1 // SPDX-License-Identifier: GPL-2.0
3 * Shared application/kernel submission and completion ring pairs, for
4 * supporting fast/efficient IO.
6 * A note on the read/write ordering memory barriers that are matched between
7 * the application and kernel side.
9 * After the application reads the CQ ring tail, it must use an
10 * appropriate smp_rmb() to pair with the smp_wmb() the kernel uses
11 * before writing the tail (using smp_load_acquire to read the tail will
12 * do). It also needs a smp_mb() before updating CQ head (ordering the
13 * entry load(s) with the head store), pairing with an implicit barrier
14 * through a control-dependency in io_get_cqe (smp_store_release to
15 * store head will do). Failure to do so could lead to reading invalid
18 * Likewise, the application must use an appropriate smp_wmb() before
19 * writing the SQ tail (ordering SQ entry stores with the tail store),
20 * which pairs with smp_load_acquire in io_get_sqring (smp_store_release
21 * to store the tail will do). And it needs a barrier ordering the SQ
22 * head load before writing new SQ entries (smp_load_acquire to read
25 * When using the SQ poll thread (IORING_SETUP_SQPOLL), the application
26 * needs to check the SQ flags for IORING_SQ_NEED_WAKEUP *after*
27 * updating the SQ tail; a full memory barrier smp_mb() is needed
30 * Also see the examples in the liburing library:
32 * git://git.kernel.dk/liburing
34 * io_uring also uses READ/WRITE_ONCE() for _any_ store or load that happens
35 * from data shared between the kernel and application. This is done both
36 * for ordering purposes, but also to ensure that once a value is loaded from
37 * data that the application could potentially modify, it remains stable.
39 * Copyright (C) 2018-2019 Jens Axboe
40 * Copyright (c) 2018-2019 Christoph Hellwig
42 #include <linux/kernel.h>
43 #include <linux/init.h>
44 #include <linux/errno.h>
45 #include <linux/syscalls.h>
46 #include <net/compat.h>
47 #include <linux/refcount.h>
48 #include <linux/uio.h>
49 #include <linux/bits.h>
51 #include <linux/sched/signal.h>
53 #include <linux/file.h>
54 #include <linux/fdtable.h>
56 #include <linux/mman.h>
57 #include <linux/percpu.h>
58 #include <linux/slab.h>
59 #include <linux/bvec.h>
60 #include <linux/net.h>
62 #include <net/af_unix.h>
64 #include <linux/anon_inodes.h>
65 #include <linux/sched/mm.h>
66 #include <linux/uaccess.h>
67 #include <linux/nospec.h>
68 #include <linux/highmem.h>
69 #include <linux/fsnotify.h>
70 #include <linux/fadvise.h>
71 #include <linux/task_work.h>
72 #include <linux/io_uring.h>
73 #include <linux/audit.h>
74 #include <linux/security.h>
76 #define CREATE_TRACE_POINTS
77 #include <trace/events/io_uring.h>
79 #include <uapi/linux/io_uring.h>
97 #include "alloc_cache.h"
99 #define IORING_MAX_ENTRIES 32768
100 #define IORING_MAX_CQ_ENTRIES (2 * IORING_MAX_ENTRIES)
102 #define IORING_MAX_RESTRICTIONS (IORING_RESTRICTION_LAST + \
103 IORING_REGISTER_LAST + IORING_OP_LAST)
105 #define SQE_COMMON_FLAGS (IOSQE_FIXED_FILE | IOSQE_IO_LINK | \
106 IOSQE_IO_HARDLINK | IOSQE_ASYNC)
108 #define SQE_VALID_FLAGS (SQE_COMMON_FLAGS | IOSQE_BUFFER_SELECT | \
109 IOSQE_IO_DRAIN | IOSQE_CQE_SKIP_SUCCESS)
111 #define IO_REQ_CLEAN_FLAGS (REQ_F_BUFFER_SELECTED | REQ_F_NEED_CLEANUP | \
112 REQ_F_POLLED | REQ_F_INFLIGHT | REQ_F_CREDS | \
115 #define IO_REQ_CLEAN_SLOW_FLAGS (REQ_F_REFCOUNT | REQ_F_LINK | REQ_F_HARDLINK |\
118 #define IO_TCTX_REFS_CACHE_NR (1U << 10)
120 #define IO_COMPL_BATCH 32
121 #define IO_REQ_ALLOC_BATCH 8
124 IO_CHECK_CQ_OVERFLOW_BIT,
125 IO_CHECK_CQ_DROPPED_BIT,
129 IO_EVENTFD_OP_SIGNAL_BIT,
130 IO_EVENTFD_OP_FREE_BIT,
133 struct io_defer_entry {
134 struct list_head list;
135 struct io_kiocb *req;
139 /* requests with any of those set should undergo io_disarm_next() */
140 #define IO_DISARM_MASK (REQ_F_ARM_LTIMEOUT | REQ_F_LINK_TIMEOUT | REQ_F_FAIL)
141 #define IO_REQ_LINK_FLAGS (REQ_F_LINK | REQ_F_HARDLINK)
143 static bool io_uring_try_cancel_requests(struct io_ring_ctx *ctx,
144 struct task_struct *task,
147 static void io_dismantle_req(struct io_kiocb *req);
148 static void io_clean_op(struct io_kiocb *req);
149 static void io_queue_sqe(struct io_kiocb *req);
150 static void io_move_task_work_from_local(struct io_ring_ctx *ctx);
151 static void __io_submit_flush_completions(struct io_ring_ctx *ctx);
152 static __cold void io_fallback_tw(struct io_uring_task *tctx);
154 struct kmem_cache *req_cachep;
156 struct sock *io_uring_get_socket(struct file *file)
158 #if defined(CONFIG_UNIX)
159 if (io_is_uring_fops(file)) {
160 struct io_ring_ctx *ctx = file->private_data;
162 return ctx->ring_sock->sk;
167 EXPORT_SYMBOL(io_uring_get_socket);
169 static inline void io_submit_flush_completions(struct io_ring_ctx *ctx)
171 if (!wq_list_empty(&ctx->submit_state.compl_reqs) ||
172 ctx->submit_state.cqes_count)
173 __io_submit_flush_completions(ctx);
176 static inline unsigned int __io_cqring_events(struct io_ring_ctx *ctx)
178 return ctx->cached_cq_tail - READ_ONCE(ctx->rings->cq.head);
181 static inline unsigned int __io_cqring_events_user(struct io_ring_ctx *ctx)
183 return READ_ONCE(ctx->rings->cq.tail) - READ_ONCE(ctx->rings->cq.head);
186 static bool io_match_linked(struct io_kiocb *head)
188 struct io_kiocb *req;
190 io_for_each_link(req, head) {
191 if (req->flags & REQ_F_INFLIGHT)
198 * As io_match_task() but protected against racing with linked timeouts.
199 * User must not hold timeout_lock.
201 bool io_match_task_safe(struct io_kiocb *head, struct task_struct *task,
206 if (task && head->task != task)
211 if (head->flags & REQ_F_LINK_TIMEOUT) {
212 struct io_ring_ctx *ctx = head->ctx;
214 /* protect against races with linked timeouts */
215 spin_lock_irq(&ctx->timeout_lock);
216 matched = io_match_linked(head);
217 spin_unlock_irq(&ctx->timeout_lock);
219 matched = io_match_linked(head);
224 static inline void req_fail_link_node(struct io_kiocb *req, int res)
227 io_req_set_res(req, res, 0);
230 static inline void io_req_add_to_cache(struct io_kiocb *req, struct io_ring_ctx *ctx)
232 wq_stack_add_head(&req->comp_list, &ctx->submit_state.free_list);
233 kasan_poison_object_data(req_cachep, req);
236 static __cold void io_ring_ctx_ref_free(struct percpu_ref *ref)
238 struct io_ring_ctx *ctx = container_of(ref, struct io_ring_ctx, refs);
240 complete(&ctx->ref_comp);
243 static __cold void io_fallback_req_func(struct work_struct *work)
245 struct io_ring_ctx *ctx = container_of(work, struct io_ring_ctx,
247 struct llist_node *node = llist_del_all(&ctx->fallback_llist);
248 struct io_kiocb *req, *tmp;
251 mutex_lock(&ctx->uring_lock);
252 llist_for_each_entry_safe(req, tmp, node, io_task_work.node)
253 req->io_task_work.func(req, &locked);
254 if (WARN_ON_ONCE(!locked))
256 io_submit_flush_completions(ctx);
257 mutex_unlock(&ctx->uring_lock);
260 static int io_alloc_hash_table(struct io_hash_table *table, unsigned bits)
262 unsigned hash_buckets = 1U << bits;
263 size_t hash_size = hash_buckets * sizeof(table->hbs[0]);
265 table->hbs = kmalloc(hash_size, GFP_KERNEL);
269 table->hash_bits = bits;
270 init_hash_table(table, hash_buckets);
274 static __cold struct io_ring_ctx *io_ring_ctx_alloc(struct io_uring_params *p)
276 struct io_ring_ctx *ctx;
279 ctx = kzalloc(sizeof(*ctx), GFP_KERNEL);
283 xa_init(&ctx->io_bl_xa);
286 * Use 5 bits less than the max cq entries, that should give us around
287 * 32 entries per hash list if totally full and uniformly spread, but
288 * don't keep too many buckets to not overconsume memory.
290 hash_bits = ilog2(p->cq_entries) - 5;
291 hash_bits = clamp(hash_bits, 1, 8);
292 if (io_alloc_hash_table(&ctx->cancel_table, hash_bits))
294 if (io_alloc_hash_table(&ctx->cancel_table_locked, hash_bits))
297 ctx->dummy_ubuf = kzalloc(sizeof(*ctx->dummy_ubuf), GFP_KERNEL);
298 if (!ctx->dummy_ubuf)
300 /* set invalid range, so io_import_fixed() fails meeting it */
301 ctx->dummy_ubuf->ubuf = -1UL;
303 if (percpu_ref_init(&ctx->refs, io_ring_ctx_ref_free,
307 ctx->flags = p->flags;
308 init_waitqueue_head(&ctx->sqo_sq_wait);
309 INIT_LIST_HEAD(&ctx->sqd_list);
310 INIT_LIST_HEAD(&ctx->cq_overflow_list);
311 INIT_LIST_HEAD(&ctx->io_buffers_cache);
312 io_alloc_cache_init(&ctx->apoll_cache);
313 io_alloc_cache_init(&ctx->netmsg_cache);
314 init_completion(&ctx->ref_comp);
315 xa_init_flags(&ctx->personalities, XA_FLAGS_ALLOC1);
316 mutex_init(&ctx->uring_lock);
317 init_waitqueue_head(&ctx->cq_wait);
318 init_waitqueue_head(&ctx->poll_wq);
319 spin_lock_init(&ctx->completion_lock);
320 spin_lock_init(&ctx->timeout_lock);
321 INIT_WQ_LIST(&ctx->iopoll_list);
322 INIT_LIST_HEAD(&ctx->io_buffers_pages);
323 INIT_LIST_HEAD(&ctx->io_buffers_comp);
324 INIT_LIST_HEAD(&ctx->defer_list);
325 INIT_LIST_HEAD(&ctx->timeout_list);
326 INIT_LIST_HEAD(&ctx->ltimeout_list);
327 spin_lock_init(&ctx->rsrc_ref_lock);
328 INIT_LIST_HEAD(&ctx->rsrc_ref_list);
329 INIT_DELAYED_WORK(&ctx->rsrc_put_work, io_rsrc_put_work);
330 init_task_work(&ctx->rsrc_put_tw, io_rsrc_put_tw);
331 init_llist_head(&ctx->rsrc_put_llist);
332 init_llist_head(&ctx->work_llist);
333 INIT_LIST_HEAD(&ctx->tctx_list);
334 ctx->submit_state.free_list.next = NULL;
335 INIT_WQ_LIST(&ctx->locked_free_list);
336 INIT_DELAYED_WORK(&ctx->fallback_work, io_fallback_req_func);
337 INIT_WQ_LIST(&ctx->submit_state.compl_reqs);
340 kfree(ctx->dummy_ubuf);
341 kfree(ctx->cancel_table.hbs);
342 kfree(ctx->cancel_table_locked.hbs);
344 xa_destroy(&ctx->io_bl_xa);
349 static void io_account_cq_overflow(struct io_ring_ctx *ctx)
351 struct io_rings *r = ctx->rings;
353 WRITE_ONCE(r->cq_overflow, READ_ONCE(r->cq_overflow) + 1);
357 static bool req_need_defer(struct io_kiocb *req, u32 seq)
359 if (unlikely(req->flags & REQ_F_IO_DRAIN)) {
360 struct io_ring_ctx *ctx = req->ctx;
362 return seq + READ_ONCE(ctx->cq_extra) != ctx->cached_cq_tail;
368 static inline void io_req_track_inflight(struct io_kiocb *req)
370 if (!(req->flags & REQ_F_INFLIGHT)) {
371 req->flags |= REQ_F_INFLIGHT;
372 atomic_inc(&req->task->io_uring->inflight_tracked);
376 static struct io_kiocb *__io_prep_linked_timeout(struct io_kiocb *req)
378 if (WARN_ON_ONCE(!req->link))
381 req->flags &= ~REQ_F_ARM_LTIMEOUT;
382 req->flags |= REQ_F_LINK_TIMEOUT;
384 /* linked timeouts should have two refs once prep'ed */
385 io_req_set_refcount(req);
386 __io_req_set_refcount(req->link, 2);
390 static inline struct io_kiocb *io_prep_linked_timeout(struct io_kiocb *req)
392 if (likely(!(req->flags & REQ_F_ARM_LTIMEOUT)))
394 return __io_prep_linked_timeout(req);
397 static noinline void __io_arm_ltimeout(struct io_kiocb *req)
399 io_queue_linked_timeout(__io_prep_linked_timeout(req));
402 static inline void io_arm_ltimeout(struct io_kiocb *req)
404 if (unlikely(req->flags & REQ_F_ARM_LTIMEOUT))
405 __io_arm_ltimeout(req);
408 static void io_prep_async_work(struct io_kiocb *req)
410 const struct io_issue_def *def = &io_issue_defs[req->opcode];
411 struct io_ring_ctx *ctx = req->ctx;
413 if (!(req->flags & REQ_F_CREDS)) {
414 req->flags |= REQ_F_CREDS;
415 req->creds = get_current_cred();
418 req->work.list.next = NULL;
420 req->work.cancel_seq = atomic_read(&ctx->cancel_seq);
421 if (req->flags & REQ_F_FORCE_ASYNC)
422 req->work.flags |= IO_WQ_WORK_CONCURRENT;
424 if (req->file && !io_req_ffs_set(req))
425 req->flags |= io_file_get_flags(req->file) << REQ_F_SUPPORT_NOWAIT_BIT;
427 if (req->flags & REQ_F_ISREG) {
428 if (def->hash_reg_file || (ctx->flags & IORING_SETUP_IOPOLL))
429 io_wq_hash_work(&req->work, file_inode(req->file));
430 } else if (!req->file || !S_ISBLK(file_inode(req->file)->i_mode)) {
431 if (def->unbound_nonreg_file)
432 req->work.flags |= IO_WQ_WORK_UNBOUND;
436 static void io_prep_async_link(struct io_kiocb *req)
438 struct io_kiocb *cur;
440 if (req->flags & REQ_F_LINK_TIMEOUT) {
441 struct io_ring_ctx *ctx = req->ctx;
443 spin_lock_irq(&ctx->timeout_lock);
444 io_for_each_link(cur, req)
445 io_prep_async_work(cur);
446 spin_unlock_irq(&ctx->timeout_lock);
448 io_for_each_link(cur, req)
449 io_prep_async_work(cur);
453 void io_queue_iowq(struct io_kiocb *req, bool *dont_use)
455 struct io_kiocb *link = io_prep_linked_timeout(req);
456 struct io_uring_task *tctx = req->task->io_uring;
459 BUG_ON(!tctx->io_wq);
461 /* init ->work of the whole link before punting */
462 io_prep_async_link(req);
465 * Not expected to happen, but if we do have a bug where this _can_
466 * happen, catch it here and ensure the request is marked as
467 * canceled. That will make io-wq go through the usual work cancel
468 * procedure rather than attempt to run this request (or create a new
471 if (WARN_ON_ONCE(!same_thread_group(req->task, current)))
472 req->work.flags |= IO_WQ_WORK_CANCEL;
474 trace_io_uring_queue_async_work(req, io_wq_is_hashed(&req->work));
475 io_wq_enqueue(tctx->io_wq, &req->work);
477 io_queue_linked_timeout(link);
480 static __cold void io_queue_deferred(struct io_ring_ctx *ctx)
482 while (!list_empty(&ctx->defer_list)) {
483 struct io_defer_entry *de = list_first_entry(&ctx->defer_list,
484 struct io_defer_entry, list);
486 if (req_need_defer(de->req, de->seq))
488 list_del_init(&de->list);
489 io_req_task_queue(de->req);
495 static void io_eventfd_ops(struct rcu_head *rcu)
497 struct io_ev_fd *ev_fd = container_of(rcu, struct io_ev_fd, rcu);
498 int ops = atomic_xchg(&ev_fd->ops, 0);
500 if (ops & BIT(IO_EVENTFD_OP_SIGNAL_BIT))
501 eventfd_signal_mask(ev_fd->cq_ev_fd, 1, EPOLL_URING_WAKE);
503 /* IO_EVENTFD_OP_FREE_BIT may not be set here depending on callback
504 * ordering in a race but if references are 0 we know we have to free
507 if (atomic_dec_and_test(&ev_fd->refs)) {
508 eventfd_ctx_put(ev_fd->cq_ev_fd);
513 static void io_eventfd_signal(struct io_ring_ctx *ctx)
515 struct io_ev_fd *ev_fd = NULL;
519 * rcu_dereference ctx->io_ev_fd once and use it for both for checking
522 ev_fd = rcu_dereference(ctx->io_ev_fd);
525 * Check again if ev_fd exists incase an io_eventfd_unregister call
526 * completed between the NULL check of ctx->io_ev_fd at the start of
527 * the function and rcu_read_lock.
