1 /* SPDX-License-Identifier: GPL-2.0 WITH Linux-syscall-note */
2 /* Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of version 2 of the GNU General Public
6 * License as published by the Free Software Foundation.
8 #ifndef _UAPI__LINUX_BPF_H__
9 #define _UAPI__LINUX_BPF_H__
11 #include <linux/types.h>
12 #include <linux/bpf_common.h>
14 /* Extended instruction set based on top of classic BPF */
16 /* instruction classes */
17 #define BPF_JMP32 0x06 /* jmp mode in word width */
18 #define BPF_ALU64 0x07 /* alu mode in double word width */
21 #define BPF_DW 0x18 /* double word (64-bit) */
22 #define BPF_ATOMIC 0xc0 /* atomic memory ops - op type in immediate */
23 #define BPF_XADD 0xc0 /* exclusive add - legacy name */
26 #define BPF_MOV 0xb0 /* mov reg to reg */
27 #define BPF_ARSH 0xc0 /* sign extending arithmetic shift right */
29 /* change endianness of a register */
30 #define BPF_END 0xd0 /* flags for endianness conversion: */
31 #define BPF_TO_LE 0x00 /* convert to little-endian */
32 #define BPF_TO_BE 0x08 /* convert to big-endian */
33 #define BPF_FROM_LE BPF_TO_LE
34 #define BPF_FROM_BE BPF_TO_BE
37 #define BPF_JNE 0x50 /* jump != */
38 #define BPF_JLT 0xa0 /* LT is unsigned, '<' */
39 #define BPF_JLE 0xb0 /* LE is unsigned, '<=' */
40 #define BPF_JSGT 0x60 /* SGT is signed '>', GT in x86 */
41 #define BPF_JSGE 0x70 /* SGE is signed '>=', GE in x86 */
42 #define BPF_JSLT 0xc0 /* SLT is signed, '<' */
43 #define BPF_JSLE 0xd0 /* SLE is signed, '<=' */
44 #define BPF_CALL 0x80 /* function call */
45 #define BPF_EXIT 0x90 /* function return */
47 /* atomic op type fields (stored in immediate) */
48 #define BPF_FETCH 0x01 /* not an opcode on its own, used to build others */
49 #define BPF_XCHG (0xe0 | BPF_FETCH) /* atomic exchange */
50 #define BPF_CMPXCHG (0xf0 | BPF_FETCH) /* atomic compare-and-write */
52 /* Register numbers */
68 /* BPF has 10 general purpose 64-bit registers and stack frame. */
69 #define MAX_BPF_REG __MAX_BPF_REG
72 __u8 code; /* opcode */
73 __u8 dst_reg:4; /* dest register */
74 __u8 src_reg:4; /* source register */
75 __s16 off; /* signed offset */
76 __s32 imm; /* signed immediate constant */
79 /* Key of an a BPF_MAP_TYPE_LPM_TRIE entry */
80 struct bpf_lpm_trie_key {
81 __u32 prefixlen; /* up to 32 for AF_INET, 128 for AF_INET6 */
82 __u8 data[]; /* Arbitrary size */
85 struct bpf_cgroup_storage_key {
86 __u64 cgroup_inode_id; /* cgroup inode id */
87 __u32 attach_type; /* program attach type (enum bpf_attach_type) */
90 union bpf_iter_link_info {
96 /* BPF syscall commands, see bpf(2) man-page for more details. */
98 * DOC: eBPF Syscall Preamble
100 * The operation to be performed by the **bpf**\ () system call is determined
101 * by the *cmd* argument. Each operation takes an accompanying argument,
102 * provided via *attr*, which is a pointer to a union of type *bpf_attr* (see
103 * below). The size argument is the size of the union pointed to by *attr*.
106 * DOC: eBPF Syscall Commands
110 * Create a map and return a file descriptor that refers to the
111 * map. The close-on-exec file descriptor flag (see **fcntl**\ (2))
112 * is automatically enabled for the new file descriptor.
114 * Applying **close**\ (2) to the file descriptor returned by
115 * **BPF_MAP_CREATE** will delete the map (but see NOTES).
118 * A new file descriptor (a nonnegative integer), or -1 if an
119 * error occurred (in which case, *errno* is set appropriately).
121 * BPF_MAP_LOOKUP_ELEM
123 * Look up an element with a given *key* in the map referred to
124 * by the file descriptor *map_fd*.
126 * The *flags* argument may be specified as one of the
130 * Look up the value of a spin-locked map without
131 * returning the lock. This must be specified if the
132 * elements contain a spinlock.
135 * Returns zero on success. On error, -1 is returned and *errno*
136 * is set appropriately.
138 * BPF_MAP_UPDATE_ELEM
140 * Create or update an element (key/value pair) in a specified map.
142 * The *flags* argument should be specified as one of the
146 * Create a new element or update an existing element.
148 * Create a new element only if it did not exist.
150 * Update an existing element.
152 * Update a spin_lock-ed map element.
155 * Returns zero on success. On error, -1 is returned and *errno*
156 * is set appropriately.
158 * May set *errno* to **EINVAL**, **EPERM**, **ENOMEM**,
159 * **E2BIG**, **EEXIST**, or **ENOENT**.
162 * The number of elements in the map reached the
163 * *max_entries* limit specified at map creation time.
165 * If *flags* specifies **BPF_NOEXIST** and the element
166 * with *key* already exists in the map.
168 * If *flags* specifies **BPF_EXIST** and the element with
169 * *key* does not exist in the map.
171 * BPF_MAP_DELETE_ELEM
173 * Look up and delete an element by key in a specified map.
176 * Returns zero on success. On error, -1 is returned and *errno*
177 * is set appropriately.
179 * BPF_MAP_GET_NEXT_KEY
181 * Look up an element by key in a specified map and return the key
182 * of the next element. Can be used to iterate over all elements
186 * Returns zero on success. On error, -1 is returned and *errno*
187 * is set appropriately.
189 * The following cases can be used to iterate over all elements of
192 * * If *key* is not found, the operation returns zero and sets
193 * the *next_key* pointer to the key of the first element.
194 * * If *key* is found, the operation returns zero and sets the
195 * *next_key* pointer to the key of the next element.
196 * * If *key* is the last element, returns -1 and *errno* is set
199 * May set *errno* to **ENOMEM**, **EFAULT**, **EPERM**, or
200 * **EINVAL** on error.
204 * Verify and load an eBPF program, returning a new file
205 * descriptor associated with the program.
207 * Applying **close**\ (2) to the file descriptor returned by
208 * **BPF_PROG_LOAD** will unload the eBPF program (but see NOTES).
210 * The close-on-exec file descriptor flag (see **fcntl**\ (2)) is
211 * automatically enabled for the new file descriptor.
214 * A new file descriptor (a nonnegative integer), or -1 if an
215 * error occurred (in which case, *errno* is set appropriately).
219 * Pin an eBPF program or map referred by the specified *bpf_fd*
220 * to the provided *pathname* on the filesystem.
222 * The *pathname* argument must not contain a dot (".").
224 * On success, *pathname* retains a reference to the eBPF object,
225 * preventing deallocation of the object when the original
226 * *bpf_fd* is closed. This allow the eBPF object to live beyond
227 * **close**\ (\ *bpf_fd*\ ), and hence the lifetime of the parent
230 * Applying **unlink**\ (2) or similar calls to the *pathname*
231 * unpins the object from the filesystem, removing the reference.
232 * If no other file descriptors or filesystem nodes refer to the
233 * same object, it will be deallocated (see NOTES).
235 * The filesystem type for the parent directory of *pathname* must
236 * be **BPF_FS_MAGIC**.
239 * Returns zero on success. On error, -1 is returned and *errno*
240 * is set appropriately.
244 * Open a file descriptor for the eBPF object pinned to the
245 * specified *pathname*.
248 * A new file descriptor (a nonnegative integer), or -1 if an
249 * error occurred (in which case, *errno* is set appropriately).
253 * Attach an eBPF program to a *target_fd* at the specified
254 * *attach_type* hook.
256 * The *attach_type* specifies the eBPF attachment point to
257 * attach the program to, and must be one of *bpf_attach_type*
260 * The *attach_bpf_fd* must be a valid file descriptor for a
261 * loaded eBPF program of a cgroup, flow dissector, LIRC, sockmap
262 * or sock_ops type corresponding to the specified *attach_type*.
264 * The *target_fd* must be a valid file descriptor for a kernel
265 * object which depends on the attach type of *attach_bpf_fd*:
267 * **BPF_PROG_TYPE_CGROUP_DEVICE**,
268 * **BPF_PROG_TYPE_CGROUP_SKB**,
269 * **BPF_PROG_TYPE_CGROUP_SOCK**,
270 * **BPF_PROG_TYPE_CGROUP_SOCK_ADDR**,
271 * **BPF_PROG_TYPE_CGROUP_SOCKOPT**,
272 * **BPF_PROG_TYPE_CGROUP_SYSCTL**,
273 * **BPF_PROG_TYPE_SOCK_OPS**
275 * Control Group v2 hierarchy with the eBPF controller
276 * enabled. Requires the kernel to be compiled with
277 * **CONFIG_CGROUP_BPF**.
279 * **BPF_PROG_TYPE_FLOW_DISSECTOR**
281 * Network namespace (eg /proc/self/ns/net).
283 * **BPF_PROG_TYPE_LIRC_MODE2**
285 * LIRC device path (eg /dev/lircN). Requires the kernel
286 * to be compiled with **CONFIG_BPF_LIRC_MODE2**.
288 * **BPF_PROG_TYPE_SK_SKB**,
289 * **BPF_PROG_TYPE_SK_MSG**
291 * eBPF map of socket type (eg **BPF_MAP_TYPE_SOCKHASH**).
294 * Returns zero on success. On error, -1 is returned and *errno*
295 * is set appropriately.
299 * Detach the eBPF program associated with the *target_fd* at the
300 * hook specified by *attach_type*. The program must have been
301 * previously attached using **BPF_PROG_ATTACH**.
304 * Returns zero on success. On error, -1 is returned and *errno*
305 * is set appropriately.
309 * Run the eBPF program associated with the *prog_fd* a *repeat*
310 * number of times against a provided program context *ctx_in* and
311 * data *data_in*, and return the modified program context
312 * *ctx_out*, *data_out* (for example, packet data), result of the
313 * execution *retval*, and *duration* of the test run.
315 * The sizes of the buffers provided as input and output
316 * parameters *ctx_in*, *ctx_out*, *data_in*, and *data_out* must
317 * be provided in the corresponding variables *ctx_size_in*,
318 * *ctx_size_out*, *data_size_in*, and/or *data_size_out*. If any
319 * of these parameters are not provided (ie set to NULL), the
320 * corresponding size field must be zero.
322 * Some program types have particular requirements:
324 * **BPF_PROG_TYPE_SK_LOOKUP**
325 * *data_in* and *data_out* must be NULL.
327 * **BPF_PROG_TYPE_RAW_TRACEPOINT**,
328 * **BPF_PROG_TYPE_RAW_TRACEPOINT_WRITABLE**
330 * *ctx_out*, *data_in* and *data_out* must be NULL.
331 * *repeat* must be zero.
333 * BPF_PROG_RUN is an alias for BPF_PROG_TEST_RUN.
336 * Returns zero on success. On error, -1 is returned and *errno*
337 * is set appropriately.
340 * Either *data_size_out* or *ctx_size_out* is too small.
342 * This command is not supported by the program type of
343 * the program referred to by *prog_fd*.
345 * BPF_PROG_GET_NEXT_ID
347 * Fetch the next eBPF program currently loaded into the kernel.
349 * Looks for the eBPF program with an id greater than *start_id*
350 * and updates *next_id* on success. If no other eBPF programs
351 * remain with ids higher than *start_id*, returns -1 and sets
352 * *errno* to **ENOENT**.
355 * Returns zero on success. On error, or when no id remains, -1
356 * is returned and *errno* is set appropriately.
358 * BPF_MAP_GET_NEXT_ID
360 * Fetch the next eBPF map currently loaded into the kernel.
362 * Looks for the eBPF map with an id greater than *start_id*
363 * and updates *next_id* on success. If no other eBPF maps
364 * remain with ids higher than *start_id*, returns -1 and sets
365 * *errno* to **ENOENT**.
368 * Returns zero on success. On error, or when no id remains, -1
369 * is returned and *errno* is set appropriately.
371 * BPF_PROG_GET_FD_BY_ID
373 * Open a file descriptor for the eBPF program corresponding to
377 * A new file descriptor (a nonnegative integer), or -1 if an
378 * error occurred (in which case, *errno* is set appropriately).
380 * BPF_MAP_GET_FD_BY_ID
382 * Open a file descriptor for the eBPF map corresponding to
386 * A new file descriptor (a nonnegative integer), or -1 if an
387 * error occurred (in which case, *errno* is set appropriately).
389 * BPF_OBJ_GET_INFO_BY_FD
391 * Obtain information about the eBPF object corresponding to
394 * Populates up to *info_len* bytes of *info*, which will be in
395 * one of the following formats depending on the eBPF object type
398 * * **struct bpf_prog_info**
399 * * **struct bpf_map_info**
400 * * **struct bpf_btf_info**
401 * * **struct bpf_link_info**
404 * Returns zero on success. On error, -1 is returned and *errno*
405 * is set appropriately.
409 * Obtain information about eBPF programs associated with the
410 * specified *attach_type* hook.
412 * The *target_fd* must be a valid file descriptor for a kernel
413 * object which depends on the attach type of *attach_bpf_fd*:
415 * **BPF_PROG_TYPE_CGROUP_DEVICE**,
416 * **BPF_PROG_TYPE_CGROUP_SKB**,
417 * **BPF_PROG_TYPE_CGROUP_SOCK**,
418 * **BPF_PROG_TYPE_CGROUP_SOCK_ADDR**,
419 * **BPF_PROG_TYPE_CGROUP_SOCKOPT**,
420 * **BPF_PROG_TYPE_CGROUP_SYSCTL**,
421 * **BPF_PROG_TYPE_SOCK_OPS**
423 * Control Group v2 hierarchy with the eBPF controller
424 * enabled. Requires the kernel to be compiled with
425 * **CONFIG_CGROUP_BPF**.
427 * **BPF_PROG_TYPE_FLOW_DISSECTOR**
429 * Network namespace (eg /proc/self/ns/net).
431 * **BPF_PROG_TYPE_LIRC_MODE2**
433 * LIRC device path (eg /dev/lircN). Requires the kernel
434 * to be compiled with **CONFIG_BPF_LIRC_MODE2**.
436 * **BPF_PROG_QUERY** always fetches the number of programs
437 * attached and the *attach_flags* which were used to attach those
438 * programs. Additionally, if *prog_ids* is nonzero and the number
439 * of attached programs is less than *prog_cnt*, populates
440 * *prog_ids* with the eBPF program ids of the programs attached
443 * The following flags may alter the result:
445 * **BPF_F_QUERY_EFFECTIVE**
446 * Only return information regarding programs which are
447 * currently effective at the specified *target_fd*.
450 * Returns zero on success. On error, -1 is returned and *errno*
451 * is set appropriately.
453 * BPF_RAW_TRACEPOINT_OPEN
455 * Attach an eBPF program to a tracepoint *name* to access kernel
456 * internal arguments of the tracepoint in their raw form.
458 * The *prog_fd* must be a valid file descriptor associated with
459 * a loaded eBPF program of type **BPF_PROG_TYPE_RAW_TRACEPOINT**.
461 * No ABI guarantees are made about the content of tracepoint
462 * arguments exposed to the corresponding eBPF program.
464 * Applying **close**\ (2) to the file descriptor returned by
465 * **BPF_RAW_TRACEPOINT_OPEN** will delete the map (but see NOTES).
468 * A new file descriptor (a nonnegative integer), or -1 if an
469 * error occurred (in which case, *errno* is set appropriately).
473 * Verify and load BPF Type Format (BTF) metadata into the kernel,
474 * returning a new file descriptor associated with the metadata.
475 * BTF is described in more detail at
476 * https://www.kernel.org/doc/html/latest/bpf/btf.html.
478 * The *btf* parameter must point to valid memory providing
479 * *btf_size* bytes of BTF binary metadata.
481 * The returned file descriptor can be passed to other **bpf**\ ()
482 * subcommands such as **BPF_PROG_LOAD** or **BPF_MAP_CREATE** to
483 * associate the BTF with those objects.
485 * Similar to **BPF_PROG_LOAD**, **BPF_BTF_LOAD** has optional
486 * parameters to specify a *btf_log_buf*, *btf_log_size* and
487 * *btf_log_level* which allow the kernel to return freeform log
488 * output regarding the BTF verification process.
491 * A new file descriptor (a nonnegative integer), or -1 if an
492 * error occurred (in which case, *errno* is set appropriately).
494 * BPF_BTF_GET_FD_BY_ID
496 * Open a file descriptor for the BPF Type Format (BTF)
497 * corresponding to *btf_id*.
500 * A new file descriptor (a nonnegative integer), or -1 if an
501 * error occurred (in which case, *errno* is set appropriately).
505 * Obtain information about eBPF programs associated with the
506 * target process identified by *pid* and *fd*.
508 * If the *pid* and *fd* are associated with a tracepoint, kprobe
509 * or uprobe perf event, then the *prog_id* and *fd_type* will
510 * be populated with the eBPF program id and file descriptor type
511 * of type **bpf_task_fd_type**. If associated with a kprobe or
512 * uprobe, the *probe_offset* and *probe_addr* will also be
513 * populated. Optionally, if *buf* is provided, then up to
514 * *buf_len* bytes of *buf* will be populated with the name of
515 * the tracepoint, kprobe or uprobe.
517 * The resulting *prog_id* may be introspected in deeper detail
518 * using **BPF_PROG_GET_FD_BY_ID** and **BPF_OBJ_GET_INFO_BY_FD**.
521 * Returns zero on success. On error, -1 is returned and *errno*
522 * is set appropriately.
524 * BPF_MAP_LOOKUP_AND_DELETE_ELEM
526 * Look up an element with the given *key* in the map referred to
527 * by the file descriptor *fd*, and if found, delete the element.
529 * For **BPF_MAP_TYPE_QUEUE** and **BPF_MAP_TYPE_STACK** map
530 * types, the *flags* argument needs to be set to 0, but for other
531 * map types, it may be specified as:
534 * Look up and delete the value of a spin-locked map
535 * without returning the lock. This must be specified if
536 * the elements contain a spinlock.
538 * The **BPF_MAP_TYPE_QUEUE** and **BPF_MAP_TYPE_STACK** map types
539 * implement this command as a "pop" operation, deleting the top
540 * element rather than one corresponding to *key*.
541 * The *key* and *key_len* parameters should be zeroed when
542 * issuing this operation for these map types.
544 * This command is only valid for the following map types:
545 * * **BPF_MAP_TYPE_QUEUE**
546 * * **BPF_MAP_TYPE_STACK**
547 * * **BPF_MAP_TYPE_HASH**
548 * * **BPF_MAP_TYPE_PERCPU_HASH**
549 * * **BPF_MAP_TYPE_LRU_HASH**
550 * * **BPF_MAP_TYPE_LRU_PERCPU_HASH**
553 * Returns zero on success. On error, -1 is returned and *errno*
554 * is set appropriately.
558 * Freeze the permissions of the specified map.
560 * Write permissions may be frozen by passing zero *flags*.
561 * Upon success, no future syscall invocations may alter the
562 * map state of *map_fd*. Write operations from eBPF programs
563 * are still possible for a frozen map.
565 * Not supported for maps of type **BPF_MAP_TYPE_STRUCT_OPS**.
568 * Returns zero on success. On error, -1 is returned and *errno*
569 * is set appropriately.
571 * BPF_BTF_GET_NEXT_ID
573 * Fetch the next BPF Type Format (BTF) object currently loaded
576 * Looks for the BTF object with an id greater than *start_id*
577 * and updates *next_id* on success. If no other BTF objects
578 * remain with ids higher than *start_id*, returns -1 and sets
579 * *errno* to **ENOENT**.
582 * Returns zero on success. On error, or when no id remains, -1
583 * is returned and *errno* is set appropriately.
585 * BPF_MAP_LOOKUP_BATCH
587 * Iterate and fetch multiple elements in a map.
589 * Two opaque values are used to manage batch operations,
590 * *in_batch* and *out_batch*. Initially, *in_batch* must be set
591 * to NULL to begin the batched operation. After each subsequent
592 * **BPF_MAP_LOOKUP_BATCH**, the caller should pass the resultant
593 * *out_batch* as the *in_batch* for the next operation to
594 * continue iteration from the current point.
596 * The *keys* and *values* are output parameters which must point
597 * to memory large enough to hold *count* items based on the key
598 * and value size of the map *map_fd*. The *keys* buffer must be
599 * of *key_size* * *count*. The *values* buffer must be of
600 * *value_size* * *count*.
602 * The *elem_flags* argument may be specified as one of the
606 * Look up the value of a spin-locked map without
607 * returning the lock. This must be specified if the
608 * elements contain a spinlock.
610 * On success, *count* elements from the map are copied into the
611 * user buffer, with the keys copied into *keys* and the values
612 * copied into the corresponding indices in *values*.
614 * If an error is returned and *errno* is not **EFAULT**, *count*
615 * is set to the number of successfully processed elements.
618 * Returns zero on success. On error, -1 is returned and *errno*
619 * is set appropriately.
621 * May set *errno* to **ENOSPC** to indicate that *keys* or
622 * *values* is too small to dump an entire bucket during
623 * iteration of a hash-based map type.
625 * BPF_MAP_LOOKUP_AND_DELETE_BATCH
627 * Iterate and delete all elements in a map.
629 * This operation has the same behavior as
630 * **BPF_MAP_LOOKUP_BATCH** with two exceptions:
632 * * Every element that is successfully returned is also deleted
633 * from the map. This is at least *count* elements. Note that
634 * *count* is both an input and an output parameter.
635 * * Upon returning with *errno* set to **EFAULT**, up to
636 * *count* elements may be deleted without returning the keys
637 * and values of the deleted elements.
640 * Returns zero on success. On error, -1 is returned and *errno*
641 * is set appropriately.
643 * BPF_MAP_UPDATE_BATCH
645 * Update multiple elements in a map by *key*.
647 * The *keys* and *values* are input parameters which must point
648 * to memory large enough to hold *count* items based on the key
649 * and value size of the map *map_fd*. The *keys* buffer must be
650 * of *key_size* * *count*. The *values* buffer must be of
651 * *value_size* * *count*.
653 * Each element specified in *keys* is sequentially updated to the
654 * value in the corresponding index in *values*. The *in_batch*
655 * and *out_batch* parameters are ignored and should be zeroed.
657 * The *elem_flags* argument should be specified as one of the
661 * Create new elements or update a existing elements.
663 * Create new elements only if they do not exist.
665 * Update existing elements.
667 * Update spin_lock-ed map elements. This must be
668 * specified if the map value contains a spinlock.
670 * On success, *count* elements from the map are updated.
672 * If an error is returned and *errno* is not **EFAULT**, *count*
673 * is set to the number of successfully processed elements.
676 * Returns zero on success. On error, -1 is returned and *errno*
677 * is set appropriately.
679 * May set *errno* to **EINVAL**, **EPERM**, **ENOMEM**, or
680 * **E2BIG**. **E2BIG** indicates that the number of elements in
681 * the map reached the *max_entries* limit specified at map
684 * May set *errno* to one of the following error codes under
685 * specific circumstances:
688 * If *flags* specifies **BPF_NOEXIST** and the element
689 * with *key* already exists in the map.
691 * If *flags* specifies **BPF_EXIST** and the element with
692 * *key* does not exist in the map.
694 * BPF_MAP_DELETE_BATCH
696 * Delete multiple elements in a map by *key*.
698 * The *keys* parameter is an input parameter which must point
699 * to memory large enough to hold *count* items based on the key
700 * size of the map *map_fd*, that is, *key_size* * *count*.
702 * Each element specified in *keys* is sequentially deleted. The
703 * *in_batch*, *out_batch*, and *values* parameters are ignored
704 * and should be zeroed.
706 * The *elem_flags* argument may be specified as one of the
710 * Look up the value of a spin-locked map without
711 * returning the lock. This must be specified if the
712 * elements contain a spinlock.
714 * On success, *count* elements from the map are updated.
