 if (flags & IORING_ENTER_REGISTERED_RING) {
3572 struct io_uring_task *tctx = current->io_uring;
3574 if (unlikely(!tctx || fd >= IO_RINGFD_REG_MAX))
3576 fd = array_index_nospec(fd, IO_RINGFD_REG_MAX);
3577 f.file = tctx->registered_rings[fd];
3579 if (unlikely(!f.file))
3583 if (unlikely(!f.file))
3586 if (unlikely(!io_is_uring_fops(f.file)))
3590 ctx = f.file->private_data;
3592 if (unlikely(ctx->flags & IORING_SETUP_R_DISABLED))
3596 * For SQ polling, the thread will do all submissions and completions.
3597 * Just return the requested submit count, and wake the thread if
3601 if (ctx->flags & IORING_SETUP_SQPOLL) {
3602 io_cqring_overflow_flush(ctx);
3604 if (unlikely(ctx->sq_data->thread == NULL)) {
3608 if (flags & IORING_ENTER_SQ_WAKEUP)
3609 wake_up(&ctx->sq_data->wait);
3610 if (flags & IORING_ENTER_SQ_WAIT)
3611 io_sqpoll_wait_sq(ctx);
3614 } else if (to_submit) {
3615 ret = io_uring_add_tctx_node(ctx);
3619 mutex_lock(&ctx->uring_lock);
3620 ret = io_submit_sqes(ctx, to_submit);
3621 if (ret != to_submit) {
3622 mutex_unlock(&ctx->uring_lock);
3625 if (flags & IORING_ENTER_GETEVENTS) {
3626 if (ctx->syscall_iopoll)
3629 * Ignore errors, we'll soon call io_cqring_wait() and
3630 * it should handle ownership problems if any.
3632 if (ctx->flags & IORING_SETUP_DEFER_TASKRUN)
3633 (void)io_run_local_work_locked(ctx);
3635 mutex_unlock(&ctx->uring_lock);
3638 if (flags & IORING_ENTER_GETEVENTS) {
3641 if (ctx->syscall_iopoll) {
3643 * We disallow the app entering submit/complete with
3644 * polling, but we still need to lock the ring to
3645 * prevent racing with polled issue that got punted to
3648 mutex_lock(&ctx->uring_lock);
3650 ret2 = io_validate_ext_arg(flags, argp, argsz);
3651 if (likely(!ret2)) {
3652 min_complete = min(min_complete,
3654 ret2 = io_iopoll_check(ctx, min_complete);
3656 mutex_unlock(&ctx->uring_lock);
3658 const sigset_t __user *sig;
3659 struct __kernel_timespec __user *ts;
3661 ret2 = io_get_ext_arg(flags, argp, &argsz, &ts, &sig);
3662 if (likely(!ret2)) {
3663 min_complete = min(min_complete,
3665 ret2 = io_cqring_wait(ctx, min_complete, sig,
3674 * EBADR indicates that one or more CQE were dropped.
3675 * Once the user has been informed we can clear the bit
3676 * as they are obviously ok with those drops.
3678 if (unlikely(ret2 == -EBADR))
3679 clear_bit(IO_CHECK_CQ_DROPPED_BIT,
3688 static const struct file_operations io_uring_fops = {
3689 .release = io_uring_release,
3690 .mmap = io_uring_mmap,
3692 .get_unmapped_area = io_uring_nommu_get_unmapped_area,
3693 .mmap_capabilities = io_uring_nommu_mmap_capabilities,
3695 .get_unmapped_area = io_uring_mmu_get_unmapped_area,
3697 .poll = io_uring_poll,
3698 #ifdef CONFIG_PROC_FS
3699 .show_fdinfo = io_uring_show_fdinfo,
3703 bool io_is_uring_fops(struct file *file)
3705 return file->f_op == &io_uring_fops;
3708 static __cold int io_allocate_scq_urings(struct io_ring_ctx *ctx,
3709 struct io_uring_params *p)
3711 struct io_rings *rings;
3712 size_t size, sq_array_offset;
3715 /* make sure these are sane, as we already accounted them */
3716 ctx->sq_entries = p->sq_entries;
3717 ctx->cq_entries = p->cq_entries;
3719 size = rings_size(ctx, p->sq_entries, p->cq_entries, &sq_array_offset);
3720 if (size == SIZE_MAX)
3723 if (!(ctx->flags & IORING_SETUP_NO_MMAP))
3724 rings = io_mem_alloc(size);
3726 rings = io_rings_map(ctx, p->cq_off.user_addr, size);
3729 return PTR_ERR(rings);
3732 if (!(ctx->flags & IORING_SETUP_NO_SQARRAY))
3733 ctx->sq_array = (u32 *)((char *)rings + sq_array_offset);