529 if (unlikely(!ev_fd))
531 if (READ_ONCE(ctx->rings->cq_flags) & IORING_CQ_EVENTFD_DISABLED)
533 if (ev_fd->eventfd_async && !io_wq_current_is_worker())
536 if (likely(eventfd_signal_allowed())) {
537 eventfd_signal_mask(ev_fd->cq_ev_fd, 1, EPOLL_URING_WAKE);
539 atomic_inc(&ev_fd->refs);
540 if (!atomic_fetch_or(BIT(IO_EVENTFD_OP_SIGNAL_BIT), &ev_fd->ops))
541 call_rcu_hurry(&ev_fd->rcu, io_eventfd_ops);
543 atomic_dec(&ev_fd->refs);
550 static void io_eventfd_flush_signal(struct io_ring_ctx *ctx)
554 spin_lock(&ctx->completion_lock);
557 * Eventfd should only get triggered when at least one event has been
558 * posted. Some applications rely on the eventfd notification count
559 * only changing IFF a new CQE has been added to the CQ ring. There's
560 * no depedency on 1:1 relationship between how many times this
561 * function is called (and hence the eventfd count) and number of CQEs
562 * posted to the CQ ring.
564 skip = ctx->cached_cq_tail == ctx->evfd_last_cq_tail;
565 ctx->evfd_last_cq_tail = ctx->cached_cq_tail;
566 spin_unlock(&ctx->completion_lock);
570 io_eventfd_signal(ctx);
573 void __io_commit_cqring_flush(struct io_ring_ctx *ctx)
575 if (ctx->poll_activated)
576 io_poll_wq_wake(ctx);
577 if (ctx->off_timeout_used)
578 io_flush_timeouts(ctx);
579 if (ctx->drain_active) {
580 spin_lock(&ctx->completion_lock);
581 io_queue_deferred(ctx);
582 spin_unlock(&ctx->completion_lock);
585 io_eventfd_flush_signal(ctx);
588 static inline void __io_cq_lock(struct io_ring_ctx *ctx)
589 __acquires(ctx->completion_lock)
591 if (!ctx->task_complete)
592 spin_lock(&ctx->completion_lock);
595 static inline void __io_cq_unlock(struct io_ring_ctx *ctx)
597 if (!ctx->task_complete)
598 spin_unlock(&ctx->completion_lock);
601 static inline void io_cq_lock(struct io_ring_ctx *ctx)
602 __acquires(ctx->completion_lock)
604 spin_lock(&ctx->completion_lock);
607 static inline void io_cq_unlock(struct io_ring_ctx *ctx)
608 __releases(ctx->completion_lock)
610 spin_unlock(&ctx->completion_lock);
613 /* keep it inlined for io_submit_flush_completions() */
614 static inline void __io_cq_unlock_post(struct io_ring_ctx *ctx)
615 __releases(ctx->completion_lock)
617 io_commit_cqring(ctx);
619 io_commit_cqring_flush(ctx);
623 static inline void __io_cq_unlock_post_flush(struct io_ring_ctx *ctx)
624 __releases(ctx->completion_lock)
626 io_commit_cqring(ctx);
628 io_commit_cqring_flush(ctx);
631 * As ->task_complete implies that the ring is single tasked, cq_wait
632 * may only be waited on by the current in io_cqring_wait(), but since
633 * it will re-check the wakeup conditions once we return we can safely
636 if (!(ctx->flags & IORING_SETUP_DEFER_TASKRUN)) {
638 __io_cqring_wake(ctx);
642 void io_cq_unlock_post(struct io_ring_ctx *ctx)
643 __releases(ctx->completion_lock)
645 io_commit_cqring(ctx);
646 spin_unlock(&ctx->completion_lock);
647 io_commit_cqring_flush(ctx);
651 /* Returns true if there are no backlogged entries after the flush */
652 static void io_cqring_overflow_kill(struct io_ring_ctx *ctx)
654 struct io_overflow_cqe *ocqe;
658 list_splice_init(&ctx->cq_overflow_list, &list);
659 clear_bit(IO_CHECK_CQ_OVERFLOW_BIT, &ctx->check_cq);
662 while (!list_empty(&list)) {
663 ocqe = list_first_entry(&list, struct io_overflow_cqe, list);
664 list_del(&ocqe->list);
669 static void __io_cqring_overflow_flush(struct io_ring_ctx *ctx)
671 size_t cqe_size = sizeof(struct io_uring_cqe);
673 if (__io_cqring_events(ctx) == ctx->cq_entries)
676 if (ctx->flags & IORING_SETUP_CQE32)
680 while (!list_empty(&ctx->cq_overflow_list)) {
681 struct io_uring_cqe *cqe = io_get_cqe_overflow(ctx, true);
682 struct io_overflow_cqe *ocqe;
686 ocqe = list_first_entry(&ctx->cq_overflow_list,
687 struct io_overflow_cqe, list);
688 memcpy(cqe, &ocqe->cqe, cqe_size);
689 list_del(&ocqe->list);
693 if (list_empty(&ctx->cq_overflow_list)) {
694 clear_bit(IO_CHECK_CQ_OVERFLOW_BIT, &ctx->check_cq);
695 atomic_andnot(IORING_SQ_CQ_OVERFLOW, &ctx->rings->sq_flags);
697 io_cq_unlock_post(ctx);
700 static void io_cqring_do_overflow_flush(struct io_ring_ctx *ctx)
702 /* iopoll syncs against uring_lock, not completion_lock */
703 if (ctx->flags & IORING_SETUP_IOPOLL)
704 mutex_lock(&ctx->uring_lock);
705 __io_cqring_overflow_flush(ctx);
706 if (ctx->flags & IORING_SETUP_IOPOLL)
707 mutex_unlock(&ctx->uring_lock);
710 static void io_cqring_overflow_flush(struct io_ring_ctx *ctx)
712 if (test_bit(IO_CHECK_CQ_OVERFLOW_BIT, &ctx->check_cq))
713 io_cqring_do_overflow_flush(ctx);
716 /* can be called by any task */
717 static void io_put_task_remote(struct task_struct *task, int nr)
719 struct io_uring_task *tctx = task->io_uring;
721 percpu_counter_sub(&tctx->inflight, nr);
722 if (unlikely(atomic_read(&tctx->in_cancel)))
723 wake_up(&tctx->wait);
724 put_task_struct_many(task, nr);
727 /* used by a task to put its own references */
728 static void io_put_task_local(struct task_struct *task, int nr)
730 task->io_uring->cached_refs += nr;
733 /* must to be called somewhat shortly after putting a request */
734 static inline void io_put_task(struct task_struct *task, int nr)
736 if (likely(task == current))
737 io_put_task_local(task, nr);
739 io_put_task_remote(task, nr);
742 void io_task_refs_refill(struct io_uring_task *tctx)
744 unsigned int refill = -tctx->cached_refs + IO_TCTX_REFS_CACHE_NR;
746 percpu_counter_add(&tctx->inflight, refill);
747 refcount_add(refill, ¤t->usage);
748 tctx->cached_refs += refill;
751 static __cold void io_uring_drop_tctx_refs(struct task_struct *task)
753 struct io_uring_task *tctx = task->io_uring;
754 unsigned int refs = tctx->cached_refs;
757 tctx->cached_refs = 0;
758 percpu_counter_sub(&tctx->inflight, refs);
759 put_task_struct_many(task, refs);
763 static bool io_cqring_event_overflow(struct io_ring_ctx *ctx, u64 user_data,
764 s32 res, u32 cflags, u64 extra1, u64 extra2)
766 struct io_overflow_cqe *ocqe;
767 size_t ocq_size = sizeof(struct io_overflow_cqe);
768 bool is_cqe32 = (ctx->flags & IORING_SETUP_CQE32);
770 lockdep_assert_held(&ctx->completion_lock);
773 ocq_size += sizeof(struct io_uring_cqe);
775 ocqe = kmalloc(ocq_size, GFP_ATOMIC | __GFP_ACCOUNT);
776 trace_io_uring_cqe_overflow(ctx, user_data, res, cflags, ocqe);
779 * If we're in ring overflow flush mode, or in task cancel mode,
780 * or cannot allocate an overflow entry, then we need to drop it
783 io_account_cq_overflow(ctx);
784 set_bit(IO_CHECK_CQ_DROPPED_BIT, &ctx->check_cq);
787 if (list_empty(&ctx->cq_overflow_list)) {
788 set_bit(IO_CHECK_CQ_OVERFLOW_BIT, &ctx->check_cq);
789 atomic_or(IORING_SQ_CQ_OVERFLOW, &ctx->rings->sq_flags);
792 ocqe->cqe.user_data = user_data;
794 ocqe->cqe.flags = cflags;
796 ocqe->cqe.big_cqe[0] = extra1;
797 ocqe->cqe.big_cqe[1] = extra2;
799 list_add_tail(&ocqe->list, &ctx->cq_overflow_list);
803 bool io_req_cqe_overflow(struct io_kiocb *req)
805 if (!(req->flags & REQ_F_CQE32_INIT)) {
809 return io_cqring_event_overflow(req->ctx, req->cqe.user_data,
810 req->cqe.res, req->cqe.flags,
811 req->extra1, req->extra2);
815 * writes to the cq entry need to come after reading head; the
816 * control dependency is enough as we're using WRITE_ONCE to
819 struct io_uring_cqe *__io_get_cqe(struct io_ring_ctx *ctx, bool overflow)
821 struct io_rings *rings = ctx->rings;
822 unsigned int off = ctx->cached_cq_tail & (ctx->cq_entries - 1);
823 unsigned int free, queued, len;
826 * Posting into the CQ when there are pending overflowed CQEs may break
827 * ordering guarantees, which will affect links, F_MORE users and more.
828 * Force overflow the completion.
830 if (!overflow && (ctx->check_cq & BIT(IO_CHECK_CQ_OVERFLOW_BIT)))
833 /* userspace may cheat modifying the tail, be safe and do min */
834 queued = min(__io_cqring_events(ctx), ctx->cq_entries);
835 free = ctx->cq_entries - queued;
836 /* we need a contiguous range, limit based on the current array offset */
837 len = min(free, ctx->cq_entries - off);
841 if (ctx->flags & IORING_SETUP_CQE32) {
846 ctx->cqe_cached = &rings->cqes[off];
847 ctx->cqe_sentinel = ctx->cqe_cached + len;
849 ctx->cached_cq_tail++;
851 if (ctx->flags & IORING_SETUP_CQE32)
853 return &rings->cqes[off];
856 static bool io_fill_cqe_aux(struct io_ring_ctx *ctx, u64 user_data, s32 res,
859 struct io_uring_cqe *cqe;
864 * If we can't get a cq entry, userspace overflowed the
865 * submission (by quite a lot). Increment the overflow count in
868 cqe = io_get_cqe(ctx);
870 trace_io_uring_complete(ctx, NULL, user_data, res, cflags, 0, 0);
872 WRITE_ONCE(cqe->user_data, user_data);
873 WRITE_ONCE(cqe->res, res);
874 WRITE_ONCE(cqe->flags, cflags);
876 if (ctx->flags & IORING_SETUP_CQE32) {
877 WRITE_ONCE(cqe->big_cqe[0], 0);
878 WRITE_ONCE(cqe->big_cqe[1], 0);
885 static void __io_flush_post_cqes(struct io_ring_ctx *ctx)
886 __must_hold(&ctx->uring_lock)
888 struct io_submit_state *state = &ctx->submit_state;
891 lockdep_assert_held(&ctx->uring_lock);
892 for (i = 0; i < state->cqes_count; i++) {
893 struct io_uring_cqe *cqe = &state->cqes[i];
895 if (!io_fill_cqe_aux(ctx, cqe->user_data, cqe->res, cqe->flags)) {
896 if (ctx->task_complete) {
897 spin_lock(&ctx->completion_lock);
898 io_cqring_event_overflow(ctx, cqe->user_data,
899 cqe->res, cqe->flags, 0, 0);
900 spin_unlock(&ctx->completion_lock);
902 io_cqring_event_overflow(ctx, cqe->user_data,
903 cqe->res, cqe->flags, 0, 0);
907 state->cqes_count = 0;
910 static bool __io_post_aux_cqe(struct io_ring_ctx *ctx, u64 user_data, s32 res, u32 cflags,
916 filled = io_fill_cqe_aux(ctx, user_data, res, cflags);
917 if (!filled && allow_overflow)
918 filled = io_cqring_event_overflow(ctx, user_data, res, cflags, 0, 0);
920 io_cq_unlock_post(ctx);
924 bool io_post_aux_cqe(struct io_ring_ctx *ctx, u64 user_data, s32 res, u32 cflags)
926 return __io_post_aux_cqe(ctx, user_data, res, cflags, true);
929 bool io_aux_cqe(struct io_ring_ctx *ctx, bool defer, u64 user_data, s32 res, u32 cflags,
932 struct io_uring_cqe *cqe;
936 return __io_post_aux_cqe(ctx, user_data, res, cflags, allow_overflow);
938 length = ARRAY_SIZE(ctx->submit_state.cqes);
940 lockdep_assert_held(&ctx->uring_lock);
942 if (ctx->submit_state.cqes_count == length) {
944 __io_flush_post_cqes(ctx);
945 /* no need to flush - flush is deferred */
946 __io_cq_unlock_post(ctx);
949 /* For defered completions this is not as strict as it is otherwise,
950 * however it's main job is to prevent unbounded posted completions,
951 * and in that it works just as well.
953 if (!allow_overflow && test_bit(IO_CHECK_CQ_OVERFLOW_BIT, &ctx->check_cq))
956 cqe = &ctx->submit_state.cqes[ctx->submit_state.cqes_count++];
957 cqe->user_data = user_data;
963 static void __io_req_complete_post(struct io_kiocb *req)
965 struct io_ring_ctx *ctx = req->ctx;
968 if (!(req->flags & REQ_F_CQE_SKIP))
969 io_fill_cqe_req(ctx, req);
972 * If we're the last reference to this request, add to our locked
975 if (req_ref_put_and_test(req)) {
976 if (req->flags & IO_REQ_LINK_FLAGS) {
977 if (req->flags & IO_DISARM_MASK)
980 io_req_task_queue(req->link);
984 io_put_kbuf_comp(req);
985 io_dismantle_req(req);
986 io_req_put_rsrc(req);
988 * Selected buffer deallocation in io_clean_op() assumes that
989 * we don't hold ->completion_lock. Clean them here to avoid
992 io_put_task_remote(req->task, 1);
993 wq_list_add_head(&req->comp_list, &ctx->locked_free_list);
994 ctx->locked_free_nr++;
996 io_cq_unlock_post(ctx);
999 void io_req_complete_post(struct io_kiocb *req, unsigned issue_flags)
1001 if (req->ctx->task_complete && (issue_flags & IO_URING_F_IOWQ)) {
1002 req->io_task_work.func = io_req_task_complete;
1003 io_req_task_work_add(req);
1004 } else if (!(issue_flags & IO_URING_F_UNLOCKED) ||
1005 !(req->ctx->flags & IORING_SETUP_IOPOLL)) {
1006 __io_req_complete_post(req);
1008 struct io_ring_ctx *ctx = req->ctx;
1010 mutex_lock(&ctx->uring_lock);
1011 __io_req_complete_post(req);
1012 mutex_unlock(&ctx->uring_lock);
1016 void io_req_defer_failed(struct io_kiocb *req, s32 res)
1017 __must_hold(&ctx->uring_lock)
1019 const struct io_cold_def *def = &io_cold_defs[req->opcode];
1021 lockdep_assert_held(&req->ctx->uring_lock);
1024 io_req_set_res(req, res, io_put_kbuf(req, IO_URING_F_UNLOCKED));
1027 io_req_complete_defer(req);
1031 * Don't initialise the fields below on every allocation, but do that in
1032 * advance and keep them valid across allocations.
1034 static void io_preinit_req(struct io_kiocb *req, struct io_ring_ctx *ctx)
1038 req->async_data = NULL;
1039 /* not necessary, but safer to zero */
1043 static void io_flush_cached_locked_reqs(struct io_ring_ctx *ctx,
1044 struct io_submit_state *state)
1046 spin_lock(&ctx->completion_lock);
1047 wq_list_splice(&ctx->locked_free_list, &state->free_list);
1048 ctx->locked_free_nr = 0;
1049 spin_unlock(&ctx->completion_lock);
1053 * A request might get retired back into the request caches even before opcode
1054 * handlers and io_issue_sqe() are done with it, e.g. inline completion path.
1055 * Because of that, io_alloc_req() should be called only under ->uring_lock
1056 * and with extra caution to not get a request that is still worked on.
