1 // Copyright (C) 2018 Intel Corporation
3 // SPDX-License-Identifier: Apache-2.0
6 #include <gtest/gtest.h>
7 #include <gmock/gmock-spec-builders.h>
8 #include "mkldnn_plugin/mkldnn_graph.h"
9 #include "mock_mkldnn_primitive.hpp"
11 #include "test_graph.hpp"
13 #include "single_layer_common.hpp"
14 #include <mkldnn_plugin/mkldnn_extension_utils.h>
15 #include <inference_engine/cnn_network_impl.hpp>
16 #include "tests_common.hpp"
18 using namespace ::testing;
20 using namespace mkldnn;
22 struct split_test_params {
46 MKLDNNPlugin::impl_desc_type selectedType;
47 std::vector<MKLDNNPlugin::impl_desc_type> preferTypes;
49 std::vector<std::function<void(MKLDNNPlugin::PrimitiveDescInfo)>> comp;
52 template <typename data_t>
53 void ref_split(InferenceEngine::TBlob<data_t> &src, InferenceEngine::TBlob<data_t> &dst1, InferenceEngine::TBlob<data_t> &dst2) {
54 const float * srcData = src.readOnly();
56 int MB = dst1.dims()[dst1.dims().size() - 1];
58 float * dstData1 = dst1.data();
59 int dstSize1 = dst1.size() / MB;
61 float *dstData2 = dst2.data();
62 int dstSize2 = dst2.size() / MB;
64 for (int b = 0; b < MB; b++) {
65 for (size_t j = 0; j < dstSize1; j++, srcData++) {
66 dstData1[b*dstSize1 + j] = *srcData;
69 for (size_t j = 0; j < dstSize2; j++, srcData++) {
70 dstData2[b*dstSize1 + j] = *srcData;
75 class MKLDNNGraphSplitTests: public TestsCommon,
76 public WithParamInterface<split_test_params> {
77 // TODO: remove power layers from the test
78 std::string model_t = R"V0G0N(
79 <net name="ConcatOnly" version="2" precision="FP32" batch="1">
81 <layer name="in1" type="Input" precision="FP32" id="1">
91 <layer name="split" id="2" type="Split" precision="FP32">
92 <split_data axis="1" PrimitivesPriority="_IMPLS_"/>
116 <layer name="power1" id="3" type="Power" precision="FP32">
117 <power_data power="1" scale="1" shift="0"/>
135 <layer name="power2" id="4" type="Power" precision="FP32">
136 <power_data power="1" scale="1" shift="0"/>
156 <edge from-layer="1" from-port="1" to-layer="2" to-port="1"/>
157 <edge from-layer="2" from-port="2" to-layer="3" to-port="1"/>
158 <edge from-layer="2" from-port="3" to-layer="4" to-port="1"/>
164 std::string getModel(split_test_params p) {
165 std::string model = model_t;
166 REPLACE_WITH_NUM(model, "_IN_", p.in.n);
167 REPLACE_WITH_NUM(model, "_IC_", p.in.c);
168 REPLACE_WITH_NUM(model, "_IW_", p.in.w);
169 REPLACE_WITH_NUM(model, "_IH_", p.in.h);
171 REPLACE_WITH_NUM(model, "_ON1_", p.out1.n);
172 REPLACE_WITH_NUM(model, "_OC1_", p.out1.c);
173 REPLACE_WITH_NUM(model, "_OH1_", p.out1.h);
174 REPLACE_WITH_NUM(model, "_OW1_", p.out1.w);
176 REPLACE_WITH_NUM(model, "_ON2_", p.out2.n);
177 REPLACE_WITH_NUM(model, "_OC2_", p.out2.c);
178 REPLACE_WITH_NUM(model, "_OH2_", p.out2.h);
179 REPLACE_WITH_NUM(model, "_OW2_", p.out2.w);
181 for (const auto& preferType : p.preferTypes) {
184 impls += "cpu:" + MKLDNNGraphTestClass::getStrPrimitiveDescriptorType(preferType);
186 REPLACE_WITH_STR(model, "_IMPLS_", impls);
190 virtual void TearDown() {
193 virtual void SetUp() {
195 split_test_params p = ::testing::WithParamInterface<split_test_params>::GetParam();
