Imported Upstream version ceres 1.13.0
[platform/upstream/ceres-solver.git] / internal / ceres / canonical_views_clustering.h
1 // Ceres Solver - A fast non-linear least squares minimizer
2 // Copyright 2015 Google Inc. All rights reserved.
3 // http://ceres-solver.org/
4 //
5 // Redistribution and use in source and binary forms, with or without
6 // modification, are permitted provided that the following conditions are met:
7 //
8 // * Redistributions of source code must retain the above copyright notice,
9 //   this list of conditions and the following disclaimer.
10 // * Redistributions in binary form must reproduce the above copyright notice,
11 //   this list of conditions and the following disclaimer in the documentation
12 //   and/or other materials provided with the distribution.
13 // * Neither the name of Google Inc. nor the names of its contributors may be
14 //   used to endorse or promote products derived from this software without
15 //   specific prior written permission.
16 //
17 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
18 // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19 // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20 // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
21 // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
22 // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
23 // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
24 // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
25 // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
26 // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
27 // POSSIBILITY OF SUCH DAMAGE.
28 //
29 // Author: sameeragarwal@google.com (Sameer Agarwal)
30 //
31 // An implementation of the Canonical Views clustering algorithm from
32 // "Scene Summarization for Online Image Collections", Ian Simon, Noah
33 // Snavely, Steven M. Seitz, ICCV 2007.
34 //
35 // More details can be found at
36 // http://grail.cs.washington.edu/projects/canonview/
37 //
38 // Ceres uses this algorithm to perform view clustering for
39 // constructing visibility based preconditioners.
40
41 #ifndef CERES_INTERNAL_CANONICAL_VIEWS_CLUSTERING_H_
42 #define CERES_INTERNAL_CANONICAL_VIEWS_CLUSTERING_H_
43
44 #include <vector>
45
46 #include "ceres/collections_port.h"
47 #include "ceres/graph.h"
48
49 namespace ceres {
50 namespace internal {
51
52 struct CanonicalViewsClusteringOptions;
53
54 // Compute a partitioning of the vertices of the graph using the
55 // canonical views clustering algorithm.
56 //
57 // In the following we will use the terms vertices and views
58 // interchangably.  Given a weighted Graph G(V,E), the canonical views
59 // of G are the the set of vertices that best "summarize" the content
60 // of the graph. If w_ij i s the weight connecting the vertex i to
61 // vertex j, and C is the set of canonical views. Then the objective
62 // of the canonical views algorithm is
63 //
64 //   E[C] = sum_[i in V] max_[j in C] w_ij
65 //          - size_penalty_weight * |C|
66 //          - similarity_penalty_weight * sum_[i in C, j in C, j > i] w_ij
67 //
68 // alpha is the size penalty that penalizes large number of canonical
69 // views.
70 //
71 // beta is the similarity penalty that penalizes canonical views that
72 // are too similar to other canonical views.
73 //
74 // Thus the canonical views algorithm tries to find a canonical view
75 // for each vertex in the graph which best explains it, while trying
76 // to minimize the number of canonical views and the overlap between
77 // them.
78 //
79 // We further augment the above objective function by allowing for per
80 // vertex weights, higher weights indicating a higher preference for
81 // being chosen as a canonical view. Thus if w_i is the vertex weight
82 // for vertex i, the objective function is then
83 //
84 //   E[C] = sum_[i in V] max_[j in C] w_ij
85 //          - size_penalty_weight * |C|
86 //          - similarity_penalty_weight * sum_[i in C, j in C, j > i] w_ij
87 //          + view_score_weight * sum_[i in C] w_i
88 //
89 // centers will contain the vertices that are the identified
90 // as the canonical views/cluster centers, and membership is a map
91 // from vertices to cluster_ids. The i^th cluster center corresponds
92 // to the i^th cluster.
93 //
94 // It is possible depending on the configuration of the clustering
95 // algorithm that some of the vertices may not be assigned to any
96 // cluster. In this case they are assigned to a cluster with id = -1;
97 void ComputeCanonicalViewsClustering(
98     const CanonicalViewsClusteringOptions& options,
99     const WeightedGraph<int>& graph,
100     std::vector<int>* centers,
101     HashMap<int, int>* membership);
102
103 struct CanonicalViewsClusteringOptions {
104   CanonicalViewsClusteringOptions()
105       : min_views(3),
106         size_penalty_weight(5.75),
107         similarity_penalty_weight(100.0),
108         view_score_weight(0.0) {
109   }
110   // The minimum number of canonical views to compute.
111   int min_views;
112
113   // Penalty weight for the number of canonical views.  A higher
114   // number will result in fewer canonical views.
115   double size_penalty_weight;
116
117   // Penalty weight for the diversity (orthogonality) of the
118   // canonical views.  A higher number will encourage less similar
119   // canonical views.
120   double similarity_penalty_weight;
121
122   // Weight for per-view scores.  Lower weight places less
123   // confidence in the view scores.
124   double view_score_weight;
125 };
126
127 }  // namespace internal
128 }  // namespace ceres
129
130 #endif  // CERES_INTERNAL_CANONICAL_VIEWS_CLUSTERING_H_