1058 __cold bool __io_alloc_req_refill(struct io_ring_ctx *ctx)
1059 __must_hold(&ctx->uring_lock)
1061 gfp_t gfp = GFP_KERNEL | __GFP_NOWARN;
1062 void *reqs[IO_REQ_ALLOC_BATCH];
1066 * If we have more than a batch's worth of requests in our IRQ side
1067 * locked cache, grab the lock and move them over to our submission
1070 if (data_race(ctx->locked_free_nr) > IO_COMPL_BATCH) {
1071 io_flush_cached_locked_reqs(ctx, &ctx->submit_state);
1072 if (!io_req_cache_empty(ctx))
1076 ret = kmem_cache_alloc_bulk(req_cachep, gfp, ARRAY_SIZE(reqs), reqs);
1079 * Bulk alloc is all-or-nothing. If we fail to get a batch,
1080 * retry single alloc to be on the safe side.
1082 if (unlikely(ret <= 0)) {
1083 reqs[0] = kmem_cache_alloc(req_cachep, gfp);
1089 percpu_ref_get_many(&ctx->refs, ret);
1090 for (i = 0; i < ret; i++) {
1091 struct io_kiocb *req = reqs[i];
1093 io_preinit_req(req, ctx);
1094 io_req_add_to_cache(req, ctx);
1099 static inline void io_dismantle_req(struct io_kiocb *req)
1101 unsigned int flags = req->flags;
1103 if (unlikely(flags & IO_REQ_CLEAN_FLAGS))
1105 if (!(flags & REQ_F_FIXED_FILE))
1106 io_put_file(req->file);
1109 __cold void io_free_req(struct io_kiocb *req)
1111 struct io_ring_ctx *ctx = req->ctx;
1113 io_req_put_rsrc(req);
1114 io_dismantle_req(req);
1115 io_put_task_remote(req->task, 1);
1117 spin_lock(&ctx->completion_lock);
1118 wq_list_add_head(&req->comp_list, &ctx->locked_free_list);
1119 ctx->locked_free_nr++;
1120 spin_unlock(&ctx->completion_lock);
1123 static void __io_req_find_next_prep(struct io_kiocb *req)
1125 struct io_ring_ctx *ctx = req->ctx;
1127 spin_lock(&ctx->completion_lock);
1128 io_disarm_next(req);
1129 spin_unlock(&ctx->completion_lock);
1132 static inline struct io_kiocb *io_req_find_next(struct io_kiocb *req)
1134 struct io_kiocb *nxt;
1137 * If LINK is set, we have dependent requests in this chain. If we
1138 * didn't fail this request, queue the first one up, moving any other
1139 * dependencies to the next request. In case of failure, fail the rest
1142 if (unlikely(req->flags & IO_DISARM_MASK))
1143 __io_req_find_next_prep(req);
1149 static void ctx_flush_and_put(struct io_ring_ctx *ctx, bool *locked)
1153 if (ctx->flags & IORING_SETUP_TASKRUN_FLAG)
1154 atomic_andnot(IORING_SQ_TASKRUN, &ctx->rings->sq_flags);
1156 io_submit_flush_completions(ctx);
1157 mutex_unlock(&ctx->uring_lock);
1160 percpu_ref_put(&ctx->refs);
1163 static unsigned int handle_tw_list(struct llist_node *node,
1164 struct io_ring_ctx **ctx, bool *locked,
1165 struct llist_node *last)
1167 unsigned int count = 0;
1169 while (node && node != last) {
1170 struct llist_node *next = node->next;
1171 struct io_kiocb *req = container_of(node, struct io_kiocb,
1174 prefetch(container_of(next, struct io_kiocb, io_task_work.node));
1176 if (req->ctx != *ctx) {
1177 ctx_flush_and_put(*ctx, locked);
1179 /* if not contended, grab and improve batching */
1180 *locked = mutex_trylock(&(*ctx)->uring_lock);
1181 percpu_ref_get(&(*ctx)->refs);
1182 } else if (!*locked)
1183 *locked = mutex_trylock(&(*ctx)->uring_lock);
1184 req->io_task_work.func(req, locked);
1187 if (unlikely(need_resched())) {
1188 ctx_flush_and_put(*ctx, locked);
1198 * io_llist_xchg - swap all entries in a lock-less list
1199 * @head: the head of lock-less list to delete all entries
1200 * @new: new entry as the head of the list
1202 * If list is empty, return NULL, otherwise, return the pointer to the first entry.
1203 * The order of entries returned is from the newest to the oldest added one.
1205 static inline struct llist_node *io_llist_xchg(struct llist_head *head,
1206 struct llist_node *new)
1208 return xchg(&head->first, new);
1212 * io_llist_cmpxchg - possibly swap all entries in a lock-less list
1213 * @head: the head of lock-less list to delete all entries
1214 * @old: expected old value of the first entry of the list
1215 * @new: new entry as the head of the list
1217 * perform a cmpxchg on the first entry of the list.
1220 static inline struct llist_node *io_llist_cmpxchg(struct llist_head *head,
1221 struct llist_node *old,
1222 struct llist_node *new)
1224 return cmpxchg(&head->first, old, new);
1227 void tctx_task_work(struct callback_head *cb)
1229 bool uring_locked = false;
1230 struct io_ring_ctx *ctx = NULL;
1231 struct io_uring_task *tctx = container_of(cb, struct io_uring_task,
1233 struct llist_node fake = {};
1234 struct llist_node *node;
1235 unsigned int loops = 0;
1236 unsigned int count = 0;
1238 if (unlikely(current->flags & PF_EXITING)) {
1239 io_fallback_tw(tctx);
1245 node = io_llist_xchg(&tctx->task_list, &fake);
1246 count += handle_tw_list(node, &ctx, &uring_locked, &fake);
1248 /* skip expensive cmpxchg if there are items in the list */
1249 if (READ_ONCE(tctx->task_list.first) != &fake)
1251 if (uring_locked && !wq_list_empty(&ctx->submit_state.compl_reqs)) {
1252 io_submit_flush_completions(ctx);
1253 if (READ_ONCE(tctx->task_list.first) != &fake)
1256 node = io_llist_cmpxchg(&tctx->task_list, &fake, NULL);
1257 } while (node != &fake);
1259 ctx_flush_and_put(ctx, &uring_locked);
1261 /* relaxed read is enough as only the task itself sets ->in_cancel */
1262 if (unlikely(atomic_read(&tctx->in_cancel)))
1263 io_uring_drop_tctx_refs(current);
1265 trace_io_uring_task_work_run(tctx, count, loops);
1268 static __cold void io_fallback_tw(struct io_uring_task *tctx)
1270 struct llist_node *node = llist_del_all(&tctx->task_list);
1271 struct io_kiocb *req;
1274 req = container_of(node, struct io_kiocb, io_task_work.node);
1276 if (llist_add(&req->io_task_work.node,
1277 &req->ctx->fallback_llist))
1278 schedule_delayed_work(&req->ctx->fallback_work, 1);
1282 static void io_req_local_work_add(struct io_kiocb *req)
1284 struct io_ring_ctx *ctx = req->ctx;
1286 percpu_ref_get(&ctx->refs);
1288 if (!llist_add(&req->io_task_work.node, &ctx->work_llist))
1291 /* needed for the following wake up */
1292 smp_mb__after_atomic();
1294 if (unlikely(atomic_read(&req->task->io_uring->in_cancel))) {
1295 io_move_task_work_from_local(ctx);
1299 if (ctx->flags & IORING_SETUP_TASKRUN_FLAG)
1300 atomic_or(IORING_SQ_TASKRUN, &ctx->rings->sq_flags);
1302 io_eventfd_signal(ctx);
1304 if (READ_ONCE(ctx->cq_waiting))
1305 wake_up_state(ctx->submitter_task, TASK_INTERRUPTIBLE);
1308 percpu_ref_put(&ctx->refs);
1311 void __io_req_task_work_add(struct io_kiocb *req, bool allow_local)
1313 struct io_uring_task *tctx = req->task->io_uring;
1314 struct io_ring_ctx *ctx = req->ctx;
1316 if (allow_local && ctx->flags & IORING_SETUP_DEFER_TASKRUN) {
1317 io_req_local_work_add(req);
1321 /* task_work already pending, we're done */
1322 if (!llist_add(&req->io_task_work.node, &tctx->task_list))
1325 if (ctx->flags & IORING_SETUP_TASKRUN_FLAG)
1326 atomic_or(IORING_SQ_TASKRUN, &ctx->rings->sq_flags);
1328 if (likely(!task_work_add(req->task, &tctx->task_work, ctx->notify_method)))
1331 io_fallback_tw(tctx);
1334 static void __cold io_move_task_work_from_local(struct io_ring_ctx *ctx)
1336 struct llist_node *node;
1338 node = llist_del_all(&ctx->work_llist);
1340 struct io_kiocb *req = container_of(node, struct io_kiocb,
1344 __io_req_task_work_add(req, false);
1348 static int __io_run_local_work(struct io_ring_ctx *ctx, bool *locked)
1350 struct llist_node *node;
1351 unsigned int loops = 0;
1354 if (WARN_ON_ONCE(ctx->submitter_task != current))
1356 if (ctx->flags & IORING_SETUP_TASKRUN_FLAG)
1357 atomic_andnot(IORING_SQ_TASKRUN, &ctx->rings->sq_flags);
1359 node = io_llist_xchg(&ctx->work_llist, NULL);
1361 struct llist_node *next = node->next;
1362 struct io_kiocb *req = container_of(node, struct io_kiocb,
1364 prefetch(container_of(next, struct io_kiocb, io_task_work.node));
1365 req->io_task_work.func(req, locked);
1371 if (!llist_empty(&ctx->work_llist))
1374 io_submit_flush_completions(ctx);
1375 if (!llist_empty(&ctx->work_llist))
1378 trace_io_uring_local_work_run(ctx, ret, loops);
1382 static inline int io_run_local_work_locked(struct io_ring_ctx *ctx)
1387 if (llist_empty(&ctx->work_llist))
1391 ret = __io_run_local_work(ctx, &locked);
1392 /* shouldn't happen! */
1393 if (WARN_ON_ONCE(!locked))
1394 mutex_lock(&ctx->uring_lock);
1398 static int io_run_local_work(struct io_ring_ctx *ctx)
1400 bool locked = mutex_trylock(&ctx->uring_lock);
1403 ret = __io_run_local_work(ctx, &locked);
1405 mutex_unlock(&ctx->uring_lock);
1410 static void io_req_task_cancel(struct io_kiocb *req, bool *locked)
1412 io_tw_lock(req->ctx, locked);
1413 io_req_defer_failed(req, req->cqe.res);
1416 void io_req_task_submit(struct io_kiocb *req, bool *locked)
1418 io_tw_lock(req->ctx, locked);
1419 /* req->task == current here, checking PF_EXITING is safe */
1420 if (unlikely(req->task->flags & PF_EXITING))
1421 io_req_defer_failed(req, -EFAULT);
1422 else if (req->flags & REQ_F_FORCE_ASYNC)
1423 io_queue_iowq(req, locked);
1428 void io_req_task_queue_fail(struct io_kiocb *req, int ret)
1430 io_req_set_res(req, ret, 0);
1431 req->io_task_work.func = io_req_task_cancel;
1432 io_req_task_work_add(req);
1435 void io_req_task_queue(struct io_kiocb *req)
1437 req->io_task_work.func = io_req_task_submit;
1438 io_req_task_work_add(req);
1441 void io_queue_next(struct io_kiocb *req)
1443 struct io_kiocb *nxt = io_req_find_next(req);
1446 io_req_task_queue(nxt);
1449 void io_free_batch_list(struct io_ring_ctx *ctx, struct io_wq_work_node *node)
1450 __must_hold(&ctx->uring_lock)
1452 struct task_struct *task = NULL;
1456 struct io_kiocb *req = container_of(node, struct io_kiocb,
1459 if (unlikely(req->flags & IO_REQ_CLEAN_SLOW_FLAGS)) {
1460 if (req->flags & REQ_F_REFCOUNT) {
1461 node = req->comp_list.next;
1462 if (!req_ref_put_and_test(req))
1465 if ((req->flags & REQ_F_POLLED) && req->apoll) {
1466 struct async_poll *apoll = req->apoll;
1468 if (apoll->double_poll)
1469 kfree(apoll->double_poll);
1470 if (!io_alloc_cache_put(&ctx->apoll_cache, &apoll->cache))
1472 req->flags &= ~REQ_F_POLLED;
1474 if (req->flags & IO_REQ_LINK_FLAGS)
1476 if (unlikely(req->flags & IO_REQ_CLEAN_FLAGS))
1479 if (!(req->flags & REQ_F_FIXED_FILE))
1480 io_put_file(req->file);
1482 io_req_put_rsrc_locked(req, ctx);
1484 if (req->task != task) {
1486 io_put_task(task, task_refs);
1491 node = req->comp_list.next;
1492 io_req_add_to_cache(req, ctx);
1496 io_put_task(task, task_refs);
1499 static void __io_submit_flush_completions(struct io_ring_ctx *ctx)
1500 __must_hold(&ctx->uring_lock)
1502 struct io_submit_state *state = &ctx->submit_state;
1503 struct io_wq_work_node *node;
1506 /* must come first to preserve CQE ordering in failure cases */
1507 if (state->cqes_count)
1508 __io_flush_post_cqes(ctx);
1509 __wq_list_for_each(node, &state->compl_reqs) {
1510 struct io_kiocb *req = container_of(node, struct io_kiocb,
1513 if (!(req->flags & REQ_F_CQE_SKIP) &&
1514 unlikely(!__io_fill_cqe_req(ctx, req))) {
1515 if (ctx->task_complete) {
1516 spin_lock(&ctx->completion_lock);
1517 io_req_cqe_overflow(req);
1518 spin_unlock(&ctx->completion_lock);
1520 io_req_cqe_overflow(req);
1524 __io_cq_unlock_post_flush(ctx);
1526 if (!wq_list_empty(&ctx->submit_state.compl_reqs)) {
1527 io_free_batch_list(ctx, state->compl_reqs.first);
1528 INIT_WQ_LIST(&state->compl_reqs);
1533 * Drop reference to request, return next in chain (if there is one) if this
1534 * was the last reference to this request.
1536 static inline struct io_kiocb *io_put_req_find_next(struct io_kiocb *req)
1538 struct io_kiocb *nxt = NULL;
1540 if (req_ref_put_and_test(req)) {
1541 if (unlikely(req->flags & IO_REQ_LINK_FLAGS))
1542 nxt = io_req_find_next(req);
1548 static unsigned io_cqring_events(struct io_ring_ctx *ctx)
1550 /* See comment at the top of this file */
1552 return __io_cqring_events(ctx);
1556 * We can't just wait for polled events to come to us, we have to actively
1557 * find and complete them.
1559 static __cold void io_iopoll_try_reap_events(struct io_ring_ctx *ctx)
1561 if (!(ctx->flags & IORING_SETUP_IOPOLL))
1564 mutex_lock(&ctx->uring_lock);
1565 while (!wq_list_empty(&ctx->iopoll_list)) {
1566 /* let it sleep and repeat later if can't complete a request */
1567 if (io_do_iopoll(ctx, true) == 0)
1570 * Ensure we allow local-to-the-cpu processing to take place,
1571 * in this case we need to ensure that we reap all events.
1572 * Also let task_work, etc. to progress by releasing the mutex
1574 if (need_resched()) {
1575 mutex_unlock(&ctx->uring_lock);
1577 mutex_lock(&ctx->uring_lock);
1580 mutex_unlock(&ctx->uring_lock);
1583 static int io_iopoll_check(struct io_ring_ctx *ctx, long min)
1585 unsigned int nr_events = 0;
1587 unsigned long check_cq;
1589 if (!io_allowed_run_tw(ctx))
1592 check_cq = READ_ONCE(ctx->check_cq);
1593 if (unlikely(check_cq)) {
1594 if (check_cq & BIT(IO_CHECK_CQ_OVERFLOW_BIT))
1595 __io_cqring_overflow_flush(ctx);
1597 * Similarly do not spin if we have not informed the user of any
1600 if (check_cq & BIT(IO_CHECK_CQ_DROPPED_BIT))
1604 * Don't enter poll loop if we already have events pending.
1605 * If we do, we can potentially be spinning for commands that
1606 * already triggered a CQE (eg in error).
1608 if (io_cqring_events(ctx))
1613 * If a submit got punted to a workqueue, we can have the
1614 * application entering polling for a command before it gets
1615 * issued. That app will hold the uring_lock for the duration
1616 * of the poll right here, so we need to take a breather every
1617 * now and then to ensure that the issue has a chance to add
1618 * the poll to the issued list. Otherwise we can spin here
1619 * forever, while the workqueue is stuck trying to acquire the
1622 if (wq_list_empty(&ctx->iopoll_list) ||
1623 io_task_work_pending(ctx)) {
1624 u32 tail = ctx->cached_cq_tail;
1626 (void) io_run_local_work_locked(ctx);
1628 if (task_work_pending(current) ||
1629 wq_list_empty(&ctx->iopoll_list)) {
1630 mutex_unlock(&ctx->uring_lock);
1632 mutex_lock(&ctx->uring_lock);
1634 /* some requests don't go through iopoll_list */
1635 if (tail != ctx->cached_cq_tail ||
1636 wq_list_empty(&ctx->iopoll_list))
1639 ret = io_do_iopoll(ctx, !min);
1644 } while (nr_events < min && !need_resched());
1649 void io_req_task_complete(struct io_kiocb *req, bool *locked)
1652 io_req_complete_defer(req);
1654 io_req_complete_post(req, IO_URING_F_UNLOCKED);
1658 * After the iocb has been issued, it's safe to be found on the poll list.