196 std::string model = getModel(p);
198 InferenceEngine::CNNNetReader net_reader;
199 ASSERT_NO_THROW(net_reader.ReadNetwork(model.data(), model.length()));
201 MKLDNNGraphTestClass graph;
202 graph.CreateGraph(net_reader.getNetwork());
203 auto& nodes = graph.getNodes();
204 for (int i = 0; i < nodes.size(); i++) {
205 if (nodes[i]->getType() == MKLDNNPlugin::Split) {
206 ASSERT_EQ(p.num_prim_desc, nodes[i]->getSupportedPrimitiveDescriptors().size());
207 for (size_t j = 0; j < p.num_prim_desc && j < p.comp.size(); j++) {
208 p.comp.at(j)(nodes[i]->getSupportedPrimitiveDescriptors().at(j));
210 ASSERT_NE(nullptr, nodes[i]->getSelectedPrimitiveDescriptor());
211 ASSERT_EQ(p.selectedType, nodes[i]->getSelectedPrimitiveDescriptor()->getImplementationType());
214 ASSERT_LE(3, nodes.size());
216 InferenceEngine::SizeVector dims_src = {p.in.n, p.in.c, p.in.h, p.in.w};
218 InferenceEngine::Blob::Ptr src = InferenceEngine::make_shared_blob<float, const InferenceEngine::SizeVector>(InferenceEngine::Precision::FP32, InferenceEngine::NCHW, dims_src);
220 fill_data(src->buffer(), src->size());
222 InferenceEngine::BlobMap srcs;
223 srcs.insert(std::pair<std::string, InferenceEngine::Blob::Ptr>("in1", src));
225 InferenceEngine::TBlob<float>* srcPtr = dynamic_cast<InferenceEngine::TBlob<float>*>(src.get());
227 if (srcPtr == nullptr)
228 FAIL() << "Cannot cast blob to TBlob<float>.";
230 InferenceEngine::OutputsDataMap out;
231 out = net_reader.getNetwork().getOutputsInfo();
232 InferenceEngine::BlobMap outputBlobs;
233 auto it = out.begin();
235 std::pair<std::string, InferenceEngine::DataPtr> item = *it;
237 InferenceEngine::TBlob<float>::Ptr output1;
238 output1 = InferenceEngine::make_shared_blob<float>(item.second->getTensorDesc());
240 outputBlobs[item.first] = output1;
242 InferenceEngine::TBlob<float> dst_ref1(item.second->getTensorDesc());
246 InferenceEngine::TBlob<float>::Ptr output2;
247 output2 = InferenceEngine::make_shared_blob<float>(item.second->getTensorDesc());
249 outputBlobs[item.first] = output2;
251 InferenceEngine::TBlob<float> dst_ref2(item.second->getTensorDesc());
254 graph.Infer(srcs, outputBlobs);
256 ref_split(*srcPtr, dst_ref1, dst_ref2);
258 compare(*output1, dst_ref1);
259 compare(*output2, dst_ref2);
260 } catch (const InferenceEngine::details::InferenceEngineException &e) {
266 TEST_P(MKLDNNGraphSplitTests, TestsSplit) {}
268 INSTANTIATE_TEST_CASE_P(
269 TestsSplit, MKLDNNGraphSplitTests,
275 3, MKLDNNPlugin::impl_desc_type::unknown, {}, {
276 [](MKLDNNPlugin::PrimitiveDescInfo impl) {
277 ASSERT_EQ(MKLDNNPlugin::impl_desc_type::ref, impl.getImplementationType());
278 ASSERT_EQ(1, impl.getConfig().inConfs.size());
279 ASSERT_EQ(2, impl.getConfig().outConfs.size());
280 ASSERT_EQ(InferenceEngine::Layout::ANY, impl.getConfig().inConfs.at(0).desc.getLayout());
281 ASSERT_EQ(InferenceEngine::Layout::ANY, impl.getConfig().outConfs.at(0).desc.getLayout());
282 ASSERT_EQ(InferenceEngine::Layout::ANY, impl.getConfig().outConfs.at(1).desc.getLayout());
284 [](MKLDNNPlugin::PrimitiveDescInfo impl) {