3734 rings->sq_ring_mask = p->sq_entries - 1;
3735 rings->cq_ring_mask = p->cq_entries - 1;
3736 rings->sq_ring_entries = p->sq_entries;
3737 rings->cq_ring_entries = p->cq_entries;
3739 if (p->flags & IORING_SETUP_SQE128)
3740 size = array_size(2 * sizeof(struct io_uring_sqe), p->sq_entries);
3742 size = array_size(sizeof(struct io_uring_sqe), p->sq_entries);
3743 if (size == SIZE_MAX) {
3748 if (!(ctx->flags & IORING_SETUP_NO_MMAP))
3749 ptr = io_mem_alloc(size);
3751 ptr = io_sqes_map(ctx, p->sq_off.user_addr, size);
3755 return PTR_ERR(ptr);
3762 static int io_uring_install_fd(struct file *file)
3766 fd = get_unused_fd_flags(O_RDWR | O_CLOEXEC);
3769 fd_install(fd, file);
3774 * Allocate an anonymous fd, this is what constitutes the application
3775 * visible backing of an io_uring instance. The application mmaps this
3776 * fd to gain access to the SQ/CQ ring details. If UNIX sockets are enabled,
3777 * we have to tie this fd to a socket for file garbage collection purposes.
3779 static struct file *io_uring_get_file(struct io_ring_ctx *ctx)
3782 #if defined(CONFIG_UNIX)
3785 ret = sock_create_kern(&init_net, PF_UNIX, SOCK_RAW, IPPROTO_IP,
3788 return ERR_PTR(ret);
3791 file = anon_inode_getfile_secure("[io_uring]", &io_uring_fops, ctx,
3792 O_RDWR | O_CLOEXEC, NULL);
3793 #if defined(CONFIG_UNIX)
3795 sock_release(ctx->ring_sock);
3796 ctx->ring_sock = NULL;
3798 ctx->ring_sock->file = file;
3804 static __cold int io_uring_create(unsigned entries, struct io_uring_params *p,
3805 struct io_uring_params __user *params)
3807 struct io_ring_ctx *ctx;
3808 struct io_uring_task *tctx;
3814 if (entries > IORING_MAX_ENTRIES) {
3815 if (!(p->flags & IORING_SETUP_CLAMP))
3817 entries = IORING_MAX_ENTRIES;
3820 if ((p->flags & IORING_SETUP_REGISTERED_FD_ONLY)
3821 && !(p->flags & IORING_SETUP_NO_MMAP))
3825 * Use twice as many entries for the CQ ring. It's possible for the
3826 * application to drive a higher depth than the size of the SQ ring,
3827 * since the sqes are only used at submission time. This allows for
3828 * some flexibility in overcommitting a bit. If the application has
3829 * set IORING_SETUP_CQSIZE, it will have passed in the desired number
3830 * of CQ ring entries manually.
3832 p->sq_entries = roundup_pow_of_two(entries);
3833 if (p->flags & IORING_SETUP_CQSIZE) {
3835 * If IORING_SETUP_CQSIZE is set, we do the same roundup
3836 * to a power-of-two, if it isn't already. We do NOT impose
3837 * any cq vs sq ring sizing.
3841 if (p->cq_entries > IORING_MAX_CQ_ENTRIES) {
3842 if (!(p->flags & IORING_SETUP_CLAMP))
3844 p->cq_entries = IORING_MAX_CQ_ENTRIES;
3846 p->cq_entries = roundup_pow_of_two(p->cq_entries);
3847 if (p->cq_entries < p->sq_entries)
3850 p->cq_entries = 2 * p->sq_entries;
3853 ctx = io_ring_ctx_alloc(p);
3857 if ((ctx->flags & IORING_SETUP_DEFER_TASKRUN) &&
3858 !(ctx->flags & IORING_SETUP_IOPOLL) &&
3859 !(ctx->flags & IORING_SETUP_SQPOLL))
3860 ctx->task_complete = true;
3862 if (ctx->task_complete || (ctx->flags & IORING_SETUP_IOPOLL))
3863 ctx->lockless_cq = true;
3866 * lazy poll_wq activation relies on ->task_complete for synchronisation
3867 * purposes, see io_activate_pollwq()
3869 if (!ctx->task_complete)
3870 ctx->poll_activated = true;
3873 * When SETUP_IOPOLL and SETUP_SQPOLL are both enabled, user
3874 * space applications don't need to do io completion events
3875 * polling again, they can rely on io_sq_thread to do polling
3876 * work, which can reduce cpu usage and uring_lock contention.