1659 * Adding the kiocb to the list AFTER submission ensures that we don't
1660 * find it from a io_do_iopoll() thread before the issuer is done
1661 * accessing the kiocb cookie.
1663 static void io_iopoll_req_issued(struct io_kiocb *req, unsigned int issue_flags)
1665 struct io_ring_ctx *ctx = req->ctx;
1666 const bool needs_lock = issue_flags & IO_URING_F_UNLOCKED;
1668 /* workqueue context doesn't hold uring_lock, grab it now */
1669 if (unlikely(needs_lock))
1670 mutex_lock(&ctx->uring_lock);
1673 * Track whether we have multiple files in our lists. This will impact
1674 * how we do polling eventually, not spinning if we're on potentially
1675 * different devices.
1677 if (wq_list_empty(&ctx->iopoll_list)) {
1678 ctx->poll_multi_queue = false;
1679 } else if (!ctx->poll_multi_queue) {
1680 struct io_kiocb *list_req;
1682 list_req = container_of(ctx->iopoll_list.first, struct io_kiocb,
1684 if (list_req->file != req->file)
1685 ctx->poll_multi_queue = true;
1689 * For fast devices, IO may have already completed. If it has, add
1690 * it to the front so we find it first.
1692 if (READ_ONCE(req->iopoll_completed))
1693 wq_list_add_head(&req->comp_list, &ctx->iopoll_list);
1695 wq_list_add_tail(&req->comp_list, &ctx->iopoll_list);
1697 if (unlikely(needs_lock)) {
1699 * If IORING_SETUP_SQPOLL is enabled, sqes are either handle
1700 * in sq thread task context or in io worker task context. If
1701 * current task context is sq thread, we don't need to check
1702 * whether should wake up sq thread.
1704 if ((ctx->flags & IORING_SETUP_SQPOLL) &&
1705 wq_has_sleeper(&ctx->sq_data->wait))
1706 wake_up(&ctx->sq_data->wait);
1708 mutex_unlock(&ctx->uring_lock);
1712 static bool io_bdev_nowait(struct block_device *bdev)
1714 return !bdev || bdev_nowait(bdev);
1718 * If we tracked the file through the SCM inflight mechanism, we could support
1719 * any file. For now, just ensure that anything potentially problematic is done
1722 static bool __io_file_supports_nowait(struct file *file, umode_t mode)
1724 if (S_ISBLK(mode)) {
1725 if (IS_ENABLED(CONFIG_BLOCK) &&
1726 io_bdev_nowait(I_BDEV(file->f_mapping->host)))
1732 if (S_ISREG(mode)) {
1733 if (IS_ENABLED(CONFIG_BLOCK) &&
1734 io_bdev_nowait(file->f_inode->i_sb->s_bdev) &&
1735 !io_is_uring_fops(file))
1740 /* any ->read/write should understand O_NONBLOCK */
1741 if (file->f_flags & O_NONBLOCK)
1743 return file->f_mode & FMODE_NOWAIT;
1747 * If we tracked the file through the SCM inflight mechanism, we could support
1748 * any file. For now, just ensure that anything potentially problematic is done
1751 unsigned int io_file_get_flags(struct file *file)
1753 umode_t mode = file_inode(file)->i_mode;
1754 unsigned int res = 0;
1758 if (__io_file_supports_nowait(file, mode))
1763 bool io_alloc_async_data(struct io_kiocb *req)
1765 WARN_ON_ONCE(!io_cold_defs[req->opcode].async_size);
1766 req->async_data = kmalloc(io_cold_defs[req->opcode].async_size, GFP_KERNEL);
1767 if (req->async_data) {
1768 req->flags |= REQ_F_ASYNC_DATA;
1774 int io_req_prep_async(struct io_kiocb *req)
1776 const struct io_cold_def *cdef = &io_cold_defs[req->opcode];
1777 const struct io_issue_def *def = &io_issue_defs[req->opcode];
1779 /* assign early for deferred execution for non-fixed file */
1780 if (def->needs_file && !(req->flags & REQ_F_FIXED_FILE) && !req->file)
1781 req->file = io_file_get_normal(req, req->cqe.fd);
1782 if (!cdef->prep_async)
1784 if (WARN_ON_ONCE(req_has_async_data(req)))
1786 if (!def->manual_alloc) {
1787 if (io_alloc_async_data(req))
1790 return cdef->prep_async(req);
1793 static u32 io_get_sequence(struct io_kiocb *req)
1795 u32 seq = req->ctx->cached_sq_head;
1796 struct io_kiocb *cur;
1798 /* need original cached_sq_head, but it was increased for each req */
1799 io_for_each_link(cur, req)
1804 static __cold void io_drain_req(struct io_kiocb *req)
1805 __must_hold(&ctx->uring_lock)
1807 struct io_ring_ctx *ctx = req->ctx;
1808 struct io_defer_entry *de;
1810 u32 seq = io_get_sequence(req);
1812 /* Still need defer if there is pending req in defer list. */
1813 spin_lock(&ctx->completion_lock);
1814 if (!req_need_defer(req, seq) && list_empty_careful(&ctx->defer_list)) {
1815 spin_unlock(&ctx->completion_lock);
1817 ctx->drain_active = false;
1818 io_req_task_queue(req);
1821 spin_unlock(&ctx->completion_lock);
1823 io_prep_async_link(req);
1824 de = kmalloc(sizeof(*de), GFP_KERNEL);
1827 io_req_defer_failed(req, ret);
1831 spin_lock(&ctx->completion_lock);
1832 if (!req_need_defer(req, seq) && list_empty(&ctx->defer_list)) {
1833 spin_unlock(&ctx->completion_lock);
1838 trace_io_uring_defer(req);
1841 list_add_tail(&de->list, &ctx->defer_list);
1842 spin_unlock(&ctx->completion_lock);
1845 static void io_clean_op(struct io_kiocb *req)
1847 if (req->flags & REQ_F_BUFFER_SELECTED) {
1848 spin_lock(&req->ctx->completion_lock);
1849 io_put_kbuf_comp(req);
1850 spin_unlock(&req->ctx->completion_lock);
1853 if (req->flags & REQ_F_NEED_CLEANUP) {
1854 const struct io_cold_def *def = &io_cold_defs[req->opcode];
1859 if ((req->flags & REQ_F_POLLED) && req->apoll) {
1860 kfree(req->apoll->double_poll);
1864 if (req->flags & REQ_F_INFLIGHT) {
1865 struct io_uring_task *tctx = req->task->io_uring;
1867 atomic_dec(&tctx->inflight_tracked);
1869 if (req->flags & REQ_F_CREDS)
1870 put_cred(req->creds);
1871 if (req->flags & REQ_F_ASYNC_DATA) {
1872 kfree(req->async_data);
1873 req->async_data = NULL;
1875 req->flags &= ~IO_REQ_CLEAN_FLAGS;
1878 static bool io_assign_file(struct io_kiocb *req, const struct io_issue_def *def,
1879 unsigned int issue_flags)
1881 if (req->file || !def->needs_file)
1884 if (req->flags & REQ_F_FIXED_FILE)
1885 req->file = io_file_get_fixed(req, req->cqe.fd, issue_flags);
1887 req->file = io_file_get_normal(req, req->cqe.fd);
1892 static int io_issue_sqe(struct io_kiocb *req, unsigned int issue_flags)
1894 const struct io_issue_def *def = &io_issue_defs[req->opcode];
1895 const struct cred *creds = NULL;
1898 if (unlikely(!io_assign_file(req, def, issue_flags)))
1901 if (unlikely((req->flags & REQ_F_CREDS) && req->creds != current_cred()))
1902 creds = override_creds(req->creds);
1904 if (!def->audit_skip)
1905 audit_uring_entry(req->opcode);
1907 ret = def->issue(req, issue_flags);
1909 if (!def->audit_skip)
1910 audit_uring_exit(!ret, ret);
1913 revert_creds(creds);
1915 if (ret == IOU_OK) {
1916 if (issue_flags & IO_URING_F_COMPLETE_DEFER)
1917 io_req_complete_defer(req);
1919 io_req_complete_post(req, issue_flags);
1920 } else if (ret != IOU_ISSUE_SKIP_COMPLETE)
1923 /* If the op doesn't have a file, we're not polling for it */
1924 if ((req->ctx->flags & IORING_SETUP_IOPOLL) && def->iopoll_queue)
1925 io_iopoll_req_issued(req, issue_flags);
1930 int io_poll_issue(struct io_kiocb *req, bool *locked)
1932 io_tw_lock(req->ctx, locked);
1933 return io_issue_sqe(req, IO_URING_F_NONBLOCK|IO_URING_F_MULTISHOT|
1934 IO_URING_F_COMPLETE_DEFER);
1937 struct io_wq_work *io_wq_free_work(struct io_wq_work *work)
1939 struct io_kiocb *req = container_of(work, struct io_kiocb, work);
1941 req = io_put_req_find_next(req);
1942 return req ? &req->work : NULL;
1945 void io_wq_submit_work(struct io_wq_work *work)
1947 struct io_kiocb *req = container_of(work, struct io_kiocb, work);
1948 const struct io_issue_def *def = &io_issue_defs[req->opcode];
1949 unsigned int issue_flags = IO_URING_F_UNLOCKED | IO_URING_F_IOWQ;
1950 bool needs_poll = false;
1951 int ret = 0, err = -ECANCELED;
1953 /* one will be dropped by ->io_wq_free_work() after returning to io-wq */
1954 if (!(req->flags & REQ_F_REFCOUNT))
1955 __io_req_set_refcount(req, 2);
1959 io_arm_ltimeout(req);
1961 /* either cancelled or io-wq is dying, so don't touch tctx->iowq */
1962 if (work->flags & IO_WQ_WORK_CANCEL) {
1964 io_req_task_queue_fail(req, err);
1967 if (!io_assign_file(req, def, issue_flags)) {
1969 work->flags |= IO_WQ_WORK_CANCEL;
1973 if (req->flags & REQ_F_FORCE_ASYNC) {
1974 bool opcode_poll = def->pollin || def->pollout;
1976 if (opcode_poll && file_can_poll(req->file)) {
1978 issue_flags |= IO_URING_F_NONBLOCK;
1983 ret = io_issue_sqe(req, issue_flags);
1987 * We can get EAGAIN for iopolled IO even though we're
1988 * forcing a sync submission from here, since we can't
1989 * wait for request slots on the block side.
1992 if (!(req->ctx->flags & IORING_SETUP_IOPOLL))
1998 if (io_arm_poll_handler(req, issue_flags) == IO_APOLL_OK)
2000 /* aborted or ready, in either case retry blocking */
2002 issue_flags &= ~IO_URING_F_NONBLOCK;
2005 /* avoid locking problems by failing it from a clean context */
2007 io_req_task_queue_fail(req, ret);
2010 inline struct file *io_file_get_fixed(struct io_kiocb *req, int fd,
2011 unsigned int issue_flags)
2013 struct io_ring_ctx *ctx = req->ctx;
2014 struct file *file = NULL;
2015 unsigned long file_ptr;
2017 io_ring_submit_lock(ctx, issue_flags);
2019 if (unlikely((unsigned int)fd >= ctx->nr_user_files))
2021 fd = array_index_nospec(fd, ctx->nr_user_files);
2022 file_ptr = io_fixed_file_slot(&ctx->file_table, fd)->file_ptr;
2023 file = (struct file *) (file_ptr & FFS_MASK);
2024 file_ptr &= ~FFS_MASK;
2025 /* mask in overlapping REQ_F and FFS bits */
2026 req->flags |= (file_ptr << REQ_F_SUPPORT_NOWAIT_BIT);
2027 io_req_set_rsrc_node(req, ctx, 0);
2029 io_ring_submit_unlock(ctx, issue_flags);
2033 struct file *io_file_get_normal(struct io_kiocb *req, int fd)
2035 struct file *file = fget(fd);
2037 trace_io_uring_file_get(req, fd);
2039 /* we don't allow fixed io_uring files */
2040 if (file && io_is_uring_fops(file))
2041 io_req_track_inflight(req);
2045 static void io_queue_async(struct io_kiocb *req, int ret)
2046 __must_hold(&req->ctx->uring_lock)
2048 struct io_kiocb *linked_timeout;
2050 if (ret != -EAGAIN || (req->flags & REQ_F_NOWAIT)) {
2051 io_req_defer_failed(req, ret);
2055 linked_timeout = io_prep_linked_timeout(req);
2057 switch (io_arm_poll_handler(req, 0)) {
2058 case IO_APOLL_READY:
2059 io_kbuf_recycle(req, 0);
2060 io_req_task_queue(req);
2062 case IO_APOLL_ABORTED:
2063 io_kbuf_recycle(req, 0);
2064 io_queue_iowq(req, NULL);
2071 io_queue_linked_timeout(linked_timeout);
2074 static inline void io_queue_sqe(struct io_kiocb *req)
2075 __must_hold(&req->ctx->uring_lock)
2079 ret = io_issue_sqe(req, IO_URING_F_NONBLOCK|IO_URING_F_COMPLETE_DEFER);
2082 * We async punt it if the file wasn't marked NOWAIT, or if the file
2083 * doesn't support non-blocking read/write attempts
2086 io_arm_ltimeout(req);
2088 io_queue_async(req, ret);
2091 static void io_queue_sqe_fallback(struct io_kiocb *req)
2092 __must_hold(&req->ctx->uring_lock)
2094 if (unlikely(req->flags & REQ_F_FAIL)) {
2096 * We don't submit, fail them all, for that replace hardlinks
2097 * with normal links. Extra REQ_F_LINK is tolerated.
2099 req->flags &= ~REQ_F_HARDLINK;
2100 req->flags |= REQ_F_LINK;
2101 io_req_defer_failed(req, req->cqe.res);
2103 int ret = io_req_prep_async(req);
2105 if (unlikely(ret)) {
2106 io_req_defer_failed(req, ret);
2110 if (unlikely(req->ctx->drain_active))
2113 io_queue_iowq(req, NULL);
2118 * Check SQE restrictions (opcode and flags).
2120 * Returns 'true' if SQE is allowed, 'false' otherwise.
2122 static inline bool io_check_restriction(struct io_ring_ctx *ctx,
2123 struct io_kiocb *req,
2124 unsigned int sqe_flags)
2126 if (!test_bit(req->opcode, ctx->restrictions.sqe_op))
2129 if ((sqe_flags & ctx->restrictions.sqe_flags_required) !=
2130 ctx->restrictions.sqe_flags_required)
2133 if (sqe_flags & ~(ctx->restrictions.sqe_flags_allowed |
2134 ctx->restrictions.sqe_flags_required))
2140 static void io_init_req_drain(struct io_kiocb *req)
2142 struct io_ring_ctx *ctx = req->ctx;
2143 struct io_kiocb *head = ctx->submit_state.link.head;
2145 ctx->drain_active = true;
2148 * If we need to drain a request in the middle of a link, drain
2149 * the head request and the next request/link after the current
2150 * link. Considering sequential execution of links,
2151 * REQ_F_IO_DRAIN will be maintained for every request of our
2154 head->flags |= REQ_F_IO_DRAIN | REQ_F_FORCE_ASYNC;
2155 ctx->drain_next = true;
2159 static int io_init_req(struct io_ring_ctx *ctx, struct io_kiocb *req,
2160 const struct io_uring_sqe *sqe)
2161 __must_hold(&ctx->uring_lock)
2163 const struct io_issue_def *def;
2164 unsigned int sqe_flags;
2168 /* req is partially pre-initialised, see io_preinit_req() */
2169 req->opcode = opcode = READ_ONCE(sqe->opcode);
2170 /* same numerical values with corresponding REQ_F_*, safe to copy */
2171 req->flags = sqe_flags = READ_ONCE(sqe->flags);
2172 req->cqe.user_data = READ_ONCE(sqe->user_data);
2174 req->rsrc_node = NULL;
2175 req->task = current;
2177 if (unlikely(opcode >= IORING_OP_LAST)) {
2181 def = &io_issue_defs[opcode];
2182 if (unlikely(sqe_flags & ~SQE_COMMON_FLAGS)) {
2183 /* enforce forwards compatibility on users */
2184 if (sqe_flags & ~SQE_VALID_FLAGS)
2186 if (sqe_flags & IOSQE_BUFFER_SELECT) {
2187 if (!def->buffer_select)
2189 req->buf_index = READ_ONCE(sqe->buf_group);
2191 if (sqe_flags & IOSQE_CQE_SKIP_SUCCESS)
2192 ctx->drain_disabled = true;
2193 if (sqe_flags & IOSQE_IO_DRAIN) {
2194 if (ctx->drain_disabled)
2196 io_init_req_drain(req);
2199 if (unlikely(ctx->restricted || ctx->drain_active || ctx->drain_next)) {
2200 if (ctx->restricted && !io_check_restriction(ctx, req, sqe_flags))
2202 /* knock it to the slow queue path, will be drained there */
2203 if (ctx->drain_active)
2204 req->flags |= REQ_F_FORCE_ASYNC;
2205 /* if there is no link, we're at "next" request and need to drain */
2206 if (unlikely(ctx->drain_next) && !ctx->submit_state.link.head) {
2207 ctx->drain_next = false;
2208 ctx->drain_active = true;
2209 req->flags |= REQ_F_IO_DRAIN | REQ_F_FORCE_ASYNC;
2213 if (!def->ioprio && sqe->ioprio)
2215 if (!def->iopoll && (ctx->flags & IORING_SETUP_IOPOLL))
2218 if (def->needs_file) {
2219 struct io_submit_state *state = &ctx->submit_state;
2221 req->cqe.fd = READ_ONCE(sqe->fd);
2224 * Plug now if we have more than 2 IO left after this, and the
2225 * target is potentially a read/write to block based storage.