716 * If an error is returned and *errno* is not **EFAULT**, *count*
717 * is set to the number of successfully processed elements. If
718 * *errno* is **EFAULT**, up to *count* elements may be been
722 * Returns zero on success. On error, -1 is returned and *errno*
723 * is set appropriately.
727 * Attach an eBPF program to a *target_fd* at the specified
728 * *attach_type* hook and return a file descriptor handle for
732 * A new file descriptor (a nonnegative integer), or -1 if an
733 * error occurred (in which case, *errno* is set appropriately).
737 * Update the eBPF program in the specified *link_fd* to
741 * Returns zero on success. On error, -1 is returned and *errno*
742 * is set appropriately.
744 * BPF_LINK_GET_FD_BY_ID
746 * Open a file descriptor for the eBPF Link corresponding to
750 * A new file descriptor (a nonnegative integer), or -1 if an
751 * error occurred (in which case, *errno* is set appropriately).
753 * BPF_LINK_GET_NEXT_ID
755 * Fetch the next eBPF link currently loaded into the kernel.
757 * Looks for the eBPF link with an id greater than *start_id*
758 * and updates *next_id* on success. If no other eBPF links
759 * remain with ids higher than *start_id*, returns -1 and sets
760 * *errno* to **ENOENT**.
763 * Returns zero on success. On error, or when no id remains, -1
764 * is returned and *errno* is set appropriately.
768 * Enable eBPF runtime statistics gathering.
770 * Runtime statistics gathering for the eBPF runtime is disabled
771 * by default to minimize the corresponding performance overhead.
772 * This command enables statistics globally.
774 * Multiple programs may independently enable statistics.
775 * After gathering the desired statistics, eBPF runtime statistics
776 * may be disabled again by calling **close**\ (2) for the file
777 * descriptor returned by this function. Statistics will only be
778 * disabled system-wide when all outstanding file descriptors
779 * returned by prior calls for this subcommand are closed.
782 * A new file descriptor (a nonnegative integer), or -1 if an
783 * error occurred (in which case, *errno* is set appropriately).
787 * Create an iterator on top of the specified *link_fd* (as
788 * previously created using **BPF_LINK_CREATE**) and return a
789 * file descriptor that can be used to trigger the iteration.
791 * If the resulting file descriptor is pinned to the filesystem
792 * using **BPF_OBJ_PIN**, then subsequent **read**\ (2) syscalls
793 * for that path will trigger the iterator to read kernel state
794 * using the eBPF program attached to *link_fd*.
797 * A new file descriptor (a nonnegative integer), or -1 if an
798 * error occurred (in which case, *errno* is set appropriately).
802 * Forcefully detach the specified *link_fd* from its
803 * corresponding attachment point.
806 * Returns zero on success. On error, -1 is returned and *errno*
807 * is set appropriately.
811 * Bind a map to the lifetime of an eBPF program.
813 * The map identified by *map_fd* is bound to the program
814 * identified by *prog_fd* and only released when *prog_fd* is
815 * released. This may be used in cases where metadata should be
816 * associated with a program which otherwise does not contain any
817 * references to the map (for example, embedded in the eBPF
818 * program instructions).
821 * Returns zero on success. On error, -1 is returned and *errno*
822 * is set appropriately.
825 * eBPF objects (maps and programs) can be shared between processes.
827 * * After **fork**\ (2), the child inherits file descriptors
828 * referring to the same eBPF objects.
829 * * File descriptors referring to eBPF objects can be transferred over
830 * **unix**\ (7) domain sockets.
831 * * File descriptors referring to eBPF objects can be duplicated in the
832 * usual way, using **dup**\ (2) and similar calls.
833 * * File descriptors referring to eBPF objects can be pinned to the
834 * filesystem using the **BPF_OBJ_PIN** command of **bpf**\ (2).
836 * An eBPF object is deallocated only after all file descriptors referring
837 * to the object have been closed and no references remain pinned to the
838 * filesystem or attached (for example, bound to a program or device).
845 BPF_MAP_GET_NEXT_KEY,
852 BPF_PROG_RUN = BPF_PROG_TEST_RUN,
853 BPF_PROG_GET_NEXT_ID,
855 BPF_PROG_GET_FD_BY_ID,
856 BPF_MAP_GET_FD_BY_ID,
857 BPF_OBJ_GET_INFO_BY_FD,
859 BPF_RAW_TRACEPOINT_OPEN,
861 BPF_BTF_GET_FD_BY_ID,
863 BPF_MAP_LOOKUP_AND_DELETE_ELEM,
866 BPF_MAP_LOOKUP_BATCH,
867 BPF_MAP_LOOKUP_AND_DELETE_BATCH,
868 BPF_MAP_UPDATE_BATCH,
869 BPF_MAP_DELETE_BATCH,
872 BPF_LINK_GET_FD_BY_ID,
873 BPF_LINK_GET_NEXT_ID,
884 BPF_MAP_TYPE_PROG_ARRAY,
885 BPF_MAP_TYPE_PERF_EVENT_ARRAY,
886 BPF_MAP_TYPE_PERCPU_HASH,
887 BPF_MAP_TYPE_PERCPU_ARRAY,
888 BPF_MAP_TYPE_STACK_TRACE,
889 BPF_MAP_TYPE_CGROUP_ARRAY,
890 BPF_MAP_TYPE_LRU_HASH,
891 BPF_MAP_TYPE_LRU_PERCPU_HASH,
892 BPF_MAP_TYPE_LPM_TRIE,
893 BPF_MAP_TYPE_ARRAY_OF_MAPS,
894 BPF_MAP_TYPE_HASH_OF_MAPS,
896 BPF_MAP_TYPE_SOCKMAP,
899 BPF_MAP_TYPE_SOCKHASH,
900 BPF_MAP_TYPE_CGROUP_STORAGE,
901 BPF_MAP_TYPE_REUSEPORT_SOCKARRAY,
902 BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE,
905 BPF_MAP_TYPE_SK_STORAGE,
906 BPF_MAP_TYPE_DEVMAP_HASH,
907 BPF_MAP_TYPE_STRUCT_OPS,
908 BPF_MAP_TYPE_RINGBUF,
909 BPF_MAP_TYPE_INODE_STORAGE,
910 BPF_MAP_TYPE_TASK_STORAGE,
911 BPF_MAP_TYPE_BLOOM_FILTER,
914 /* Note that tracing related programs such as
915 * BPF_PROG_TYPE_{KPROBE,TRACEPOINT,PERF_EVENT,RAW_TRACEPOINT}
916 * are not subject to a stable API since kernel internal data
917 * structures can change from release to release and may
918 * therefore break existing tracing BPF programs. Tracing BPF
919 * programs correspond to /a/ specific kernel which is to be
920 * analyzed, and not /a/ specific kernel /and/ all future ones.
923 BPF_PROG_TYPE_UNSPEC,
924 BPF_PROG_TYPE_SOCKET_FILTER,
925 BPF_PROG_TYPE_KPROBE,
926 BPF_PROG_TYPE_SCHED_CLS,
927 BPF_PROG_TYPE_SCHED_ACT,
928 BPF_PROG_TYPE_TRACEPOINT,
930 BPF_PROG_TYPE_PERF_EVENT,
931 BPF_PROG_TYPE_CGROUP_SKB,
932 BPF_PROG_TYPE_CGROUP_SOCK,
933 BPF_PROG_TYPE_LWT_IN,
934 BPF_PROG_TYPE_LWT_OUT,
935 BPF_PROG_TYPE_LWT_XMIT,
936 BPF_PROG_TYPE_SOCK_OPS,
937 BPF_PROG_TYPE_SK_SKB,
938 BPF_PROG_TYPE_CGROUP_DEVICE,
939 BPF_PROG_TYPE_SK_MSG,
940 BPF_PROG_TYPE_RAW_TRACEPOINT,
941 BPF_PROG_TYPE_CGROUP_SOCK_ADDR,
942 BPF_PROG_TYPE_LWT_SEG6LOCAL,
943 BPF_PROG_TYPE_LIRC_MODE2,
944 BPF_PROG_TYPE_SK_REUSEPORT,
945 BPF_PROG_TYPE_FLOW_DISSECTOR,
946 BPF_PROG_TYPE_CGROUP_SYSCTL,
947 BPF_PROG_TYPE_RAW_TRACEPOINT_WRITABLE,
948 BPF_PROG_TYPE_CGROUP_SOCKOPT,
949 BPF_PROG_TYPE_TRACING,
950 BPF_PROG_TYPE_STRUCT_OPS,
953 BPF_PROG_TYPE_SK_LOOKUP,
954 BPF_PROG_TYPE_SYSCALL, /* a program that can execute syscalls */
957 enum bpf_attach_type {
958 BPF_CGROUP_INET_INGRESS,
959 BPF_CGROUP_INET_EGRESS,
960 BPF_CGROUP_INET_SOCK_CREATE,
962 BPF_SK_SKB_STREAM_PARSER,
963 BPF_SK_SKB_STREAM_VERDICT,
966 BPF_CGROUP_INET4_BIND,
967 BPF_CGROUP_INET6_BIND,
968 BPF_CGROUP_INET4_CONNECT,
969 BPF_CGROUP_INET6_CONNECT,
970 BPF_CGROUP_INET4_POST_BIND,
971 BPF_CGROUP_INET6_POST_BIND,
972 BPF_CGROUP_UDP4_SENDMSG,
973 BPF_CGROUP_UDP6_SENDMSG,
977 BPF_CGROUP_UDP4_RECVMSG,
978 BPF_CGROUP_UDP6_RECVMSG,
979 BPF_CGROUP_GETSOCKOPT,
980 BPF_CGROUP_SETSOCKOPT,
987 BPF_CGROUP_INET4_GETPEERNAME,
988 BPF_CGROUP_INET6_GETPEERNAME,
989 BPF_CGROUP_INET4_GETSOCKNAME,
990 BPF_CGROUP_INET6_GETSOCKNAME,
992 BPF_CGROUP_INET_SOCK_RELEASE,
997 BPF_SK_REUSEPORT_SELECT,
998 BPF_SK_REUSEPORT_SELECT_OR_MIGRATE,
1000 BPF_TRACE_KPROBE_MULTI,
1001 __MAX_BPF_ATTACH_TYPE
1004 #define MAX_BPF_ATTACH_TYPE __MAX_BPF_ATTACH_TYPE
1006 enum bpf_link_type {
1007 BPF_LINK_TYPE_UNSPEC = 0,
1008 BPF_LINK_TYPE_RAW_TRACEPOINT = 1,
1009 BPF_LINK_TYPE_TRACING = 2,
1010 BPF_LINK_TYPE_CGROUP = 3,
1011 BPF_LINK_TYPE_ITER = 4,
1012 BPF_LINK_TYPE_NETNS = 5,
1013 BPF_LINK_TYPE_XDP = 6,
1014 BPF_LINK_TYPE_PERF_EVENT = 7,
1015 BPF_LINK_TYPE_KPROBE_MULTI = 8,
1016 BPF_LINK_TYPE_STRUCT_OPS = 9,
1021 /* cgroup-bpf attach flags used in BPF_PROG_ATTACH command
1023 * NONE(default): No further bpf programs allowed in the subtree.
1025 * BPF_F_ALLOW_OVERRIDE: If a sub-cgroup installs some bpf program,
1026 * the program in this cgroup yields to sub-cgroup program.
1028 * BPF_F_ALLOW_MULTI: If a sub-cgroup installs some bpf program,
1029 * that cgroup program gets run in addition to the program in this cgroup.
1031 * Only one program is allowed to be attached to a cgroup with
1032 * NONE or BPF_F_ALLOW_OVERRIDE flag.
1033 * Attaching another program on top of NONE or BPF_F_ALLOW_OVERRIDE will
1034 * release old program and attach the new one. Attach flags has to match.
1036 * Multiple programs are allowed to be attached to a cgroup with
1037 * BPF_F_ALLOW_MULTI flag. They are executed in FIFO order
1038 * (those that were attached first, run first)
1039 * The programs of sub-cgroup are executed first, then programs of
1040 * this cgroup and then programs of parent cgroup.
1041 * When children program makes decision (like picking TCP CA or sock bind)
1042 * parent program has a chance to override it.
1044 * With BPF_F_ALLOW_MULTI a new program is added to the end of the list of
1045 * programs for a cgroup. Though it's possible to replace an old program at
1046 * any position by also specifying BPF_F_REPLACE flag and position itself in
1047 * replace_bpf_fd attribute. Old program at this position will be released.
1049 * A cgroup with MULTI or OVERRIDE flag allows any attach flags in sub-cgroups.
1050 * A cgroup with NONE doesn't allow any programs in sub-cgroups.
1052 * cgrp1 (MULTI progs A, B) ->
1053 * cgrp2 (OVERRIDE prog C) ->
1054 * cgrp3 (MULTI prog D) ->
1055 * cgrp4 (OVERRIDE prog E) ->
1056 * cgrp5 (NONE prog F)
1057 * the event in cgrp5 triggers execution of F,D,A,B in that order.
1058 * if prog F is detached, the execution is E,D,A,B
1059 * if prog F and D are detached, the execution is E,A,B
1060 * if prog F, E and D are detached, the execution is C,A,B
1062 * All eligible programs are executed regardless of return code from
1065 #define BPF_F_ALLOW_OVERRIDE (1U << 0)
1066 #define BPF_F_ALLOW_MULTI (1U << 1)
1067 #define BPF_F_REPLACE (1U << 2)
1069 /* If BPF_F_STRICT_ALIGNMENT is used in BPF_PROG_LOAD command, the
1070 * verifier will perform strict alignment checking as if the kernel
1071 * has been built with CONFIG_EFFICIENT_UNALIGNED_ACCESS not set,
1072 * and NET_IP_ALIGN defined to 2.
1074 #define BPF_F_STRICT_ALIGNMENT (1U << 0)
1076 /* If BPF_F_ANY_ALIGNMENT is used in BPF_PROF_LOAD command, the
1077 * verifier will allow any alignment whatsoever. On platforms
1078 * with strict alignment requirements for loads ands stores (such
1079 * as sparc and mips) the verifier validates that all loads and
1080 * stores provably follow this requirement. This flag turns that
1081 * checking and enforcement off.
1083 * It is mostly used for testing when we want to validate the
1084 * context and memory access aspects of the verifier, but because
1085 * of an unaligned access the alignment check would trigger before
1086 * the one we are interested in.
1088 #define BPF_F_ANY_ALIGNMENT (1U << 1)
1090 /* BPF_F_TEST_RND_HI32 is used in BPF_PROG_LOAD command for testing purpose.
1091 * Verifier does sub-register def/use analysis and identifies instructions whose
1092 * def only matters for low 32-bit, high 32-bit is never referenced later
1093 * through implicit zero extension. Therefore verifier notifies JIT back-ends
1094 * that it is safe to ignore clearing high 32-bit for these instructions. This
1095 * saves some back-ends a lot of code-gen. However such optimization is not
1096 * necessary on some arches, for example x86_64, arm64 etc, whose JIT back-ends
1097 * hence hasn't used verifier's analysis result. But, we really want to have a
1098 * way to be able to verify the correctness of the described optimization on
1099 * x86_64 on which testsuites are frequently exercised.
1101 * So, this flag is introduced. Once it is set, verifier will randomize high
1102 * 32-bit for those instructions who has been identified as safe to ignore them.
1103 * Then, if verifier is not doing correct analysis, such randomization will
1104 * regress tests to expose bugs.
1106 #define BPF_F_TEST_RND_HI32 (1U << 2)
1108 /* The verifier internal test flag. Behavior is undefined */
1109 #define BPF_F_TEST_STATE_FREQ (1U << 3)
1111 /* If BPF_F_SLEEPABLE is used in BPF_PROG_LOAD command, the verifier will
1112 * restrict map and helper usage for such programs. Sleepable BPF programs can
1113 * only be attached to hooks where kernel execution context allows sleeping.
1114 * Such programs are allowed to use helpers that may sleep like
1115 * bpf_copy_from_user().
1117 #define BPF_F_SLEEPABLE (1U << 4)
1119 /* If BPF_F_XDP_HAS_FRAGS is used in BPF_PROG_LOAD command, the loaded program
1120 * fully support xdp frags.
1122 #define BPF_F_XDP_HAS_FRAGS (1U << 5)
1124 /* link_create.kprobe_multi.flags used in LINK_CREATE command for
1125 * BPF_TRACE_KPROBE_MULTI attach type to create return probe.
1127 #define BPF_F_KPROBE_MULTI_RETURN (1U << 0)
1129 /* When BPF ldimm64's insn[0].src_reg != 0 then this can have
1130 * the following extensions:
1132 * insn[0].src_reg: BPF_PSEUDO_MAP_[FD|IDX]
1133 * insn[0].imm: map fd or fd_idx
1137 * ldimm64 rewrite: address of map
1138 * verifier type: CONST_PTR_TO_MAP
1140 #define BPF_PSEUDO_MAP_FD 1
1141 #define BPF_PSEUDO_MAP_IDX 5
1143 /* insn[0].src_reg: BPF_PSEUDO_MAP_[IDX_]VALUE
1144 * insn[0].imm: map fd or fd_idx
1145 * insn[1].imm: offset into value
1148 * ldimm64 rewrite: address of map[0]+offset
1149 * verifier type: PTR_TO_MAP_VALUE
1151 #define BPF_PSEUDO_MAP_VALUE 2
1152 #define BPF_PSEUDO_MAP_IDX_VALUE 6
1154 /* insn[0].src_reg: BPF_PSEUDO_BTF_ID
1155 * insn[0].imm: kernel btd id of VAR
1159 * ldimm64 rewrite: address of the kernel variable
1160 * verifier type: PTR_TO_BTF_ID or PTR_TO_MEM, depending on whether the var
1163 #define BPF_PSEUDO_BTF_ID 3
1164 /* insn[0].src_reg: BPF_PSEUDO_FUNC
1165 * insn[0].imm: insn offset to the func
1169 * ldimm64 rewrite: address of the function
1170 * verifier type: PTR_TO_FUNC.
1172 #define BPF_PSEUDO_FUNC 4
1174 /* when bpf_call->src_reg == BPF_PSEUDO_CALL, bpf_call->imm == pc-relative
1175 * offset to another bpf function
1177 #define BPF_PSEUDO_CALL 1
1178 /* when bpf_call->src_reg == BPF_PSEUDO_KFUNC_CALL,
1179 * bpf_call->imm == btf_id of a BTF_KIND_FUNC in the running kernel
1181 #define BPF_PSEUDO_KFUNC_CALL 2
1183 /* flags for BPF_MAP_UPDATE_ELEM command */
1185 BPF_ANY = 0, /* create new element or update existing */
1186 BPF_NOEXIST = 1, /* create new element if it didn't exist */
1187 BPF_EXIST = 2, /* update existing element */
1188 BPF_F_LOCK = 4, /* spin_lock-ed map_lookup/map_update */
1191 /* flags for BPF_MAP_CREATE command */
1193 BPF_F_NO_PREALLOC = (1U << 0),
1194 /* Instead of having one common LRU list in the
1195 * BPF_MAP_TYPE_LRU_[PERCPU_]HASH map, use a percpu LRU list
1196 * which can scale and perform better.
1197 * Note, the LRU nodes (including free nodes) cannot be moved
1198 * across different LRU lists.
1200 BPF_F_NO_COMMON_LRU = (1U << 1),
1201 /* Specify numa node during map creation */
1202 BPF_F_NUMA_NODE = (1U << 2),
1204 /* Flags for accessing BPF object from syscall side. */
1205 BPF_F_RDONLY = (1U << 3),
1206 BPF_F_WRONLY = (1U << 4),
1208 /* Flag for stack_map, store build_id+offset instead of pointer */
1209 BPF_F_STACK_BUILD_ID = (1U << 5),
1211 /* Zero-initialize hash function seed. This should only be used for testing. */
1212 BPF_F_ZERO_SEED = (1U << 6),
1214 /* Flags for accessing BPF object from program side. */
1215 BPF_F_RDONLY_PROG = (1U << 7),
1216 BPF_F_WRONLY_PROG = (1U << 8),
1218 /* Clone map from listener for newly accepted socket */
1219 BPF_F_CLONE = (1U << 9),
1221 /* Enable memory-mapping BPF map */
1222 BPF_F_MMAPABLE = (1U << 10),
1224 /* Share perf_event among processes */
1225 BPF_F_PRESERVE_ELEMS = (1U << 11),
1227 /* Create a map that is suitable to be an inner map with dynamic max entries */
1228 BPF_F_INNER_MAP = (1U << 12),
1231 /* Flags for BPF_PROG_QUERY. */
1233 /* Query effective (directly attached + inherited from ancestor cgroups)
1234 * programs that will be executed for events within a cgroup.
1235 * attach_flags with this flag are returned only for directly attached programs.
1237 #define BPF_F_QUERY_EFFECTIVE (1U << 0)
1239 /* Flags for BPF_PROG_TEST_RUN */
1241 /* If set, run the test on the cpu specified by bpf_attr.test.cpu */
1242 #define BPF_F_TEST_RUN_ON_CPU (1U << 0)
1243 /* If set, XDP frames will be transmitted after processing */
1244 #define BPF_F_TEST_XDP_LIVE_FRAMES (1U << 1)
1246 /* type for BPF_ENABLE_STATS */
1247 enum bpf_stats_type {
1248 /* enabled run_time_ns and run_cnt */
1249 BPF_STATS_RUN_TIME = 0,
1252 enum bpf_stack_build_id_status {
1253 /* user space need an empty entry to identify end of a trace */
1254 BPF_STACK_BUILD_ID_EMPTY = 0,
1255 /* with valid build_id and offset */
1256 BPF_STACK_BUILD_ID_VALID = 1,
1257 /* couldn't get build_id, fallback to ip */
1258 BPF_STACK_BUILD_ID_IP = 2,
1261 #define BPF_BUILD_ID_SIZE 20
1262 struct bpf_stack_build_id {
1264 unsigned char build_id[BPF_BUILD_ID_SIZE];
1271 #define BPF_OBJ_NAME_LEN 16U
1274 struct { /* anonymous struct used by BPF_MAP_CREATE command */
1275 __u32 map_type; /* one of enum bpf_map_type */
1276 __u32 key_size; /* size of key in bytes */
1277 __u32 value_size; /* size of value in bytes */
1278 __u32 max_entries; /* max number of entries in a map */
1279 __u32 map_flags; /* BPF_MAP_CREATE related
1280 * flags defined above.
1282 __u32 inner_map_fd; /* fd pointing to the inner map */
1283 __u32 numa_node; /* numa node (effective only if
1284 * BPF_F_NUMA_NODE is set).
1286 char map_name[BPF_OBJ_NAME_LEN];
1287 __u32 map_ifindex; /* ifindex of netdev to create on */
1288 __u32 btf_fd; /* fd pointing to a BTF type data */
1289 __u32 btf_key_type_id; /* BTF type_id of the key */
1290 __u32 btf_value_type_id; /* BTF type_id of the value */
1291 __u32 btf_vmlinux_value_type_id;/* BTF type_id of a kernel-
1292 * struct stored as the
1295 /* Any per-map-type extra fields
1297 * BPF_MAP_TYPE_BLOOM_FILTER - the lowest 4 bits indicate the
1298 * number of hash functions (if 0, the bloom filter will default
1299 * to using 5 hash functions).
1304 struct { /* anonymous struct used by BPF_MAP_*_ELEM commands */
1308 __aligned_u64 value;
1309 __aligned_u64 next_key;
1314 struct { /* struct used by BPF_MAP_*_BATCH commands */
1315 __aligned_u64 in_batch; /* start batch,
1316 * NULL to start from beginning
1318 __aligned_u64 out_batch; /* output: next start batch */
1320 __aligned_u64 values;
1321 __u32 count; /* input/output:
1322 * input: # of key/value
1324 * output: # of filled elements
1331 struct { /* anonymous struct used by BPF_PROG_LOAD command */
1332 __u32 prog_type; /* one of enum bpf_prog_type */
1334 __aligned_u64 insns;
1335 __aligned_u64 license;
1336 __u32 log_level; /* verbosity level of verifier */
1337 __u32 log_size; /* size of user buffer */
1338 __aligned_u64 log_buf; /* user supplied buffer */
1339 __u32 kern_version; /* not used */
1341 char prog_name[BPF_OBJ_NAME_LEN];
1342 __u32 prog_ifindex; /* ifindex of netdev to prep for */
1343 /* For some prog types expected attach type must be known at
1344 * load time to verify attach type specific parts of prog
1345 * (context accesses, allowed helpers, etc).