3878 if (ctx->flags & IORING_SETUP_IOPOLL &&
3879 !(ctx->flags & IORING_SETUP_SQPOLL))
3880 ctx->syscall_iopoll = 1;
3882 ctx->compat = in_compat_syscall();
3883 if (!ns_capable_noaudit(&init_user_ns, CAP_IPC_LOCK))
3884 ctx->user = get_uid(current_user());
3887 * For SQPOLL, we just need a wakeup, always. For !SQPOLL, if
3888 * COOP_TASKRUN is set, then IPIs are never needed by the app.
3891 if (ctx->flags & IORING_SETUP_SQPOLL) {
3892 /* IPI related flags don't make sense with SQPOLL */
3893 if (ctx->flags & (IORING_SETUP_COOP_TASKRUN |
3894 IORING_SETUP_TASKRUN_FLAG |
3895 IORING_SETUP_DEFER_TASKRUN))
3897 ctx->notify_method = TWA_SIGNAL_NO_IPI;
3898 } else if (ctx->flags & IORING_SETUP_COOP_TASKRUN) {
3899 ctx->notify_method = TWA_SIGNAL_NO_IPI;
3901 if (ctx->flags & IORING_SETUP_TASKRUN_FLAG &&
3902 !(ctx->flags & IORING_SETUP_DEFER_TASKRUN))
3904 ctx->notify_method = TWA_SIGNAL;
3908 * For DEFER_TASKRUN we require the completion task to be the same as the
3909 * submission task. This implies that there is only one submitter, so enforce
3912 if (ctx->flags & IORING_SETUP_DEFER_TASKRUN &&
3913 !(ctx->flags & IORING_SETUP_SINGLE_ISSUER)) {
3918 * This is just grabbed for accounting purposes. When a process exits,
3919 * the mm is exited and dropped before the files, hence we need to hang
3920 * on to this mm purely for the purposes of being able to unaccount
3921 * memory (locked/pinned vm). It's not used for anything else.
3923 mmgrab(current->mm);
3924 ctx->mm_account = current->mm;
3926 ret = io_allocate_scq_urings(ctx, p);
3930 ret = io_sq_offload_create(ctx, p);
3934 ret = io_rsrc_init(ctx);
3938 p->sq_off.head = offsetof(struct io_rings, sq.head);
3939 p->sq_off.tail = offsetof(struct io_rings, sq.tail);
3940 p->sq_off.ring_mask = offsetof(struct io_rings, sq_ring_mask);
3941 p->sq_off.ring_entries = offsetof(struct io_rings, sq_ring_entries);
3942 p->sq_off.flags = offsetof(struct io_rings, sq_flags);
3943 p->sq_off.dropped = offsetof(struct io_rings, sq_dropped);
3944 if (!(ctx->flags & IORING_SETUP_NO_SQARRAY))
3945 p->sq_off.array = (char *)ctx->sq_array - (char *)ctx->rings;
3946 p->sq_off.resv1 = 0;
3947 if (!(ctx->flags & IORING_SETUP_NO_MMAP))
3948 p->sq_off.user_addr = 0;
3950 p->cq_off.head = offsetof(struct io_rings, cq.head);
3951 p->cq_off.tail = offsetof(struct io_rings, cq.tail);
3952 p->cq_off.ring_mask = offsetof(struct io_rings, cq_ring_mask);
3953 p->cq_off.ring_entries = offsetof(struct io_rings, cq_ring_entries);
3954 p->cq_off.overflow = offsetof(struct io_rings, cq_overflow);
3955 p->cq_off.cqes = offsetof(struct io_rings, cqes);
3956 p->cq_off.flags = offsetof(struct io_rings, cq_flags);
3957 p->cq_off.resv1 = 0;
3958 if (!(ctx->flags & IORING_SETUP_NO_MMAP))
3959 p->cq_off.user_addr = 0;
3961 p->features = IORING_FEAT_SINGLE_MMAP | IORING_FEAT_NODROP |
3962 IORING_FEAT_SUBMIT_STABLE | IORING_FEAT_RW_CUR_POS |
3963 IORING_FEAT_CUR_PERSONALITY | IORING_FEAT_FAST_POLL |
3964 IORING_FEAT_POLL_32BITS | IORING_FEAT_SQPOLL_NONFIXED |
3965 IORING_FEAT_EXT_ARG | IORING_FEAT_NATIVE_WORKERS |
3966 IORING_FEAT_RSRC_TAGS | IORING_FEAT_CQE_SKIP |