2227 if (state->need_plug && def->plug) {
2228 state->plug_started = true;
2229 state->need_plug = false;
2230 blk_start_plug_nr_ios(&state->plug, state->submit_nr);
2234 personality = READ_ONCE(sqe->personality);
2238 req->creds = xa_load(&ctx->personalities, personality);
2241 get_cred(req->creds);
2242 ret = security_uring_override_creds(req->creds);
2244 put_cred(req->creds);
2247 req->flags |= REQ_F_CREDS;
2250 return def->prep(req, sqe);
2253 static __cold int io_submit_fail_init(const struct io_uring_sqe *sqe,
2254 struct io_kiocb *req, int ret)
2256 struct io_ring_ctx *ctx = req->ctx;
2257 struct io_submit_link *link = &ctx->submit_state.link;
2258 struct io_kiocb *head = link->head;
2260 trace_io_uring_req_failed(sqe, req, ret);
2263 * Avoid breaking links in the middle as it renders links with SQPOLL
2264 * unusable. Instead of failing eagerly, continue assembling the link if
2265 * applicable and mark the head with REQ_F_FAIL. The link flushing code
2266 * should find the flag and handle the rest.
2268 req_fail_link_node(req, ret);
2269 if (head && !(head->flags & REQ_F_FAIL))
2270 req_fail_link_node(head, -ECANCELED);
2272 if (!(req->flags & IO_REQ_LINK_FLAGS)) {
2274 link->last->link = req;
2278 io_queue_sqe_fallback(req);
2283 link->last->link = req;
2290 static inline int io_submit_sqe(struct io_ring_ctx *ctx, struct io_kiocb *req,
2291 const struct io_uring_sqe *sqe)
2292 __must_hold(&ctx->uring_lock)
2294 struct io_submit_link *link = &ctx->submit_state.link;
2297 ret = io_init_req(ctx, req, sqe);
2299 return io_submit_fail_init(sqe, req, ret);
2301 /* don't need @sqe from now on */
2302 trace_io_uring_submit_sqe(req, true);
2305 * If we already have a head request, queue this one for async
2306 * submittal once the head completes. If we don't have a head but
2307 * IOSQE_IO_LINK is set in the sqe, start a new head. This one will be
2308 * submitted sync once the chain is complete. If none of those
2309 * conditions are true (normal request), then just queue it.
2311 if (unlikely(link->head)) {
2312 ret = io_req_prep_async(req);
2314 return io_submit_fail_init(sqe, req, ret);
2316 trace_io_uring_link(req, link->head);
2317 link->last->link = req;
2320 if (req->flags & IO_REQ_LINK_FLAGS)
2322 /* last request of the link, flush it */
2325 if (req->flags & (REQ_F_FORCE_ASYNC | REQ_F_FAIL))
2328 } else if (unlikely(req->flags & (IO_REQ_LINK_FLAGS |
2329 REQ_F_FORCE_ASYNC | REQ_F_FAIL))) {
2330 if (req->flags & IO_REQ_LINK_FLAGS) {
2335 io_queue_sqe_fallback(req);
2345 * Batched submission is done, ensure local IO is flushed out.
2347 static void io_submit_state_end(struct io_ring_ctx *ctx)
2349 struct io_submit_state *state = &ctx->submit_state;
2351 if (unlikely(state->link.head))
2352 io_queue_sqe_fallback(state->link.head);
2353 /* flush only after queuing links as they can generate completions */
2354 io_submit_flush_completions(ctx);
2355 if (state->plug_started)
2356 blk_finish_plug(&state->plug);
2360 * Start submission side cache.
2362 static void io_submit_state_start(struct io_submit_state *state,
2363 unsigned int max_ios)
2365 state->plug_started = false;
2366 state->need_plug = max_ios > 2;
2367 state->submit_nr = max_ios;
2368 /* set only head, no need to init link_last in advance */
2369 state->link.head = NULL;
2372 static void io_commit_sqring(struct io_ring_ctx *ctx)
2374 struct io_rings *rings = ctx->rings;
2377 * Ensure any loads from the SQEs are done at this point,
2378 * since once we write the new head, the application could
2379 * write new data to them.
2381 smp_store_release(&rings->sq.head, ctx->cached_sq_head);
2385 * Fetch an sqe, if one is available. Note this returns a pointer to memory
2386 * that is mapped by userspace. This means that care needs to be taken to
2387 * ensure that reads are stable, as we cannot rely on userspace always
2388 * being a good citizen. If members of the sqe are validated and then later
2389 * used, it's important that those reads are done through READ_ONCE() to
2390 * prevent a re-load down the line.
2392 static bool io_get_sqe(struct io_ring_ctx *ctx, const struct io_uring_sqe **sqe)
2394 unsigned head, mask = ctx->sq_entries - 1;
2395 unsigned sq_idx = ctx->cached_sq_head++ & mask;
2398 * The cached sq head (or cq tail) serves two purposes:
2400 * 1) allows us to batch the cost of updating the user visible
2402 * 2) allows the kernel side to track the head on its own, even
2403 * though the application is the one updating it.
2405 head = READ_ONCE(ctx->sq_array[sq_idx]);
2406 if (likely(head < ctx->sq_entries)) {
2407 /* double index for 128-byte SQEs, twice as long */
2408 if (ctx->flags & IORING_SETUP_SQE128)
2410 *sqe = &ctx->sq_sqes[head];
2414 /* drop invalid entries */
2416 WRITE_ONCE(ctx->rings->sq_dropped,
2417 READ_ONCE(ctx->rings->sq_dropped) + 1);
2421 int io_submit_sqes(struct io_ring_ctx *ctx, unsigned int nr)
2422 __must_hold(&ctx->uring_lock)
2424 unsigned int entries = io_sqring_entries(ctx);
2428 if (unlikely(!entries))
2430 /* make sure SQ entry isn't read before tail */
2431 ret = left = min3(nr, ctx->sq_entries, entries);
2432 io_get_task_refs(left);
2433 io_submit_state_start(&ctx->submit_state, left);
2436 const struct io_uring_sqe *sqe;
2437 struct io_kiocb *req;
2439 if (unlikely(!io_alloc_req(ctx, &req)))
2441 if (unlikely(!io_get_sqe(ctx, &sqe))) {
2442 io_req_add_to_cache(req, ctx);
2447 * Continue submitting even for sqe failure if the
2448 * ring was setup with IORING_SETUP_SUBMIT_ALL
2450 if (unlikely(io_submit_sqe(ctx, req, sqe)) &&
2451 !(ctx->flags & IORING_SETUP_SUBMIT_ALL)) {
2457 if (unlikely(left)) {
2459 /* try again if it submitted nothing and can't allocate a req */
2460 if (!ret && io_req_cache_empty(ctx))
2462 current->io_uring->cached_refs += left;
2465 io_submit_state_end(ctx);
2466 /* Commit SQ ring head once we've consumed and submitted all SQEs */
2467 io_commit_sqring(ctx);
2471 struct io_wait_queue {
2472 struct wait_queue_entry wq;
2473 struct io_ring_ctx *ctx;
2475 unsigned nr_timeouts;
2479 static inline bool io_has_work(struct io_ring_ctx *ctx)
2481 return test_bit(IO_CHECK_CQ_OVERFLOW_BIT, &ctx->check_cq) ||
2482 !llist_empty(&ctx->work_llist);
2485 static inline bool io_should_wake(struct io_wait_queue *iowq)
2487 struct io_ring_ctx *ctx = iowq->ctx;
2488 int dist = READ_ONCE(ctx->rings->cq.tail) - (int) iowq->cq_tail;
2491 * Wake up if we have enough events, or if a timeout occurred since we
2492 * started waiting. For timeouts, we always want to return to userspace,
2493 * regardless of event count.
2495 return dist >= 0 || atomic_read(&ctx->cq_timeouts) != iowq->nr_timeouts;
2498 static int io_wake_function(struct wait_queue_entry *curr, unsigned int mode,
2499 int wake_flags, void *key)
2501 struct io_wait_queue *iowq = container_of(curr, struct io_wait_queue, wq);
2504 * Cannot safely flush overflowed CQEs from here, ensure we wake up
2505 * the task, and the next invocation will do it.
2507 if (io_should_wake(iowq) || io_has_work(iowq->ctx))
2508 return autoremove_wake_function(curr, mode, wake_flags, key);
2512 int io_run_task_work_sig(struct io_ring_ctx *ctx)
2514 if (!llist_empty(&ctx->work_llist)) {
2515 __set_current_state(TASK_RUNNING);
2516 if (io_run_local_work(ctx) > 0)
2519 if (io_run_task_work() > 0)
2521 if (task_sigpending(current))
2526 /* when returns >0, the caller should retry */
2527 static inline int io_cqring_wait_schedule(struct io_ring_ctx *ctx,
2528 struct io_wait_queue *iowq)
2530 if (unlikely(READ_ONCE(ctx->check_cq)))
2532 if (unlikely(!llist_empty(&ctx->work_llist)))
2534 if (unlikely(test_thread_flag(TIF_NOTIFY_SIGNAL)))
2536 if (unlikely(task_sigpending(current)))
2538 if (unlikely(io_should_wake(iowq)))
2540 if (iowq->timeout == KTIME_MAX)
2542 else if (!schedule_hrtimeout(&iowq->timeout, HRTIMER_MODE_ABS))
2548 * Wait until events become available, if we don't already have some. The
2549 * application must reap them itself, as they reside on the shared cq ring.
2551 static int io_cqring_wait(struct io_ring_ctx *ctx, int min_events,
2552 const sigset_t __user *sig, size_t sigsz,
2553 struct __kernel_timespec __user *uts)
2555 struct io_wait_queue iowq;
2556 struct io_rings *rings = ctx->rings;
2559 if (!io_allowed_run_tw(ctx))
2561 if (!llist_empty(&ctx->work_llist))
2562 io_run_local_work(ctx);
2564 io_cqring_overflow_flush(ctx);
2565 /* if user messes with these they will just get an early return */
2566 if (__io_cqring_events_user(ctx) >= min_events)
2570 #ifdef CONFIG_COMPAT
2571 if (in_compat_syscall())
2572 ret = set_compat_user_sigmask((const compat_sigset_t __user *)sig,
2576 ret = set_user_sigmask(sig, sigsz);
2582 init_waitqueue_func_entry(&iowq.wq, io_wake_function);
2583 iowq.wq.private = current;
2584 INIT_LIST_HEAD(&iowq.wq.entry);
2586 iowq.nr_timeouts = atomic_read(&ctx->cq_timeouts);
2587 iowq.cq_tail = READ_ONCE(ctx->rings->cq.head) + min_events;
2588 iowq.timeout = KTIME_MAX;
2591 struct timespec64 ts;
2593 if (get_timespec64(&ts, uts))
2595 iowq.timeout = ktime_add_ns(timespec64_to_ktime(ts), ktime_get_ns());
2598 trace_io_uring_cqring_wait(ctx, min_events);
2600 unsigned long check_cq;
2602 if (ctx->flags & IORING_SETUP_DEFER_TASKRUN) {
2603 WRITE_ONCE(ctx->cq_waiting, 1);
2604 set_current_state(TASK_INTERRUPTIBLE);
2606 prepare_to_wait_exclusive(&ctx->cq_wait, &iowq.wq,
2607 TASK_INTERRUPTIBLE);
2610 ret = io_cqring_wait_schedule(ctx, &iowq);
2611 __set_current_state(TASK_RUNNING);
2612 WRITE_ONCE(ctx->cq_waiting, 0);
2617 * Run task_work after scheduling and before io_should_wake().
2618 * If we got woken because of task_work being processed, run it
2619 * now rather than let the caller do another wait loop.
2622 if (!llist_empty(&ctx->work_llist))
2623 io_run_local_work(ctx);
2625 check_cq = READ_ONCE(ctx->check_cq);
2626 if (unlikely(check_cq)) {
2627 /* let the caller flush overflows, retry */
2628 if (check_cq & BIT(IO_CHECK_CQ_OVERFLOW_BIT))
2629 io_cqring_do_overflow_flush(ctx);
2630 if (check_cq & BIT(IO_CHECK_CQ_DROPPED_BIT)) {
2636 if (io_should_wake(&iowq)) {
2643 if (!(ctx->flags & IORING_SETUP_DEFER_TASKRUN))
2644 finish_wait(&ctx->cq_wait, &iowq.wq);
2645 restore_saved_sigmask_unless(ret == -EINTR);
2647 return READ_ONCE(rings->cq.head) == READ_ONCE(rings->cq.tail) ? ret : 0;
2650 static void io_mem_free(void *ptr)
2657 page = virt_to_head_page(ptr);
2658 if (put_page_testzero(page))
2659 free_compound_page(page);
2662 static void *io_mem_alloc(size_t size)
2664 gfp_t gfp = GFP_KERNEL_ACCOUNT | __GFP_ZERO | __GFP_NOWARN | __GFP_COMP;
2666 return (void *) __get_free_pages(gfp, get_order(size));
2669 static unsigned long rings_size(struct io_ring_ctx *ctx, unsigned int sq_entries,
2670 unsigned int cq_entries, size_t *sq_offset)
2672 struct io_rings *rings;
2673 size_t off, sq_array_size;
2675 off = struct_size(rings, cqes, cq_entries);
2676 if (off == SIZE_MAX)
2678 if (ctx->flags & IORING_SETUP_CQE32) {
2679 if (check_shl_overflow(off, 1, &off))
2684 off = ALIGN(off, SMP_CACHE_BYTES);
2692 sq_array_size = array_size(sizeof(u32), sq_entries);
2693 if (sq_array_size == SIZE_MAX)
2696 if (check_add_overflow(off, sq_array_size, &off))
2702 static int io_eventfd_register(struct io_ring_ctx *ctx, void __user *arg,
2703 unsigned int eventfd_async)
2705 struct io_ev_fd *ev_fd;
2706 __s32 __user *fds = arg;
2709 ev_fd = rcu_dereference_protected(ctx->io_ev_fd,
2710 lockdep_is_held(&ctx->uring_lock));
2714 if (copy_from_user(&fd, fds, sizeof(*fds)))
2717 ev_fd = kmalloc(sizeof(*ev_fd), GFP_KERNEL);
2721 ev_fd->cq_ev_fd = eventfd_ctx_fdget(fd);
2722 if (IS_ERR(ev_fd->cq_ev_fd)) {
2723 int ret = PTR_ERR(ev_fd->cq_ev_fd);
2728 spin_lock(&ctx->completion_lock);
2729 ctx->evfd_last_cq_tail = ctx->cached_cq_tail;
2730 spin_unlock(&ctx->completion_lock);
2732 ev_fd->eventfd_async = eventfd_async;
2733 ctx->has_evfd = true;
2734 rcu_assign_pointer(ctx->io_ev_fd, ev_fd);
2735 atomic_set(&ev_fd->refs, 1);
2736 atomic_set(&ev_fd->ops, 0);
2740 static int io_eventfd_unregister(struct io_ring_ctx *ctx)
2742 struct io_ev_fd *ev_fd;
2744 ev_fd = rcu_dereference_protected(ctx->io_ev_fd,
2745 lockdep_is_held(&ctx->uring_lock));
2747 ctx->has_evfd = false;
2748 rcu_assign_pointer(ctx->io_ev_fd, NULL);
2749 if (!atomic_fetch_or(BIT(IO_EVENTFD_OP_FREE_BIT), &ev_fd->ops))
2750 call_rcu(&ev_fd->rcu, io_eventfd_ops);
2757 static void io_req_caches_free(struct io_ring_ctx *ctx)
2759 struct io_kiocb *req;
2762 mutex_lock(&ctx->uring_lock);
2763 io_flush_cached_locked_reqs(ctx, &ctx->submit_state);
2765 while (!io_req_cache_empty(ctx)) {
2766 req = io_extract_req(ctx);
2767 kmem_cache_free(req_cachep, req);
2771 percpu_ref_put_many(&ctx->refs, nr);
2772 mutex_unlock(&ctx->uring_lock);
2775 static __cold void io_ring_ctx_free(struct io_ring_ctx *ctx)
2777 io_sq_thread_finish(ctx);
2778 io_rsrc_refs_drop(ctx);
2779 /* __io_rsrc_put_work() may need uring_lock to progress, wait w/o it */
2780 io_wait_rsrc_data(ctx->buf_data);
2781 io_wait_rsrc_data(ctx->file_data);
2783 mutex_lock(&ctx->uring_lock);
2785 __io_sqe_buffers_unregister(ctx);
2787 __io_sqe_files_unregister(ctx);
2788 io_cqring_overflow_kill(ctx);
2789 io_eventfd_unregister(ctx);
2790 io_alloc_cache_free(&ctx->apoll_cache, io_apoll_cache_free);
2791 io_alloc_cache_free(&ctx->netmsg_cache, io_netmsg_cache_free);
2792 mutex_unlock(&ctx->uring_lock);
2793 io_destroy_buffers(ctx);
2795 put_cred(ctx->sq_creds);
2796 if (ctx->submitter_task)
2797 put_task_struct(ctx->submitter_task);
2799 /* there are no registered resources left, nobody uses it */
2801 io_rsrc_node_destroy(ctx->rsrc_node);
2802 if (ctx->rsrc_backup_node)
2803 io_rsrc_node_destroy(ctx->rsrc_backup_node);
2804 flush_delayed_work(&ctx->rsrc_put_work);
2805 flush_delayed_work(&ctx->fallback_work);
2807 WARN_ON_ONCE(!list_empty(&ctx->rsrc_ref_list));
2808 WARN_ON_ONCE(!llist_empty(&ctx->rsrc_put_llist));
2810 #if defined(CONFIG_UNIX)
2811 if (ctx->ring_sock) {
2812 ctx->ring_sock->file = NULL; /* so that iput() is called */
2813 sock_release(ctx->ring_sock);
2816 WARN_ON_ONCE(!list_empty(&ctx->ltimeout_list));
2818 if (ctx->mm_account) {
2819 mmdrop(ctx->mm_account);
2820 ctx->mm_account = NULL;
2822 io_mem_free(ctx->rings);
2823 io_mem_free(ctx->sq_sqes);
2825 percpu_ref_exit(&ctx->refs);
2826 free_uid(ctx->user);
2827 io_req_caches_free(ctx);
2829 io_wq_put_hash(ctx->hash_map);
2830 kfree(ctx->cancel_table.hbs);
2831 kfree(ctx->cancel_table_locked.hbs);
2832 kfree(ctx->dummy_ubuf);
2834 xa_destroy(&ctx->io_bl_xa);
2838 static __cold void io_activate_pollwq_cb(struct callback_head *cb)
2840 struct io_ring_ctx *ctx = container_of(cb, struct io_ring_ctx,
2843 mutex_lock(&ctx->uring_lock);
2844 ctx->poll_activated = true;
2845 mutex_unlock(&ctx->uring_lock);
2848 * Wake ups for some events between start of polling and activation
2849 * might've been lost due to loose synchronisation.