1347 __u32 expected_attach_type;
1348 __u32 prog_btf_fd; /* fd pointing to BTF type data */
1349 __u32 func_info_rec_size; /* userspace bpf_func_info size */
1350 __aligned_u64 func_info; /* func info */
1351 __u32 func_info_cnt; /* number of bpf_func_info records */
1352 __u32 line_info_rec_size; /* userspace bpf_line_info size */
1353 __aligned_u64 line_info; /* line info */
1354 __u32 line_info_cnt; /* number of bpf_line_info records */
1355 __u32 attach_btf_id; /* in-kernel BTF type id to attach to */
1357 /* valid prog_fd to attach to bpf prog */
1358 __u32 attach_prog_fd;
1359 /* or valid module BTF object fd or 0 to attach to vmlinux */
1360 __u32 attach_btf_obj_fd;
1362 __u32 core_relo_cnt; /* number of bpf_core_relo */
1363 __aligned_u64 fd_array; /* array of FDs */
1364 __aligned_u64 core_relos;
1365 __u32 core_relo_rec_size; /* sizeof(struct bpf_core_relo) */
1368 struct { /* anonymous struct used by BPF_OBJ_* commands */
1369 __aligned_u64 pathname;
1374 struct { /* anonymous struct used by BPF_PROG_ATTACH/DETACH commands */
1375 __u32 target_fd; /* container object to attach to */
1376 __u32 attach_bpf_fd; /* eBPF program to attach */
1379 __u32 replace_bpf_fd; /* previously attached eBPF
1380 * program to replace if
1381 * BPF_F_REPLACE is used
1385 struct { /* anonymous struct used by BPF_PROG_TEST_RUN command */
1388 __u32 data_size_in; /* input: len of data_in */
1389 __u32 data_size_out; /* input/output: len of data_out
1390 * returns ENOSPC if data_out
1393 __aligned_u64 data_in;
1394 __aligned_u64 data_out;
1397 __u32 ctx_size_in; /* input: len of ctx_in */
1398 __u32 ctx_size_out; /* input/output: len of ctx_out
1399 * returns ENOSPC if ctx_out
1402 __aligned_u64 ctx_in;
1403 __aligned_u64 ctx_out;
1409 struct { /* anonymous struct used by BPF_*_GET_*_ID */
1421 struct { /* anonymous struct used by BPF_OBJ_GET_INFO_BY_FD */
1427 struct { /* anonymous struct used by BPF_PROG_QUERY command */
1428 __u32 target_fd; /* container object to query */
1432 __aligned_u64 prog_ids;
1436 struct { /* anonymous struct used by BPF_RAW_TRACEPOINT_OPEN command */
1441 struct { /* anonymous struct for BPF_BTF_LOAD */
1443 __aligned_u64 btf_log_buf;
1446 __u32 btf_log_level;
1450 __u32 pid; /* input: pid */
1451 __u32 fd; /* input: fd */
1452 __u32 flags; /* input: flags */
1453 __u32 buf_len; /* input/output: buf len */
1454 __aligned_u64 buf; /* input/output:
1455 * tp_name for tracepoint
1457 * filename for uprobe
1459 __u32 prog_id; /* output: prod_id */
1460 __u32 fd_type; /* output: BPF_FD_TYPE_* */
1461 __u64 probe_offset; /* output: probe_offset */
1462 __u64 probe_addr; /* output: probe_addr */
1465 struct { /* struct used by BPF_LINK_CREATE command */
1466 __u32 prog_fd; /* eBPF program to attach */
1468 __u32 target_fd; /* object to attach to */
1469 __u32 target_ifindex; /* target ifindex */
1471 __u32 attach_type; /* attach type */
1472 __u32 flags; /* extra flags */
1474 __u32 target_btf_id; /* btf_id of target to attach to */
1476 __aligned_u64 iter_info; /* extra bpf_iter_link_info */
1477 __u32 iter_info_len; /* iter_info length */
1480 /* black box user-provided value passed through
1481 * to BPF program at the execution time and
1482 * accessible through bpf_get_attach_cookie() BPF helper
1490 __aligned_u64 addrs;
1491 __aligned_u64 cookies;
1494 /* this is overlaid with the target_btf_id above. */
1495 __u32 target_btf_id;
1496 /* black box user-provided value passed through
1497 * to BPF program at the execution time and
1498 * accessible through bpf_get_attach_cookie() BPF helper
1505 struct { /* struct used by BPF_LINK_UPDATE command */
1506 __u32 link_fd; /* link fd */
1507 /* new program fd to update link with */
1509 __u32 flags; /* extra flags */
1510 /* expected link's program fd; is specified only if
1511 * BPF_F_REPLACE flag is set in flags */
1519 struct { /* struct used by BPF_ENABLE_STATS command */
1523 struct { /* struct used by BPF_ITER_CREATE command */
1528 struct { /* struct used by BPF_PROG_BIND_MAP command */
1531 __u32 flags; /* extra flags */
1534 } __attribute__((aligned(8)));
1536 /* The description below is an attempt at providing documentation to eBPF
1537 * developers about the multiple available eBPF helper functions. It can be
1538 * parsed and used to produce a manual page. The workflow is the following,
1539 * and requires the rst2man utility:
1541 * $ ./scripts/bpf_doc.py \
1542 * --filename include/uapi/linux/bpf.h > /tmp/bpf-helpers.rst
1543 * $ rst2man /tmp/bpf-helpers.rst > /tmp/bpf-helpers.7
1544 * $ man /tmp/bpf-helpers.7
1546 * Note that in order to produce this external documentation, some RST
1547 * formatting is used in the descriptions to get "bold" and "italics" in
1548 * manual pages. Also note that the few trailing white spaces are
1549 * intentional, removing them would break paragraphs for rst2man.
1551 * Start of BPF helper function descriptions:
1553 * void *bpf_map_lookup_elem(struct bpf_map *map, const void *key)
1555 * Perform a lookup in *map* for an entry associated to *key*.
1557 * Map value associated to *key*, or **NULL** if no entry was
1560 * long bpf_map_update_elem(struct bpf_map *map, const void *key, const void *value, u64 flags)
1562 * Add or update the value of the entry associated to *key* in
1563 * *map* with *value*. *flags* is one of:
1566 * The entry for *key* must not exist in the map.
1568 * The entry for *key* must already exist in the map.
1570 * No condition on the existence of the entry for *key*.
1572 * Flag value **BPF_NOEXIST** cannot be used for maps of types
1573 * **BPF_MAP_TYPE_ARRAY** or **BPF_MAP_TYPE_PERCPU_ARRAY** (all
1574 * elements always exist), the helper would return an error.
1576 * 0 on success, or a negative error in case of failure.
1578 * long bpf_map_delete_elem(struct bpf_map *map, const void *key)
1580 * Delete entry with *key* from *map*.
1582 * 0 on success, or a negative error in case of failure.
1584 * long bpf_probe_read(void *dst, u32 size, const void *unsafe_ptr)
1586 * For tracing programs, safely attempt to read *size* bytes from
1587 * kernel space address *unsafe_ptr* and store the data in *dst*.
1589 * Generally, use **bpf_probe_read_user**\ () or
1590 * **bpf_probe_read_kernel**\ () instead.
1592 * 0 on success, or a negative error in case of failure.
1594 * u64 bpf_ktime_get_ns(void)
1596 * Return the time elapsed since system boot, in nanoseconds.
1597 * Does not include time the system was suspended.
1598 * See: **clock_gettime**\ (**CLOCK_MONOTONIC**)
1602 * long bpf_trace_printk(const char *fmt, u32 fmt_size, ...)
1604 * This helper is a "printk()-like" facility for debugging. It
1605 * prints a message defined by format *fmt* (of size *fmt_size*)
1606 * to file *\/sys/kernel/debug/tracing/trace* from DebugFS, if
1607 * available. It can take up to three additional **u64**
1608 * arguments (as an eBPF helpers, the total number of arguments is
1611 * Each time the helper is called, it appends a line to the trace.
1612 * Lines are discarded while *\/sys/kernel/debug/tracing/trace* is
1613 * open, use *\/sys/kernel/debug/tracing/trace_pipe* to avoid this.
1614 * The format of the trace is customizable, and the exact output
1615 * one will get depends on the options set in
1616 * *\/sys/kernel/debug/tracing/trace_options* (see also the
1617 * *README* file under the same directory). However, it usually
1618 * defaults to something like:
1622 * telnet-470 [001] .N.. 419421.045894: 0x00000001: <formatted msg>
1626 * * ``telnet`` is the name of the current task.
1627 * * ``470`` is the PID of the current task.
1628 * * ``001`` is the CPU number on which the task is
1630 * * In ``.N..``, each character refers to a set of
1631 * options (whether irqs are enabled, scheduling
1632 * options, whether hard/softirqs are running, level of
1633 * preempt_disabled respectively). **N** means that
1634 * **TIF_NEED_RESCHED** and **PREEMPT_NEED_RESCHED**
1636 * * ``419421.045894`` is a timestamp.
1637 * * ``0x00000001`` is a fake value used by BPF for the
1638 * instruction pointer register.
1639 * * ``<formatted msg>`` is the message formatted with
1642 * The conversion specifiers supported by *fmt* are similar, but
1643 * more limited than for printk(). They are **%d**, **%i**,
1644 * **%u**, **%x**, **%ld**, **%li**, **%lu**, **%lx**, **%lld**,
1645 * **%lli**, **%llu**, **%llx**, **%p**, **%s**. No modifier (size
1646 * of field, padding with zeroes, etc.) is available, and the
1647 * helper will return **-EINVAL** (but print nothing) if it
1648 * encounters an unknown specifier.
1650 * Also, note that **bpf_trace_printk**\ () is slow, and should
1651 * only be used for debugging purposes. For this reason, a notice
1652 * block (spanning several lines) is printed to kernel logs and
1653 * states that the helper should not be used "for production use"
1654 * the first time this helper is used (or more precisely, when
1655 * **trace_printk**\ () buffers are allocated). For passing values
1656 * to user space, perf events should be preferred.
1658 * The number of bytes written to the buffer, or a negative error
1659 * in case of failure.
1661 * u32 bpf_get_prandom_u32(void)
1663 * Get a pseudo-random number.
1665 * From a security point of view, this helper uses its own
1666 * pseudo-random internal state, and cannot be used to infer the
1667 * seed of other random functions in the kernel. However, it is
1668 * essential to note that the generator used by the helper is not
1669 * cryptographically secure.
1671 * A random 32-bit unsigned value.
1673 * u32 bpf_get_smp_processor_id(void)
1675 * Get the SMP (symmetric multiprocessing) processor id. Note that
1676 * all programs run with migration disabled, which means that the
1677 * SMP processor id is stable during all the execution of the
1680 * The SMP id of the processor running the program.
1682 * long bpf_skb_store_bytes(struct sk_buff *skb, u32 offset, const void *from, u32 len, u64 flags)
1684 * Store *len* bytes from address *from* into the packet
1685 * associated to *skb*, at *offset*. *flags* are a combination of
1686 * **BPF_F_RECOMPUTE_CSUM** (automatically recompute the
1687 * checksum for the packet after storing the bytes) and
1688 * **BPF_F_INVALIDATE_HASH** (set *skb*\ **->hash**, *skb*\
1689 * **->swhash** and *skb*\ **->l4hash** to 0).
1691 * A call to this helper is susceptible to change the underlying
1692 * packet buffer. Therefore, at load time, all checks on pointers
1693 * previously done by the verifier are invalidated and must be
1694 * performed again, if the helper is used in combination with
1695 * direct packet access.
1697 * 0 on success, or a negative error in case of failure.
1699 * long bpf_l3_csum_replace(struct sk_buff *skb, u32 offset, u64 from, u64 to, u64 size)
1701 * Recompute the layer 3 (e.g. IP) checksum for the packet
1702 * associated to *skb*. Computation is incremental, so the helper
1703 * must know the former value of the header field that was
1704 * modified (*from*), the new value of this field (*to*), and the
1705 * number of bytes (2 or 4) for this field, stored in *size*.
1706 * Alternatively, it is possible to store the difference between
1707 * the previous and the new values of the header field in *to*, by
1708 * setting *from* and *size* to 0. For both methods, *offset*
1709 * indicates the location of the IP checksum within the packet.
1711 * This helper works in combination with **bpf_csum_diff**\ (),
1712 * which does not update the checksum in-place, but offers more
1713 * flexibility and can handle sizes larger than 2 or 4 for the
1714 * checksum to update.
1716 * A call to this helper is susceptible to change the underlying
1717 * packet buffer. Therefore, at load time, all checks on pointers
1718 * previously done by the verifier are invalidated and must be
1719 * performed again, if the helper is used in combination with
1720 * direct packet access.
1722 * 0 on success, or a negative error in case of failure.
1724 * long bpf_l4_csum_replace(struct sk_buff *skb, u32 offset, u64 from, u64 to, u64 flags)
1726 * Recompute the layer 4 (e.g. TCP, UDP or ICMP) checksum for the
1727 * packet associated to *skb*. Computation is incremental, so the
1728 * helper must know the former value of the header field that was
1729 * modified (*from*), the new value of this field (*to*), and the
1730 * number of bytes (2 or 4) for this field, stored on the lowest
1731 * four bits of *flags*. Alternatively, it is possible to store
1732 * the difference between the previous and the new values of the
1733 * header field in *to*, by setting *from* and the four lowest
1734 * bits of *flags* to 0. For both methods, *offset* indicates the
1735 * location of the IP checksum within the packet. In addition to
1736 * the size of the field, *flags* can be added (bitwise OR) actual
1737 * flags. With **BPF_F_MARK_MANGLED_0**, a null checksum is left
1738 * untouched (unless **BPF_F_MARK_ENFORCE** is added as well), and
1739 * for updates resulting in a null checksum the value is set to
1740 * **CSUM_MANGLED_0** instead. Flag **BPF_F_PSEUDO_HDR** indicates
1741 * the checksum is to be computed against a pseudo-header.
1743 * This helper works in combination with **bpf_csum_diff**\ (),
1744 * which does not update the checksum in-place, but offers more
1745 * flexibility and can handle sizes larger than 2 or 4 for the
1746 * checksum to update.
1748 * A call to this helper is susceptible to change the underlying
1749 * packet buffer. Therefore, at load time, all checks on pointers
1750 * previously done by the verifier are invalidated and must be
1751 * performed again, if the helper is used in combination with
1752 * direct packet access.
1754 * 0 on success, or a negative error in case of failure.
1756 * long bpf_tail_call(void *ctx, struct bpf_map *prog_array_map, u32 index)
1758 * This special helper is used to trigger a "tail call", or in
1759 * other words, to jump into another eBPF program. The same stack
1760 * frame is used (but values on stack and in registers for the
1761 * caller are not accessible to the callee). This mechanism allows
1762 * for program chaining, either for raising the maximum number of
1763 * available eBPF instructions, or to execute given programs in
1764 * conditional blocks. For security reasons, there is an upper
1765 * limit to the number of successive tail calls that can be
1768 * Upon call of this helper, the program attempts to jump into a
1769 * program referenced at index *index* in *prog_array_map*, a
1770 * special map of type **BPF_MAP_TYPE_PROG_ARRAY**, and passes
1771 * *ctx*, a pointer to the context.
1773 * If the call succeeds, the kernel immediately runs the first
1774 * instruction of the new program. This is not a function call,
1775 * and it never returns to the previous program. If the call
1776 * fails, then the helper has no effect, and the caller continues
1777 * to run its subsequent instructions. A call can fail if the
1778 * destination program for the jump does not exist (i.e. *index*
1779 * is superior to the number of entries in *prog_array_map*), or
1780 * if the maximum number of tail calls has been reached for this
1781 * chain of programs. This limit is defined in the kernel by the
1782 * macro **MAX_TAIL_CALL_CNT** (not accessible to user space),
1783 * which is currently set to 33.
1785 * 0 on success, or a negative error in case of failure.
1787 * long bpf_clone_redirect(struct sk_buff *skb, u32 ifindex, u64 flags)
1789 * Clone and redirect the packet associated to *skb* to another
1790 * net device of index *ifindex*. Both ingress and egress
1791 * interfaces can be used for redirection. The **BPF_F_INGRESS**
1792 * value in *flags* is used to make the distinction (ingress path
1793 * is selected if the flag is present, egress path otherwise).
1794 * This is the only flag supported for now.
1796 * In comparison with **bpf_redirect**\ () helper,
1797 * **bpf_clone_redirect**\ () has the associated cost of
1798 * duplicating the packet buffer, but this can be executed out of
1799 * the eBPF program. Conversely, **bpf_redirect**\ () is more
1800 * efficient, but it is handled through an action code where the
1801 * redirection happens only after the eBPF program has returned.
1803 * A call to this helper is susceptible to change the underlying
1804 * packet buffer. Therefore, at load time, all checks on pointers
1805 * previously done by the verifier are invalidated and must be
1806 * performed again, if the helper is used in combination with
1807 * direct packet access.
1809 * 0 on success, or a negative error in case of failure.
1811 * u64 bpf_get_current_pid_tgid(void)
1813 * Get the current pid and tgid.
1815 * A 64-bit integer containing the current tgid and pid, and
1817 * *current_task*\ **->tgid << 32 \|**
1818 * *current_task*\ **->pid**.
1820 * u64 bpf_get_current_uid_gid(void)
1822 * Get the current uid and gid.
1824 * A 64-bit integer containing the current GID and UID, and
1825 * created as such: *current_gid* **<< 32 \|** *current_uid*.
1827 * long bpf_get_current_comm(void *buf, u32 size_of_buf)
1829 * Copy the **comm** attribute of the current task into *buf* of
1830 * *size_of_buf*. The **comm** attribute contains the name of
1831 * the executable (excluding the path) for the current task. The
1832 * *size_of_buf* must be strictly positive. On success, the
1833 * helper makes sure that the *buf* is NUL-terminated. On failure,
1834 * it is filled with zeroes.
1836 * 0 on success, or a negative error in case of failure.
1838 * u32 bpf_get_cgroup_classid(struct sk_buff *skb)
1840 * Retrieve the classid for the current task, i.e. for the net_cls
1841 * cgroup to which *skb* belongs.
1843 * This helper can be used on TC egress path, but not on ingress.
1845 * The net_cls cgroup provides an interface to tag network packets
1846 * based on a user-provided identifier for all traffic coming from
1847 * the tasks belonging to the related cgroup. See also the related
1848 * kernel documentation, available from the Linux sources in file
1849 * *Documentation/admin-guide/cgroup-v1/net_cls.rst*.
1851 * The Linux kernel has two versions for cgroups: there are
1852 * cgroups v1 and cgroups v2. Both are available to users, who can
1853 * use a mixture of them, but note that the net_cls cgroup is for
1854 * cgroup v1 only. This makes it incompatible with BPF programs
1855 * run on cgroups, which is a cgroup-v2-only feature (a socket can
1856 * only hold data for one version of cgroups at a time).
1858 * This helper is only available is the kernel was compiled with
1859 * the **CONFIG_CGROUP_NET_CLASSID** configuration option set to
1860 * "**y**" or to "**m**".
1862 * The classid, or 0 for the default unconfigured classid.
1864 * long bpf_skb_vlan_push(struct sk_buff *skb, __be16 vlan_proto, u16 vlan_tci)
1866 * Push a *vlan_tci* (VLAN tag control information) of protocol
1867 * *vlan_proto* to the packet associated to *skb*, then update
1868 * the checksum. Note that if *vlan_proto* is different from
1869 * **ETH_P_8021Q** and **ETH_P_8021AD**, it is considered to
1870 * be **ETH_P_8021Q**.
1872 * A call to this helper is susceptible to change the underlying
1873 * packet buffer. Therefore, at load time, all checks on pointers
1874 * previously done by the verifier are invalidated and must be
1875 * performed again, if the helper is used in combination with
1876 * direct packet access.
1878 * 0 on success, or a negative error in case of failure.
1880 * long bpf_skb_vlan_pop(struct sk_buff *skb)
1882 * Pop a VLAN header from the packet associated to *skb*.
1884 * A call to this helper is susceptible to change the underlying
1885 * packet buffer. Therefore, at load time, all checks on pointers
1886 * previously done by the verifier are invalidated and must be
1887 * performed again, if the helper is used in combination with
1888 * direct packet access.
1890 * 0 on success, or a negative error in case of failure.
1892 * long bpf_skb_get_tunnel_key(struct sk_buff *skb, struct bpf_tunnel_key *key, u32 size, u64 flags)
1894 * Get tunnel metadata. This helper takes a pointer *key* to an
1895 * empty **struct bpf_tunnel_key** of **size**, that will be
1896 * filled with tunnel metadata for the packet associated to *skb*.
1897 * The *flags* can be set to **BPF_F_TUNINFO_IPV6**, which
1898 * indicates that the tunnel is based on IPv6 protocol instead of
1901 * The **struct bpf_tunnel_key** is an object that generalizes the
1902 * principal parameters used by various tunneling protocols into a
1903 * single struct. This way, it can be used to easily make a
1904 * decision based on the contents of the encapsulation header,
1905 * "summarized" in this struct. In particular, it holds the IP
1906 * address of the remote end (IPv4 or IPv6, depending on the case)
1907 * in *key*\ **->remote_ipv4** or *key*\ **->remote_ipv6**. Also,
1908 * this struct exposes the *key*\ **->tunnel_id**, which is
1909 * generally mapped to a VNI (Virtual Network Identifier), making
1910 * it programmable together with the **bpf_skb_set_tunnel_key**\
1913 * Let's imagine that the following code is part of a program
1914 * attached to the TC ingress interface, on one end of a GRE
1915 * tunnel, and is supposed to filter out all messages coming from
1916 * remote ends with IPv4 address other than 10.0.0.1:
1921 * struct bpf_tunnel_key key = {};
1923 * ret = bpf_skb_get_tunnel_key(skb, &key, sizeof(key), 0);
1925 * return TC_ACT_SHOT; // drop packet
1927 * if (key.remote_ipv4 != 0x0a000001)
1928 * return TC_ACT_SHOT; // drop packet
1930 * return TC_ACT_OK; // accept packet
1932 * This interface can also be used with all encapsulation devices
1933 * that can operate in "collect metadata" mode: instead of having
1934 * one network device per specific configuration, the "collect
1935 * metadata" mode only requires a single device where the
1936 * configuration can be extracted from this helper.
1938 * This can be used together with various tunnels such as VXLan,
1939 * Geneve, GRE or IP in IP (IPIP).
1941 * 0 on success, or a negative error in case of failure.
1943 * long bpf_skb_set_tunnel_key(struct sk_buff *skb, struct bpf_tunnel_key *key, u32 size, u64 flags)
1945 * Populate tunnel metadata for packet associated to *skb.* The
1946 * tunnel metadata is set to the contents of *key*, of *size*. The
1947 * *flags* can be set to a combination of the following values:
1949 * **BPF_F_TUNINFO_IPV6**
1950 * Indicate that the tunnel is based on IPv6 protocol
1952 * **BPF_F_ZERO_CSUM_TX**
1953 * For IPv4 packets, add a flag to tunnel metadata
1954 * indicating that checksum computation should be skipped
1955 * and checksum set to zeroes.
1956 * **BPF_F_DONT_FRAGMENT**
1957 * Add a flag to tunnel metadata indicating that the
1958 * packet should not be fragmented.
1959 * **BPF_F_SEQ_NUMBER**
1960 * Add a flag to tunnel metadata indicating that a
1961 * sequence number should be added to tunnel header before
1962 * sending the packet. This flag was added for GRE
1963 * encapsulation, but might be used with other protocols
1964 * as well in the future.
1966 * Here is a typical usage on the transmit path:
1970 * struct bpf_tunnel_key key;
1972 * bpf_skb_set_tunnel_key(skb, &key, sizeof(key), 0);
1973 * bpf_clone_redirect(skb, vxlan_dev_ifindex, 0);
1975 * See also the description of the **bpf_skb_get_tunnel_key**\ ()
1976 * helper for additional information.
1978 * 0 on success, or a negative error in case of failure.