3967 IORING_FEAT_LINKED_FILE | IORING_FEAT_REG_REG_RING;
3969 if (copy_to_user(params, p, sizeof(*p))) {
3974 if (ctx->flags & IORING_SETUP_SINGLE_ISSUER
3975 && !(ctx->flags & IORING_SETUP_R_DISABLED))
3976 WRITE_ONCE(ctx->submitter_task, get_task_struct(current));
3978 file = io_uring_get_file(ctx);
3980 ret = PTR_ERR(file);
3984 ret = __io_uring_add_tctx_node(ctx);
3987 tctx = current->io_uring;
3990 * Install ring fd as the very last thing, so we don't risk someone
3991 * having closed it before we finish setup
3993 if (p->flags & IORING_SETUP_REGISTERED_FD_ONLY)
3994 ret = io_ring_add_registered_file(tctx, file, 0, IO_RINGFD_REG_MAX);
3996 ret = io_uring_install_fd(file);
4000 trace_io_uring_create(ret, ctx, p->sq_entries, p->cq_entries, p->flags);
4003 io_ring_ctx_wait_and_kill(ctx);
4011 * Sets up an aio uring context, and returns the fd. Applications asks for a
4012 * ring size, we return the actual sq/cq ring sizes (among other things) in the
4013 * params structure passed in.
4015 static long io_uring_setup(u32 entries, struct io_uring_params __user *params)
4017 struct io_uring_params p;
4020 if (copy_from_user(&p, params, sizeof(p)))
4022 for (i = 0; i < ARRAY_SIZE(p.resv); i++) {
4027 if (p.flags & ~(IORING_SETUP_IOPOLL | IORING_SETUP_SQPOLL |
4028 IORING_SETUP_SQ_AFF | IORING_SETUP_CQSIZE |
4029 IORING_SETUP_CLAMP | IORING_SETUP_ATTACH_WQ |
4030 IORING_SETUP_R_DISABLED | IORING_SETUP_SUBMIT_ALL |
4031 IORING_SETUP_COOP_TASKRUN | IORING_SETUP_TASKRUN_FLAG |
4032 IORING_SETUP_SQE128 | IORING_SETUP_CQE32 |
4033 IORING_SETUP_SINGLE_ISSUER | IORING_SETUP_DEFER_TASKRUN |
4034 IORING_SETUP_NO_MMAP | IORING_SETUP_REGISTERED_FD_ONLY |
4035 IORING_SETUP_NO_SQARRAY))
4038 return io_uring_create(entries, &p, params);
4041 SYSCALL_DEFINE2(io_uring_setup, u32, entries,
4042 struct io_uring_params __user *, params)
4044 return io_uring_setup(entries, params);
4047 static __cold int io_probe(struct io_ring_ctx *ctx, void __user *arg,
4050 struct io_uring_probe *p;
4054 size = struct_size(p, ops, nr_args);
4055 if (size == SIZE_MAX)
4057 p = kzalloc(size, GFP_KERNEL);
4062 if (copy_from_user(p, arg, size))
4065 if (memchr_inv(p, 0, size))
4068 p->last_op = IORING_OP_LAST - 1;
4069 if (nr_args > IORING_OP_LAST)
4070 nr_args = IORING_OP_LAST;
4072 for (i = 0; i < nr_args; i++) {
4074 if (!io_issue_defs[i].not_supported)
4075 p->ops[i].flags = IO_URING_OP_SUPPORTED;
4080 if (copy_to_user(arg, p, size))
4087 static int io_register_personality(struct io_ring_ctx *ctx)
4089 const struct cred *creds;
4093 creds = get_current_cred();
4095 ret = xa_alloc_cyclic(&ctx->personalities, &id, (void *)creds,
4096 XA_LIMIT(0, USHRT_MAX), &ctx->pers_next, GFP_KERNEL);
4104 static __cold int io_register_restrictions(struct io_ring_ctx *ctx,
4105 void __user *arg, unsigned int nr_args)
4107 struct io_uring_restriction *res;
4111 /* Restrictions allowed only if rings started disabled */
4112 if (!(ctx->flags & IORING_SETUP_R_DISABLED))
4115 /* We allow only a single restrictions registration */
4116 if (ctx->restrictions.registered)