2851 wake_up_all(&ctx->poll_wq);
2852 percpu_ref_put(&ctx->refs);
2855 static __cold void io_activate_pollwq(struct io_ring_ctx *ctx)
2857 spin_lock(&ctx->completion_lock);
2858 /* already activated or in progress */
2859 if (ctx->poll_activated || ctx->poll_wq_task_work.func)
2861 if (WARN_ON_ONCE(!ctx->task_complete))
2863 if (!ctx->submitter_task)
2866 * with ->submitter_task only the submitter task completes requests, we
2867 * only need to sync with it, which is done by injecting a tw
2869 init_task_work(&ctx->poll_wq_task_work, io_activate_pollwq_cb);
2870 percpu_ref_get(&ctx->refs);
2871 if (task_work_add(ctx->submitter_task, &ctx->poll_wq_task_work, TWA_SIGNAL))
2872 percpu_ref_put(&ctx->refs);
2874 spin_unlock(&ctx->completion_lock);
2877 static __poll_t io_uring_poll(struct file *file, poll_table *wait)
2879 struct io_ring_ctx *ctx = file->private_data;
2882 if (unlikely(!ctx->poll_activated))
2883 io_activate_pollwq(ctx);
2885 poll_wait(file, &ctx->poll_wq, wait);
2887 * synchronizes with barrier from wq_has_sleeper call in
2891 if (!io_sqring_full(ctx))
2892 mask |= EPOLLOUT | EPOLLWRNORM;
2895 * Don't flush cqring overflow list here, just do a simple check.
2896 * Otherwise there could possible be ABBA deadlock:
2899 * lock(&ctx->uring_lock);
2901 * lock(&ctx->uring_lock);
2904 * Users may get EPOLLIN meanwhile seeing nothing in cqring, this
2905 * pushes them to do the flush.
2908 if (__io_cqring_events_user(ctx) || io_has_work(ctx))
2909 mask |= EPOLLIN | EPOLLRDNORM;
2914 static int io_unregister_personality(struct io_ring_ctx *ctx, unsigned id)
2916 const struct cred *creds;
2918 creds = xa_erase(&ctx->personalities, id);
2927 struct io_tctx_exit {
2928 struct callback_head task_work;
2929 struct completion completion;
2930 struct io_ring_ctx *ctx;
2933 static __cold void io_tctx_exit_cb(struct callback_head *cb)
2935 struct io_uring_task *tctx = current->io_uring;
2936 struct io_tctx_exit *work;
2938 work = container_of(cb, struct io_tctx_exit, task_work);
2940 * When @in_cancel, we're in cancellation and it's racy to remove the
2941 * node. It'll be removed by the end of cancellation, just ignore it.
2942 * tctx can be NULL if the queueing of this task_work raced with
2943 * work cancelation off the exec path.
2945 if (tctx && !atomic_read(&tctx->in_cancel))
2946 io_uring_del_tctx_node((unsigned long)work->ctx);
2947 complete(&work->completion);
2950 static __cold bool io_cancel_ctx_cb(struct io_wq_work *work, void *data)
2952 struct io_kiocb *req = container_of(work, struct io_kiocb, work);
2954 return req->ctx == data;
2957 static __cold void io_ring_exit_work(struct work_struct *work)
2959 struct io_ring_ctx *ctx = container_of(work, struct io_ring_ctx, exit_work);
2960 unsigned long timeout = jiffies + HZ * 60 * 5;
2961 unsigned long interval = HZ / 20;
2962 struct io_tctx_exit exit;
2963 struct io_tctx_node *node;
2967 * If we're doing polled IO and end up having requests being
2968 * submitted async (out-of-line), then completions can come in while
2969 * we're waiting for refs to drop. We need to reap these manually,
2970 * as nobody else will be looking for them.
2973 if (test_bit(IO_CHECK_CQ_OVERFLOW_BIT, &ctx->check_cq)) {
2974 mutex_lock(&ctx->uring_lock);
2975 io_cqring_overflow_kill(ctx);
2976 mutex_unlock(&ctx->uring_lock);
2979 if (ctx->flags & IORING_SETUP_DEFER_TASKRUN)
2980 io_move_task_work_from_local(ctx);
2982 while (io_uring_try_cancel_requests(ctx, NULL, true))
2986 struct io_sq_data *sqd = ctx->sq_data;
2987 struct task_struct *tsk;
2989 io_sq_thread_park(sqd);
2991 if (tsk && tsk->io_uring && tsk->io_uring->io_wq)
2992 io_wq_cancel_cb(tsk->io_uring->io_wq,
2993 io_cancel_ctx_cb, ctx, true);
2994 io_sq_thread_unpark(sqd);
2997 io_req_caches_free(ctx);
2999 if (WARN_ON_ONCE(time_after(jiffies, timeout))) {
3000 /* there is little hope left, don't run it too often */
3003 } while (!wait_for_completion_timeout(&ctx->ref_comp, interval));
3005 init_completion(&exit.completion);
3006 init_task_work(&exit.task_work, io_tctx_exit_cb);
3009 * Some may use context even when all refs and requests have been put,
3010 * and they are free to do so while still holding uring_lock or
3011 * completion_lock, see io_req_task_submit(). Apart from other work,
3012 * this lock/unlock section also waits them to finish.
3014 mutex_lock(&ctx->uring_lock);
3015 while (!list_empty(&ctx->tctx_list)) {
3016 WARN_ON_ONCE(time_after(jiffies, timeout));
3018 node = list_first_entry(&ctx->tctx_list, struct io_tctx_node,
3020 /* don't spin on a single task if cancellation failed */
3021 list_rotate_left(&ctx->tctx_list);
3022 ret = task_work_add(node->task, &exit.task_work, TWA_SIGNAL);
3023 if (WARN_ON_ONCE(ret))
3026 mutex_unlock(&ctx->uring_lock);
3027 wait_for_completion(&exit.completion);
3028 mutex_lock(&ctx->uring_lock);
3030 mutex_unlock(&ctx->uring_lock);
3031 spin_lock(&ctx->completion_lock);
3032 spin_unlock(&ctx->completion_lock);
3034 io_ring_ctx_free(ctx);
3037 static __cold void io_ring_ctx_wait_and_kill(struct io_ring_ctx *ctx)
3039 unsigned long index;
3040 struct creds *creds;
3042 mutex_lock(&ctx->uring_lock);
3043 percpu_ref_kill(&ctx->refs);
3044 xa_for_each(&ctx->personalities, index, creds)
3045 io_unregister_personality(ctx, index);
3047 io_poll_remove_all(ctx, NULL, true);
3048 mutex_unlock(&ctx->uring_lock);
3051 * If we failed setting up the ctx, we might not have any rings
3052 * and therefore did not submit any requests
3055 io_kill_timeouts(ctx, NULL, true);
3057 INIT_WORK(&ctx->exit_work, io_ring_exit_work);
3059 * Use system_unbound_wq to avoid spawning tons of event kworkers
3060 * if we're exiting a ton of rings at the same time. It just adds
3061 * noise and overhead, there's no discernable change in runtime
3062 * over using system_wq.
3064 queue_work(system_unbound_wq, &ctx->exit_work);
3067 static int io_uring_release(struct inode *inode, struct file *file)
3069 struct io_ring_ctx *ctx = file->private_data;
3071 file->private_data = NULL;
3072 io_ring_ctx_wait_and_kill(ctx);
3076 struct io_task_cancel {
3077 struct task_struct *task;
3081 static bool io_cancel_task_cb(struct io_wq_work *work, void *data)
3083 struct io_kiocb *req = container_of(work, struct io_kiocb, work);
3084 struct io_task_cancel *cancel = data;
3086 return io_match_task_safe(req, cancel->task, cancel->all);
3089 static __cold bool io_cancel_defer_files(struct io_ring_ctx *ctx,
3090 struct task_struct *task,
3093 struct io_defer_entry *de;
3096 spin_lock(&ctx->completion_lock);
3097 list_for_each_entry_reverse(de, &ctx->defer_list, list) {
3098 if (io_match_task_safe(de->req, task, cancel_all)) {
3099 list_cut_position(&list, &ctx->defer_list, &de->list);
3103 spin_unlock(&ctx->completion_lock);
3104 if (list_empty(&list))
3107 while (!list_empty(&list)) {
3108 de = list_first_entry(&list, struct io_defer_entry, list);
3109 list_del_init(&de->list);
3110 io_req_task_queue_fail(de->req, -ECANCELED);
3116 static __cold bool io_uring_try_cancel_iowq(struct io_ring_ctx *ctx)
3118 struct io_tctx_node *node;
3119 enum io_wq_cancel cret;
3122 mutex_lock(&ctx->uring_lock);
3123 list_for_each_entry(node, &ctx->tctx_list, ctx_node) {
3124 struct io_uring_task *tctx = node->task->io_uring;
3127 * io_wq will stay alive while we hold uring_lock, because it's
3128 * killed after ctx nodes, which requires to take the lock.
3130 if (!tctx || !tctx->io_wq)
3132 cret = io_wq_cancel_cb(tctx->io_wq, io_cancel_ctx_cb, ctx, true);
3133 ret |= (cret != IO_WQ_CANCEL_NOTFOUND);
3135 mutex_unlock(&ctx->uring_lock);
3140 static __cold bool io_uring_try_cancel_requests(struct io_ring_ctx *ctx,
3141 struct task_struct *task,
3144 struct io_task_cancel cancel = { .task = task, .all = cancel_all, };
3145 struct io_uring_task *tctx = task ? task->io_uring : NULL;
3146 enum io_wq_cancel cret;
3149 /* failed during ring init, it couldn't have issued any requests */
3154 ret |= io_uring_try_cancel_iowq(ctx);
3155 } else if (tctx && tctx->io_wq) {
3157 * Cancels requests of all rings, not only @ctx, but
3158 * it's fine as the task is in exit/exec.
3160 cret = io_wq_cancel_cb(tctx->io_wq, io_cancel_task_cb,
3162 ret |= (cret != IO_WQ_CANCEL_NOTFOUND);
3165 /* SQPOLL thread does its own polling */
3166 if ((!(ctx->flags & IORING_SETUP_SQPOLL) && cancel_all) ||
3167 (ctx->sq_data && ctx->sq_data->thread == current)) {
3168 while (!wq_list_empty(&ctx->iopoll_list)) {
3169 io_iopoll_try_reap_events(ctx);
3175 if ((ctx->flags & IORING_SETUP_DEFER_TASKRUN) &&
3176 io_allowed_defer_tw_run(ctx))
3177 ret |= io_run_local_work(ctx) > 0;
3178 ret |= io_cancel_defer_files(ctx, task, cancel_all);
3179 mutex_lock(&ctx->uring_lock);
3180 ret |= io_poll_remove_all(ctx, task, cancel_all);
3181 mutex_unlock(&ctx->uring_lock);
3182 ret |= io_kill_timeouts(ctx, task, cancel_all);
3184 ret |= io_run_task_work() > 0;
3188 static s64 tctx_inflight(struct io_uring_task *tctx, bool tracked)
3191 return atomic_read(&tctx->inflight_tracked);
3192 return percpu_counter_sum(&tctx->inflight);
3196 * Find any io_uring ctx that this task has registered or done IO on, and cancel
3197 * requests. @sqd should be not-null IFF it's an SQPOLL thread cancellation.
3199 __cold void io_uring_cancel_generic(bool cancel_all, struct io_sq_data *sqd)
3201 struct io_uring_task *tctx = current->io_uring;
3202 struct io_ring_ctx *ctx;
3206 WARN_ON_ONCE(sqd && sqd->thread != current);
3208 if (!current->io_uring)
3211 io_wq_exit_start(tctx->io_wq);
3213 atomic_inc(&tctx->in_cancel);
3217 io_uring_drop_tctx_refs(current);
3218 /* read completions before cancelations */
3219 inflight = tctx_inflight(tctx, !cancel_all);
3224 struct io_tctx_node *node;
3225 unsigned long index;
3227 xa_for_each(&tctx->xa, index, node) {
3228 /* sqpoll task will cancel all its requests */
3229 if (node->ctx->sq_data)
3231 loop |= io_uring_try_cancel_requests(node->ctx,
3232 current, cancel_all);
3235 list_for_each_entry(ctx, &sqd->ctx_list, sqd_list)
3236 loop |= io_uring_try_cancel_requests(ctx,
3246 prepare_to_wait(&tctx->wait, &wait, TASK_INTERRUPTIBLE);
3248 io_uring_drop_tctx_refs(current);
3251 * If we've seen completions, retry without waiting. This
3252 * avoids a race where a completion comes in before we did
3253 * prepare_to_wait().
3255 if (inflight == tctx_inflight(tctx, !cancel_all))
3257 finish_wait(&tctx->wait, &wait);
3260 io_uring_clean_tctx(tctx);
3263 * We shouldn't run task_works after cancel, so just leave
3264 * ->in_cancel set for normal exit.
3266 atomic_dec(&tctx->in_cancel);
3267 /* for exec all current's requests should be gone, kill tctx */
3268 __io_uring_free(current);
3272 void __io_uring_cancel(bool cancel_all)
3274 io_uring_cancel_generic(cancel_all, NULL);
3277 static void *io_uring_validate_mmap_request(struct file *file,
3278 loff_t pgoff, size_t sz)
3280 struct io_ring_ctx *ctx = file->private_data;
3281 loff_t offset = pgoff << PAGE_SHIFT;
3286 case IORING_OFF_SQ_RING:
3287 case IORING_OFF_CQ_RING:
3290 case IORING_OFF_SQES:
3294 return ERR_PTR(-EINVAL);
3297 page = virt_to_head_page(ptr);
3298 if (sz > page_size(page))
3299 return ERR_PTR(-EINVAL);
3306 static __cold int io_uring_mmap(struct file *file, struct vm_area_struct *vma)
3308 size_t sz = vma->vm_end - vma->vm_start;
3312 ptr = io_uring_validate_mmap_request(file, vma->vm_pgoff, sz);
3314 return PTR_ERR(ptr);
3316 pfn = virt_to_phys(ptr) >> PAGE_SHIFT;
3317 return remap_pfn_range(vma, vma->vm_start, pfn, sz, vma->vm_page_prot);
3320 #else /* !CONFIG_MMU */
3322 static int io_uring_mmap(struct file *file, struct vm_area_struct *vma)
3324 return is_nommu_shared_mapping(vma->vm_flags) ? 0 : -EINVAL;
3327 static unsigned int io_uring_nommu_mmap_capabilities(struct file *file)
3329 return NOMMU_MAP_DIRECT | NOMMU_MAP_READ | NOMMU_MAP_WRITE;
3332 static unsigned long io_uring_nommu_get_unmapped_area(struct file *file,
3333 unsigned long addr, unsigned long len,
3334 unsigned long pgoff, unsigned long flags)
3338 ptr = io_uring_validate_mmap_request(file, pgoff, len);
3340 return PTR_ERR(ptr);
3342 return (unsigned long) ptr;
3345 #endif /* !CONFIG_MMU */
3347 static int io_validate_ext_arg(unsigned flags, const void __user *argp, size_t argsz)
3349 if (flags & IORING_ENTER_EXT_ARG) {
3350 struct io_uring_getevents_arg arg;
3352 if (argsz != sizeof(arg))
3354 if (copy_from_user(&arg, argp, sizeof(arg)))
3360 static int io_get_ext_arg(unsigned flags, const void __user *argp, size_t *argsz,
3361 struct __kernel_timespec __user **ts,
3362 const sigset_t __user **sig)
3364 struct io_uring_getevents_arg arg;
3367 * If EXT_ARG isn't set, then we have no timespec and the argp pointer
3368 * is just a pointer to the sigset_t.