1980 * u64 bpf_perf_event_read(struct bpf_map *map, u64 flags)
1982 * Read the value of a perf event counter. This helper relies on a
1983 * *map* of type **BPF_MAP_TYPE_PERF_EVENT_ARRAY**. The nature of
1984 * the perf event counter is selected when *map* is updated with
1985 * perf event file descriptors. The *map* is an array whose size
1986 * is the number of available CPUs, and each cell contains a value
1987 * relative to one CPU. The value to retrieve is indicated by
1988 * *flags*, that contains the index of the CPU to look up, masked
1989 * with **BPF_F_INDEX_MASK**. Alternatively, *flags* can be set to
1990 * **BPF_F_CURRENT_CPU** to indicate that the value for the
1991 * current CPU should be retrieved.
1993 * Note that before Linux 4.13, only hardware perf event can be
1996 * Also, be aware that the newer helper
1997 * **bpf_perf_event_read_value**\ () is recommended over
1998 * **bpf_perf_event_read**\ () in general. The latter has some ABI
1999 * quirks where error and counter value are used as a return code
2000 * (which is wrong to do since ranges may overlap). This issue is
2001 * fixed with **bpf_perf_event_read_value**\ (), which at the same
2002 * time provides more features over the **bpf_perf_event_read**\
2003 * () interface. Please refer to the description of
2004 * **bpf_perf_event_read_value**\ () for details.
2006 * The value of the perf event counter read from the map, or a
2007 * negative error code in case of failure.
2009 * long bpf_redirect(u32 ifindex, u64 flags)
2011 * Redirect the packet to another net device of index *ifindex*.
2012 * This helper is somewhat similar to **bpf_clone_redirect**\
2013 * (), except that the packet is not cloned, which provides
2014 * increased performance.
2016 * Except for XDP, both ingress and egress interfaces can be used
2017 * for redirection. The **BPF_F_INGRESS** value in *flags* is used
2018 * to make the distinction (ingress path is selected if the flag
2019 * is present, egress path otherwise). Currently, XDP only
2020 * supports redirection to the egress interface, and accepts no
2023 * The same effect can also be attained with the more generic
2024 * **bpf_redirect_map**\ (), which uses a BPF map to store the
2025 * redirect target instead of providing it directly to the helper.
2027 * For XDP, the helper returns **XDP_REDIRECT** on success or
2028 * **XDP_ABORTED** on error. For other program types, the values
2029 * are **TC_ACT_REDIRECT** on success or **TC_ACT_SHOT** on
2032 * u32 bpf_get_route_realm(struct sk_buff *skb)
2034 * Retrieve the realm or the route, that is to say the
2035 * **tclassid** field of the destination for the *skb*. The
2036 * identifier retrieved is a user-provided tag, similar to the
2037 * one used with the net_cls cgroup (see description for
2038 * **bpf_get_cgroup_classid**\ () helper), but here this tag is
2039 * held by a route (a destination entry), not by a task.
2041 * Retrieving this identifier works with the clsact TC egress hook
2042 * (see also **tc-bpf(8)**), or alternatively on conventional
2043 * classful egress qdiscs, but not on TC ingress path. In case of
2044 * clsact TC egress hook, this has the advantage that, internally,
2045 * the destination entry has not been dropped yet in the transmit
2046 * path. Therefore, the destination entry does not need to be
2047 * artificially held via **netif_keep_dst**\ () for a classful
2048 * qdisc until the *skb* is freed.
2050 * This helper is available only if the kernel was compiled with
2051 * **CONFIG_IP_ROUTE_CLASSID** configuration option.
2053 * The realm of the route for the packet associated to *skb*, or 0
2054 * if none was found.
2056 * long bpf_perf_event_output(void *ctx, struct bpf_map *map, u64 flags, void *data, u64 size)
2058 * Write raw *data* blob into a special BPF perf event held by
2059 * *map* of type **BPF_MAP_TYPE_PERF_EVENT_ARRAY**. This perf
2060 * event must have the following attributes: **PERF_SAMPLE_RAW**
2061 * as **sample_type**, **PERF_TYPE_SOFTWARE** as **type**, and
2062 * **PERF_COUNT_SW_BPF_OUTPUT** as **config**.
2064 * The *flags* are used to indicate the index in *map* for which
2065 * the value must be put, masked with **BPF_F_INDEX_MASK**.
2066 * Alternatively, *flags* can be set to **BPF_F_CURRENT_CPU**
2067 * to indicate that the index of the current CPU core should be
2070 * The value to write, of *size*, is passed through eBPF stack and
2071 * pointed by *data*.
2073 * The context of the program *ctx* needs also be passed to the
2076 * On user space, a program willing to read the values needs to
2077 * call **perf_event_open**\ () on the perf event (either for
2078 * one or for all CPUs) and to store the file descriptor into the
2079 * *map*. This must be done before the eBPF program can send data
2080 * into it. An example is available in file
2081 * *samples/bpf/trace_output_user.c* in the Linux kernel source
2082 * tree (the eBPF program counterpart is in
2083 * *samples/bpf/trace_output_kern.c*).
2085 * **bpf_perf_event_output**\ () achieves better performance
2086 * than **bpf_trace_printk**\ () for sharing data with user
2087 * space, and is much better suitable for streaming data from eBPF
2090 * Note that this helper is not restricted to tracing use cases
2091 * and can be used with programs attached to TC or XDP as well,
2092 * where it allows for passing data to user space listeners. Data
2095 * * Only custom structs,
2096 * * Only the packet payload, or
2097 * * A combination of both.
2099 * 0 on success, or a negative error in case of failure.
2101 * long bpf_skb_load_bytes(const void *skb, u32 offset, void *to, u32 len)
2103 * This helper was provided as an easy way to load data from a
2104 * packet. It can be used to load *len* bytes from *offset* from
2105 * the packet associated to *skb*, into the buffer pointed by
2108 * Since Linux 4.7, usage of this helper has mostly been replaced
2109 * by "direct packet access", enabling packet data to be
2110 * manipulated with *skb*\ **->data** and *skb*\ **->data_end**
2111 * pointing respectively to the first byte of packet data and to
2112 * the byte after the last byte of packet data. However, it
2113 * remains useful if one wishes to read large quantities of data
2114 * at once from a packet into the eBPF stack.
2116 * 0 on success, or a negative error in case of failure.
2118 * long bpf_get_stackid(void *ctx, struct bpf_map *map, u64 flags)
2120 * Walk a user or a kernel stack and return its id. To achieve
2121 * this, the helper needs *ctx*, which is a pointer to the context
2122 * on which the tracing program is executed, and a pointer to a
2123 * *map* of type **BPF_MAP_TYPE_STACK_TRACE**.
2125 * The last argument, *flags*, holds the number of stack frames to
2126 * skip (from 0 to 255), masked with
2127 * **BPF_F_SKIP_FIELD_MASK**. The next bits can be used to set
2128 * a combination of the following flags:
2130 * **BPF_F_USER_STACK**
2131 * Collect a user space stack instead of a kernel stack.
2132 * **BPF_F_FAST_STACK_CMP**
2133 * Compare stacks by hash only.
2134 * **BPF_F_REUSE_STACKID**
2135 * If two different stacks hash into the same *stackid*,
2136 * discard the old one.
2138 * The stack id retrieved is a 32 bit long integer handle which
2139 * can be further combined with other data (including other stack
2140 * ids) and used as a key into maps. This can be useful for
2141 * generating a variety of graphs (such as flame graphs or off-cpu
2144 * For walking a stack, this helper is an improvement over
2145 * **bpf_probe_read**\ (), which can be used with unrolled loops
2146 * but is not efficient and consumes a lot of eBPF instructions.
2147 * Instead, **bpf_get_stackid**\ () can collect up to
2148 * **PERF_MAX_STACK_DEPTH** both kernel and user frames. Note that
2149 * this limit can be controlled with the **sysctl** program, and
2150 * that it should be manually increased in order to profile long
2151 * user stacks (such as stacks for Java programs). To do so, use:
2155 * # sysctl kernel.perf_event_max_stack=<new value>
2157 * The positive or null stack id on success, or a negative error
2158 * in case of failure.
2160 * s64 bpf_csum_diff(__be32 *from, u32 from_size, __be32 *to, u32 to_size, __wsum seed)
2162 * Compute a checksum difference, from the raw buffer pointed by
2163 * *from*, of length *from_size* (that must be a multiple of 4),
2164 * towards the raw buffer pointed by *to*, of size *to_size*
2165 * (same remark). An optional *seed* can be added to the value
2166 * (this can be cascaded, the seed may come from a previous call
2169 * This is flexible enough to be used in several ways:
2171 * * With *from_size* == 0, *to_size* > 0 and *seed* set to
2172 * checksum, it can be used when pushing new data.
2173 * * With *from_size* > 0, *to_size* == 0 and *seed* set to
2174 * checksum, it can be used when removing data from a packet.
2175 * * With *from_size* > 0, *to_size* > 0 and *seed* set to 0, it
2176 * can be used to compute a diff. Note that *from_size* and
2177 * *to_size* do not need to be equal.
2179 * This helper can be used in combination with
2180 * **bpf_l3_csum_replace**\ () and **bpf_l4_csum_replace**\ (), to
2181 * which one can feed in the difference computed with
2182 * **bpf_csum_diff**\ ().
2184 * The checksum result, or a negative error code in case of
2187 * long bpf_skb_get_tunnel_opt(struct sk_buff *skb, void *opt, u32 size)
2189 * Retrieve tunnel options metadata for the packet associated to
2190 * *skb*, and store the raw tunnel option data to the buffer *opt*
2193 * This helper can be used with encapsulation devices that can
2194 * operate in "collect metadata" mode (please refer to the related
2195 * note in the description of **bpf_skb_get_tunnel_key**\ () for
2196 * more details). A particular example where this can be used is
2197 * in combination with the Geneve encapsulation protocol, where it
2198 * allows for pushing (with **bpf_skb_get_tunnel_opt**\ () helper)
2199 * and retrieving arbitrary TLVs (Type-Length-Value headers) from
2200 * the eBPF program. This allows for full customization of these
2203 * The size of the option data retrieved.
2205 * long bpf_skb_set_tunnel_opt(struct sk_buff *skb, void *opt, u32 size)
2207 * Set tunnel options metadata for the packet associated to *skb*
2208 * to the option data contained in the raw buffer *opt* of *size*.
2210 * See also the description of the **bpf_skb_get_tunnel_opt**\ ()
2211 * helper for additional information.
2213 * 0 on success, or a negative error in case of failure.
2215 * long bpf_skb_change_proto(struct sk_buff *skb, __be16 proto, u64 flags)
2217 * Change the protocol of the *skb* to *proto*. Currently
2218 * supported are transition from IPv4 to IPv6, and from IPv6 to
2219 * IPv4. The helper takes care of the groundwork for the
2220 * transition, including resizing the socket buffer. The eBPF
2221 * program is expected to fill the new headers, if any, via
2222 * **skb_store_bytes**\ () and to recompute the checksums with
2223 * **bpf_l3_csum_replace**\ () and **bpf_l4_csum_replace**\
2224 * (). The main case for this helper is to perform NAT64
2225 * operations out of an eBPF program.
2227 * Internally, the GSO type is marked as dodgy so that headers are
2228 * checked and segments are recalculated by the GSO/GRO engine.
2229 * The size for GSO target is adapted as well.
2231 * All values for *flags* are reserved for future usage, and must
2234 * A call to this helper is susceptible to change the underlying
2235 * packet buffer. Therefore, at load time, all checks on pointers
2236 * previously done by the verifier are invalidated and must be
2237 * performed again, if the helper is used in combination with
2238 * direct packet access.
2240 * 0 on success, or a negative error in case of failure.
2242 * long bpf_skb_change_type(struct sk_buff *skb, u32 type)
2244 * Change the packet type for the packet associated to *skb*. This
2245 * comes down to setting *skb*\ **->pkt_type** to *type*, except
2246 * the eBPF program does not have a write access to *skb*\
2247 * **->pkt_type** beside this helper. Using a helper here allows
2248 * for graceful handling of errors.
2250 * The major use case is to change incoming *skb*s to
2251 * **PACKET_HOST** in a programmatic way instead of having to
2252 * recirculate via **redirect**\ (..., **BPF_F_INGRESS**), for
2255 * Note that *type* only allows certain values. At this time, they
2260 * **PACKET_BROADCAST**
2261 * Send packet to all.
2262 * **PACKET_MULTICAST**
2263 * Send packet to group.
2264 * **PACKET_OTHERHOST**
2265 * Send packet to someone else.
2267 * 0 on success, or a negative error in case of failure.
2269 * long bpf_skb_under_cgroup(struct sk_buff *skb, struct bpf_map *map, u32 index)
2271 * Check whether *skb* is a descendant of the cgroup2 held by
2272 * *map* of type **BPF_MAP_TYPE_CGROUP_ARRAY**, at *index*.
2274 * The return value depends on the result of the test, and can be:
2276 * * 0, if the *skb* failed the cgroup2 descendant test.
2277 * * 1, if the *skb* succeeded the cgroup2 descendant test.
2278 * * A negative error code, if an error occurred.
2280 * u32 bpf_get_hash_recalc(struct sk_buff *skb)
2282 * Retrieve the hash of the packet, *skb*\ **->hash**. If it is
2283 * not set, in particular if the hash was cleared due to mangling,
2284 * recompute this hash. Later accesses to the hash can be done
2285 * directly with *skb*\ **->hash**.
2287 * Calling **bpf_set_hash_invalid**\ (), changing a packet
2288 * prototype with **bpf_skb_change_proto**\ (), or calling
2289 * **bpf_skb_store_bytes**\ () with the
2290 * **BPF_F_INVALIDATE_HASH** are actions susceptible to clear
2291 * the hash and to trigger a new computation for the next call to
2292 * **bpf_get_hash_recalc**\ ().
2296 * u64 bpf_get_current_task(void)
2298 * Get the current task.
2300 * A pointer to the current task struct.
2302 * long bpf_probe_write_user(void *dst, const void *src, u32 len)
2304 * Attempt in a safe way to write *len* bytes from the buffer
2305 * *src* to *dst* in memory. It only works for threads that are in
2306 * user context, and *dst* must be a valid user space address.
2308 * This helper should not be used to implement any kind of
2309 * security mechanism because of TOC-TOU attacks, but rather to
2310 * debug, divert, and manipulate execution of semi-cooperative
2313 * Keep in mind that this feature is meant for experiments, and it
2314 * has a risk of crashing the system and running programs.
2315 * Therefore, when an eBPF program using this helper is attached,
2316 * a warning including PID and process name is printed to kernel
2319 * 0 on success, or a negative error in case of failure.
2321 * long bpf_current_task_under_cgroup(struct bpf_map *map, u32 index)
2323 * Check whether the probe is being run is the context of a given
2324 * subset of the cgroup2 hierarchy. The cgroup2 to test is held by
2325 * *map* of type **BPF_MAP_TYPE_CGROUP_ARRAY**, at *index*.
2327 * The return value depends on the result of the test, and can be:
2329 * * 1, if current task belongs to the cgroup2.
2330 * * 0, if current task does not belong to the cgroup2.
2331 * * A negative error code, if an error occurred.
2333 * long bpf_skb_change_tail(struct sk_buff *skb, u32 len, u64 flags)
2335 * Resize (trim or grow) the packet associated to *skb* to the
2336 * new *len*. The *flags* are reserved for future usage, and must
2339 * The basic idea is that the helper performs the needed work to
2340 * change the size of the packet, then the eBPF program rewrites
2341 * the rest via helpers like **bpf_skb_store_bytes**\ (),
2342 * **bpf_l3_csum_replace**\ (), **bpf_l3_csum_replace**\ ()
2343 * and others. This helper is a slow path utility intended for
2344 * replies with control messages. And because it is targeted for
2345 * slow path, the helper itself can afford to be slow: it
2346 * implicitly linearizes, unclones and drops offloads from the
2349 * A call to this helper is susceptible to change the underlying
2350 * packet buffer. Therefore, at load time, all checks on pointers
2351 * previously done by the verifier are invalidated and must be
2352 * performed again, if the helper is used in combination with
2353 * direct packet access.
2355 * 0 on success, or a negative error in case of failure.
2357 * long bpf_skb_pull_data(struct sk_buff *skb, u32 len)
2359 * Pull in non-linear data in case the *skb* is non-linear and not
2360 * all of *len* are part of the linear section. Make *len* bytes
2361 * from *skb* readable and writable. If a zero value is passed for
2362 * *len*, then the whole length of the *skb* is pulled.
2364 * This helper is only needed for reading and writing with direct
2367 * For direct packet access, testing that offsets to access
2368 * are within packet boundaries (test on *skb*\ **->data_end**) is
2369 * susceptible to fail if offsets are invalid, or if the requested
2370 * data is in non-linear parts of the *skb*. On failure the
2371 * program can just bail out, or in the case of a non-linear
2372 * buffer, use a helper to make the data available. The
2373 * **bpf_skb_load_bytes**\ () helper is a first solution to access
2374 * the data. Another one consists in using **bpf_skb_pull_data**
2375 * to pull in once the non-linear parts, then retesting and
2376 * eventually access the data.
2378 * At the same time, this also makes sure the *skb* is uncloned,
2379 * which is a necessary condition for direct write. As this needs
2380 * to be an invariant for the write part only, the verifier
2381 * detects writes and adds a prologue that is calling
2382 * **bpf_skb_pull_data()** to effectively unclone the *skb* from
2383 * the very beginning in case it is indeed cloned.
2385 * A call to this helper is susceptible to change the underlying
2386 * packet buffer. Therefore, at load time, all checks on pointers
2387 * previously done by the verifier are invalidated and must be
2388 * performed again, if the helper is used in combination with
2389 * direct packet access.
2391 * 0 on success, or a negative error in case of failure.
2393 * s64 bpf_csum_update(struct sk_buff *skb, __wsum csum)
2395 * Add the checksum *csum* into *skb*\ **->csum** in case the
2396 * driver has supplied a checksum for the entire packet into that
2397 * field. Return an error otherwise. This helper is intended to be
2398 * used in combination with **bpf_csum_diff**\ (), in particular
2399 * when the checksum needs to be updated after data has been
2400 * written into the packet through direct packet access.
2402 * The checksum on success, or a negative error code in case of
2405 * void bpf_set_hash_invalid(struct sk_buff *skb)
2407 * Invalidate the current *skb*\ **->hash**. It can be used after
2408 * mangling on headers through direct packet access, in order to
2409 * indicate that the hash is outdated and to trigger a
2410 * recalculation the next time the kernel tries to access this
2411 * hash or when the **bpf_get_hash_recalc**\ () helper is called.
2415 * long bpf_get_numa_node_id(void)
2417 * Return the id of the current NUMA node. The primary use case
2418 * for this helper is the selection of sockets for the local NUMA
2419 * node, when the program is attached to sockets using the
2420 * **SO_ATTACH_REUSEPORT_EBPF** option (see also **socket(7)**),
2421 * but the helper is also available to other eBPF program types,
2422 * similarly to **bpf_get_smp_processor_id**\ ().
2424 * The id of current NUMA node.
2426 * long bpf_skb_change_head(struct sk_buff *skb, u32 len, u64 flags)
2428 * Grows headroom of packet associated to *skb* and adjusts the
2429 * offset of the MAC header accordingly, adding *len* bytes of
2430 * space. It automatically extends and reallocates memory as
2433 * This helper can be used on a layer 3 *skb* to push a MAC header
2434 * for redirection into a layer 2 device.
2436 * All values for *flags* are reserved for future usage, and must
2439 * A call to this helper is susceptible to change the underlying
2440 * packet buffer. Therefore, at load time, all checks on pointers
2441 * previously done by the verifier are invalidated and must be
2442 * performed again, if the helper is used in combination with
2443 * direct packet access.
2445 * 0 on success, or a negative error in case of failure.
2447 * long bpf_xdp_adjust_head(struct xdp_buff *xdp_md, int delta)
2449 * Adjust (move) *xdp_md*\ **->data** by *delta* bytes. Note that
2450 * it is possible to use a negative value for *delta*. This helper
2451 * can be used to prepare the packet for pushing or popping
2454 * A call to this helper is susceptible to change the underlying
2455 * packet buffer. Therefore, at load time, all checks on pointers
2456 * previously done by the verifier are invalidated and must be
2457 * performed again, if the helper is used in combination with
2458 * direct packet access.
2460 * 0 on success, or a negative error in case of failure.
2462 * long bpf_probe_read_str(void *dst, u32 size, const void *unsafe_ptr)
2464 * Copy a NUL terminated string from an unsafe kernel address
2465 * *unsafe_ptr* to *dst*. See **bpf_probe_read_kernel_str**\ () for
2468 * Generally, use **bpf_probe_read_user_str**\ () or
2469 * **bpf_probe_read_kernel_str**\ () instead.
2471 * On success, the strictly positive length of the string,
2472 * including the trailing NUL character. On error, a negative
2475 * u64 bpf_get_socket_cookie(struct sk_buff *skb)
2477 * If the **struct sk_buff** pointed by *skb* has a known socket,
2478 * retrieve the cookie (generated by the kernel) of this socket.
2479 * If no cookie has been set yet, generate a new cookie. Once
2480 * generated, the socket cookie remains stable for the life of the
2481 * socket. This helper can be useful for monitoring per socket
2482 * networking traffic statistics as it provides a global socket
2483 * identifier that can be assumed unique.
2485 * A 8-byte long unique number on success, or 0 if the socket
2486 * field is missing inside *skb*.
2488 * u64 bpf_get_socket_cookie(struct bpf_sock_addr *ctx)
2490 * Equivalent to bpf_get_socket_cookie() helper that accepts
2491 * *skb*, but gets socket from **struct bpf_sock_addr** context.
2493 * A 8-byte long unique number.
2495 * u64 bpf_get_socket_cookie(struct bpf_sock_ops *ctx)
2497 * Equivalent to **bpf_get_socket_cookie**\ () helper that accepts
2498 * *skb*, but gets socket from **struct bpf_sock_ops** context.
2500 * A 8-byte long unique number.
2502 * u64 bpf_get_socket_cookie(struct sock *sk)
2504 * Equivalent to **bpf_get_socket_cookie**\ () helper that accepts
2505 * *sk*, but gets socket from a BTF **struct sock**. This helper
2506 * also works for sleepable programs.
2508 * A 8-byte long unique number or 0 if *sk* is NULL.
2510 * u32 bpf_get_socket_uid(struct sk_buff *skb)
2512 * Get the owner UID of the socked associated to *skb*.
2514 * The owner UID of the socket associated to *skb*. If the socket
2515 * is **NULL**, or if it is not a full socket (i.e. if it is a
2516 * time-wait or a request socket instead), **overflowuid** value
2517 * is returned (note that **overflowuid** might also be the actual
2518 * UID value for the socket).
2520 * long bpf_set_hash(struct sk_buff *skb, u32 hash)
2522 * Set the full hash for *skb* (set the field *skb*\ **->hash**)
2527 * long bpf_setsockopt(void *bpf_socket, int level, int optname, void *optval, int optlen)
2529 * Emulate a call to **setsockopt()** on the socket associated to
2530 * *bpf_socket*, which must be a full socket. The *level* at
2531 * which the option resides and the name *optname* of the option
2532 * must be specified, see **setsockopt(2)** for more information.
2533 * The option value of length *optlen* is pointed by *optval*.
2535 * *bpf_socket* should be one of the following:
2537 * * **struct bpf_sock_ops** for **BPF_PROG_TYPE_SOCK_OPS**.
2538 * * **struct bpf_sock_addr** for **BPF_CGROUP_INET4_CONNECT**
2539 * and **BPF_CGROUP_INET6_CONNECT**.
2541 * This helper actually implements a subset of **setsockopt()**.
2542 * It supports the following *level*\ s:
2544 * * **SOL_SOCKET**, which supports the following *optname*\ s:
2545 * **SO_RCVBUF**, **SO_SNDBUF**, **SO_MAX_PACING_RATE**,
2546 * **SO_PRIORITY**, **SO_RCVLOWAT**, **SO_MARK**,
2547 * **SO_BINDTODEVICE**, **SO_KEEPALIVE**.
2548 * * **IPPROTO_TCP**, which supports the following *optname*\ s:
2549 * **TCP_CONGESTION**, **TCP_BPF_IW**,
2550 * **TCP_BPF_SNDCWND_CLAMP**, **TCP_SAVE_SYN**,
2551 * **TCP_KEEPIDLE**, **TCP_KEEPINTVL**, **TCP_KEEPCNT**,
2552 * **TCP_SYNCNT**, **TCP_USER_TIMEOUT**, **TCP_NOTSENT_LOWAT**.
2553 * * **IPPROTO_IP**, which supports *optname* **IP_TOS**.
