Publishing 2019 R1 content
[platform/upstream/dldt.git] / inference-engine / thirdparty / clDNN / utils / rapidjson / internal / strtod.h
1 // Tencent is pleased to support the open source community by making RapidJSON available.
2 // 
3 // Copyright (C) 2015 THL A29 Limited, a Tencent company, and Milo Yip. All rights reserved.
4 //
5 // Licensed under the MIT License (the "License"); you may not use this file except
6 // in compliance with the License. You may obtain a copy of the License at
7 //
8 // http://opensource.org/licenses/MIT
9 //
10 // Unless required by applicable law or agreed to in writing, software distributed 
11 // under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR 
12 // CONDITIONS OF ANY KIND, either express or implied. See the License for the 
13 // specific language governing permissions and limitations under the License.
14
15 #ifndef RAPIDJSON_STRTOD_
16 #define RAPIDJSON_STRTOD_
17
18 #include "ieee754.h"
19 #include "biginteger.h"
20 #include "diyfp.h"
21 #include "pow10.h"
22 #include <climits>
23 #include <limits>
24
25 RAPIDJSON_NAMESPACE_BEGIN
26 namespace internal {
27
28 inline double FastPath(double significand, int exp) {
29     if (exp < -308)
30         return 0.0;
31     else if (exp >= 0)
32         return significand * internal::Pow10(exp);
33     else
34         return significand / internal::Pow10(-exp);
35 }
36
37 inline double StrtodNormalPrecision(double d, int p) {
38     if (p < -308) {
39         // Prevent expSum < -308, making Pow10(p) = 0
40         d = FastPath(d, -308);
41         d = FastPath(d, p + 308);
42     }
43     else
44         d = FastPath(d, p);
45     return d;
46 }
47
48 template <typename T>
49 inline T Min3(T a, T b, T c) {
50     T m = a;
51     if (m > b) m = b;
52     if (m > c) m = c;
53     return m;
54 }
55
56 inline int CheckWithinHalfULP(double b, const BigInteger& d, int dExp) {
57     const Double db(b);
58     const uint64_t bInt = db.IntegerSignificand();
59     const int bExp = db.IntegerExponent();
60     const int hExp = bExp - 1;
61
62     int dS_Exp2 = 0, dS_Exp5 = 0, bS_Exp2 = 0, bS_Exp5 = 0, hS_Exp2 = 0, hS_Exp5 = 0;
63
64     // Adjust for decimal exponent
65     if (dExp >= 0) {
66         dS_Exp2 += dExp;
67         dS_Exp5 += dExp;
68     }
69     else {
70         bS_Exp2 -= dExp;
71         bS_Exp5 -= dExp;
72         hS_Exp2 -= dExp;
73         hS_Exp5 -= dExp;
74     }
75
76     // Adjust for binary exponent
77     if (bExp >= 0)
78         bS_Exp2 += bExp;
79     else {
80         dS_Exp2 -= bExp;
81         hS_Exp2 -= bExp;
82     }
83
84     // Adjust for half ulp exponent
85     if (hExp >= 0)
86         hS_Exp2 += hExp;
87     else {
88         dS_Exp2 -= hExp;
89         bS_Exp2 -= hExp;
90     }
91
92     // Remove common power of two factor from all three scaled values
93     int common_Exp2 = Min3(dS_Exp2, bS_Exp2, hS_Exp2);
94     dS_Exp2 -= common_Exp2;
95     bS_Exp2 -= common_Exp2;
96     hS_Exp2 -= common_Exp2;
97
98     BigInteger dS = d;
99     dS.MultiplyPow5(static_cast<unsigned>(dS_Exp5)) <<= static_cast<unsigned>(dS_Exp2);
100
101     BigInteger bS(bInt);
102     bS.MultiplyPow5(static_cast<unsigned>(bS_Exp5)) <<= static_cast<unsigned>(bS_Exp2);
103
104     BigInteger hS(1);
105     hS.MultiplyPow5(static_cast<unsigned>(hS_Exp5)) <<= static_cast<unsigned>(hS_Exp2);
106
107     BigInteger delta(0);