285 ASSERT_EQ(MKLDNNPlugin::impl_desc_type::unknown, impl.getImplementationType());
286 ASSERT_EQ(1, impl.getConfig().inConfs.size());
287 ASSERT_EQ(2, impl.getConfig().outConfs.size());
288 ASSERT_EQ(InferenceEngine::Layout::NCHW, impl.getConfig().inConfs.at(0).desc.getLayout());
289 ASSERT_EQ(InferenceEngine::Layout::NCHW, impl.getConfig().outConfs.at(0).desc.getLayout());
290 ASSERT_EQ(InferenceEngine::Layout::NCHW, impl.getConfig().outConfs.at(1).desc.getLayout());
292 [](MKLDNNPlugin::PrimitiveDescInfo impl) {
293 ASSERT_EQ(MKLDNNPlugin::impl_desc_type::unknown, impl.getImplementationType());
294 ASSERT_EQ(1, impl.getConfig().inConfs.size());
295 ASSERT_EQ(2, impl.getConfig().outConfs.size());
296 ASSERT_EQ(InferenceEngine::Layout::BLOCKED, impl.getConfig().inConfs.at(0).desc.getLayout());
297 ASSERT_EQ(InferenceEngine::Layout::BLOCKED, impl.getConfig().outConfs.at(0).desc.getLayout());
298 ASSERT_EQ(InferenceEngine::Layout::BLOCKED, impl.getConfig().outConfs.at(1).desc.getLayout());
306 2, MKLDNNPlugin::impl_desc_type::unknown, {}, {
307 [](MKLDNNPlugin::PrimitiveDescInfo impl) {
308 ASSERT_EQ(MKLDNNPlugin::impl_desc_type::ref, impl.getImplementationType());
309 ASSERT_EQ(1, impl.getConfig().inConfs.size());
310 ASSERT_EQ(2, impl.getConfig().outConfs.size());
311 ASSERT_EQ(InferenceEngine::Layout::ANY, impl.getConfig().inConfs.at(0).desc.getLayout());
312 ASSERT_EQ(InferenceEngine::Layout::ANY, impl.getConfig().outConfs.at(0).desc.getLayout());
313 ASSERT_EQ(InferenceEngine::Layout::ANY, impl.getConfig().outConfs.at(1).desc.getLayout());
315 [](MKLDNNPlugin::PrimitiveDescInfo impl) {
316 ASSERT_EQ(MKLDNNPlugin::impl_desc_type::unknown, impl.getImplementationType());
317 ASSERT_EQ(1, impl.getConfig().inConfs.size());
318 ASSERT_EQ(2, impl.getConfig().outConfs.size());
319 ASSERT_EQ(InferenceEngine::Layout::NCHW, impl.getConfig().inConfs.at(0).desc.getLayout());
320 ASSERT_EQ(InferenceEngine::Layout::NCHW, impl.getConfig().outConfs.at(0).desc.getLayout());
321 ASSERT_EQ(InferenceEngine::Layout::NCHW, impl.getConfig().outConfs.at(1).desc.getLayout());
329 2, MKLDNNPlugin::impl_desc_type::unknown, {}, {
330 [](MKLDNNPlugin::PrimitiveDescInfo impl) {
331 ASSERT_EQ(MKLDNNPlugin::impl_desc_type::ref, impl.getImplementationType());
332 ASSERT_EQ(1, impl.getConfig().inConfs.size());
333 ASSERT_EQ(2, impl.getConfig().outConfs.size());
334 ASSERT_EQ(InferenceEngine::Layout::ANY, impl.getConfig().inConfs.at(0).desc.getLayout());
335 ASSERT_EQ(InferenceEngine::Layout::ANY, impl.getConfig().outConfs.at(0).desc.getLayout());
336 ASSERT_EQ(InferenceEngine::Layout::ANY, impl.getConfig().outConfs.at(1).desc.getLayout());
338 [](MKLDNNPlugin::PrimitiveDescInfo impl) {
339 ASSERT_EQ(MKLDNNPlugin::impl_desc_type::unknown, impl.getImplementationType());
340 ASSERT_EQ(1, impl.getConfig().inConfs.size());
341 ASSERT_EQ(2, impl.getConfig().outConfs.size());
342 ASSERT_EQ(InferenceEngine::Layout::NCHW, impl.getConfig().inConfs.at(0).desc.getLayout());
343 ASSERT_EQ(InferenceEngine::Layout::NCHW, impl.getConfig().outConfs.at(0).desc.getLayout());