2554 * * **IPPROTO_IPV6**, which supports *optname* **IPV6_TCLASS**.
2556 * 0 on success, or a negative error in case of failure.
2558 * long bpf_skb_adjust_room(struct sk_buff *skb, s32 len_diff, u32 mode, u64 flags)
2560 * Grow or shrink the room for data in the packet associated to
2561 * *skb* by *len_diff*, and according to the selected *mode*.
2563 * By default, the helper will reset any offloaded checksum
2564 * indicator of the skb to CHECKSUM_NONE. This can be avoided
2565 * by the following flag:
2567 * * **BPF_F_ADJ_ROOM_NO_CSUM_RESET**: Do not reset offloaded
2568 * checksum data of the skb to CHECKSUM_NONE.
2570 * There are two supported modes at this time:
2572 * * **BPF_ADJ_ROOM_MAC**: Adjust room at the mac layer
2573 * (room space is added or removed below the layer 2 header).
2575 * * **BPF_ADJ_ROOM_NET**: Adjust room at the network layer
2576 * (room space is added or removed below the layer 3 header).
2578 * The following flags are supported at this time:
2580 * * **BPF_F_ADJ_ROOM_FIXED_GSO**: Do not adjust gso_size.
2581 * Adjusting mss in this way is not allowed for datagrams.
2583 * * **BPF_F_ADJ_ROOM_ENCAP_L3_IPV4**,
2584 * **BPF_F_ADJ_ROOM_ENCAP_L3_IPV6**:
2585 * Any new space is reserved to hold a tunnel header.
2586 * Configure skb offsets and other fields accordingly.
2588 * * **BPF_F_ADJ_ROOM_ENCAP_L4_GRE**,
2589 * **BPF_F_ADJ_ROOM_ENCAP_L4_UDP**:
2590 * Use with ENCAP_L3 flags to further specify the tunnel type.
2592 * * **BPF_F_ADJ_ROOM_ENCAP_L2**\ (*len*):
2593 * Use with ENCAP_L3/L4 flags to further specify the tunnel
2594 * type; *len* is the length of the inner MAC header.
2596 * * **BPF_F_ADJ_ROOM_ENCAP_L2_ETH**:
2597 * Use with BPF_F_ADJ_ROOM_ENCAP_L2 flag to further specify the
2598 * L2 type as Ethernet.
2600 * A call to this helper is susceptible to change the underlying
2601 * packet buffer. Therefore, at load time, all checks on pointers
2602 * previously done by the verifier are invalidated and must be
2603 * performed again, if the helper is used in combination with
2604 * direct packet access.
2606 * 0 on success, or a negative error in case of failure.
2608 * long bpf_redirect_map(struct bpf_map *map, u32 key, u64 flags)
2610 * Redirect the packet to the endpoint referenced by *map* at
2611 * index *key*. Depending on its type, this *map* can contain
2612 * references to net devices (for forwarding packets through other
2613 * ports), or to CPUs (for redirecting XDP frames to another CPU;
2614 * but this is only implemented for native XDP (with driver
2615 * support) as of this writing).
2617 * The lower two bits of *flags* are used as the return code if
2618 * the map lookup fails. This is so that the return value can be
2619 * one of the XDP program return codes up to **XDP_TX**, as chosen
2620 * by the caller. The higher bits of *flags* can be set to
2621 * BPF_F_BROADCAST or BPF_F_EXCLUDE_INGRESS as defined below.
2623 * With BPF_F_BROADCAST the packet will be broadcasted to all the
2624 * interfaces in the map, with BPF_F_EXCLUDE_INGRESS the ingress
2625 * interface will be excluded when do broadcasting.
2627 * See also **bpf_redirect**\ (), which only supports redirecting
2628 * to an ifindex, but doesn't require a map to do so.
2630 * **XDP_REDIRECT** on success, or the value of the two lower bits
2631 * of the *flags* argument on error.
2633 * long bpf_sk_redirect_map(struct sk_buff *skb, struct bpf_map *map, u32 key, u64 flags)
2635 * Redirect the packet to the socket referenced by *map* (of type
2636 * **BPF_MAP_TYPE_SOCKMAP**) at index *key*. Both ingress and
2637 * egress interfaces can be used for redirection. The
2638 * **BPF_F_INGRESS** value in *flags* is used to make the
2639 * distinction (ingress path is selected if the flag is present,
2640 * egress path otherwise). This is the only flag supported for now.
2642 * **SK_PASS** on success, or **SK_DROP** on error.
2644 * long bpf_sock_map_update(struct bpf_sock_ops *skops, struct bpf_map *map, void *key, u64 flags)
2646 * Add an entry to, or update a *map* referencing sockets. The
2647 * *skops* is used as a new value for the entry associated to
2648 * *key*. *flags* is one of:
2651 * The entry for *key* must not exist in the map.
2653 * The entry for *key* must already exist in the map.
2655 * No condition on the existence of the entry for *key*.
2657 * If the *map* has eBPF programs (parser and verdict), those will
2658 * be inherited by the socket being added. If the socket is
2659 * already attached to eBPF programs, this results in an error.
2661 * 0 on success, or a negative error in case of failure.
2663 * long bpf_xdp_adjust_meta(struct xdp_buff *xdp_md, int delta)
2665 * Adjust the address pointed by *xdp_md*\ **->data_meta** by
2666 * *delta* (which can be positive or negative). Note that this
2667 * operation modifies the address stored in *xdp_md*\ **->data**,
2668 * so the latter must be loaded only after the helper has been
2671 * The use of *xdp_md*\ **->data_meta** is optional and programs
2672 * are not required to use it. The rationale is that when the
2673 * packet is processed with XDP (e.g. as DoS filter), it is
2674 * possible to push further meta data along with it before passing
2675 * to the stack, and to give the guarantee that an ingress eBPF
2676 * program attached as a TC classifier on the same device can pick
2677 * this up for further post-processing. Since TC works with socket
2678 * buffers, it remains possible to set from XDP the **mark** or
2679 * **priority** pointers, or other pointers for the socket buffer.
2680 * Having this scratch space generic and programmable allows for
2681 * more flexibility as the user is free to store whatever meta
2684 * A call to this helper is susceptible to change the underlying
2685 * packet buffer. Therefore, at load time, all checks on pointers
2686 * previously done by the verifier are invalidated and must be
2687 * performed again, if the helper is used in combination with
2688 * direct packet access.
2690 * 0 on success, or a negative error in case of failure.
2692 * long bpf_perf_event_read_value(struct bpf_map *map, u64 flags, struct bpf_perf_event_value *buf, u32 buf_size)
2694 * Read the value of a perf event counter, and store it into *buf*
2695 * of size *buf_size*. This helper relies on a *map* of type
2696 * **BPF_MAP_TYPE_PERF_EVENT_ARRAY**. The nature of the perf event
2697 * counter is selected when *map* is updated with perf event file
2698 * descriptors. The *map* is an array whose size is the number of
2699 * available CPUs, and each cell contains a value relative to one
2700 * CPU. The value to retrieve is indicated by *flags*, that
2701 * contains the index of the CPU to look up, masked with
2702 * **BPF_F_INDEX_MASK**. Alternatively, *flags* can be set to
2703 * **BPF_F_CURRENT_CPU** to indicate that the value for the
2704 * current CPU should be retrieved.
2706 * This helper behaves in a way close to
2707 * **bpf_perf_event_read**\ () helper, save that instead of
2708 * just returning the value observed, it fills the *buf*
2709 * structure. This allows for additional data to be retrieved: in
2710 * particular, the enabled and running times (in *buf*\
2711 * **->enabled** and *buf*\ **->running**, respectively) are
2712 * copied. In general, **bpf_perf_event_read_value**\ () is
2713 * recommended over **bpf_perf_event_read**\ (), which has some
2714 * ABI issues and provides fewer functionalities.
2716 * These values are interesting, because hardware PMU (Performance
2717 * Monitoring Unit) counters are limited resources. When there are
2718 * more PMU based perf events opened than available counters,
2719 * kernel will multiplex these events so each event gets certain
2720 * percentage (but not all) of the PMU time. In case that
2721 * multiplexing happens, the number of samples or counter value
2722 * will not reflect the case compared to when no multiplexing
2723 * occurs. This makes comparison between different runs difficult.
2724 * Typically, the counter value should be normalized before
2725 * comparing to other experiments. The usual normalization is done
2730 * normalized_counter = counter * t_enabled / t_running
2732 * Where t_enabled is the time enabled for event and t_running is
2733 * the time running for event since last normalization. The
2734 * enabled and running times are accumulated since the perf event
2735 * open. To achieve scaling factor between two invocations of an
2736 * eBPF program, users can use CPU id as the key (which is
2737 * typical for perf array usage model) to remember the previous
2738 * value and do the calculation inside the eBPF program.
2740 * 0 on success, or a negative error in case of failure.
2742 * long bpf_perf_prog_read_value(struct bpf_perf_event_data *ctx, struct bpf_perf_event_value *buf, u32 buf_size)
2744 * For en eBPF program attached to a perf event, retrieve the
2745 * value of the event counter associated to *ctx* and store it in
2746 * the structure pointed by *buf* and of size *buf_size*. Enabled
2747 * and running times are also stored in the structure (see
2748 * description of helper **bpf_perf_event_read_value**\ () for
2751 * 0 on success, or a negative error in case of failure.
2753 * long bpf_getsockopt(void *bpf_socket, int level, int optname, void *optval, int optlen)
2755 * Emulate a call to **getsockopt()** on the socket associated to
2756 * *bpf_socket*, which must be a full socket. The *level* at
2757 * which the option resides and the name *optname* of the option
2758 * must be specified, see **getsockopt(2)** for more information.
2759 * The retrieved value is stored in the structure pointed by
2760 * *opval* and of length *optlen*.
2762 * *bpf_socket* should be one of the following:
2764 * * **struct bpf_sock_ops** for **BPF_PROG_TYPE_SOCK_OPS**.
2765 * * **struct bpf_sock_addr** for **BPF_CGROUP_INET4_CONNECT**
2766 * and **BPF_CGROUP_INET6_CONNECT**.
2768 * This helper actually implements a subset of **getsockopt()**.
2769 * It supports the following *level*\ s:
2771 * * **IPPROTO_TCP**, which supports *optname*
2772 * **TCP_CONGESTION**.
2773 * * **IPPROTO_IP**, which supports *optname* **IP_TOS**.
2774 * * **IPPROTO_IPV6**, which supports *optname* **IPV6_TCLASS**.
2776 * 0 on success, or a negative error in case of failure.
2778 * long bpf_override_return(struct pt_regs *regs, u64 rc)
2780 * Used for error injection, this helper uses kprobes to override
2781 * the return value of the probed function, and to set it to *rc*.
2782 * The first argument is the context *regs* on which the kprobe
2785 * This helper works by setting the PC (program counter)
2786 * to an override function which is run in place of the original
2787 * probed function. This means the probed function is not run at
2788 * all. The replacement function just returns with the required
2791 * This helper has security implications, and thus is subject to
2792 * restrictions. It is only available if the kernel was compiled
2793 * with the **CONFIG_BPF_KPROBE_OVERRIDE** configuration
2794 * option, and in this case it only works on functions tagged with
2795 * **ALLOW_ERROR_INJECTION** in the kernel code.
2797 * Also, the helper is only available for the architectures having
2798 * the CONFIG_FUNCTION_ERROR_INJECTION option. As of this writing,
2799 * x86 architecture is the only one to support this feature.
2803 * long bpf_sock_ops_cb_flags_set(struct bpf_sock_ops *bpf_sock, int argval)
2805 * Attempt to set the value of the **bpf_sock_ops_cb_flags** field
2806 * for the full TCP socket associated to *bpf_sock_ops* to
2809 * The primary use of this field is to determine if there should
2810 * be calls to eBPF programs of type
2811 * **BPF_PROG_TYPE_SOCK_OPS** at various points in the TCP
2812 * code. A program of the same type can change its value, per
2813 * connection and as necessary, when the connection is
2814 * established. This field is directly accessible for reading, but
2815 * this helper must be used for updates in order to return an
2816 * error if an eBPF program tries to set a callback that is not
2817 * supported in the current kernel.
2819 * *argval* is a flag array which can combine these flags:
2821 * * **BPF_SOCK_OPS_RTO_CB_FLAG** (retransmission time out)
2822 * * **BPF_SOCK_OPS_RETRANS_CB_FLAG** (retransmission)
2823 * * **BPF_SOCK_OPS_STATE_CB_FLAG** (TCP state change)
2824 * * **BPF_SOCK_OPS_RTT_CB_FLAG** (every RTT)
2826 * Therefore, this function can be used to clear a callback flag by
2827 * setting the appropriate bit to zero. e.g. to disable the RTO
2830 * **bpf_sock_ops_cb_flags_set(bpf_sock,**
2831 * **bpf_sock->bpf_sock_ops_cb_flags & ~BPF_SOCK_OPS_RTO_CB_FLAG)**
2833 * Here are some examples of where one could call such eBPF
2837 * * When a packet is retransmitted.
2838 * * When the connection terminates.
2839 * * When a packet is sent.
2840 * * When a packet is received.
2842 * Code **-EINVAL** if the socket is not a full TCP socket;
2843 * otherwise, a positive number containing the bits that could not
2844 * be set is returned (which comes down to 0 if all bits were set
2847 * long bpf_msg_redirect_map(struct sk_msg_buff *msg, struct bpf_map *map, u32 key, u64 flags)
2849 * This helper is used in programs implementing policies at the
2850 * socket level. If the message *msg* is allowed to pass (i.e. if
2851 * the verdict eBPF program returns **SK_PASS**), redirect it to
2852 * the socket referenced by *map* (of type
2853 * **BPF_MAP_TYPE_SOCKMAP**) at index *key*. Both ingress and
2854 * egress interfaces can be used for redirection. The
2855 * **BPF_F_INGRESS** value in *flags* is used to make the
2856 * distinction (ingress path is selected if the flag is present,
2857 * egress path otherwise). This is the only flag supported for now.
2859 * **SK_PASS** on success, or **SK_DROP** on error.
2861 * long bpf_msg_apply_bytes(struct sk_msg_buff *msg, u32 bytes)
2863 * For socket policies, apply the verdict of the eBPF program to
2864 * the next *bytes* (number of bytes) of message *msg*.
2866 * For example, this helper can be used in the following cases:
2868 * * A single **sendmsg**\ () or **sendfile**\ () system call
2869 * contains multiple logical messages that the eBPF program is
2870 * supposed to read and for which it should apply a verdict.
2871 * * An eBPF program only cares to read the first *bytes* of a
2872 * *msg*. If the message has a large payload, then setting up
2873 * and calling the eBPF program repeatedly for all bytes, even
2874 * though the verdict is already known, would create unnecessary
2877 * When called from within an eBPF program, the helper sets a
2878 * counter internal to the BPF infrastructure, that is used to
2879 * apply the last verdict to the next *bytes*. If *bytes* is
2880 * smaller than the current data being processed from a
2881 * **sendmsg**\ () or **sendfile**\ () system call, the first
2882 * *bytes* will be sent and the eBPF program will be re-run with
2883 * the pointer for start of data pointing to byte number *bytes*
2884 * **+ 1**. If *bytes* is larger than the current data being
2885 * processed, then the eBPF verdict will be applied to multiple
2886 * **sendmsg**\ () or **sendfile**\ () calls until *bytes* are
2889 * Note that if a socket closes with the internal counter holding
2890 * a non-zero value, this is not a problem because data is not
2891 * being buffered for *bytes* and is sent as it is received.
2895 * long bpf_msg_cork_bytes(struct sk_msg_buff *msg, u32 bytes)
2897 * For socket policies, prevent the execution of the verdict eBPF
2898 * program for message *msg* until *bytes* (byte number) have been
2901 * This can be used when one needs a specific number of bytes
2902 * before a verdict can be assigned, even if the data spans
2903 * multiple **sendmsg**\ () or **sendfile**\ () calls. The extreme
2904 * case would be a user calling **sendmsg**\ () repeatedly with
2905 * 1-byte long message segments. Obviously, this is bad for
2906 * performance, but it is still valid. If the eBPF program needs
2907 * *bytes* bytes to validate a header, this helper can be used to
2908 * prevent the eBPF program to be called again until *bytes* have
2913 * long bpf_msg_pull_data(struct sk_msg_buff *msg, u32 start, u32 end, u64 flags)
2915 * For socket policies, pull in non-linear data from user space
2916 * for *msg* and set pointers *msg*\ **->data** and *msg*\
2917 * **->data_end** to *start* and *end* bytes offsets into *msg*,
2920 * If a program of type **BPF_PROG_TYPE_SK_MSG** is run on a
2921 * *msg* it can only parse data that the (**data**, **data_end**)
2922 * pointers have already consumed. For **sendmsg**\ () hooks this
2923 * is likely the first scatterlist element. But for calls relying
2924 * on the **sendpage** handler (e.g. **sendfile**\ ()) this will
2925 * be the range (**0**, **0**) because the data is shared with
2926 * user space and by default the objective is to avoid allowing
2927 * user space to modify data while (or after) eBPF verdict is
2928 * being decided. This helper can be used to pull in data and to
2929 * set the start and end pointer to given values. Data will be
2930 * copied if necessary (i.e. if data was not linear and if start
2931 * and end pointers do not point to the same chunk).
2933 * A call to this helper is susceptible to change the underlying
2934 * packet buffer. Therefore, at load time, all checks on pointers
2935 * previously done by the verifier are invalidated and must be
2936 * performed again, if the helper is used in combination with
2937 * direct packet access.
2939 * All values for *flags* are reserved for future usage, and must
2942 * 0 on success, or a negative error in case of failure.
2944 * long bpf_bind(struct bpf_sock_addr *ctx, struct sockaddr *addr, int addr_len)
2946 * Bind the socket associated to *ctx* to the address pointed by
2947 * *addr*, of length *addr_len*. This allows for making outgoing
2948 * connection from the desired IP address, which can be useful for
2949 * example when all processes inside a cgroup should use one
2950 * single IP address on a host that has multiple IP configured.
2952 * This helper works for IPv4 and IPv6, TCP and UDP sockets. The
2953 * domain (*addr*\ **->sa_family**) must be **AF_INET** (or
2954 * **AF_INET6**). It's advised to pass zero port (**sin_port**
2955 * or **sin6_port**) which triggers IP_BIND_ADDRESS_NO_PORT-like
2956 * behavior and lets the kernel efficiently pick up an unused
2957 * port as long as 4-tuple is unique. Passing non-zero port might
2958 * lead to degraded performance.
2960 * 0 on success, or a negative error in case of failure.
2962 * long bpf_xdp_adjust_tail(struct xdp_buff *xdp_md, int delta)
2964 * Adjust (move) *xdp_md*\ **->data_end** by *delta* bytes. It is
2965 * possible to both shrink and grow the packet tail.
2966 * Shrink done via *delta* being a negative integer.
2968 * A call to this helper is susceptible to change the underlying
2969 * packet buffer. Therefore, at load time, all checks on pointers
2970 * previously done by the verifier are invalidated and must be
2971 * performed again, if the helper is used in combination with
2972 * direct packet access.
2974 * 0 on success, or a negative error in case of failure.
2976 * long bpf_skb_get_xfrm_state(struct sk_buff *skb, u32 index, struct bpf_xfrm_state *xfrm_state, u32 size, u64 flags)
2978 * Retrieve the XFRM state (IP transform framework, see also
2979 * **ip-xfrm(8)**) at *index* in XFRM "security path" for *skb*.
2981 * The retrieved value is stored in the **struct bpf_xfrm_state**
2982 * pointed by *xfrm_state* and of length *size*.
2984 * All values for *flags* are reserved for future usage, and must
2987 * This helper is available only if the kernel was compiled with
2988 * **CONFIG_XFRM** configuration option.
2990 * 0 on success, or a negative error in case of failure.
2992 * long bpf_get_stack(void *ctx, void *buf, u32 size, u64 flags)
2994 * Return a user or a kernel stack in bpf program provided buffer.
2995 * To achieve this, the helper needs *ctx*, which is a pointer
2996 * to the context on which the tracing program is executed.
2997 * To store the stacktrace, the bpf program provides *buf* with
2998 * a nonnegative *size*.
3000 * The last argument, *flags*, holds the number of stack frames to
3001 * skip (from 0 to 255), masked with
3002 * **BPF_F_SKIP_FIELD_MASK**. The next bits can be used to set
3003 * the following flags:
3005 * **BPF_F_USER_STACK**
3006 * Collect a user space stack instead of a kernel stack.
3007 * **BPF_F_USER_BUILD_ID**
3008 * Collect buildid+offset instead of ips for user stack,
3009 * only valid if **BPF_F_USER_STACK** is also specified.
3011 * **bpf_get_stack**\ () can collect up to
3012 * **PERF_MAX_STACK_DEPTH** both kernel and user frames, subject
3013 * to sufficient large buffer size. Note that
3014 * this limit can be controlled with the **sysctl** program, and
3015 * that it should be manually increased in order to profile long
3016 * user stacks (such as stacks for Java programs). To do so, use:
3020 * # sysctl kernel.perf_event_max_stack=<new value>
3022 * The non-negative copied *buf* length equal to or less than
3023 * *size* on success, or a negative error in case of failure.
3025 * long bpf_skb_load_bytes_relative(const void *skb, u32 offset, void *to, u32 len, u32 start_header)
3027 * This helper is similar to **bpf_skb_load_bytes**\ () in that
3028 * it provides an easy way to load *len* bytes from *offset*
3029 * from the packet associated to *skb*, into the buffer pointed
3030 * by *to*. The difference to **bpf_skb_load_bytes**\ () is that
3031 * a fifth argument *start_header* exists in order to select a
3032 * base offset to start from. *start_header* can be one of:
3034 * **BPF_HDR_START_MAC**
3035 * Base offset to load data from is *skb*'s mac header.
3036 * **BPF_HDR_START_NET**
3037 * Base offset to load data from is *skb*'s network header.
3039 * In general, "direct packet access" is the preferred method to
3040 * access packet data, however, this helper is in particular useful
3041 * in socket filters where *skb*\ **->data** does not always point
3042 * to the start of the mac header and where "direct packet access"
3045 * 0 on success, or a negative error in case of failure.
3047 * long bpf_fib_lookup(void *ctx, struct bpf_fib_lookup *params, int plen, u32 flags)
3049 * Do FIB lookup in kernel tables using parameters in *params*.
3050 * If lookup is successful and result shows packet is to be
3051 * forwarded, the neighbor tables are searched for the nexthop.
3052 * If successful (ie., FIB lookup shows forwarding and nexthop
3053 * is resolved), the nexthop address is returned in ipv4_dst
3054 * or ipv6_dst based on family, smac is set to mac address of
3055 * egress device, dmac is set to nexthop mac address, rt_metric
3056 * is set to metric from route (IPv4/IPv6 only), and ifindex
3057 * is set to the device index of the nexthop from the FIB lookup.
3059 * *plen* argument is the size of the passed in struct.
3060 * *flags* argument can be a combination of one or more of the
3063 * **BPF_FIB_LOOKUP_DIRECT**
3064 * Do a direct table lookup vs full lookup using FIB
3066 * **BPF_FIB_LOOKUP_OUTPUT**
3067 * Perform lookup from an egress perspective (default is
3070 * *ctx* is either **struct xdp_md** for XDP programs or
3071 * **struct sk_buff** tc cls_act programs.
3073 * * < 0 if any input argument is invalid
3074 * * 0 on success (packet is forwarded, nexthop neighbor exists)
3075 * * > 0 one of **BPF_FIB_LKUP_RET_** codes explaining why the
3076 * packet is not forwarded or needs assist from full stack
3078 * If lookup fails with BPF_FIB_LKUP_RET_FRAG_NEEDED, then the MTU
3079 * was exceeded and output params->mtu_result contains the MTU.
3081 * long bpf_sock_hash_update(struct bpf_sock_ops *skops, struct bpf_map *map, void *key, u64 flags)
3083 * Add an entry to, or update a sockhash *map* referencing sockets.
3084 * The *skops* is used as a new value for the entry associated to
3085 * *key*. *flags* is one of:
3088 * The entry for *key* must not exist in the map.
3090 * The entry for *key* must already exist in the map.
3092 * No condition on the existence of the entry for *key*.
3094 * If the *map* has eBPF programs (parser and verdict), those will
3095 * be inherited by the socket being added. If the socket is
3096 * already attached to eBPF programs, this results in an error.