108     dS.Difference(bS, &delta);
109
110     return delta.Compare(hS);
111 }
112
113 inline bool StrtodFast(double d, int p, double* result) {
114     // Use fast path for string-to-double conversion if possible
115     // see http://www.exploringbinary.com/fast-path-decimal-to-floating-point-conversion/
116     if (p > 22  && p < 22 + 16) {
117         // Fast Path Cases In Disguise
118         d *= internal::Pow10(p - 22);
119         p = 22;
120     }
121
122     if (p >= -22 && p <= 22 && d <= 9007199254740991.0) { // 2^53 - 1
123         *result = FastPath(d, p);
124         return true;
125     }
126     else
127         return false;
128 }
129
130 // Compute an approximation and see if it is within 1/2 ULP
131 inline bool StrtodDiyFp(const char* decimals, int dLen, int dExp, double* result) {
132     uint64_t significand = 0;
133     int i = 0;   // 2^64 - 1 = 18446744073709551615, 1844674407370955161 = 0x1999999999999999    
134     for (; i < dLen; i++) {
135         if (significand  >  RAPIDJSON_UINT64_C2(0x19999999, 0x99999999) ||
136             (significand == RAPIDJSON_UINT64_C2(0x19999999, 0x99999999) && decimals[i] > '5'))
137             break;
138         significand = significand * 10u + static_cast<unsigned>(decimals[i] - '0');
139     }
140     
141     if (i < dLen && decimals[i] >= '5') // Rounding
142         significand++;
143
144     int remaining = dLen - i;
145     const int kUlpShift = 3;
146     const int kUlp = 1 << kUlpShift;
147     int64_t error = (remaining == 0) ? 0 : kUlp / 2;
148
149     DiyFp v(significand, 0);
150     v = v.Normalize();
151     error <<= -v.e;
152
153     dExp += remaining;
154
155     int actualExp;
156     DiyFp cachedPower = GetCachedPower10(dExp, &actualExp);
157     if (actualExp != dExp) {
158         static const DiyFp kPow10[] = {
159             DiyFp(RAPIDJSON_UINT64_C2(0xa0000000, 0x00000000), -60),  // 10^1
160             DiyFp(RAPIDJSON_UINT64_C2(0xc8000000, 0x00000000), -57),  // 10^2
161             DiyFp(RAPIDJSON_UINT64_C2(0xfa000000, 0x00000000), -54),  // 10^3
162             DiyFp(RAPIDJSON_UINT64_C2(0x9c400000, 0x00000000), -50),  // 10^4
163             DiyFp(RAPIDJSON_UINT64_C2(0xc3500000, 0x00000000), -47),  // 10^5
164             DiyFp(RAPIDJSON_UINT64_C2(0xf4240000, 0x00000000), -44),  // 10^6
165             DiyFp(RAPIDJSON_UINT64_C2(0x98968000, 0x00000000), -40)   // 10^7
166         };
167         int adjustment = dExp - actualExp;
168         RAPIDJSON_ASSERT(adjustment >= 1 && adjustment < 8);
169         v = v * kPow10[adjustment - 1];
170         if (dLen + adjustment > 19) // has more digits than decimal digits in 64-bit
171             error += kUlp / 2;
172     }
173
174     v = v * cachedPower;
175
176     error += kUlp + (error == 0 ? 0 : 1);
177
178     const int oldExp = v.e;
179     v = v.Normalize();
180     error <<= oldExp - v.e;
181
182     const int effectiveSignificandSize = Double::EffectiveSignificandSize(64 + v.e);
183     int precisionSize = 64 - effectiveSignificandSize;
184     if (precisionSize + kUlpShift >= 64) {
185         int scaleExp = (precisionSize + kUlpShift) - 63;
186         v.f >>= scaleExp;
187         v.e += scaleExp; 
188         error = (error >> scaleExp) + 1 + kUlp;
189         precisionSize -= scaleExp;
190     }
191
192     DiyFp rounded(v.f >> precisionSize, v.e + precisionSize);