4119 if (!arg || nr_args > IORING_MAX_RESTRICTIONS)
4122 size = array_size(nr_args, sizeof(*res));
4123 if (size == SIZE_MAX)
4126 res = memdup_user(arg, size);
4128 return PTR_ERR(res);
4132 for (i = 0; i < nr_args; i++) {
4133 switch (res[i].opcode) {
4134 case IORING_RESTRICTION_REGISTER_OP:
4135 if (res[i].register_op >= IORING_REGISTER_LAST) {
4140 __set_bit(res[i].register_op,
4141 ctx->restrictions.register_op);
4143 case IORING_RESTRICTION_SQE_OP:
4144 if (res[i].sqe_op >= IORING_OP_LAST) {
4149 __set_bit(res[i].sqe_op, ctx->restrictions.sqe_op);
4151 case IORING_RESTRICTION_SQE_FLAGS_ALLOWED:
4152 ctx->restrictions.sqe_flags_allowed = res[i].sqe_flags;
4154 case IORING_RESTRICTION_SQE_FLAGS_REQUIRED:
4155 ctx->restrictions.sqe_flags_required = res[i].sqe_flags;
4164 /* Reset all restrictions if an error happened */
4166 memset(&ctx->restrictions, 0, sizeof(ctx->restrictions));
4168 ctx->restrictions.registered = true;
4174 static int io_register_enable_rings(struct io_ring_ctx *ctx)
4176 if (!(ctx->flags & IORING_SETUP_R_DISABLED))
4179 if (ctx->flags & IORING_SETUP_SINGLE_ISSUER && !ctx->submitter_task) {
4180 WRITE_ONCE(ctx->submitter_task, get_task_struct(current));
4182 * Lazy activation attempts would fail if it was polled before
4183 * submitter_task is set.
4185 if (wq_has_sleeper(&ctx->poll_wq))
4186 io_activate_pollwq(ctx);
4189 if (ctx->restrictions.registered)
4190 ctx->restricted = 1;
4192 ctx->flags &= ~IORING_SETUP_R_DISABLED;
4193 if (ctx->sq_data && wq_has_sleeper(&ctx->sq_data->wait))
4194 wake_up(&ctx->sq_data->wait);
4198 static __cold int __io_register_iowq_aff(struct io_ring_ctx *ctx,
4199 cpumask_var_t new_mask)
4203 if (!(ctx->flags & IORING_SETUP_SQPOLL)) {
4204 ret = io_wq_cpu_affinity(current->io_uring, new_mask);
4206 mutex_unlock(&ctx->uring_lock);
4207 ret = io_sqpoll_wq_cpu_affinity(ctx, new_mask);
4208 mutex_lock(&ctx->uring_lock);
4214 static __cold int io_register_iowq_aff(struct io_ring_ctx *ctx,
4215 void __user *arg, unsigned len)
4217 cpumask_var_t new_mask;
4220 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
4223 cpumask_clear(new_mask);
4224 if (len > cpumask_size())
4225 len = cpumask_size();
4227 if (in_compat_syscall()) {
4228 ret = compat_get_bitmap(cpumask_bits(new_mask),
4229 (const compat_ulong_t __user *)arg,
4230 len * 8 /* CHAR_BIT */);
4232 ret = copy_from_user(new_mask, arg, len);
4236 free_cpumask_var(new_mask);
4240 ret = __io_register_iowq_aff(ctx, new_mask);
4241 free_cpumask_var(new_mask);
4245 static __cold int io_unregister_iowq_aff(struct io_ring_ctx *ctx)
4247 return __io_register_iowq_aff(ctx, NULL);
4250 static __cold int io_register_iowq_max_workers(struct io_ring_ctx *ctx,
4252 __must_hold(&ctx->uring_lock)
4254 struct io_tctx_node *node;
4255 struct io_uring_task *tctx = NULL;
4256 struct io_sq_data *sqd = NULL;
4260 if (copy_from_user(new_count, arg, sizeof(new_count)))
4262 for (i = 0; i < ARRAY_SIZE(new_count); i++)
4263 if (new_count[i] > INT_MAX)
4266 if (ctx->flags & IORING_SETUP_SQPOLL) {
4270 * Observe the correct sqd->lock -> ctx->uring_lock
4271 * ordering. Fine to drop uring_lock here, we hold