3098 * 0 on success, or a negative error in case of failure.
3100 * long bpf_msg_redirect_hash(struct sk_msg_buff *msg, struct bpf_map *map, void *key, u64 flags)
3102 * This helper is used in programs implementing policies at the
3103 * socket level. If the message *msg* is allowed to pass (i.e. if
3104 * the verdict eBPF program returns **SK_PASS**), redirect it to
3105 * the socket referenced by *map* (of type
3106 * **BPF_MAP_TYPE_SOCKHASH**) using hash *key*. Both ingress and
3107 * egress interfaces can be used for redirection. The
3108 * **BPF_F_INGRESS** value in *flags* is used to make the
3109 * distinction (ingress path is selected if the flag is present,
3110 * egress path otherwise). This is the only flag supported for now.
3112 * **SK_PASS** on success, or **SK_DROP** on error.
3114 * long bpf_sk_redirect_hash(struct sk_buff *skb, struct bpf_map *map, void *key, u64 flags)
3116 * This helper is used in programs implementing policies at the
3117 * skb socket level. If the sk_buff *skb* is allowed to pass (i.e.
3118 * if the verdict eBPF program returns **SK_PASS**), redirect it
3119 * to the socket referenced by *map* (of type
3120 * **BPF_MAP_TYPE_SOCKHASH**) using hash *key*. Both ingress and
3121 * egress interfaces can be used for redirection. The
3122 * **BPF_F_INGRESS** value in *flags* is used to make the
3123 * distinction (ingress path is selected if the flag is present,
3124 * egress otherwise). This is the only flag supported for now.
3126 * **SK_PASS** on success, or **SK_DROP** on error.
3128 * long bpf_lwt_push_encap(struct sk_buff *skb, u32 type, void *hdr, u32 len)
3130 * Encapsulate the packet associated to *skb* within a Layer 3
3131 * protocol header. This header is provided in the buffer at
3132 * address *hdr*, with *len* its size in bytes. *type* indicates
3133 * the protocol of the header and can be one of:
3135 * **BPF_LWT_ENCAP_SEG6**
3136 * IPv6 encapsulation with Segment Routing Header
3137 * (**struct ipv6_sr_hdr**). *hdr* only contains the SRH,
3138 * the IPv6 header is computed by the kernel.
3139 * **BPF_LWT_ENCAP_SEG6_INLINE**
3140 * Only works if *skb* contains an IPv6 packet. Insert a
3141 * Segment Routing Header (**struct ipv6_sr_hdr**) inside
3143 * **BPF_LWT_ENCAP_IP**
3144 * IP encapsulation (GRE/GUE/IPIP/etc). The outer header
3145 * must be IPv4 or IPv6, followed by zero or more
3146 * additional headers, up to **LWT_BPF_MAX_HEADROOM**
3147 * total bytes in all prepended headers. Please note that
3148 * if **skb_is_gso**\ (*skb*) is true, no more than two
3149 * headers can be prepended, and the inner header, if
3150 * present, should be either GRE or UDP/GUE.
3152 * **BPF_LWT_ENCAP_SEG6**\ \* types can be called by BPF programs
3153 * of type **BPF_PROG_TYPE_LWT_IN**; **BPF_LWT_ENCAP_IP** type can
3154 * be called by bpf programs of types **BPF_PROG_TYPE_LWT_IN** and
3155 * **BPF_PROG_TYPE_LWT_XMIT**.
3157 * A call to this helper is susceptible to change the underlying
3158 * packet buffer. Therefore, at load time, all checks on pointers
3159 * previously done by the verifier are invalidated and must be
3160 * performed again, if the helper is used in combination with
3161 * direct packet access.
3163 * 0 on success, or a negative error in case of failure.
3165 * long bpf_lwt_seg6_store_bytes(struct sk_buff *skb, u32 offset, const void *from, u32 len)
3167 * Store *len* bytes from address *from* into the packet
3168 * associated to *skb*, at *offset*. Only the flags, tag and TLVs
3169 * inside the outermost IPv6 Segment Routing Header can be
3170 * modified through this helper.
3172 * A call to this helper is susceptible to change the underlying
3173 * packet buffer. Therefore, at load time, all checks on pointers
3174 * previously done by the verifier are invalidated and must be
3175 * performed again, if the helper is used in combination with
3176 * direct packet access.
3178 * 0 on success, or a negative error in case of failure.
3180 * long bpf_lwt_seg6_adjust_srh(struct sk_buff *skb, u32 offset, s32 delta)
3182 * Adjust the size allocated to TLVs in the outermost IPv6
3183 * Segment Routing Header contained in the packet associated to
3184 * *skb*, at position *offset* by *delta* bytes. Only offsets
3185 * after the segments are accepted. *delta* can be as well
3186 * positive (growing) as negative (shrinking).
3188 * A call to this helper is susceptible to change the underlying
3189 * packet buffer. Therefore, at load time, all checks on pointers
3190 * previously done by the verifier are invalidated and must be
3191 * performed again, if the helper is used in combination with
3192 * direct packet access.
3194 * 0 on success, or a negative error in case of failure.
3196 * long bpf_lwt_seg6_action(struct sk_buff *skb, u32 action, void *param, u32 param_len)
3198 * Apply an IPv6 Segment Routing action of type *action* to the
3199 * packet associated to *skb*. Each action takes a parameter
3200 * contained at address *param*, and of length *param_len* bytes.
3201 * *action* can be one of:
3203 * **SEG6_LOCAL_ACTION_END_X**
3204 * End.X action: Endpoint with Layer-3 cross-connect.
3205 * Type of *param*: **struct in6_addr**.
3206 * **SEG6_LOCAL_ACTION_END_T**
3207 * End.T action: Endpoint with specific IPv6 table lookup.
3208 * Type of *param*: **int**.
3209 * **SEG6_LOCAL_ACTION_END_B6**
3210 * End.B6 action: Endpoint bound to an SRv6 policy.
3211 * Type of *param*: **struct ipv6_sr_hdr**.
3212 * **SEG6_LOCAL_ACTION_END_B6_ENCAP**
3213 * End.B6.Encap action: Endpoint bound to an SRv6
3214 * encapsulation policy.
3215 * Type of *param*: **struct ipv6_sr_hdr**.
3217 * A call to this helper is susceptible to change the underlying
3218 * packet buffer. Therefore, at load time, all checks on pointers
3219 * previously done by the verifier are invalidated and must be
3220 * performed again, if the helper is used in combination with
3221 * direct packet access.
3223 * 0 on success, or a negative error in case of failure.
3225 * long bpf_rc_repeat(void *ctx)
3227 * This helper is used in programs implementing IR decoding, to
3228 * report a successfully decoded repeat key message. This delays
3229 * the generation of a key up event for previously generated
3232 * Some IR protocols like NEC have a special IR message for
3233 * repeating last button, for when a button is held down.
3235 * The *ctx* should point to the lirc sample as passed into
3238 * This helper is only available is the kernel was compiled with
3239 * the **CONFIG_BPF_LIRC_MODE2** configuration option set to
3244 * long bpf_rc_keydown(void *ctx, u32 protocol, u64 scancode, u32 toggle)
3246 * This helper is used in programs implementing IR decoding, to
3247 * report a successfully decoded key press with *scancode*,
3248 * *toggle* value in the given *protocol*. The scancode will be
3249 * translated to a keycode using the rc keymap, and reported as
3250 * an input key down event. After a period a key up event is
3251 * generated. This period can be extended by calling either
3252 * **bpf_rc_keydown**\ () again with the same values, or calling
3253 * **bpf_rc_repeat**\ ().
3255 * Some protocols include a toggle bit, in case the button was
3256 * released and pressed again between consecutive scancodes.
3258 * The *ctx* should point to the lirc sample as passed into
3261 * The *protocol* is the decoded protocol number (see
3262 * **enum rc_proto** for some predefined values).
3264 * This helper is only available is the kernel was compiled with
3265 * the **CONFIG_BPF_LIRC_MODE2** configuration option set to
3270 * u64 bpf_skb_cgroup_id(struct sk_buff *skb)
3272 * Return the cgroup v2 id of the socket associated with the *skb*.
3273 * This is roughly similar to the **bpf_get_cgroup_classid**\ ()
3274 * helper for cgroup v1 by providing a tag resp. identifier that
3275 * can be matched on or used for map lookups e.g. to implement
3276 * policy. The cgroup v2 id of a given path in the hierarchy is
3277 * exposed in user space through the f_handle API in order to get
3278 * to the same 64-bit id.
3280 * This helper can be used on TC egress path, but not on ingress,
3281 * and is available only if the kernel was compiled with the
3282 * **CONFIG_SOCK_CGROUP_DATA** configuration option.
3284 * The id is returned or 0 in case the id could not be retrieved.
3286 * u64 bpf_get_current_cgroup_id(void)
3288 * Get the current cgroup id based on the cgroup within which
3289 * the current task is running.
3291 * A 64-bit integer containing the current cgroup id based
3292 * on the cgroup within which the current task is running.
3294 * void *bpf_get_local_storage(void *map, u64 flags)
3296 * Get the pointer to the local storage area.
3297 * The type and the size of the local storage is defined
3298 * by the *map* argument.
3299 * The *flags* meaning is specific for each map type,
3300 * and has to be 0 for cgroup local storage.
3302 * Depending on the BPF program type, a local storage area
3303 * can be shared between multiple instances of the BPF program,
3304 * running simultaneously.
3306 * A user should care about the synchronization by himself.
3307 * For example, by using the **BPF_ATOMIC** instructions to alter
3310 * A pointer to the local storage area.
3312 * long bpf_sk_select_reuseport(struct sk_reuseport_md *reuse, struct bpf_map *map, void *key, u64 flags)
3314 * Select a **SO_REUSEPORT** socket from a
3315 * **BPF_MAP_TYPE_REUSEPORT_SOCKARRAY** *map*.
3316 * It checks the selected socket is matching the incoming
3317 * request in the socket buffer.
3319 * 0 on success, or a negative error in case of failure.
3321 * u64 bpf_skb_ancestor_cgroup_id(struct sk_buff *skb, int ancestor_level)
3323 * Return id of cgroup v2 that is ancestor of cgroup associated
3324 * with the *skb* at the *ancestor_level*. The root cgroup is at
3325 * *ancestor_level* zero and each step down the hierarchy
3326 * increments the level. If *ancestor_level* == level of cgroup
3327 * associated with *skb*, then return value will be same as that
3328 * of **bpf_skb_cgroup_id**\ ().
3330 * The helper is useful to implement policies based on cgroups
3331 * that are upper in hierarchy than immediate cgroup associated
3334 * The format of returned id and helper limitations are same as in
3335 * **bpf_skb_cgroup_id**\ ().
3337 * The id is returned or 0 in case the id could not be retrieved.
3339 * struct bpf_sock *bpf_sk_lookup_tcp(void *ctx, struct bpf_sock_tuple *tuple, u32 tuple_size, u64 netns, u64 flags)
3341 * Look for TCP socket matching *tuple*, optionally in a child
3342 * network namespace *netns*. The return value must be checked,
3343 * and if non-**NULL**, released via **bpf_sk_release**\ ().
3345 * The *ctx* should point to the context of the program, such as
3346 * the skb or socket (depending on the hook in use). This is used
3347 * to determine the base network namespace for the lookup.
3349 * *tuple_size* must be one of:
3351 * **sizeof**\ (*tuple*\ **->ipv4**)
3352 * Look for an IPv4 socket.
3353 * **sizeof**\ (*tuple*\ **->ipv6**)
3354 * Look for an IPv6 socket.
3356 * If the *netns* is a negative signed 32-bit integer, then the
3357 * socket lookup table in the netns associated with the *ctx*
3358 * will be used. For the TC hooks, this is the netns of the device
3359 * in the skb. For socket hooks, this is the netns of the socket.
3360 * If *netns* is any other signed 32-bit value greater than or
3361 * equal to zero then it specifies the ID of the netns relative to
3362 * the netns associated with the *ctx*. *netns* values beyond the
3363 * range of 32-bit integers are reserved for future use.
3365 * All values for *flags* are reserved for future usage, and must
3368 * This helper is available only if the kernel was compiled with
3369 * **CONFIG_NET** configuration option.
3371 * Pointer to **struct bpf_sock**, or **NULL** in case of failure.
3372 * For sockets with reuseport option, the **struct bpf_sock**
3373 * result is from *reuse*\ **->socks**\ [] using the hash of the
3376 * struct bpf_sock *bpf_sk_lookup_udp(void *ctx, struct bpf_sock_tuple *tuple, u32 tuple_size, u64 netns, u64 flags)
3378 * Look for UDP socket matching *tuple*, optionally in a child
3379 * network namespace *netns*. The return value must be checked,
3380 * and if non-**NULL**, released via **bpf_sk_release**\ ().
3382 * The *ctx* should point to the context of the program, such as
3383 * the skb or socket (depending on the hook in use). This is used
3384 * to determine the base network namespace for the lookup.
3386 * *tuple_size* must be one of:
3388 * **sizeof**\ (*tuple*\ **->ipv4**)
3389 * Look for an IPv4 socket.
3390 * **sizeof**\ (*tuple*\ **->ipv6**)
3391 * Look for an IPv6 socket.
3393 * If the *netns* is a negative signed 32-bit integer, then the
3394 * socket lookup table in the netns associated with the *ctx*
3395 * will be used. For the TC hooks, this is the netns of the device
3396 * in the skb. For socket hooks, this is the netns of the socket.
3397 * If *netns* is any other signed 32-bit value greater than or
3398 * equal to zero then it specifies the ID of the netns relative to
3399 * the netns associated with the *ctx*. *netns* values beyond the
3400 * range of 32-bit integers are reserved for future use.
3402 * All values for *flags* are reserved for future usage, and must
3405 * This helper is available only if the kernel was compiled with
3406 * **CONFIG_NET** configuration option.
3408 * Pointer to **struct bpf_sock**, or **NULL** in case of failure.
3409 * For sockets with reuseport option, the **struct bpf_sock**
3410 * result is from *reuse*\ **->socks**\ [] using the hash of the
3413 * long bpf_sk_release(void *sock)
3415 * Release the reference held by *sock*. *sock* must be a
3416 * non-**NULL** pointer that was returned from
3417 * **bpf_sk_lookup_xxx**\ ().
3419 * 0 on success, or a negative error in case of failure.
3421 * long bpf_map_push_elem(struct bpf_map *map, const void *value, u64 flags)
3423 * Push an element *value* in *map*. *flags* is one of:
3426 * If the queue/stack is full, the oldest element is
3427 * removed to make room for this.
3429 * 0 on success, or a negative error in case of failure.
3431 * long bpf_map_pop_elem(struct bpf_map *map, void *value)
3433 * Pop an element from *map*.
3435 * 0 on success, or a negative error in case of failure.
3437 * long bpf_map_peek_elem(struct bpf_map *map, void *value)
3439 * Get an element from *map* without removing it.
3441 * 0 on success, or a negative error in case of failure.
3443 * long bpf_msg_push_data(struct sk_msg_buff *msg, u32 start, u32 len, u64 flags)
3445 * For socket policies, insert *len* bytes into *msg* at offset
3448 * If a program of type **BPF_PROG_TYPE_SK_MSG** is run on a
3449 * *msg* it may want to insert metadata or options into the *msg*.
3450 * This can later be read and used by any of the lower layer BPF
3453 * This helper may fail if under memory pressure (a malloc
3454 * fails) in these cases BPF programs will get an appropriate
3455 * error and BPF programs will need to handle them.
3457 * 0 on success, or a negative error in case of failure.
3459 * long bpf_msg_pop_data(struct sk_msg_buff *msg, u32 start, u32 len, u64 flags)
3461 * Will remove *len* bytes from a *msg* starting at byte *start*.
3462 * This may result in **ENOMEM** errors under certain situations if
3463 * an allocation and copy are required due to a full ring buffer.
3464 * However, the helper will try to avoid doing the allocation
3465 * if possible. Other errors can occur if input parameters are
3466 * invalid either due to *start* byte not being valid part of *msg*
3467 * payload and/or *pop* value being to large.
3469 * 0 on success, or a negative error in case of failure.
3471 * long bpf_rc_pointer_rel(void *ctx, s32 rel_x, s32 rel_y)
3473 * This helper is used in programs implementing IR decoding, to
3474 * report a successfully decoded pointer movement.
3476 * The *ctx* should point to the lirc sample as passed into
3479 * This helper is only available is the kernel was compiled with
3480 * the **CONFIG_BPF_LIRC_MODE2** configuration option set to
3485 * long bpf_spin_lock(struct bpf_spin_lock *lock)
3487 * Acquire a spinlock represented by the pointer *lock*, which is
3488 * stored as part of a value of a map. Taking the lock allows to
3489 * safely update the rest of the fields in that value. The
3490 * spinlock can (and must) later be released with a call to
3491 * **bpf_spin_unlock**\ (\ *lock*\ ).
3493 * Spinlocks in BPF programs come with a number of restrictions
3496 * * **bpf_spin_lock** objects are only allowed inside maps of
3497 * types **BPF_MAP_TYPE_HASH** and **BPF_MAP_TYPE_ARRAY** (this
3498 * list could be extended in the future).
3499 * * BTF description of the map is mandatory.
3500 * * The BPF program can take ONE lock at a time, since taking two
3501 * or more could cause dead locks.
3502 * * Only one **struct bpf_spin_lock** is allowed per map element.
3503 * * When the lock is taken, calls (either BPF to BPF or helpers)
3505 * * The **BPF_LD_ABS** and **BPF_LD_IND** instructions are not
3506 * allowed inside a spinlock-ed region.
3507 * * The BPF program MUST call **bpf_spin_unlock**\ () to release
3508 * the lock, on all execution paths, before it returns.
3509 * * The BPF program can access **struct bpf_spin_lock** only via
3510 * the **bpf_spin_lock**\ () and **bpf_spin_unlock**\ ()
3511 * helpers. Loading or storing data into the **struct
3512 * bpf_spin_lock** *lock*\ **;** field of a map is not allowed.
3513 * * To use the **bpf_spin_lock**\ () helper, the BTF description
3514 * of the map value must be a struct and have **struct
3515 * bpf_spin_lock** *anyname*\ **;** field at the top level.
3516 * Nested lock inside another struct is not allowed.
3517 * * The **struct bpf_spin_lock** *lock* field in a map value must
3518 * be aligned on a multiple of 4 bytes in that value.
3519 * * Syscall with command **BPF_MAP_LOOKUP_ELEM** does not copy
3520 * the **bpf_spin_lock** field to user space.
3521 * * Syscall with command **BPF_MAP_UPDATE_ELEM**, or update from
3522 * a BPF program, do not update the **bpf_spin_lock** field.
3523 * * **bpf_spin_lock** cannot be on the stack or inside a
3524 * networking packet (it can only be inside of a map values).
3525 * * **bpf_spin_lock** is available to root only.
3526 * * Tracing programs and socket filter programs cannot use
3527 * **bpf_spin_lock**\ () due to insufficient preemption checks
3528 * (but this may change in the future).
3529 * * **bpf_spin_lock** is not allowed in inner maps of map-in-map.
3533 * long bpf_spin_unlock(struct bpf_spin_lock *lock)
3535 * Release the *lock* previously locked by a call to
3536 * **bpf_spin_lock**\ (\ *lock*\ ).
3540 * struct bpf_sock *bpf_sk_fullsock(struct bpf_sock *sk)
3542 * This helper gets a **struct bpf_sock** pointer such
3543 * that all the fields in this **bpf_sock** can be accessed.
3545 * A **struct bpf_sock** pointer on success, or **NULL** in
3548 * struct bpf_tcp_sock *bpf_tcp_sock(struct bpf_sock *sk)
3550 * This helper gets a **struct bpf_tcp_sock** pointer from a
3551 * **struct bpf_sock** pointer.
3553 * A **struct bpf_tcp_sock** pointer on success, or **NULL** in
3556 * long bpf_skb_ecn_set_ce(struct sk_buff *skb)
3558 * Set ECN (Explicit Congestion Notification) field of IP header
3559 * to **CE** (Congestion Encountered) if current value is **ECT**
3560 * (ECN Capable Transport). Otherwise, do nothing. Works with IPv6
3563 * 1 if the **CE** flag is set (either by the current helper call
3564 * or because it was already present), 0 if it is not set.
3566 * struct bpf_sock *bpf_get_listener_sock(struct bpf_sock *sk)
3568 * Return a **struct bpf_sock** pointer in **TCP_LISTEN** state.
3569 * **bpf_sk_release**\ () is unnecessary and not allowed.
3571 * A **struct bpf_sock** pointer on success, or **NULL** in
3574 * struct bpf_sock *bpf_skc_lookup_tcp(void *ctx, struct bpf_sock_tuple *tuple, u32 tuple_size, u64 netns, u64 flags)
3576 * Look for TCP socket matching *tuple*, optionally in a child
3577 * network namespace *netns*. The return value must be checked,
3578 * and if non-**NULL**, released via **bpf_sk_release**\ ().
3580 * This function is identical to **bpf_sk_lookup_tcp**\ (), except
3581 * that it also returns timewait or request sockets. Use
3582 * **bpf_sk_fullsock**\ () or **bpf_tcp_sock**\ () to access the
3585 * This helper is available only if the kernel was compiled with
3586 * **CONFIG_NET** configuration option.
3588 * Pointer to **struct bpf_sock**, or **NULL** in case of failure.
3589 * For sockets with reuseport option, the **struct bpf_sock**
3590 * result is from *reuse*\ **->socks**\ [] using the hash of the
3593 * long bpf_tcp_check_syncookie(void *sk, void *iph, u32 iph_len, struct tcphdr *th, u32 th_len)
3595 * Check whether *iph* and *th* contain a valid SYN cookie ACK for
3596 * the listening socket in *sk*.
3598 * *iph* points to the start of the IPv4 or IPv6 header, while
3599 * *iph_len* contains **sizeof**\ (**struct iphdr**) or
3600 * **sizeof**\ (**struct ip6hdr**).
3602 * *th* points to the start of the TCP header, while *th_len*
3603 * contains **sizeof**\ (**struct tcphdr**).
3605 * 0 if *iph* and *th* are a valid SYN cookie ACK, or a negative
3608 * long bpf_sysctl_get_name(struct bpf_sysctl *ctx, char *buf, size_t buf_len, u64 flags)
3610 * Get name of sysctl in /proc/sys/ and copy it into provided by
3611 * program buffer *buf* of size *buf_len*.
3613 * The buffer is always NUL terminated, unless it's zero-sized.
3615 * If *flags* is zero, full name (e.g. "net/ipv4/tcp_mem") is
3616 * copied. Use **BPF_F_SYSCTL_BASE_NAME** flag to copy base name
3617 * only (e.g. "tcp_mem").
3619 * Number of character copied (not including the trailing NUL).
3621 * **-E2BIG** if the buffer wasn't big enough (*buf* will contain
3622 * truncated name in this case).
3624 * long bpf_sysctl_get_current_value(struct bpf_sysctl *ctx, char *buf, size_t buf_len)
3626 * Get current value of sysctl as it is presented in /proc/sys
3627 * (incl. newline, etc), and copy it as a string into provided
3628 * by program buffer *buf* of size *buf_len*.
3630 * The whole value is copied, no matter what file position user
3631 * space issued e.g. sys_read at.
3633 * The buffer is always NUL terminated, unless it's zero-sized.
3635 * Number of character copied (not including the trailing NUL).
3637 * **-E2BIG** if the buffer wasn't big enough (*buf* will contain
3638 * truncated name in this case).
3640 * **-EINVAL** if current value was unavailable, e.g. because
3641 * sysctl is uninitialized and read returns -EIO for it.
3643 * long bpf_sysctl_get_new_value(struct bpf_sysctl *ctx, char *buf, size_t buf_len)
3645 * Get new value being written by user space to sysctl (before
3646 * the actual write happens) and copy it as a string into
3647 * provided by program buffer *buf* of size *buf_len*.
3649 * User space may write new value at file position > 0.
3651 * The buffer is always NUL terminated, unless it's zero-sized.
3653 * Number of character copied (not including the trailing NUL).
3655 * **-E2BIG** if the buffer wasn't big enough (*buf* will contain
3656 * truncated name in this case).
3658 * **-EINVAL** if sysctl is being read.