3370 if (!(flags & IORING_ENTER_EXT_ARG)) {
3371 *sig = (const sigset_t __user *) argp;
3377 * EXT_ARG is set - ensure we agree on the size of it and copy in our
3378 * timespec and sigset_t pointers if good.
3380 if (*argsz != sizeof(arg))
3382 if (copy_from_user(&arg, argp, sizeof(arg)))
3386 *sig = u64_to_user_ptr(arg.sigmask);
3387 *argsz = arg.sigmask_sz;
3388 *ts = u64_to_user_ptr(arg.ts);
3392 SYSCALL_DEFINE6(io_uring_enter, unsigned int, fd, u32, to_submit,
3393 u32, min_complete, u32, flags, const void __user *, argp,
3396 struct io_ring_ctx *ctx;
3400 if (unlikely(flags & ~(IORING_ENTER_GETEVENTS | IORING_ENTER_SQ_WAKEUP |
3401 IORING_ENTER_SQ_WAIT | IORING_ENTER_EXT_ARG |
3402 IORING_ENTER_REGISTERED_RING)))
3406 * Ring fd has been registered via IORING_REGISTER_RING_FDS, we
3407 * need only dereference our task private array to find it.
3409 if (flags & IORING_ENTER_REGISTERED_RING) {
3410 struct io_uring_task *tctx = current->io_uring;
3412 if (unlikely(!tctx || fd >= IO_RINGFD_REG_MAX))
3414 fd = array_index_nospec(fd, IO_RINGFD_REG_MAX);
3415 f.file = tctx->registered_rings[fd];
3417 if (unlikely(!f.file))
3421 if (unlikely(!f.file))
3424 if (unlikely(!io_is_uring_fops(f.file)))
3428 ctx = f.file->private_data;
3430 if (unlikely(ctx->flags & IORING_SETUP_R_DISABLED))
3434 * For SQ polling, the thread will do all submissions and completions.
3435 * Just return the requested submit count, and wake the thread if
3439 if (ctx->flags & IORING_SETUP_SQPOLL) {
3440 io_cqring_overflow_flush(ctx);
3442 if (unlikely(ctx->sq_data->thread == NULL)) {
3446 if (flags & IORING_ENTER_SQ_WAKEUP)
3447 wake_up(&ctx->sq_data->wait);
3448 if (flags & IORING_ENTER_SQ_WAIT)
3449 io_sqpoll_wait_sq(ctx);
3452 } else if (to_submit) {
3453 ret = io_uring_add_tctx_node(ctx);
3457 mutex_lock(&ctx->uring_lock);
3458 ret = io_submit_sqes(ctx, to_submit);
3459 if (ret != to_submit) {
3460 mutex_unlock(&ctx->uring_lock);
3463 if (flags & IORING_ENTER_GETEVENTS) {
3464 if (ctx->syscall_iopoll)
3467 * Ignore errors, we'll soon call io_cqring_wait() and
3468 * it should handle ownership problems if any.
3470 if (ctx->flags & IORING_SETUP_DEFER_TASKRUN)
3471 (void)io_run_local_work_locked(ctx);
3473 mutex_unlock(&ctx->uring_lock);
3476 if (flags & IORING_ENTER_GETEVENTS) {
3479 if (ctx->syscall_iopoll) {
3481 * We disallow the app entering submit/complete with
3482 * polling, but we still need to lock the ring to
3483 * prevent racing with polled issue that got punted to
3486 mutex_lock(&ctx->uring_lock);
3488 ret2 = io_validate_ext_arg(flags, argp, argsz);
3489 if (likely(!ret2)) {
3490 min_complete = min(min_complete,
3492 ret2 = io_iopoll_check(ctx, min_complete);
3494 mutex_unlock(&ctx->uring_lock);
3496 const sigset_t __user *sig;
3497 struct __kernel_timespec __user *ts;
3499 ret2 = io_get_ext_arg(flags, argp, &argsz, &ts, &sig);
3500 if (likely(!ret2)) {
3501 min_complete = min(min_complete,
3503 ret2 = io_cqring_wait(ctx, min_complete, sig,
3512 * EBADR indicates that one or more CQE were dropped.
3513 * Once the user has been informed we can clear the bit
3514 * as they are obviously ok with those drops.
3516 if (unlikely(ret2 == -EBADR))
3517 clear_bit(IO_CHECK_CQ_DROPPED_BIT,
3526 static const struct file_operations io_uring_fops = {
3527 .release = io_uring_release,
3528 .mmap = io_uring_mmap,
3530 .get_unmapped_area = io_uring_nommu_get_unmapped_area,
3531 .mmap_capabilities = io_uring_nommu_mmap_capabilities,
3533 .poll = io_uring_poll,
3534 #ifdef CONFIG_PROC_FS
3535 .show_fdinfo = io_uring_show_fdinfo,
3539 bool io_is_uring_fops(struct file *file)
3541 return file->f_op == &io_uring_fops;
3544 static __cold int io_allocate_scq_urings(struct io_ring_ctx *ctx,
3545 struct io_uring_params *p)
3547 struct io_rings *rings;
3548 size_t size, sq_array_offset;
3550 /* make sure these are sane, as we already accounted them */
3551 ctx->sq_entries = p->sq_entries;
3552 ctx->cq_entries = p->cq_entries;
3554 size = rings_size(ctx, p->sq_entries, p->cq_entries, &sq_array_offset);
3555 if (size == SIZE_MAX)
3558 rings = io_mem_alloc(size);
3563 ctx->sq_array = (u32 *)((char *)rings + sq_array_offset);
3564 rings->sq_ring_mask = p->sq_entries - 1;
3565 rings->cq_ring_mask = p->cq_entries - 1;
3566 rings->sq_ring_entries = p->sq_entries;
3567 rings->cq_ring_entries = p->cq_entries;
3569 if (p->flags & IORING_SETUP_SQE128)
3570 size = array_size(2 * sizeof(struct io_uring_sqe), p->sq_entries);
3572 size = array_size(sizeof(struct io_uring_sqe), p->sq_entries);
3573 if (size == SIZE_MAX) {
3574 io_mem_free(ctx->rings);
3579 ctx->sq_sqes = io_mem_alloc(size);
3580 if (!ctx->sq_sqes) {
3581 io_mem_free(ctx->rings);
3589 static int io_uring_install_fd(struct io_ring_ctx *ctx, struct file *file)
3593 fd = get_unused_fd_flags(O_RDWR | O_CLOEXEC);
3597 ret = __io_uring_add_tctx_node(ctx);
3602 fd_install(fd, file);
3607 * Allocate an anonymous fd, this is what constitutes the application
3608 * visible backing of an io_uring instance. The application mmaps this
3609 * fd to gain access to the SQ/CQ ring details. If UNIX sockets are enabled,
3610 * we have to tie this fd to a socket for file garbage collection purposes.
3612 static struct file *io_uring_get_file(struct io_ring_ctx *ctx)
3615 #if defined(CONFIG_UNIX)
3618 ret = sock_create_kern(&init_net, PF_UNIX, SOCK_RAW, IPPROTO_IP,
3621 return ERR_PTR(ret);
3624 file = anon_inode_getfile_secure("[io_uring]", &io_uring_fops, ctx,
3625 O_RDWR | O_CLOEXEC, NULL);
3626 #if defined(CONFIG_UNIX)
3628 sock_release(ctx->ring_sock);
3629 ctx->ring_sock = NULL;
3631 ctx->ring_sock->file = file;
3637 static __cold int io_uring_create(unsigned entries, struct io_uring_params *p,
3638 struct io_uring_params __user *params)
3640 struct io_ring_ctx *ctx;
3646 if (entries > IORING_MAX_ENTRIES) {
3647 if (!(p->flags & IORING_SETUP_CLAMP))
3649 entries = IORING_MAX_ENTRIES;
3653 * Use twice as many entries for the CQ ring. It's possible for the
3654 * application to drive a higher depth than the size of the SQ ring,
3655 * since the sqes are only used at submission time. This allows for
3656 * some flexibility in overcommitting a bit. If the application has
3657 * set IORING_SETUP_CQSIZE, it will have passed in the desired number
3658 * of CQ ring entries manually.
3660 p->sq_entries = roundup_pow_of_two(entries);
3661 if (p->flags & IORING_SETUP_CQSIZE) {
3663 * If IORING_SETUP_CQSIZE is set, we do the same roundup
3664 * to a power-of-two, if it isn't already. We do NOT impose
3665 * any cq vs sq ring sizing.
3669 if (p->cq_entries > IORING_MAX_CQ_ENTRIES) {
3670 if (!(p->flags & IORING_SETUP_CLAMP))
3672 p->cq_entries = IORING_MAX_CQ_ENTRIES;
3674 p->cq_entries = roundup_pow_of_two(p->cq_entries);
3675 if (p->cq_entries < p->sq_entries)
3678 p->cq_entries = 2 * p->sq_entries;
3681 ctx = io_ring_ctx_alloc(p);
3685 if ((ctx->flags & IORING_SETUP_DEFER_TASKRUN) &&
3686 !(ctx->flags & IORING_SETUP_IOPOLL) &&
3687 !(ctx->flags & IORING_SETUP_SQPOLL))
3688 ctx->task_complete = true;
3691 * lazy poll_wq activation relies on ->task_complete for synchronisation
3692 * purposes, see io_activate_pollwq()
3694 if (!ctx->task_complete)
3695 ctx->poll_activated = true;
3698 * When SETUP_IOPOLL and SETUP_SQPOLL are both enabled, user
3699 * space applications don't need to do io completion events
3700 * polling again, they can rely on io_sq_thread to do polling
3701 * work, which can reduce cpu usage and uring_lock contention.
3703 if (ctx->flags & IORING_SETUP_IOPOLL &&
3704 !(ctx->flags & IORING_SETUP_SQPOLL))
3705 ctx->syscall_iopoll = 1;
3707 ctx->compat = in_compat_syscall();
3708 if (!capable(CAP_IPC_LOCK))
3709 ctx->user = get_uid(current_user());
3712 * For SQPOLL, we just need a wakeup, always. For !SQPOLL, if
3713 * COOP_TASKRUN is set, then IPIs are never needed by the app.
3716 if (ctx->flags & IORING_SETUP_SQPOLL) {
3717 /* IPI related flags don't make sense with SQPOLL */
3718 if (ctx->flags & (IORING_SETUP_COOP_TASKRUN |
3719 IORING_SETUP_TASKRUN_FLAG |
3720 IORING_SETUP_DEFER_TASKRUN))
3722 ctx->notify_method = TWA_SIGNAL_NO_IPI;
3723 } else if (ctx->flags & IORING_SETUP_COOP_TASKRUN) {
3724 ctx->notify_method = TWA_SIGNAL_NO_IPI;
3726 if (ctx->flags & IORING_SETUP_TASKRUN_FLAG &&
3727 !(ctx->flags & IORING_SETUP_DEFER_TASKRUN))
3729 ctx->notify_method = TWA_SIGNAL;
3733 * For DEFER_TASKRUN we require the completion task to be the same as the
3734 * submission task. This implies that there is only one submitter, so enforce
3737 if (ctx->flags & IORING_SETUP_DEFER_TASKRUN &&
3738 !(ctx->flags & IORING_SETUP_SINGLE_ISSUER)) {
3743 * This is just grabbed for accounting purposes. When a process exits,
3744 * the mm is exited and dropped before the files, hence we need to hang
3745 * on to this mm purely for the purposes of being able to unaccount
3746 * memory (locked/pinned vm). It's not used for anything else.
3748 mmgrab(current->mm);
3749 ctx->mm_account = current->mm;
3751 ret = io_allocate_scq_urings(ctx, p);
3755 ret = io_sq_offload_create(ctx, p);
3758 /* always set a rsrc node */
3759 ret = io_rsrc_node_switch_start(ctx);
3762 io_rsrc_node_switch(ctx, NULL);
3764 memset(&p->sq_off, 0, sizeof(p->sq_off));
3765 p->sq_off.head = offsetof(struct io_rings, sq.head);
3766 p->sq_off.tail = offsetof(struct io_rings, sq.tail);
3767 p->sq_off.ring_mask = offsetof(struct io_rings, sq_ring_mask);
3768 p->sq_off.ring_entries = offsetof(struct io_rings, sq_ring_entries);
3769 p->sq_off.flags = offsetof(struct io_rings, sq_flags);
3770 p->sq_off.dropped = offsetof(struct io_rings, sq_dropped);
3771 p->sq_off.array = (char *)ctx->sq_array - (char *)ctx->rings;
3773 memset(&p->cq_off, 0, sizeof(p->cq_off));
3774 p->cq_off.head = offsetof(struct io_rings, cq.head);
3775 p->cq_off.tail = offsetof(struct io_rings, cq.tail);
3776 p->cq_off.ring_mask = offsetof(struct io_rings, cq_ring_mask);
3777 p->cq_off.ring_entries = offsetof(struct io_rings, cq_ring_entries);
3778 p->cq_off.overflow = offsetof(struct io_rings, cq_overflow);
3779 p->cq_off.cqes = offsetof(struct io_rings, cqes);
3780 p->cq_off.flags = offsetof(struct io_rings, cq_flags);
3782 p->features = IORING_FEAT_SINGLE_MMAP | IORING_FEAT_NODROP |
3783 IORING_FEAT_SUBMIT_STABLE | IORING_FEAT_RW_CUR_POS |
3784 IORING_FEAT_CUR_PERSONALITY | IORING_FEAT_FAST_POLL |
3785 IORING_FEAT_POLL_32BITS | IORING_FEAT_SQPOLL_NONFIXED |
3786 IORING_FEAT_EXT_ARG | IORING_FEAT_NATIVE_WORKERS |
3787 IORING_FEAT_RSRC_TAGS | IORING_FEAT_CQE_SKIP |
3788 IORING_FEAT_LINKED_FILE | IORING_FEAT_REG_REG_RING;
3790 if (copy_to_user(params, p, sizeof(*p))) {
3795 if (ctx->flags & IORING_SETUP_SINGLE_ISSUER
3796 && !(ctx->flags & IORING_SETUP_R_DISABLED))
3797 WRITE_ONCE(ctx->submitter_task, get_task_struct(current));
3799 file = io_uring_get_file(ctx);
3801 ret = PTR_ERR(file);
3806 * Install ring fd as the very last thing, so we don't risk someone
3807 * having closed it before we finish setup
3809 ret = io_uring_install_fd(ctx, file);
3811 /* fput will clean it up */
3816 trace_io_uring_create(ret, ctx, p->sq_entries, p->cq_entries, p->flags);
3819 io_ring_ctx_wait_and_kill(ctx);
3824 * Sets up an aio uring context, and returns the fd. Applications asks for a
3825 * ring size, we return the actual sq/cq ring sizes (among other things) in the
3826 * params structure passed in.
3828 static long io_uring_setup(u32 entries, struct io_uring_params __user *params)
3830 struct io_uring_params p;
3833 if (copy_from_user(&p, params, sizeof(p)))
3835 for (i = 0; i < ARRAY_SIZE(p.resv); i++) {
3840 if (p.flags & ~(IORING_SETUP_IOPOLL | IORING_SETUP_SQPOLL |
3841 IORING_SETUP_SQ_AFF | IORING_SETUP_CQSIZE |
3842 IORING_SETUP_CLAMP | IORING_SETUP_ATTACH_WQ |
3843 IORING_SETUP_R_DISABLED | IORING_SETUP_SUBMIT_ALL |
3844 IORING_SETUP_COOP_TASKRUN | IORING_SETUP_TASKRUN_FLAG |
3845 IORING_SETUP_SQE128 | IORING_SETUP_CQE32 |
3846 IORING_SETUP_SINGLE_ISSUER | IORING_SETUP_DEFER_TASKRUN))
3849 return io_uring_create(entries, &p, params);
3852 SYSCALL_DEFINE2(io_uring_setup, u32, entries,
3853 struct io_uring_params __user *, params)
3855 return io_uring_setup(entries, params);
3858 static __cold int io_probe(struct io_ring_ctx *ctx, void __user *arg,
3861 struct io_uring_probe *p;
3865 size = struct_size(p, ops, nr_args);
3866 if (size == SIZE_MAX)
3868 p = kzalloc(size, GFP_KERNEL);
3873 if (copy_from_user(p, arg, size))
3876 if (memchr_inv(p, 0, size))
3879 p->last_op = IORING_OP_LAST - 1;
3880 if (nr_args > IORING_OP_LAST)
3881 nr_args = IORING_OP_LAST;
3883 for (i = 0; i < nr_args; i++) {
3885 if (!io_issue_defs[i].not_supported)
3886 p->ops[i].flags = IO_URING_OP_SUPPORTED;
3891 if (copy_to_user(arg, p, size))
3898 static int io_register_personality(struct io_ring_ctx *ctx)
3900 const struct cred *creds;
3904 creds = get_current_cred();
3906 ret = xa_alloc_cyclic(&ctx->personalities, &id, (void *)creds,
3907 XA_LIMIT(0, USHRT_MAX), &ctx->pers_next, GFP_KERNEL);
3915 static __cold int io_register_restrictions(struct io_ring_ctx *ctx,
3916 void __user *arg, unsigned int nr_args)
3918 struct io_uring_restriction *res;
3922 /* Restrictions allowed only if rings started disabled */
3923 if (!(ctx->flags & IORING_SETUP_R_DISABLED))
3926 /* We allow only a single restrictions registration */
3927 if (ctx->restrictions.registered)
3930 if (!arg || nr_args > IORING_MAX_RESTRICTIONS)
3933 size = array_size(nr_args, sizeof(*res));
3934 if (size == SIZE_MAX)
3937 res = memdup_user(arg, size);
3939 return PTR_ERR(res);
3943 for (i = 0; i < nr_args; i++) {
3944 switch (res[i].opcode) {
3945 case IORING_RESTRICTION_REGISTER_OP:
3946 if (res[i].register_op >= IORING_REGISTER_LAST) {
3951 __set_bit(res[i].register_op,
3952 ctx->restrictions.register_op);
3954 case IORING_RESTRICTION_SQE_OP:
3955 if (res[i].sqe_op >= IORING_OP_LAST) {
3960 __set_bit(res[i].sqe_op, ctx->restrictions.sqe_op);
3962 case IORING_RESTRICTION_SQE_FLAGS_ALLOWED:
3963 ctx->restrictions.sqe_flags_allowed = res[i].sqe_flags;
3965 case IORING_RESTRICTION_SQE_FLAGS_REQUIRED:
3966 ctx->restrictions.sqe_flags_required = res[i].sqe_flags;
3975 /* Reset all restrictions if an error happened */
3977 memset(&ctx->restrictions, 0, sizeof(ctx->restrictions));
3979 ctx->restrictions.registered = true;
3985 static int io_register_enable_rings(struct io_ring_ctx *ctx)
3987 if (!(ctx->flags & IORING_SETUP_R_DISABLED))
3990 if (ctx->flags & IORING_SETUP_SINGLE_ISSUER && !ctx->submitter_task) {
3991 WRITE_ONCE(ctx->submitter_task, get_task_struct(current));
3993 * Lazy activation attempts would fail if it was polled before
3994 * submitter_task is set.