4274 refcount_inc(&sqd->refs);
4275 mutex_unlock(&ctx->uring_lock);
4276 mutex_lock(&sqd->lock);
4277 mutex_lock(&ctx->uring_lock);
4279 tctx = sqd->thread->io_uring;
4282 tctx = current->io_uring;
4285 BUILD_BUG_ON(sizeof(new_count) != sizeof(ctx->iowq_limits));
4287 for (i = 0; i < ARRAY_SIZE(new_count); i++)
4289 ctx->iowq_limits[i] = new_count[i];
4290 ctx->iowq_limits_set = true;
4292 if (tctx && tctx->io_wq) {
4293 ret = io_wq_max_workers(tctx->io_wq, new_count);
4297 memset(new_count, 0, sizeof(new_count));
4301 mutex_unlock(&sqd->lock);
4302 io_put_sq_data(sqd);
4305 if (copy_to_user(arg, new_count, sizeof(new_count)))
4308 /* that's it for SQPOLL, only the SQPOLL task creates requests */
4312 /* now propagate the restriction to all registered users */
4313 list_for_each_entry(node, &ctx->tctx_list, ctx_node) {
4314 struct io_uring_task *tctx = node->task->io_uring;
4316 if (WARN_ON_ONCE(!tctx->io_wq))
4319 for (i = 0; i < ARRAY_SIZE(new_count); i++)
4320 new_count[i] = ctx->iowq_limits[i];
4321 /* ignore errors, it always returns zero anyway */
4322 (void)io_wq_max_workers(tctx->io_wq, new_count);
4327 mutex_unlock(&sqd->lock);
4328 io_put_sq_data(sqd);
4333 static int __io_uring_register(struct io_ring_ctx *ctx, unsigned opcode,
4334 void __user *arg, unsigned nr_args)
4335 __releases(ctx->uring_lock)
4336 __acquires(ctx->uring_lock)
4341 * We don't quiesce the refs for register anymore and so it can't be
4342 * dying as we're holding a file ref here.
4344 if (WARN_ON_ONCE(percpu_ref_is_dying(&ctx->refs)))
4347 if (ctx->submitter_task && ctx->submitter_task != current)
4350 if (ctx->restricted) {
4351 opcode = array_index_nospec(opcode, IORING_REGISTER_LAST);
4352 if (!test_bit(opcode, ctx->restrictions.register_op))
4357 case IORING_REGISTER_BUFFERS:
4361 ret = io_sqe_buffers_register(ctx, arg, nr_args, NULL);
4363 case IORING_UNREGISTER_BUFFERS:
4367 ret = io_sqe_buffers_unregister(ctx);
4369 case IORING_REGISTER_FILES:
4373 ret = io_sqe_files_register(ctx, arg, nr_args, NULL);
4375 case IORING_UNREGISTER_FILES:
4379 ret = io_sqe_files_unregister(ctx);
4381 case IORING_REGISTER_FILES_UPDATE:
4382 ret = io_register_files_update(ctx, arg, nr_args);
4384 case IORING_REGISTER_EVENTFD:
4388 ret = io_eventfd_register(ctx, arg, 0);
4390 case IORING_REGISTER_EVENTFD_ASYNC:
4394 ret = io_eventfd_register(ctx, arg, 1);
4396 case IORING_UNREGISTER_EVENTFD:
4400 ret = io_eventfd_unregister(ctx);
4402 case IORING_REGISTER_PROBE:
4404 if (!arg || nr_args > 256)
4406 ret = io_probe(ctx, arg, nr_args);
4408 case IORING_REGISTER_PERSONALITY:
4412 ret = io_register_personality(ctx);
4414 case IORING_UNREGISTER_PERSONALITY:
4418 ret = io_unregister_personality(ctx, nr_args);
4420 case IORING_REGISTER_ENABLE_RINGS:
4424 ret = io_register_enable_rings(ctx);
4426 case IORING_REGISTER_RESTRICTIONS:
4427 ret = io_register_restrictions(ctx, arg, nr_args);
4429 case IORING_REGISTER_FILES2:
4430 ret = io_register_rsrc(ctx, arg, nr_args, IORING_RSRC_FILE);
4432 case IORING_REGISTER_FILES_UPDATE2:
4433 ret = io_register_rsrc_update(ctx, arg, nr_args,