3660 * long bpf_sysctl_set_new_value(struct bpf_sysctl *ctx, const char *buf, size_t buf_len)
3662 * Override new value being written by user space to sysctl with
3663 * value provided by program in buffer *buf* of size *buf_len*.
3665 * *buf* should contain a string in same form as provided by user
3666 * space on sysctl write.
3668 * User space may write new value at file position > 0. To override
3669 * the whole sysctl value file position should be set to zero.
3673 * **-E2BIG** if the *buf_len* is too big.
3675 * **-EINVAL** if sysctl is being read.
3677 * long bpf_strtol(const char *buf, size_t buf_len, u64 flags, long *res)
3679 * Convert the initial part of the string from buffer *buf* of
3680 * size *buf_len* to a long integer according to the given base
3681 * and save the result in *res*.
3683 * The string may begin with an arbitrary amount of white space
3684 * (as determined by **isspace**\ (3)) followed by a single
3685 * optional '**-**' sign.
3687 * Five least significant bits of *flags* encode base, other bits
3688 * are currently unused.
3690 * Base must be either 8, 10, 16 or 0 to detect it automatically
3691 * similar to user space **strtol**\ (3).
3693 * Number of characters consumed on success. Must be positive but
3694 * no more than *buf_len*.
3696 * **-EINVAL** if no valid digits were found or unsupported base
3699 * **-ERANGE** if resulting value was out of range.
3701 * long bpf_strtoul(const char *buf, size_t buf_len, u64 flags, unsigned long *res)
3703 * Convert the initial part of the string from buffer *buf* of
3704 * size *buf_len* to an unsigned long integer according to the
3705 * given base and save the result in *res*.
3707 * The string may begin with an arbitrary amount of white space
3708 * (as determined by **isspace**\ (3)).
3710 * Five least significant bits of *flags* encode base, other bits
3711 * are currently unused.
3713 * Base must be either 8, 10, 16 or 0 to detect it automatically
3714 * similar to user space **strtoul**\ (3).
3716 * Number of characters consumed on success. Must be positive but
3717 * no more than *buf_len*.
3719 * **-EINVAL** if no valid digits were found or unsupported base
3722 * **-ERANGE** if resulting value was out of range.
3724 * void *bpf_sk_storage_get(struct bpf_map *map, void *sk, void *value, u64 flags)
3726 * Get a bpf-local-storage from a *sk*.
3728 * Logically, it could be thought of getting the value from
3729 * a *map* with *sk* as the **key**. From this
3730 * perspective, the usage is not much different from
3731 * **bpf_map_lookup_elem**\ (*map*, **&**\ *sk*) except this
3732 * helper enforces the key must be a full socket and the map must
3733 * be a **BPF_MAP_TYPE_SK_STORAGE** also.
3735 * Underneath, the value is stored locally at *sk* instead of
3736 * the *map*. The *map* is used as the bpf-local-storage
3737 * "type". The bpf-local-storage "type" (i.e. the *map*) is
3738 * searched against all bpf-local-storages residing at *sk*.
3740 * *sk* is a kernel **struct sock** pointer for LSM program.
3741 * *sk* is a **struct bpf_sock** pointer for other program types.
3743 * An optional *flags* (**BPF_SK_STORAGE_GET_F_CREATE**) can be
3744 * used such that a new bpf-local-storage will be
3745 * created if one does not exist. *value* can be used
3746 * together with **BPF_SK_STORAGE_GET_F_CREATE** to specify
3747 * the initial value of a bpf-local-storage. If *value* is
3748 * **NULL**, the new bpf-local-storage will be zero initialized.
3750 * A bpf-local-storage pointer is returned on success.
3752 * **NULL** if not found or there was an error in adding
3753 * a new bpf-local-storage.
3755 * long bpf_sk_storage_delete(struct bpf_map *map, void *sk)
3757 * Delete a bpf-local-storage from a *sk*.
3761 * **-ENOENT** if the bpf-local-storage cannot be found.
3762 * **-EINVAL** if sk is not a fullsock (e.g. a request_sock).
3764 * long bpf_send_signal(u32 sig)
3766 * Send signal *sig* to the process of the current task.
3767 * The signal may be delivered to any of this process's threads.
3769 * 0 on success or successfully queued.
3771 * **-EBUSY** if work queue under nmi is full.
3773 * **-EINVAL** if *sig* is invalid.
3775 * **-EPERM** if no permission to send the *sig*.
3777 * **-EAGAIN** if bpf program can try again.
3779 * s64 bpf_tcp_gen_syncookie(void *sk, void *iph, u32 iph_len, struct tcphdr *th, u32 th_len)
3781 * Try to issue a SYN cookie for the packet with corresponding
3782 * IP/TCP headers, *iph* and *th*, on the listening socket in *sk*.
3784 * *iph* points to the start of the IPv4 or IPv6 header, while
3785 * *iph_len* contains **sizeof**\ (**struct iphdr**) or
3786 * **sizeof**\ (**struct ip6hdr**).
3788 * *th* points to the start of the TCP header, while *th_len*
3789 * contains the length of the TCP header.
3791 * On success, lower 32 bits hold the generated SYN cookie in
3792 * followed by 16 bits which hold the MSS value for that cookie,
3793 * and the top 16 bits are unused.
3795 * On failure, the returned value is one of the following:
3797 * **-EINVAL** SYN cookie cannot be issued due to error
3799 * **-ENOENT** SYN cookie should not be issued (no SYN flood)
3801 * **-EOPNOTSUPP** kernel configuration does not enable SYN cookies
3803 * **-EPROTONOSUPPORT** IP packet version is not 4 or 6
3805 * long bpf_skb_output(void *ctx, struct bpf_map *map, u64 flags, void *data, u64 size)
3807 * Write raw *data* blob into a special BPF perf event held by
3808 * *map* of type **BPF_MAP_TYPE_PERF_EVENT_ARRAY**. This perf
3809 * event must have the following attributes: **PERF_SAMPLE_RAW**
3810 * as **sample_type**, **PERF_TYPE_SOFTWARE** as **type**, and
3811 * **PERF_COUNT_SW_BPF_OUTPUT** as **config**.
3813 * The *flags* are used to indicate the index in *map* for which
3814 * the value must be put, masked with **BPF_F_INDEX_MASK**.
3815 * Alternatively, *flags* can be set to **BPF_F_CURRENT_CPU**
3816 * to indicate that the index of the current CPU core should be
3819 * The value to write, of *size*, is passed through eBPF stack and
3820 * pointed by *data*.
3822 * *ctx* is a pointer to in-kernel struct sk_buff.
3824 * This helper is similar to **bpf_perf_event_output**\ () but
3825 * restricted to raw_tracepoint bpf programs.
3827 * 0 on success, or a negative error in case of failure.
3829 * long bpf_probe_read_user(void *dst, u32 size, const void *unsafe_ptr)
3831 * Safely attempt to read *size* bytes from user space address
3832 * *unsafe_ptr* and store the data in *dst*.
3834 * 0 on success, or a negative error in case of failure.
3836 * long bpf_probe_read_kernel(void *dst, u32 size, const void *unsafe_ptr)
3838 * Safely attempt to read *size* bytes from kernel space address
3839 * *unsafe_ptr* and store the data in *dst*.
3841 * 0 on success, or a negative error in case of failure.
3843 * long bpf_probe_read_user_str(void *dst, u32 size, const void *unsafe_ptr)
3845 * Copy a NUL terminated string from an unsafe user address
3846 * *unsafe_ptr* to *dst*. The *size* should include the
3847 * terminating NUL byte. In case the string length is smaller than
3848 * *size*, the target is not padded with further NUL bytes. If the
3849 * string length is larger than *size*, just *size*-1 bytes are
3850 * copied and the last byte is set to NUL.
3852 * On success, returns the number of bytes that were written,
3853 * including the terminal NUL. This makes this helper useful in
3854 * tracing programs for reading strings, and more importantly to
3855 * get its length at runtime. See the following snippet:
3859 * SEC("kprobe/sys_open")
3860 * void bpf_sys_open(struct pt_regs *ctx)
3862 * char buf[PATHLEN]; // PATHLEN is defined to 256
3863 * int res = bpf_probe_read_user_str(buf, sizeof(buf),
3866 * // Consume buf, for example push it to
3867 * // userspace via bpf_perf_event_output(); we
3868 * // can use res (the string length) as event
3869 * // size, after checking its boundaries.
3872 * In comparison, using **bpf_probe_read_user**\ () helper here
3873 * instead to read the string would require to estimate the length
3874 * at compile time, and would often result in copying more memory
3877 * Another useful use case is when parsing individual process
3878 * arguments or individual environment variables navigating
3879 * *current*\ **->mm->arg_start** and *current*\
3880 * **->mm->env_start**: using this helper and the return value,
3881 * one can quickly iterate at the right offset of the memory area.
3883 * On success, the strictly positive length of the output string,
3884 * including the trailing NUL character. On error, a negative
3887 * long bpf_probe_read_kernel_str(void *dst, u32 size, const void *unsafe_ptr)
3889 * Copy a NUL terminated string from an unsafe kernel address *unsafe_ptr*
3890 * to *dst*. Same semantics as with **bpf_probe_read_user_str**\ () apply.
3892 * On success, the strictly positive length of the string, including
3893 * the trailing NUL character. On error, a negative value.
3895 * long bpf_tcp_send_ack(void *tp, u32 rcv_nxt)
3897 * Send out a tcp-ack. *tp* is the in-kernel struct **tcp_sock**.
3898 * *rcv_nxt* is the ack_seq to be sent out.
3900 * 0 on success, or a negative error in case of failure.
3902 * long bpf_send_signal_thread(u32 sig)
3904 * Send signal *sig* to the thread corresponding to the current task.
3906 * 0 on success or successfully queued.
3908 * **-EBUSY** if work queue under nmi is full.
3910 * **-EINVAL** if *sig* is invalid.
3912 * **-EPERM** if no permission to send the *sig*.
3914 * **-EAGAIN** if bpf program can try again.
3916 * u64 bpf_jiffies64(void)
3918 * Obtain the 64bit jiffies
3920 * The 64 bit jiffies
3922 * long bpf_read_branch_records(struct bpf_perf_event_data *ctx, void *buf, u32 size, u64 flags)
3924 * For an eBPF program attached to a perf event, retrieve the
3925 * branch records (**struct perf_branch_entry**) associated to *ctx*
3926 * and store it in the buffer pointed by *buf* up to size
3929 * On success, number of bytes written to *buf*. On error, a
3932 * The *flags* can be set to **BPF_F_GET_BRANCH_RECORDS_SIZE** to
3933 * instead return the number of bytes required to store all the
3934 * branch entries. If this flag is set, *buf* may be NULL.
3936 * **-EINVAL** if arguments invalid or **size** not a multiple
3937 * of **sizeof**\ (**struct perf_branch_entry**\ ).
3939 * **-ENOENT** if architecture does not support branch records.
3941 * long bpf_get_ns_current_pid_tgid(u64 dev, u64 ino, struct bpf_pidns_info *nsdata, u32 size)
3943 * Returns 0 on success, values for *pid* and *tgid* as seen from the current
3944 * *namespace* will be returned in *nsdata*.
3946 * 0 on success, or one of the following in case of failure:
3948 * **-EINVAL** if dev and inum supplied don't match dev_t and inode number
3949 * with nsfs of current task, or if dev conversion to dev_t lost high bits.
3951 * **-ENOENT** if pidns does not exists for the current task.
3953 * long bpf_xdp_output(void *ctx, struct bpf_map *map, u64 flags, void *data, u64 size)
3955 * Write raw *data* blob into a special BPF perf event held by
3956 * *map* of type **BPF_MAP_TYPE_PERF_EVENT_ARRAY**. This perf
3957 * event must have the following attributes: **PERF_SAMPLE_RAW**
3958 * as **sample_type**, **PERF_TYPE_SOFTWARE** as **type**, and
3959 * **PERF_COUNT_SW_BPF_OUTPUT** as **config**.
3961 * The *flags* are used to indicate the index in *map* for which
3962 * the value must be put, masked with **BPF_F_INDEX_MASK**.
3963 * Alternatively, *flags* can be set to **BPF_F_CURRENT_CPU**
3964 * to indicate that the index of the current CPU core should be
3967 * The value to write, of *size*, is passed through eBPF stack and
3968 * pointed by *data*.
3970 * *ctx* is a pointer to in-kernel struct xdp_buff.
3972 * This helper is similar to **bpf_perf_eventoutput**\ () but
3973 * restricted to raw_tracepoint bpf programs.
3975 * 0 on success, or a negative error in case of failure.
3977 * u64 bpf_get_netns_cookie(void *ctx)
3979 * Retrieve the cookie (generated by the kernel) of the network
3980 * namespace the input *ctx* is associated with. The network
3981 * namespace cookie remains stable for its lifetime and provides
3982 * a global identifier that can be assumed unique. If *ctx* is
3983 * NULL, then the helper returns the cookie for the initial
3984 * network namespace. The cookie itself is very similar to that
3985 * of **bpf_get_socket_cookie**\ () helper, but for network
3986 * namespaces instead of sockets.
3988 * A 8-byte long opaque number.
3990 * u64 bpf_get_current_ancestor_cgroup_id(int ancestor_level)
3992 * Return id of cgroup v2 that is ancestor of the cgroup associated
3993 * with the current task at the *ancestor_level*. The root cgroup
3994 * is at *ancestor_level* zero and each step down the hierarchy
3995 * increments the level. If *ancestor_level* == level of cgroup
3996 * associated with the current task, then return value will be the
3997 * same as that of **bpf_get_current_cgroup_id**\ ().
3999 * The helper is useful to implement policies based on cgroups
4000 * that are upper in hierarchy than immediate cgroup associated
4001 * with the current task.
4003 * The format of returned id and helper limitations are same as in
4004 * **bpf_get_current_cgroup_id**\ ().
4006 * The id is returned or 0 in case the id could not be retrieved.
4008 * long bpf_sk_assign(struct sk_buff *skb, void *sk, u64 flags)
4010 * Helper is overloaded depending on BPF program type. This
4011 * description applies to **BPF_PROG_TYPE_SCHED_CLS** and
4012 * **BPF_PROG_TYPE_SCHED_ACT** programs.
4014 * Assign the *sk* to the *skb*. When combined with appropriate
4015 * routing configuration to receive the packet towards the socket,
4016 * will cause *skb* to be delivered to the specified socket.
4017 * Subsequent redirection of *skb* via **bpf_redirect**\ (),
4018 * **bpf_clone_redirect**\ () or other methods outside of BPF may
4019 * interfere with successful delivery to the socket.
4021 * This operation is only valid from TC ingress path.
4023 * The *flags* argument must be zero.
4025 * 0 on success, or a negative error in case of failure:
4027 * **-EINVAL** if specified *flags* are not supported.
4029 * **-ENOENT** if the socket is unavailable for assignment.
4031 * **-ENETUNREACH** if the socket is unreachable (wrong netns).
4033 * **-EOPNOTSUPP** if the operation is not supported, for example
4034 * a call from outside of TC ingress.
4036 * **-ESOCKTNOSUPPORT** if the socket type is not supported
4039 * long bpf_sk_assign(struct bpf_sk_lookup *ctx, struct bpf_sock *sk, u64 flags)
4041 * Helper is overloaded depending on BPF program type. This
4042 * description applies to **BPF_PROG_TYPE_SK_LOOKUP** programs.
4044 * Select the *sk* as a result of a socket lookup.
4046 * For the operation to succeed passed socket must be compatible
4047 * with the packet description provided by the *ctx* object.
4049 * L4 protocol (**IPPROTO_TCP** or **IPPROTO_UDP**) must
4050 * be an exact match. While IP family (**AF_INET** or
4051 * **AF_INET6**) must be compatible, that is IPv6 sockets
4052 * that are not v6-only can be selected for IPv4 packets.
4054 * Only TCP listeners and UDP unconnected sockets can be
4055 * selected. *sk* can also be NULL to reset any previous
4058 * *flags* argument can combination of following values:
4060 * * **BPF_SK_LOOKUP_F_REPLACE** to override the previous
4061 * socket selection, potentially done by a BPF program
4062 * that ran before us.
4064 * * **BPF_SK_LOOKUP_F_NO_REUSEPORT** to skip
4065 * load-balancing within reuseport group for the socket
4068 * On success *ctx->sk* will point to the selected socket.
4071 * 0 on success, or a negative errno in case of failure.
4073 * * **-EAFNOSUPPORT** if socket family (*sk->family*) is
4074 * not compatible with packet family (*ctx->family*).
4076 * * **-EEXIST** if socket has been already selected,
4077 * potentially by another program, and
4078 * **BPF_SK_LOOKUP_F_REPLACE** flag was not specified.
4080 * * **-EINVAL** if unsupported flags were specified.
4082 * * **-EPROTOTYPE** if socket L4 protocol
4083 * (*sk->protocol*) doesn't match packet protocol
4084 * (*ctx->protocol*).
4086 * * **-ESOCKTNOSUPPORT** if socket is not in allowed
4087 * state (TCP listening or UDP unconnected).
4089 * u64 bpf_ktime_get_boot_ns(void)
4091 * Return the time elapsed since system boot, in nanoseconds.
4092 * Does include the time the system was suspended.
4093 * See: **clock_gettime**\ (**CLOCK_BOOTTIME**)
4097 * long bpf_seq_printf(struct seq_file *m, const char *fmt, u32 fmt_size, const void *data, u32 data_len)
4099 * **bpf_seq_printf**\ () uses seq_file **seq_printf**\ () to print
4100 * out the format string.
4101 * The *m* represents the seq_file. The *fmt* and *fmt_size* are for
4102 * the format string itself. The *data* and *data_len* are format string
4103 * arguments. The *data* are a **u64** array and corresponding format string
4104 * values are stored in the array. For strings and pointers where pointees
4105 * are accessed, only the pointer values are stored in the *data* array.
4106 * The *data_len* is the size of *data* in bytes - must be a multiple of 8.
4108 * Formats **%s**, **%p{i,I}{4,6}** requires to read kernel memory.
4109 * Reading kernel memory may fail due to either invalid address or
4110 * valid address but requiring a major memory fault. If reading kernel memory
4111 * fails, the string for **%s** will be an empty string, and the ip
4112 * address for **%p{i,I}{4,6}** will be 0. Not returning error to
4113 * bpf program is consistent with what **bpf_trace_printk**\ () does for now.
4115 * 0 on success, or a negative error in case of failure:
4117 * **-EBUSY** if per-CPU memory copy buffer is busy, can try again
4118 * by returning 1 from bpf program.
4120 * **-EINVAL** if arguments are invalid, or if *fmt* is invalid/unsupported.
4122 * **-E2BIG** if *fmt* contains too many format specifiers.
4124 * **-EOVERFLOW** if an overflow happened: The same object will be tried again.
4126 * long bpf_seq_write(struct seq_file *m, const void *data, u32 len)
4128 * **bpf_seq_write**\ () uses seq_file **seq_write**\ () to write the data.
4129 * The *m* represents the seq_file. The *data* and *len* represent the
4130 * data to write in bytes.
4132 * 0 on success, or a negative error in case of failure:
4134 * **-EOVERFLOW** if an overflow happened: The same object will be tried again.
4136 * u64 bpf_sk_cgroup_id(void *sk)
4138 * Return the cgroup v2 id of the socket *sk*.
4140 * *sk* must be a non-**NULL** pointer to a socket, e.g. one
4141 * returned from **bpf_sk_lookup_xxx**\ (),
4142 * **bpf_sk_fullsock**\ (), etc. The format of returned id is
4143 * same as in **bpf_skb_cgroup_id**\ ().
4145 * This helper is available only if the kernel was compiled with
4146 * the **CONFIG_SOCK_CGROUP_DATA** configuration option.
4148 * The id is returned or 0 in case the id could not be retrieved.
4150 * u64 bpf_sk_ancestor_cgroup_id(void *sk, int ancestor_level)
4152 * Return id of cgroup v2 that is ancestor of cgroup associated
4153 * with the *sk* at the *ancestor_level*. The root cgroup is at
4154 * *ancestor_level* zero and each step down the hierarchy
4155 * increments the level. If *ancestor_level* == level of cgroup
4156 * associated with *sk*, then return value will be same as that
4157 * of **bpf_sk_cgroup_id**\ ().
4159 * The helper is useful to implement policies based on cgroups
4160 * that are upper in hierarchy than immediate cgroup associated
4163 * The format of returned id and helper limitations are same as in
4164 * **bpf_sk_cgroup_id**\ ().
4166 * The id is returned or 0 in case the id could not be retrieved.
4168 * long bpf_ringbuf_output(void *ringbuf, void *data, u64 size, u64 flags)
4170 * Copy *size* bytes from *data* into a ring buffer *ringbuf*.
4171 * If **BPF_RB_NO_WAKEUP** is specified in *flags*, no notification
4172 * of new data availability is sent.
4173 * If **BPF_RB_FORCE_WAKEUP** is specified in *flags*, notification
4174 * of new data availability is sent unconditionally.
4175 * If **0** is specified in *flags*, an adaptive notification
4176 * of new data availability is sent.
4178 * An adaptive notification is a notification sent whenever the user-space
4179 * process has caught up and consumed all available payloads. In case the user-space
4180 * process is still processing a previous payload, then no notification is needed
4181 * as it will process the newly added payload automatically.
4183 * 0 on success, or a negative error in case of failure.
4185 * void *bpf_ringbuf_reserve(void *ringbuf, u64 size, u64 flags)
4187 * Reserve *size* bytes of payload in a ring buffer *ringbuf*.
4188 * *flags* must be 0.
4190 * Valid pointer with *size* bytes of memory available; NULL,
4193 * void bpf_ringbuf_submit(void *data, u64 flags)
4195 * Submit reserved ring buffer sample, pointed to by *data*.
4196 * If **BPF_RB_NO_WAKEUP** is specified in *flags*, no notification
4197 * of new data availability is sent.
4198 * If **BPF_RB_FORCE_WAKEUP** is specified in *flags*, notification
4199 * of new data availability is sent unconditionally.
4200 * If **0** is specified in *flags*, an adaptive notification
4201 * of new data availability is sent.
4203 * See 'bpf_ringbuf_output()' for the definition of adaptive notification.
4205 * Nothing. Always succeeds.
4207 * void bpf_ringbuf_discard(void *data, u64 flags)
4209 * Discard reserved ring buffer sample, pointed to by *data*.
4210 * If **BPF_RB_NO_WAKEUP** is specified in *flags*, no notification
4211 * of new data availability is sent.
4212 * If **BPF_RB_FORCE_WAKEUP** is specified in *flags*, notification
4213 * of new data availability is sent unconditionally.
4214 * If **0** is specified in *flags*, an adaptive notification
4215 * of new data availability is sent.
4217 * See 'bpf_ringbuf_output()' for the definition of adaptive notification.
4219 * Nothing. Always succeeds.
4221 * u64 bpf_ringbuf_query(void *ringbuf, u64 flags)
4223 * Query various characteristics of provided ring buffer. What
4224 * exactly is queries is determined by *flags*:
4226 * * **BPF_RB_AVAIL_DATA**: Amount of data not yet consumed.
4227 * * **BPF_RB_RING_SIZE**: The size of ring buffer.
4228 * * **BPF_RB_CONS_POS**: Consumer position (can wrap around).
4229 * * **BPF_RB_PROD_POS**: Producer(s) position (can wrap around).
4231 * Data returned is just a momentary snapshot of actual values
4232 * and could be inaccurate, so this facility should be used to
4233 * power heuristics and for reporting, not to make 100% correct
4236 * Requested value, or 0, if *flags* are not recognized.
4238 * long bpf_csum_level(struct sk_buff *skb, u64 level)
4240 * Change the skbs checksum level by one layer up or down, or
4241 * reset it entirely to none in order to have the stack perform
4242 * checksum validation. The level is applicable to the following
4243 * protocols: TCP, UDP, GRE, SCTP, FCOE. For example, a decap of
4244 * | ETH | IP | UDP | GUE | IP | TCP | into | ETH | IP | TCP |
4245 * through **bpf_skb_adjust_room**\ () helper with passing in
4246 * **BPF_F_ADJ_ROOM_NO_CSUM_RESET** flag would require one call
4247 * to **bpf_csum_level**\ () with **BPF_CSUM_LEVEL_DEC** since
4248 * the UDP header is removed. Similarly, an encap of the latter
4249 * into the former could be accompanied by a helper call to
4250 * **bpf_csum_level**\ () with **BPF_CSUM_LEVEL_INC** if the
4251 * skb is still intended to be processed in higher layers of the
4252 * stack instead of just egressing at tc.