3996 if (wq_has_sleeper(&ctx->poll_wq))
3997 io_activate_pollwq(ctx);
4000 if (ctx->restrictions.registered)
4001 ctx->restricted = 1;
4003 ctx->flags &= ~IORING_SETUP_R_DISABLED;
4004 if (ctx->sq_data && wq_has_sleeper(&ctx->sq_data->wait))
4005 wake_up(&ctx->sq_data->wait);
4009 static __cold int io_register_iowq_aff(struct io_ring_ctx *ctx,
4010 void __user *arg, unsigned len)
4012 struct io_uring_task *tctx = current->io_uring;
4013 cpumask_var_t new_mask;
4016 if (!tctx || !tctx->io_wq)
4019 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
4022 cpumask_clear(new_mask);
4023 if (len > cpumask_size())
4024 len = cpumask_size();
4026 if (in_compat_syscall()) {
4027 ret = compat_get_bitmap(cpumask_bits(new_mask),
4028 (const compat_ulong_t __user *)arg,
4029 len * 8 /* CHAR_BIT */);
4031 ret = copy_from_user(new_mask, arg, len);
4035 free_cpumask_var(new_mask);
4039 ret = io_wq_cpu_affinity(tctx->io_wq, new_mask);
4040 free_cpumask_var(new_mask);
4044 static __cold int io_unregister_iowq_aff(struct io_ring_ctx *ctx)
4046 struct io_uring_task *tctx = current->io_uring;
4048 if (!tctx || !tctx->io_wq)
4051 return io_wq_cpu_affinity(tctx->io_wq, NULL);
4054 static __cold int io_register_iowq_max_workers(struct io_ring_ctx *ctx,
4056 __must_hold(&ctx->uring_lock)
4058 struct io_tctx_node *node;
4059 struct io_uring_task *tctx = NULL;
4060 struct io_sq_data *sqd = NULL;
4064 if (copy_from_user(new_count, arg, sizeof(new_count)))
4066 for (i = 0; i < ARRAY_SIZE(new_count); i++)
4067 if (new_count[i] > INT_MAX)
4070 if (ctx->flags & IORING_SETUP_SQPOLL) {
4074 * Observe the correct sqd->lock -> ctx->uring_lock
4075 * ordering. Fine to drop uring_lock here, we hold
4078 refcount_inc(&sqd->refs);
4079 mutex_unlock(&ctx->uring_lock);
4080 mutex_lock(&sqd->lock);
4081 mutex_lock(&ctx->uring_lock);
4083 tctx = sqd->thread->io_uring;
4086 tctx = current->io_uring;
4089 BUILD_BUG_ON(sizeof(new_count) != sizeof(ctx->iowq_limits));
4091 for (i = 0; i < ARRAY_SIZE(new_count); i++)
4093 ctx->iowq_limits[i] = new_count[i];
4094 ctx->iowq_limits_set = true;
4096 if (tctx && tctx->io_wq) {
4097 ret = io_wq_max_workers(tctx->io_wq, new_count);
4101 memset(new_count, 0, sizeof(new_count));
4105 mutex_unlock(&sqd->lock);
4106 io_put_sq_data(sqd);
4109 if (copy_to_user(arg, new_count, sizeof(new_count)))
4112 /* that's it for SQPOLL, only the SQPOLL task creates requests */
4116 /* now propagate the restriction to all registered users */
4117 list_for_each_entry(node, &ctx->tctx_list, ctx_node) {
4118 struct io_uring_task *tctx = node->task->io_uring;
4120 if (WARN_ON_ONCE(!tctx->io_wq))
4123 for (i = 0; i < ARRAY_SIZE(new_count); i++)
4124 new_count[i] = ctx->iowq_limits[i];
4125 /* ignore errors, it always returns zero anyway */
4126 (void)io_wq_max_workers(tctx->io_wq, new_count);
4131 mutex_unlock(&sqd->lock);
4132 io_put_sq_data(sqd);
4137 static int __io_uring_register(struct io_ring_ctx *ctx, unsigned opcode,
4138 void __user *arg, unsigned nr_args)
4139 __releases(ctx->uring_lock)
4140 __acquires(ctx->uring_lock)
4145 * We don't quiesce the refs for register anymore and so it can't be
4146 * dying as we're holding a file ref here.
4148 if (WARN_ON_ONCE(percpu_ref_is_dying(&ctx->refs)))
4151 if (ctx->submitter_task && ctx->submitter_task != current)
4154 if (ctx->restricted) {
4155 opcode = array_index_nospec(opcode, IORING_REGISTER_LAST);
4156 if (!test_bit(opcode, ctx->restrictions.register_op))
4161 case IORING_REGISTER_BUFFERS:
4165 ret = io_sqe_buffers_register(ctx, arg, nr_args, NULL);
4167 case IORING_UNREGISTER_BUFFERS:
4171 ret = io_sqe_buffers_unregister(ctx);
4173 case IORING_REGISTER_FILES:
4177 ret = io_sqe_files_register(ctx, arg, nr_args, NULL);
4179 case IORING_UNREGISTER_FILES:
4183 ret = io_sqe_files_unregister(ctx);
4185 case IORING_REGISTER_FILES_UPDATE:
4186 ret = io_register_files_update(ctx, arg, nr_args);
4188 case IORING_REGISTER_EVENTFD:
4192 ret = io_eventfd_register(ctx, arg, 0);
4194 case IORING_REGISTER_EVENTFD_ASYNC:
4198 ret = io_eventfd_register(ctx, arg, 1);
4200 case IORING_UNREGISTER_EVENTFD:
4204 ret = io_eventfd_unregister(ctx);
4206 case IORING_REGISTER_PROBE:
4208 if (!arg || nr_args > 256)
4210 ret = io_probe(ctx, arg, nr_args);
4212 case IORING_REGISTER_PERSONALITY:
4216 ret = io_register_personality(ctx);
4218 case IORING_UNREGISTER_PERSONALITY:
4222 ret = io_unregister_personality(ctx, nr_args);
4224 case IORING_REGISTER_ENABLE_RINGS:
4228 ret = io_register_enable_rings(ctx);
4230 case IORING_REGISTER_RESTRICTIONS:
4231 ret = io_register_restrictions(ctx, arg, nr_args);
4233 case IORING_REGISTER_FILES2:
4234 ret = io_register_rsrc(ctx, arg, nr_args, IORING_RSRC_FILE);
4236 case IORING_REGISTER_FILES_UPDATE2:
4237 ret = io_register_rsrc_update(ctx, arg, nr_args,
4240 case IORING_REGISTER_BUFFERS2:
4241 ret = io_register_rsrc(ctx, arg, nr_args, IORING_RSRC_BUFFER);
4243 case IORING_REGISTER_BUFFERS_UPDATE:
4244 ret = io_register_rsrc_update(ctx, arg, nr_args,
4245 IORING_RSRC_BUFFER);
4247 case IORING_REGISTER_IOWQ_AFF:
4249 if (!arg || !nr_args)
4251 ret = io_register_iowq_aff(ctx, arg, nr_args);
4253 case IORING_UNREGISTER_IOWQ_AFF:
4257 ret = io_unregister_iowq_aff(ctx);
4259 case IORING_REGISTER_IOWQ_MAX_WORKERS:
4261 if (!arg || nr_args != 2)
4263 ret = io_register_iowq_max_workers(ctx, arg);
4265 case IORING_REGISTER_RING_FDS:
4266 ret = io_ringfd_register(ctx, arg, nr_args);
4268 case IORING_UNREGISTER_RING_FDS:
4269 ret = io_ringfd_unregister(ctx, arg, nr_args);
4271 case IORING_REGISTER_PBUF_RING:
4273 if (!arg || nr_args != 1)
4275 ret = io_register_pbuf_ring(ctx, arg);
4277 case IORING_UNREGISTER_PBUF_RING:
4279 if (!arg || nr_args != 1)
4281 ret = io_unregister_pbuf_ring(ctx, arg);
4283 case IORING_REGISTER_SYNC_CANCEL:
4285 if (!arg || nr_args != 1)
4287 ret = io_sync_cancel(ctx, arg);
4289 case IORING_REGISTER_FILE_ALLOC_RANGE:
4291 if (!arg || nr_args)
4293 ret = io_register_file_alloc_range(ctx, arg);
4303 SYSCALL_DEFINE4(io_uring_register, unsigned int, fd, unsigned int, opcode,
4304 void __user *, arg, unsigned int, nr_args)
4306 struct io_ring_ctx *ctx;
4309 bool use_registered_ring;
4311 use_registered_ring = !!(opcode & IORING_REGISTER_USE_REGISTERED_RING);
4312 opcode &= ~IORING_REGISTER_USE_REGISTERED_RING;
4314 if (opcode >= IORING_REGISTER_LAST)
4317 if (use_registered_ring) {
4319 * Ring fd has been registered via IORING_REGISTER_RING_FDS, we
4320 * need only dereference our task private array to find it.
4322 struct io_uring_task *tctx = current->io_uring;
4324 if (unlikely(!tctx || fd >= IO_RINGFD_REG_MAX))
4326 fd = array_index_nospec(fd, IO_RINGFD_REG_MAX);
4327 f.file = tctx->registered_rings[fd];
4329 if (unlikely(!f.file))
4333 if (unlikely(!f.file))
4336 if (!io_is_uring_fops(f.file))
4340 ctx = f.file->private_data;
4342 mutex_lock(&ctx->uring_lock);
4343 ret = __io_uring_register(ctx, opcode, arg, nr_args);
4344 mutex_unlock(&ctx->uring_lock);
4345 trace_io_uring_register(ctx, opcode, ctx->nr_user_files, ctx->nr_user_bufs, ret);
4351 static int __init io_uring_init(void)
4353 #define __BUILD_BUG_VERIFY_OFFSET_SIZE(stype, eoffset, esize, ename) do { \
4354 BUILD_BUG_ON(offsetof(stype, ename) != eoffset); \
4355 BUILD_BUG_ON(sizeof_field(stype, ename) != esize); \
4358 #define BUILD_BUG_SQE_ELEM(eoffset, etype, ename) \
4359 __BUILD_BUG_VERIFY_OFFSET_SIZE(struct io_uring_sqe, eoffset, sizeof(etype), ename)
4360 #define BUILD_BUG_SQE_ELEM_SIZE(eoffset, esize, ename) \
4361 __BUILD_BUG_VERIFY_OFFSET_SIZE(struct io_uring_sqe, eoffset, esize, ename)
4362 BUILD_BUG_ON(sizeof(struct io_uring_sqe) != 64);
4363 BUILD_BUG_SQE_ELEM(0, __u8, opcode);
4364 BUILD_BUG_SQE_ELEM(1, __u8, flags);
4365 BUILD_BUG_SQE_ELEM(2, __u16, ioprio);
4366 BUILD_BUG_SQE_ELEM(4, __s32, fd);
4367 BUILD_BUG_SQE_ELEM(8, __u64, off);
4368 BUILD_BUG_SQE_ELEM(8, __u64, addr2);
4369 BUILD_BUG_SQE_ELEM(8, __u32, cmd_op);
4370 BUILD_BUG_SQE_ELEM(12, __u32, __pad1);
4371 BUILD_BUG_SQE_ELEM(16, __u64, addr);
4372 BUILD_BUG_SQE_ELEM(16, __u64, splice_off_in);
4373 BUILD_BUG_SQE_ELEM(24, __u32, len);
4374 BUILD_BUG_SQE_ELEM(28, __kernel_rwf_t, rw_flags);
4375 BUILD_BUG_SQE_ELEM(28, /* compat */ int, rw_flags);
4376 BUILD_BUG_SQE_ELEM(28, /* compat */ __u32, rw_flags);
4377 BUILD_BUG_SQE_ELEM(28, __u32, fsync_flags);
4378 BUILD_BUG_SQE_ELEM(28, /* compat */ __u16, poll_events);
4379 BUILD_BUG_SQE_ELEM(28, __u32, poll32_events);
4380 BUILD_BUG_SQE_ELEM(28, __u32, sync_range_flags);
4381 BUILD_BUG_SQE_ELEM(28, __u32, msg_flags);
4382 BUILD_BUG_SQE_ELEM(28, __u32, timeout_flags);
4383 BUILD_BUG_SQE_ELEM(28, __u32, accept_flags);
4384 BUILD_BUG_SQE_ELEM(28, __u32, cancel_flags);
4385 BUILD_BUG_SQE_ELEM(28, __u32, open_flags);
4386 BUILD_BUG_SQE_ELEM(28, __u32, statx_flags);
4387 BUILD_BUG_SQE_ELEM(28, __u32, fadvise_advice);
4388 BUILD_BUG_SQE_ELEM(28, __u32, splice_flags);
4389 BUILD_BUG_SQE_ELEM(28, __u32, rename_flags);
4390 BUILD_BUG_SQE_ELEM(28, __u32, unlink_flags);
4391 BUILD_BUG_SQE_ELEM(28, __u32, hardlink_flags);
4392 BUILD_BUG_SQE_ELEM(28, __u32, xattr_flags);
4393 BUILD_BUG_SQE_ELEM(28, __u32, msg_ring_flags);
4394 BUILD_BUG_SQE_ELEM(32, __u64, user_data);
4395 BUILD_BUG_SQE_ELEM(40, __u16, buf_index);
4396 BUILD_BUG_SQE_ELEM(40, __u16, buf_group);
4397 BUILD_BUG_SQE_ELEM(42, __u16, personality);
4398 BUILD_BUG_SQE_ELEM(44, __s32, splice_fd_in);
4399 BUILD_BUG_SQE_ELEM(44, __u32, file_index);
4400 BUILD_BUG_SQE_ELEM(44, __u16, addr_len);
4401 BUILD_BUG_SQE_ELEM(46, __u16, __pad3[0]);
4402 BUILD_BUG_SQE_ELEM(48, __u64, addr3);
4403 BUILD_BUG_SQE_ELEM_SIZE(48, 0, cmd);
4404 BUILD_BUG_SQE_ELEM(56, __u64, __pad2);
4406 BUILD_BUG_ON(sizeof(struct io_uring_files_update) !=
4407 sizeof(struct io_uring_rsrc_update));
4408 BUILD_BUG_ON(sizeof(struct io_uring_rsrc_update) >
4409 sizeof(struct io_uring_rsrc_update2));
4411 /* ->buf_index is u16 */
4412 BUILD_BUG_ON(offsetof(struct io_uring_buf_ring, bufs) != 0);
4413 BUILD_BUG_ON(offsetof(struct io_uring_buf, resv) !=
4414 offsetof(struct io_uring_buf_ring, tail));
4416 /* should fit into one byte */
4417 BUILD_BUG_ON(SQE_VALID_FLAGS >= (1 << 8));
4418 BUILD_BUG_ON(SQE_COMMON_FLAGS >= (1 << 8));
4419 BUILD_BUG_ON((SQE_VALID_FLAGS | SQE_COMMON_FLAGS) != SQE_VALID_FLAGS);
4421 BUILD_BUG_ON(__REQ_F_LAST_BIT > 8 * sizeof(int));
4423 BUILD_BUG_ON(sizeof(atomic_t) != sizeof(u32));
4425 io_uring_optable_init();
4427 req_cachep = KMEM_CACHE(io_kiocb, SLAB_HWCACHE_ALIGN | SLAB_PANIC |
4431 __initcall(io_uring_init);