4436 case IORING_REGISTER_BUFFERS2:
4437 ret = io_register_rsrc(ctx, arg, nr_args, IORING_RSRC_BUFFER);
4439 case IORING_REGISTER_BUFFERS_UPDATE:
4440 ret = io_register_rsrc_update(ctx, arg, nr_args,
4441 IORING_RSRC_BUFFER);
4443 case IORING_REGISTER_IOWQ_AFF:
4445 if (!arg || !nr_args)
4447 ret = io_register_iowq_aff(ctx, arg, nr_args);
4449 case IORING_UNREGISTER_IOWQ_AFF:
4453 ret = io_unregister_iowq_aff(ctx);
4455 case IORING_REGISTER_IOWQ_MAX_WORKERS:
4457 if (!arg || nr_args != 2)
4459 ret = io_register_iowq_max_workers(ctx, arg);
4461 case IORING_REGISTER_RING_FDS:
4462 ret = io_ringfd_register(ctx, arg, nr_args);
4464 case IORING_UNREGISTER_RING_FDS:
4465 ret = io_ringfd_unregister(ctx, arg, nr_args);
4467 case IORING_REGISTER_PBUF_RING:
4469 if (!arg || nr_args != 1)
4471 ret = io_register_pbuf_ring(ctx, arg);
4473 case IORING_UNREGISTER_PBUF_RING:
4475 if (!arg || nr_args != 1)
4477 ret = io_unregister_pbuf_ring(ctx, arg);
4479 case IORING_REGISTER_SYNC_CANCEL:
4481 if (!arg || nr_args != 1)
4483 ret = io_sync_cancel(ctx, arg);
4485 case IORING_REGISTER_FILE_ALLOC_RANGE:
4487 if (!arg || nr_args)
4489 ret = io_register_file_alloc_range(ctx, arg);
4499 SYSCALL_DEFINE4(io_uring_register, unsigned int, fd, unsigned int, opcode,
4500 void __user *, arg, unsigned int, nr_args)
4502 struct io_ring_ctx *ctx;
4505 bool use_registered_ring;
4507 use_registered_ring = !!(opcode & IORING_REGISTER_USE_REGISTERED_RING);
4508 opcode &= ~IORING_REGISTER_USE_REGISTERED_RING;
4510 if (opcode >= IORING_REGISTER_LAST)
4513 if (use_registered_ring) {
4515 * Ring fd has been registered via IORING_REGISTER_RING_FDS, we
4516 * need only dereference our task private array to find it.
4518 struct io_uring_task *tctx = current->io_uring;
4520 if (unlikely(!tctx || fd >= IO_RINGFD_REG_MAX))
4522 fd = array_index_nospec(fd, IO_RINGFD_REG_MAX);
4523 f.file = tctx->registered_rings[fd];
4525 if (unlikely(!f.file))
4529 if (unlikely(!f.file))
4532 if (!io_is_uring_fops(f.file))
4536 ctx = f.file->private_data;
4538 mutex_lock(&ctx->uring_lock);
4539 ret = __io_uring_register(ctx, opcode, arg, nr_args);
4540 mutex_unlock(&ctx->uring_lock);
4541 trace_io_uring_register(ctx, opcode, ctx->nr_user_files, ctx->nr_user_bufs, ret);
4547 static int __init io_uring_init(void)
4549 #define __BUILD_BUG_VERIFY_OFFSET_SIZE(stype, eoffset, esize, ename) do { \
4550 BUILD_BUG_ON(offsetof(stype, ename) != eoffset); \
4551 BUILD_BUG_ON(sizeof_field(stype, ename) != esize); \
4554 #define BUILD_BUG_SQE_ELEM(eoffset, etype, ename) \
4555 __BUILD_BUG_VERIFY_OFFSET_SIZE(struct io_uring_sqe, eoffset, sizeof(etype), ename)
4556 #define BUILD_BUG_SQE_ELEM_SIZE(eoffset, esize, ename) \
4557 __BUILD_BUG_VERIFY_OFFSET_SIZE(struct io_uring_sqe, eoffset, esize, ename)
4558 BUILD_BUG_ON(sizeof(struct io_uring_sqe) != 64);
4559 BUILD_BUG_SQE_ELEM(0, __u8, opcode);
4560 BUILD_BUG_SQE_ELEM(1, __u8, flags);
4561 BUILD_BUG_SQE_ELEM(2, __u16, ioprio);
4562 BUILD_BUG_SQE_ELEM(4, __s32, fd);
4563 BUILD_BUG_SQE_ELEM(8, __u64, off);
4564 BUILD_BUG_SQE_ELEM(8, __u64, addr2);
4565 BUILD_BUG_SQE_ELEM(8, __u32, cmd_op);