344 ASSERT_EQ(InferenceEngine::Layout::NCHW, impl.getConfig().outConfs.at(1).desc.getLayout());
352 2, MKLDNNPlugin::impl_desc_type::unknown, {}, {
353 [](MKLDNNPlugin::PrimitiveDescInfo impl) {
354 ASSERT_EQ(MKLDNNPlugin::impl_desc_type::ref, impl.getImplementationType());
355 ASSERT_EQ(1, impl.getConfig().inConfs.size());
356 ASSERT_EQ(2, impl.getConfig().outConfs.size());
357 ASSERT_EQ(InferenceEngine::Layout::ANY, impl.getConfig().inConfs.at(0).desc.getLayout());
358 ASSERT_EQ(InferenceEngine::Layout::ANY, impl.getConfig().outConfs.at(0).desc.getLayout());
359 ASSERT_EQ(InferenceEngine::Layout::ANY, impl.getConfig().outConfs.at(1).desc.getLayout());
361 [](MKLDNNPlugin::PrimitiveDescInfo impl) {
362 ASSERT_EQ(MKLDNNPlugin::impl_desc_type::unknown, impl.getImplementationType());
363 ASSERT_EQ(1, impl.getConfig().inConfs.size());
364 ASSERT_EQ(2, impl.getConfig().outConfs.size());
365 ASSERT_EQ(InferenceEngine::Layout::NCHW, impl.getConfig().inConfs.at(0).desc.getLayout());
366 ASSERT_EQ(InferenceEngine::Layout::NCHW, impl.getConfig().outConfs.at(0).desc.getLayout());
367 ASSERT_EQ(InferenceEngine::Layout::NCHW, impl.getConfig().outConfs.at(1).desc.getLayout());
375 3, MKLDNNPlugin::impl_desc_type::ref, {MKLDNNPlugin::impl_desc_type::ref}
381 2, MKLDNNPlugin::impl_desc_type::ref, {MKLDNNPlugin::impl_desc_type::ref}
387 2, MKLDNNPlugin::impl_desc_type::ref, {MKLDNNPlugin::impl_desc_type::ref}
393 2, MKLDNNPlugin::impl_desc_type::ref, {MKLDNNPlugin::impl_desc_type::ref}}));
395 class MKLDNNGraphDynBatchSplitTests: public MKLDNNGraphSplitTests {
397 virtual void SetUp() {
399 split_test_params p = ::testing::WithParamInterface<split_test_params>::GetParam();
400 std::string model = getModel(p);
405 InferenceEngine::CNNNetReader net_reader;
406 ASSERT_NO_THROW(net_reader.ReadNetwork(model.data(), model.length()));
407 InferenceEngine::CNNNetwork network = net_reader.getNetwork();
408 auto implNet = dynamic_cast<InferenceEngine::details::CNNNetworkImpl *>(&((InferenceEngine::ICNNNetwork&)network));
409 ASSERT_NE(nullptr, implNet) << "Failed to cast ICNNNetwork to CNNNetworkImpl";
410 InferenceEngine::ResponseDesc resp;
411 InferenceEngine::StatusCode sts = implNet->setBatchSizeReshape(MB, &resp);
412 ASSERT_EQ((int)InferenceEngine::StatusCode::OK, sts) << resp.msg;
414 MKLDNNGraphTestClass graph;
415 graph.setProperty({{InferenceEngine::PluginConfigParams::KEY_DYN_BATCH_ENABLED, InferenceEngine::PluginConfigParams::YES}});
416 graph.CreateGraph(net_reader.getNetwork());
418 InferenceEngine::SizeVector dims_src = {MB, p.in.c, p.in.h, p.in.w};
420 InferenceEngine::Blob::Ptr src = InferenceEngine::make_shared_blob<float, const InferenceEngine::SizeVector>(InferenceEngine::Precision::FP32, InferenceEngine::NCHW, dims_src);
422 fill_data(src->buffer(), src->size());
424 InferenceEngine::BlobMap srcs;
425 srcs.insert(std::pair<std::string, InferenceEngine::Blob::Ptr>("in1", src));
427 InferenceEngine::TBlob<float>* srcPtr = dynamic_cast<InferenceEngine::TBlob<float>*>(src.get());
429 if (srcPtr == nullptr)
430 FAIL() << "Cannot cast blob to TBlob<float>.";
432 InferenceEngine::OutputsDataMap out;