193     const uint64_t precisionBits = (v.f & ((uint64_t(1) << precisionSize) - 1)) * kUlp;
194     const uint64_t halfWay = (uint64_t(1) << (precisionSize - 1)) * kUlp;
195     if (precisionBits >= halfWay + static_cast<unsigned>(error)) {
196         rounded.f++;
197         if (rounded.f & (DiyFp::kDpHiddenBit << 1)) { // rounding overflows mantissa (issue #340)
198             rounded.f >>= 1;
199             rounded.e++;
200         }
201     }
202
203     *result = rounded.ToDouble();
204
205     return halfWay - static_cast<unsigned>(error) >= precisionBits || precisionBits >= halfWay + static_cast<unsigned>(error);
206 }
207
208 inline double StrtodBigInteger(double approx, const char* decimals, int dLen, int dExp) {
209     RAPIDJSON_ASSERT(dLen >= 0);
210     const BigInteger dInt(decimals, static_cast<unsigned>(dLen));
211     Double a(approx);
212     int cmp = CheckWithinHalfULP(a.Value(), dInt, dExp);
213     if (cmp < 0)
214         return a.Value();  // within half ULP
215     else if (cmp == 0) {
216         // Round towards even
217         if (a.Significand() & 1)
218             return a.NextPositiveDouble();
219         else
220             return a.Value();
221     }
222     else // adjustment
223         return a.NextPositiveDouble();
224 }
225
226 inline double StrtodFullPrecision(double d, int p, const char* decimals, size_t length, size_t decimalPosition, int exp) {
227     RAPIDJSON_ASSERT(d >= 0.0);
228     RAPIDJSON_ASSERT(length >= 1);
229
230     double result = 0.0;
231     if (StrtodFast(d, p, &result))
232         return result;
233
234     RAPIDJSON_ASSERT(length <= INT_MAX);
235     int dLen = static_cast<int>(length);
236
237     RAPIDJSON_ASSERT(length >= decimalPosition);
238     RAPIDJSON_ASSERT(length - decimalPosition <= INT_MAX);
239     int dExpAdjust = static_cast<int>(length - decimalPosition);
240
241     RAPIDJSON_ASSERT(exp >= INT_MIN + dExpAdjust);
242     int dExp = exp - dExpAdjust;
243
244     // Make sure length+dExp does not overflow
245     RAPIDJSON_ASSERT(dExp <= INT_MAX - dLen);
246
247     // Trim leading zeros
248     while (dLen > 0 && *decimals == '0') {
249         dLen--;
250         decimals++;
251     }
252
253     // Trim trailing zeros
254     while (dLen > 0 && decimals[dLen - 1] == '0') {
255         dLen--;
256         dExp++;
257     }
258
259     if (dLen == 0) { // Buffer only contains zeros.
260         return 0.0;
261     }
262
263     // Trim right-most digits
264     const int kMaxDecimalDigit = 767 + 1;
265     if (dLen > kMaxDecimalDigit) {
266         dExp += dLen - kMaxDecimalDigit;
267         dLen = kMaxDecimalDigit;
268     }
269
270     // If too small, underflow to zero.
271     // Any x <= 10^-324 is interpreted as zero.
272     if (dLen + dExp <= -324)
273         return 0.0;
274
275     // If too large, overflow to infinity.
276     // Any x >= 10^309 is interpreted as +infinity.
277     if (dLen + dExp > 309)
278         return std::numeric_limits<double>::infinity();
279
280     if (StrtodDiyFp(decimals, dLen, dExp, &result))
281         return result;
282
283     // Use approximation from StrtodDiyFp and make adjustment with BigInteger comparison
284     return StrtodBigInteger(result, decimals, dLen, dExp);
285 }
286
287 } // namespace internal
288 RAPIDJSON_NAMESPACE_END
289
290 #endif // RAPIDJSON_STRTOD_