4566 BUILD_BUG_SQE_ELEM(12, __u32, __pad1);
4567 BUILD_BUG_SQE_ELEM(16, __u64, addr);
4568 BUILD_BUG_SQE_ELEM(16, __u64, splice_off_in);
4569 BUILD_BUG_SQE_ELEM(24, __u32, len);
4570 BUILD_BUG_SQE_ELEM(28, __kernel_rwf_t, rw_flags);
4571 BUILD_BUG_SQE_ELEM(28, /* compat */ int, rw_flags);
4572 BUILD_BUG_SQE_ELEM(28, /* compat */ __u32, rw_flags);
4573 BUILD_BUG_SQE_ELEM(28, __u32, fsync_flags);
4574 BUILD_BUG_SQE_ELEM(28, /* compat */ __u16, poll_events);
4575 BUILD_BUG_SQE_ELEM(28, __u32, poll32_events);
4576 BUILD_BUG_SQE_ELEM(28, __u32, sync_range_flags);
4577 BUILD_BUG_SQE_ELEM(28, __u32, msg_flags);
4578 BUILD_BUG_SQE_ELEM(28, __u32, timeout_flags);
4579 BUILD_BUG_SQE_ELEM(28, __u32, accept_flags);
4580 BUILD_BUG_SQE_ELEM(28, __u32, cancel_flags);
4581 BUILD_BUG_SQE_ELEM(28, __u32, open_flags);
4582 BUILD_BUG_SQE_ELEM(28, __u32, statx_flags);
4583 BUILD_BUG_SQE_ELEM(28, __u32, fadvise_advice);
4584 BUILD_BUG_SQE_ELEM(28, __u32, splice_flags);
4585 BUILD_BUG_SQE_ELEM(28, __u32, rename_flags);
4586 BUILD_BUG_SQE_ELEM(28, __u32, unlink_flags);
4587 BUILD_BUG_SQE_ELEM(28, __u32, hardlink_flags);
4588 BUILD_BUG_SQE_ELEM(28, __u32, xattr_flags);
4589 BUILD_BUG_SQE_ELEM(28, __u32, msg_ring_flags);
4590 BUILD_BUG_SQE_ELEM(32, __u64, user_data);
4591 BUILD_BUG_SQE_ELEM(40, __u16, buf_index);
4592 BUILD_BUG_SQE_ELEM(40, __u16, buf_group);
4593 BUILD_BUG_SQE_ELEM(42, __u16, personality);
4594 BUILD_BUG_SQE_ELEM(44, __s32, splice_fd_in);
4595 BUILD_BUG_SQE_ELEM(44, __u32, file_index);
4596 BUILD_BUG_SQE_ELEM(44, __u16, addr_len);
4597 BUILD_BUG_SQE_ELEM(46, __u16, __pad3[0]);
4598 BUILD_BUG_SQE_ELEM(48, __u64, addr3);
4599 BUILD_BUG_SQE_ELEM_SIZE(48, 0, cmd);
4600 BUILD_BUG_SQE_ELEM(56, __u64, __pad2);
4602 BUILD_BUG_ON(sizeof(struct io_uring_files_update) !=
4603 sizeof(struct io_uring_rsrc_update));
4604 BUILD_BUG_ON(sizeof(struct io_uring_rsrc_update) >
4605 sizeof(struct io_uring_rsrc_update2));
4607 /* ->buf_index is u16 */
4608 BUILD_BUG_ON(offsetof(struct io_uring_buf_ring, bufs) != 0);
4609 BUILD_BUG_ON(offsetof(struct io_uring_buf, resv) !=
4610 offsetof(struct io_uring_buf_ring, tail));
4612 /* should fit into one byte */
4613 BUILD_BUG_ON(SQE_VALID_FLAGS >= (1 << 8));
4614 BUILD_BUG_ON(SQE_COMMON_FLAGS >= (1 << 8));
4615 BUILD_BUG_ON((SQE_VALID_FLAGS | SQE_COMMON_FLAGS) != SQE_VALID_FLAGS);
4617 BUILD_BUG_ON(__REQ_F_LAST_BIT > 8 * sizeof(int));
4619 BUILD_BUG_ON(sizeof(atomic_t) != sizeof(u32));
4621 io_uring_optable_init();
4624 * Allow user copy in the per-command field, which starts after the
4625 * file in io_kiocb and until the opcode field. The openat2 handling
4626 * requires copying in user memory into the io_kiocb object in that
4627 * range, and HARDENED_USERCOPY will complain if we haven't
4628 * correctly annotated this range.
4630 req_cachep = kmem_cache_create_usercopy("io_kiocb",
4631 sizeof(struct io_kiocb), 0,
4632 SLAB_HWCACHE_ALIGN | SLAB_PANIC |
4633 SLAB_ACCOUNT | SLAB_TYPESAFE_BY_RCU,
4634 offsetof(struct io_kiocb, cmd.data),
4635 sizeof_field(struct io_kiocb, cmd.data), NULL);
4639 __initcall(io_uring_init);