433 out = net_reader.getNetwork().getOutputsInfo();
434 InferenceEngine::BlobMap outputBlobs;
435 auto it = out.begin();
437 std::pair<std::string, InferenceEngine::DataPtr> item = *it;
439 InferenceEngine::TBlob<float>::Ptr output1;
440 output1 = InferenceEngine::make_shared_blob<float>(item.second->getTensorDesc());
442 outputBlobs[item.first] = output1;
445 InferenceEngine::TBlob<float>::Ptr output2;
446 output2 = InferenceEngine::make_shared_blob<float>(item.second->getTensorDesc());
448 outputBlobs[item.first] = output2;
450 auto checkSplit = [](const MKLDNNPlugin::MKLDNNNodePtr& node) {
451 return node->getType() == MKLDNNPlugin::Split;
454 graph.checkDynBatch(srcs, outputBlobs, MB, MB, checkSplit);
455 graph.checkDynBatch(srcs, outputBlobs, 1, MB, checkSplit);
456 } catch (const InferenceEngine::details::InferenceEngineException &e) {
462 TEST_P(MKLDNNGraphDynBatchSplitTests, TestsDynBatchSplit) {}
464 INSTANTIATE_TEST_CASE_P(
465 TestsDynBatchSplit, MKLDNNGraphDynBatchSplitTests,
471 3, MKLDNNPlugin::impl_desc_type::unknown, {}, {
472 [](MKLDNNPlugin::PrimitiveDescInfo impl) {
473 ASSERT_EQ(MKLDNNPlugin::impl_desc_type::ref, impl.getImplementationType());
474 ASSERT_EQ(1, impl.getConfig().inConfs.size());
475 ASSERT_EQ(2, impl.getConfig().outConfs.size());
476 ASSERT_EQ(InferenceEngine::Layout::ANY, impl.getConfig().inConfs.at(0).desc.getLayout());
477 ASSERT_EQ(InferenceEngine::Layout::ANY, impl.getConfig().outConfs.at(0).desc.getLayout());
478 ASSERT_EQ(InferenceEngine::Layout::ANY, impl.getConfig().outConfs.at(1).desc.getLayout());
480 [](MKLDNNPlugin::PrimitiveDescInfo impl) {
481 ASSERT_EQ(MKLDNNPlugin::impl_desc_type::unknown, impl.getImplementationType());
482 ASSERT_EQ(1, impl.getConfig().inConfs.size());
483 ASSERT_EQ(2, impl.getConfig().outConfs.size());
484 ASSERT_EQ(InferenceEngine::Layout::NCHW, impl.getConfig().inConfs.at(0).desc.getLayout());
485 ASSERT_EQ(InferenceEngine::Layout::NCHW, impl.getConfig().outConfs.at(0).desc.getLayout());
486 ASSERT_EQ(InferenceEngine::Layout::NCHW, impl.getConfig().outConfs.at(1).desc.getLayout());
488 [](MKLDNNPlugin::PrimitiveDescInfo impl) {
489 ASSERT_EQ(MKLDNNPlugin::impl_desc_type::unknown, impl.getImplementationType());
490 ASSERT_EQ(1, impl.getConfig().inConfs.size());
491 ASSERT_EQ(2, impl.getConfig().outConfs.size());
492 ASSERT_EQ(InferenceEngine::Layout::BLOCKED, impl.getConfig().inConfs.at(0).desc.getLayout());
493 ASSERT_EQ(InferenceEngine::Layout::BLOCKED, impl.getConfig().outConfs.at(0).desc.getLayout());
494 ASSERT_EQ(InferenceEngine::Layout::BLOCKED, impl.getConfig().outConfs.at(1).desc.getLayout());
502 2, MKLDNNPlugin::impl_desc_type::unknown, {}, {
503 [](MKLDNNPlugin::PrimitiveDescInfo impl) {
504 ASSERT_EQ(MKLDNNPlugin::impl_desc_type::ref, impl.getImplementationType());
505 ASSERT_EQ(1, impl.getConfig().inConfs.size());
506 ASSERT_EQ(2, impl.getConfig().outConfs.size());
507 ASSERT_EQ(InferenceEngine::Layout::ANY, impl.getConfig().inConfs.at(0).desc.getLayout());
508 ASSERT_EQ(InferenceEngine::Layout::ANY, impl.getConfig().outConfs.at(0).desc.getLayout());
509 ASSERT_EQ(InferenceEngine::Layout::ANY, impl.getConfig().outConfs.at(1).desc.getLayout());
511 [](MKLDNNPlugin::PrimitiveDescInfo impl) {
512 ASSERT_EQ(MKLDNNPlugin::impl_desc_type::unknown, impl.getImplementationType());
513 ASSERT_EQ(1, impl.getConfig().inConfs.size());
514 ASSERT_EQ(2, impl.getConfig().outConfs.size());
515 ASSERT_EQ(InferenceEngine::Layout::NCHW, impl.getConfig().inConfs.at(0).desc.getLayout());
516 ASSERT_EQ(InferenceEngine::Layout::NCHW, impl.getConfig().outConfs.at(0).desc.getLayout());
517 ASSERT_EQ(InferenceEngine::Layout::NCHW, impl.getConfig().outConfs.at(1).desc.getLayout());
525 2, MKLDNNPlugin::impl_desc_type::unknown, {}, {
526 [](MKLDNNPlugin::PrimitiveDescInfo impl) {
527 ASSERT_EQ(MKLDNNPlugin::impl_desc_type::ref, impl.getImplementationType());
528 ASSERT_EQ(1, impl.getConfig().inConfs.size());
529 ASSERT_EQ(2, impl.getConfig().outConfs.size());
530 ASSERT_EQ(InferenceEngine::Layout::ANY, impl.getConfig().inConfs.at(0).desc.getLayout());
531 ASSERT_EQ(InferenceEngine::Layout::ANY, impl.getConfig().outConfs.at(0).desc.getLayout());
532 ASSERT_EQ(InferenceEngine::Layout::ANY, impl.getConfig().outConfs.at(1).desc.getLayout());
534 [](MKLDNNPlugin::PrimitiveDescInfo impl) {
535 ASSERT_EQ(MKLDNNPlugin::impl_desc_type::unknown, impl.getImplementationType());
536 ASSERT_EQ(1, impl.getConfig().inConfs.size());
537 ASSERT_EQ(2, impl.getConfig().outConfs.size());
538 ASSERT_EQ(InferenceEngine::Layout::NCHW, impl.getConfig().inConfs.at(0).desc.getLayout());
539 ASSERT_EQ(InferenceEngine::Layout::NCHW, impl.getConfig().outConfs.at(0).desc.getLayout());
540 ASSERT_EQ(InferenceEngine::Layout::NCHW, impl.getConfig().outConfs.at(1).desc.getLayout());
548 2, MKLDNNPlugin::impl_desc_type::unknown, {}, {
549 [](MKLDNNPlugin::PrimitiveDescInfo impl) {
550 ASSERT_EQ(MKLDNNPlugin::impl_desc_type::ref, impl.getImplementationType());
551 ASSERT_EQ(1, impl.getConfig().inConfs.size());
552 ASSERT_EQ(2, impl.getConfig().outConfs.size());
553 ASSERT_EQ(InferenceEngine::Layout::ANY, impl.getConfig().inConfs.at(0).desc.getLayout());
554 ASSERT_EQ(InferenceEngine::Layout::ANY, impl.getConfig().outConfs.at(0).desc.getLayout());
555 ASSERT_EQ(InferenceEngine::Layout::ANY, impl.getConfig().outConfs.at(1).desc.getLayout());
557 [](MKLDNNPlugin::PrimitiveDescInfo impl) {
558 ASSERT_EQ(MKLDNNPlugin::impl_desc_type::unknown, impl.getImplementationType());
559 ASSERT_EQ(1, impl.getConfig().inConfs.size());
560 ASSERT_EQ(2, impl.getConfig().outConfs.size());
561 ASSERT_EQ(InferenceEngine::Layout::NCHW, impl.getConfig().inConfs.at(0).desc.getLayout());
562 ASSERT_EQ(InferenceEngine::Layout::NCHW, impl.getConfig().outConfs.at(0).desc.getLayout());
563 ASSERT_EQ(InferenceEngine::Layout::NCHW, impl.getConfig().outConfs.at(1).desc.getLayout());
571 3, MKLDNNPlugin::impl_desc_type::ref, {MKLDNNPlugin::impl_desc_type::ref}
577 2, MKLDNNPlugin::impl_desc_type::ref, {MKLDNNPlugin::impl_desc_type::ref}
583 2, MKLDNNPlugin::impl_desc_type::ref, {MKLDNNPlugin::impl_desc_type::ref}
589 2, MKLDNNPlugin::impl_desc_type::ref, {MKLDNNPlugin::impl_desc_type::ref}}));