4254 * There are three supported level settings at this time:
4256 * * **BPF_CSUM_LEVEL_INC**: Increases skb->csum_level for skbs
4257 * with CHECKSUM_UNNECESSARY.
4258 * * **BPF_CSUM_LEVEL_DEC**: Decreases skb->csum_level for skbs
4259 * with CHECKSUM_UNNECESSARY.
4260 * * **BPF_CSUM_LEVEL_RESET**: Resets skb->csum_level to 0 and
4261 * sets CHECKSUM_NONE to force checksum validation by the stack.
4262 * * **BPF_CSUM_LEVEL_QUERY**: No-op, returns the current
4265 * 0 on success, or a negative error in case of failure. In the
4266 * case of **BPF_CSUM_LEVEL_QUERY**, the current skb->csum_level
4267 * is returned or the error code -EACCES in case the skb is not
4268 * subject to CHECKSUM_UNNECESSARY.
4270 * struct tcp6_sock *bpf_skc_to_tcp6_sock(void *sk)
4272 * Dynamically cast a *sk* pointer to a *tcp6_sock* pointer.
4274 * *sk* if casting is valid, or **NULL** otherwise.
4276 * struct tcp_sock *bpf_skc_to_tcp_sock(void *sk)
4278 * Dynamically cast a *sk* pointer to a *tcp_sock* pointer.
4280 * *sk* if casting is valid, or **NULL** otherwise.
4282 * struct tcp_timewait_sock *bpf_skc_to_tcp_timewait_sock(void *sk)
4284 * Dynamically cast a *sk* pointer to a *tcp_timewait_sock* pointer.
4286 * *sk* if casting is valid, or **NULL** otherwise.
4288 * struct tcp_request_sock *bpf_skc_to_tcp_request_sock(void *sk)
4290 * Dynamically cast a *sk* pointer to a *tcp_request_sock* pointer.
4292 * *sk* if casting is valid, or **NULL** otherwise.
4294 * struct udp6_sock *bpf_skc_to_udp6_sock(void *sk)
4296 * Dynamically cast a *sk* pointer to a *udp6_sock* pointer.
4298 * *sk* if casting is valid, or **NULL** otherwise.
4300 * long bpf_get_task_stack(struct task_struct *task, void *buf, u32 size, u64 flags)
4302 * Return a user or a kernel stack in bpf program provided buffer.
4303 * To achieve this, the helper needs *task*, which is a valid
4304 * pointer to **struct task_struct**. To store the stacktrace, the
4305 * bpf program provides *buf* with a nonnegative *size*.
4307 * The last argument, *flags*, holds the number of stack frames to
4308 * skip (from 0 to 255), masked with
4309 * **BPF_F_SKIP_FIELD_MASK**. The next bits can be used to set
4310 * the following flags:
4312 * **BPF_F_USER_STACK**
4313 * Collect a user space stack instead of a kernel stack.
4314 * **BPF_F_USER_BUILD_ID**
4315 * Collect buildid+offset instead of ips for user stack,
4316 * only valid if **BPF_F_USER_STACK** is also specified.
4318 * **bpf_get_task_stack**\ () can collect up to
4319 * **PERF_MAX_STACK_DEPTH** both kernel and user frames, subject
4320 * to sufficient large buffer size. Note that
4321 * this limit can be controlled with the **sysctl** program, and
4322 * that it should be manually increased in order to profile long
4323 * user stacks (such as stacks for Java programs). To do so, use:
4327 * # sysctl kernel.perf_event_max_stack=<new value>
4329 * The non-negative copied *buf* length equal to or less than
4330 * *size* on success, or a negative error in case of failure.
4332 * long bpf_load_hdr_opt(struct bpf_sock_ops *skops, void *searchby_res, u32 len, u64 flags)
4334 * Load header option. Support reading a particular TCP header
4335 * option for bpf program (**BPF_PROG_TYPE_SOCK_OPS**).
4337 * If *flags* is 0, it will search the option from the
4338 * *skops*\ **->skb_data**. The comment in **struct bpf_sock_ops**
4339 * has details on what skb_data contains under different
4340 * *skops*\ **->op**.
4342 * The first byte of the *searchby_res* specifies the
4343 * kind that it wants to search.
4345 * If the searching kind is an experimental kind
4346 * (i.e. 253 or 254 according to RFC6994). It also
4347 * needs to specify the "magic" which is either
4348 * 2 bytes or 4 bytes. It then also needs to
4349 * specify the size of the magic by using
4350 * the 2nd byte which is "kind-length" of a TCP
4351 * header option and the "kind-length" also
4352 * includes the first 2 bytes "kind" and "kind-length"
4353 * itself as a normal TCP header option also does.
4355 * For example, to search experimental kind 254 with
4356 * 2 byte magic 0xeB9F, the searchby_res should be
4357 * [ 254, 4, 0xeB, 0x9F, 0, 0, .... 0 ].
4359 * To search for the standard window scale option (3),
4360 * the *searchby_res* should be [ 3, 0, 0, .... 0 ].
4361 * Note, kind-length must be 0 for regular option.
4363 * Searching for No-Op (0) and End-of-Option-List (1) are
4366 * *len* must be at least 2 bytes which is the minimal size
4367 * of a header option.
4371 * * **BPF_LOAD_HDR_OPT_TCP_SYN** to search from the
4372 * saved_syn packet or the just-received syn packet.
4375 * > 0 when found, the header option is copied to *searchby_res*.
4376 * The return value is the total length copied. On failure, a
4377 * negative error code is returned:
4379 * **-EINVAL** if a parameter is invalid.
4381 * **-ENOMSG** if the option is not found.
4383 * **-ENOENT** if no syn packet is available when
4384 * **BPF_LOAD_HDR_OPT_TCP_SYN** is used.
4386 * **-ENOSPC** if there is not enough space. Only *len* number of
4389 * **-EFAULT** on failure to parse the header options in the
4392 * **-EPERM** if the helper cannot be used under the current
4393 * *skops*\ **->op**.
4395 * long bpf_store_hdr_opt(struct bpf_sock_ops *skops, const void *from, u32 len, u64 flags)
4397 * Store header option. The data will be copied
4398 * from buffer *from* with length *len* to the TCP header.
4400 * The buffer *from* should have the whole option that
4401 * includes the kind, kind-length, and the actual
4402 * option data. The *len* must be at least kind-length
4403 * long. The kind-length does not have to be 4 byte
4404 * aligned. The kernel will take care of the padding
4405 * and setting the 4 bytes aligned value to th->doff.
4407 * This helper will check for duplicated option
4408 * by searching the same option in the outgoing skb.
4410 * This helper can only be called during
4411 * **BPF_SOCK_OPS_WRITE_HDR_OPT_CB**.
4414 * 0 on success, or negative error in case of failure:
4416 * **-EINVAL** If param is invalid.
4418 * **-ENOSPC** if there is not enough space in the header.
4419 * Nothing has been written
4421 * **-EEXIST** if the option already exists.
4423 * **-EFAULT** on failrue to parse the existing header options.
4425 * **-EPERM** if the helper cannot be used under the current
4426 * *skops*\ **->op**.
4428 * long bpf_reserve_hdr_opt(struct bpf_sock_ops *skops, u32 len, u64 flags)
4430 * Reserve *len* bytes for the bpf header option. The
4431 * space will be used by **bpf_store_hdr_opt**\ () later in
4432 * **BPF_SOCK_OPS_WRITE_HDR_OPT_CB**.
4434 * If **bpf_reserve_hdr_opt**\ () is called multiple times,
4435 * the total number of bytes will be reserved.
4437 * This helper can only be called during
4438 * **BPF_SOCK_OPS_HDR_OPT_LEN_CB**.
4441 * 0 on success, or negative error in case of failure:
4443 * **-EINVAL** if a parameter is invalid.
4445 * **-ENOSPC** if there is not enough space in the header.
4447 * **-EPERM** if the helper cannot be used under the current
4448 * *skops*\ **->op**.
4450 * void *bpf_inode_storage_get(struct bpf_map *map, void *inode, void *value, u64 flags)
4452 * Get a bpf_local_storage from an *inode*.
4454 * Logically, it could be thought of as getting the value from
4455 * a *map* with *inode* as the **key**. From this
4456 * perspective, the usage is not much different from
4457 * **bpf_map_lookup_elem**\ (*map*, **&**\ *inode*) except this
4458 * helper enforces the key must be an inode and the map must also
4459 * be a **BPF_MAP_TYPE_INODE_STORAGE**.
4461 * Underneath, the value is stored locally at *inode* instead of
4462 * the *map*. The *map* is used as the bpf-local-storage
4463 * "type". The bpf-local-storage "type" (i.e. the *map*) is
4464 * searched against all bpf_local_storage residing at *inode*.
4466 * An optional *flags* (**BPF_LOCAL_STORAGE_GET_F_CREATE**) can be
4467 * used such that a new bpf_local_storage will be
4468 * created if one does not exist. *value* can be used
4469 * together with **BPF_LOCAL_STORAGE_GET_F_CREATE** to specify
4470 * the initial value of a bpf_local_storage. If *value* is
4471 * **NULL**, the new bpf_local_storage will be zero initialized.
4473 * A bpf_local_storage pointer is returned on success.
4475 * **NULL** if not found or there was an error in adding
4476 * a new bpf_local_storage.
4478 * int bpf_inode_storage_delete(struct bpf_map *map, void *inode)
4480 * Delete a bpf_local_storage from an *inode*.
4484 * **-ENOENT** if the bpf_local_storage cannot be found.
4486 * long bpf_d_path(struct path *path, char *buf, u32 sz)
4488 * Return full path for given **struct path** object, which
4489 * needs to be the kernel BTF *path* object. The path is
4490 * returned in the provided buffer *buf* of size *sz* and
4491 * is zero terminated.
4494 * On success, the strictly positive length of the string,
4495 * including the trailing NUL character. On error, a negative
4498 * long bpf_copy_from_user(void *dst, u32 size, const void *user_ptr)
4500 * Read *size* bytes from user space address *user_ptr* and store
4501 * the data in *dst*. This is a wrapper of **copy_from_user**\ ().
4503 * 0 on success, or a negative error in case of failure.
4505 * long bpf_snprintf_btf(char *str, u32 str_size, struct btf_ptr *ptr, u32 btf_ptr_size, u64 flags)
4507 * Use BTF to store a string representation of *ptr*->ptr in *str*,
4508 * using *ptr*->type_id. This value should specify the type
4509 * that *ptr*->ptr points to. LLVM __builtin_btf_type_id(type, 1)
4510 * can be used to look up vmlinux BTF type ids. Traversing the
4511 * data structure using BTF, the type information and values are
4512 * stored in the first *str_size* - 1 bytes of *str*. Safe copy of
4513 * the pointer data is carried out to avoid kernel crashes during
4514 * operation. Smaller types can use string space on the stack;
4515 * larger programs can use map data to store the string
4518 * The string can be subsequently shared with userspace via
4519 * bpf_perf_event_output() or ring buffer interfaces.
4520 * bpf_trace_printk() is to be avoided as it places too small
4521 * a limit on string size to be useful.
4523 * *flags* is a combination of
4526 * no formatting around type information
4528 * no struct/union member names/types
4530 * show raw (unobfuscated) pointer values;
4531 * equivalent to printk specifier %px.
4533 * show zero-valued struct/union members; they
4534 * are not displayed by default
4537 * The number of bytes that were written (or would have been
4538 * written if output had to be truncated due to string size),
4539 * or a negative error in cases of failure.
4541 * long bpf_seq_printf_btf(struct seq_file *m, struct btf_ptr *ptr, u32 ptr_size, u64 flags)
4543 * Use BTF to write to seq_write a string representation of
4544 * *ptr*->ptr, using *ptr*->type_id as per bpf_snprintf_btf().
4545 * *flags* are identical to those used for bpf_snprintf_btf.
4547 * 0 on success or a negative error in case of failure.
4549 * u64 bpf_skb_cgroup_classid(struct sk_buff *skb)
4551 * See **bpf_get_cgroup_classid**\ () for the main description.
4552 * This helper differs from **bpf_get_cgroup_classid**\ () in that
4553 * the cgroup v1 net_cls class is retrieved only from the *skb*'s
4554 * associated socket instead of the current process.
4556 * The id is returned or 0 in case the id could not be retrieved.
4558 * long bpf_redirect_neigh(u32 ifindex, struct bpf_redir_neigh *params, int plen, u64 flags)
4560 * Redirect the packet to another net device of index *ifindex*
4561 * and fill in L2 addresses from neighboring subsystem. This helper
4562 * is somewhat similar to **bpf_redirect**\ (), except that it
4563 * populates L2 addresses as well, meaning, internally, the helper
4564 * relies on the neighbor lookup for the L2 address of the nexthop.
4566 * The helper will perform a FIB lookup based on the skb's
4567 * networking header to get the address of the next hop, unless
4568 * this is supplied by the caller in the *params* argument. The
4569 * *plen* argument indicates the len of *params* and should be set
4570 * to 0 if *params* is NULL.
4572 * The *flags* argument is reserved and must be 0. The helper is
4573 * currently only supported for tc BPF program types, and enabled
4574 * for IPv4 and IPv6 protocols.
4576 * The helper returns **TC_ACT_REDIRECT** on success or
4577 * **TC_ACT_SHOT** on error.
4579 * void *bpf_per_cpu_ptr(const void *percpu_ptr, u32 cpu)
4581 * Take a pointer to a percpu ksym, *percpu_ptr*, and return a
4582 * pointer to the percpu kernel variable on *cpu*. A ksym is an
4583 * extern variable decorated with '__ksym'. For ksym, there is a
4584 * global var (either static or global) defined of the same name
4585 * in the kernel. The ksym is percpu if the global var is percpu.
4586 * The returned pointer points to the global percpu var on *cpu*.
4588 * bpf_per_cpu_ptr() has the same semantic as per_cpu_ptr() in the
4589 * kernel, except that bpf_per_cpu_ptr() may return NULL. This
4590 * happens if *cpu* is larger than nr_cpu_ids. The caller of
4591 * bpf_per_cpu_ptr() must check the returned value.
4593 * A pointer pointing to the kernel percpu variable on *cpu*, or
4594 * NULL, if *cpu* is invalid.
4596 * void *bpf_this_cpu_ptr(const void *percpu_ptr)
4598 * Take a pointer to a percpu ksym, *percpu_ptr*, and return a
4599 * pointer to the percpu kernel variable on this cpu. See the
4600 * description of 'ksym' in **bpf_per_cpu_ptr**\ ().
4602 * bpf_this_cpu_ptr() has the same semantic as this_cpu_ptr() in
4603 * the kernel. Different from **bpf_per_cpu_ptr**\ (), it would
4604 * never return NULL.
4606 * A pointer pointing to the kernel percpu variable on this cpu.
4608 * long bpf_redirect_peer(u32 ifindex, u64 flags)
4610 * Redirect the packet to another net device of index *ifindex*.
4611 * This helper is somewhat similar to **bpf_redirect**\ (), except
4612 * that the redirection happens to the *ifindex*' peer device and
4613 * the netns switch takes place from ingress to ingress without
4614 * going through the CPU's backlog queue.
4616 * The *flags* argument is reserved and must be 0. The helper is
4617 * currently only supported for tc BPF program types at the ingress
4618 * hook and for veth device types. The peer device must reside in a
4619 * different network namespace.
4621 * The helper returns **TC_ACT_REDIRECT** on success or
4622 * **TC_ACT_SHOT** on error.
4624 * void *bpf_task_storage_get(struct bpf_map *map, struct task_struct *task, void *value, u64 flags)
4626 * Get a bpf_local_storage from the *task*.
4628 * Logically, it could be thought of as getting the value from
4629 * a *map* with *task* as the **key**. From this
4630 * perspective, the usage is not much different from
4631 * **bpf_map_lookup_elem**\ (*map*, **&**\ *task*) except this
4632 * helper enforces the key must be an task_struct and the map must also
4633 * be a **BPF_MAP_TYPE_TASK_STORAGE**.
4635 * Underneath, the value is stored locally at *task* instead of
4636 * the *map*. The *map* is used as the bpf-local-storage
4637 * "type". The bpf-local-storage "type" (i.e. the *map*) is
4638 * searched against all bpf_local_storage residing at *task*.
4640 * An optional *flags* (**BPF_LOCAL_STORAGE_GET_F_CREATE**) can be
4641 * used such that a new bpf_local_storage will be
4642 * created if one does not exist. *value* can be used
4643 * together with **BPF_LOCAL_STORAGE_GET_F_CREATE** to specify
4644 * the initial value of a bpf_local_storage. If *value* is
4645 * **NULL**, the new bpf_local_storage will be zero initialized.
4647 * A bpf_local_storage pointer is returned on success.
4649 * **NULL** if not found or there was an error in adding
4650 * a new bpf_local_storage.
4652 * long bpf_task_storage_delete(struct bpf_map *map, struct task_struct *task)
4654 * Delete a bpf_local_storage from a *task*.
4658 * **-ENOENT** if the bpf_local_storage cannot be found.
4660 * struct task_struct *bpf_get_current_task_btf(void)
4662 * Return a BTF pointer to the "current" task.
4663 * This pointer can also be used in helpers that accept an
4664 * *ARG_PTR_TO_BTF_ID* of type *task_struct*.
4666 * Pointer to the current task.
4668 * long bpf_bprm_opts_set(struct linux_binprm *bprm, u64 flags)
4670 * Set or clear certain options on *bprm*:
4672 * **BPF_F_BPRM_SECUREEXEC** Set the secureexec bit
4673 * which sets the **AT_SECURE** auxv for glibc. The bit
4674 * is cleared if the flag is not specified.
4676 * **-EINVAL** if invalid *flags* are passed, zero otherwise.
4678 * u64 bpf_ktime_get_coarse_ns(void)
4680 * Return a coarse-grained version of the time elapsed since
4681 * system boot, in nanoseconds. Does not include time the system
4684 * See: **clock_gettime**\ (**CLOCK_MONOTONIC_COARSE**)
4688 * long bpf_ima_inode_hash(struct inode *inode, void *dst, u32 size)
4690 * Returns the stored IMA hash of the *inode* (if it's avaialable).
4691 * If the hash is larger than *size*, then only *size*
4692 * bytes will be copied to *dst*
4694 * The **hash_algo** is returned on success,
4695 * **-EOPNOTSUP** if IMA is disabled or **-EINVAL** if
4696 * invalid arguments are passed.
4698 * struct socket *bpf_sock_from_file(struct file *file)
4700 * If the given file represents a socket, returns the associated
4703 * A pointer to a struct socket on success or NULL if the file is
4706 * long bpf_check_mtu(void *ctx, u32 ifindex, u32 *mtu_len, s32 len_diff, u64 flags)
4708 * Check packet size against exceeding MTU of net device (based
4709 * on *ifindex*). This helper will likely be used in combination
4710 * with helpers that adjust/change the packet size.
4712 * The argument *len_diff* can be used for querying with a planned
4713 * size change. This allows to check MTU prior to changing packet
4714 * ctx. Providing an *len_diff* adjustment that is larger than the
4715 * actual packet size (resulting in negative packet size) will in
4716 * principle not exceed the MTU, why it is not considered a
4717 * failure. Other BPF-helpers are needed for performing the
4718 * planned size change, why the responsability for catch a negative
4719 * packet size belong in those helpers.
4721 * Specifying *ifindex* zero means the MTU check is performed
4722 * against the current net device. This is practical if this isn't
4723 * used prior to redirect.
4725 * On input *mtu_len* must be a valid pointer, else verifier will
4726 * reject BPF program. If the value *mtu_len* is initialized to
4727 * zero then the ctx packet size is use. When value *mtu_len* is
4728 * provided as input this specify the L3 length that the MTU check
4729 * is done against. Remember XDP and TC length operate at L2, but
4730 * this value is L3 as this correlate to MTU and IP-header tot_len
4731 * values which are L3 (similar behavior as bpf_fib_lookup).
4733 * The Linux kernel route table can configure MTUs on a more
4734 * specific per route level, which is not provided by this helper.
4735 * For route level MTU checks use the **bpf_fib_lookup**\ ()
4738 * *ctx* is either **struct xdp_md** for XDP programs or
4739 * **struct sk_buff** for tc cls_act programs.
4741 * The *flags* argument can be a combination of one or more of the
4744 * **BPF_MTU_CHK_SEGS**
4745 * This flag will only works for *ctx* **struct sk_buff**.
4746 * If packet context contains extra packet segment buffers
4747 * (often knows as GSO skb), then MTU check is harder to
4748 * check at this point, because in transmit path it is
4749 * possible for the skb packet to get re-segmented
4750 * (depending on net device features). This could still be
4751 * a MTU violation, so this flag enables performing MTU
4752 * check against segments, with a different violation
4753 * return code to tell it apart. Check cannot use len_diff.
4755 * On return *mtu_len* pointer contains the MTU value of the net
4756 * device. Remember the net device configured MTU is the L3 size,
4757 * which is returned here and XDP and TC length operate at L2.
4758 * Helper take this into account for you, but remember when using
4759 * MTU value in your BPF-code.
4762 * * 0 on success, and populate MTU value in *mtu_len* pointer.
4764 * * < 0 if any input argument is invalid (*mtu_len* not updated)
4766 * MTU violations return positive values, but also populate MTU
4767 * value in *mtu_len* pointer, as this can be needed for
4768 * implementing PMTU handing:
4770 * * **BPF_MTU_CHK_RET_FRAG_NEEDED**
4771 * * **BPF_MTU_CHK_RET_SEGS_TOOBIG**
4773 * long bpf_for_each_map_elem(struct bpf_map *map, void *callback_fn, void *callback_ctx, u64 flags)
4775 * For each element in **map**, call **callback_fn** function with
4776 * **map**, **callback_ctx** and other map-specific parameters.
4777 * The **callback_fn** should be a static function and
4778 * the **callback_ctx** should be a pointer to the stack.
4779 * The **flags** is used to control certain aspects of the helper.
4780 * Currently, the **flags** must be 0.
4782 * The following are a list of supported map types and their
4783 * respective expected callback signatures:
4785 * BPF_MAP_TYPE_HASH, BPF_MAP_TYPE_PERCPU_HASH,
4786 * BPF_MAP_TYPE_LRU_HASH, BPF_MAP_TYPE_LRU_PERCPU_HASH,
4787 * BPF_MAP_TYPE_ARRAY, BPF_MAP_TYPE_PERCPU_ARRAY
4789 * long (\*callback_fn)(struct bpf_map \*map, const void \*key, void \*value, void \*ctx);
4791 * For per_cpu maps, the map_value is the value on the cpu where the
4792 * bpf_prog is running.
4794 * If **callback_fn** return 0, the helper will continue to the next
4795 * element. If return value is 1, the helper will skip the rest of
4796 * elements and return. Other return values are not used now.
4799 * The number of traversed map elements for success, **-EINVAL** for
4800 * invalid **flags**.
4802 * long bpf_snprintf(char *str, u32 str_size, const char *fmt, u64 *data, u32 data_len)
4804 * Outputs a string into the **str** buffer of size **str_size**
4805 * based on a format string stored in a read-only map pointed by
4808 * Each format specifier in **fmt** corresponds to one u64 element
4809 * in the **data** array. For strings and pointers where pointees
4810 * are accessed, only the pointer values are stored in the *data*
4811 * array. The *data_len* is the size of *data* in bytes - must be
4814 * Formats **%s** and **%p{i,I}{4,6}** require to read kernel
4815 * memory. Reading kernel memory may fail due to either invalid
4816 * address or valid address but requiring a major memory fault. If
4817 * reading kernel memory fails, the string for **%s** will be an
4818 * empty string, and the ip address for **%p{i,I}{4,6}** will be 0.
4819 * Not returning error to bpf program is consistent with what
4820 * **bpf_trace_printk**\ () does for now.
4823 * The strictly positive length of the formatted string, including
4824 * the trailing zero character. If the return value is greater than
4825 * **str_size**, **str** contains a truncated string, guaranteed to
4826 * be zero-terminated except when **str_size** is 0.
4828 * Or **-EBUSY** if the per-CPU memory copy buffer is busy.
4830 * long bpf_sys_bpf(u32 cmd, void *attr, u32 attr_size)
4832 * Execute bpf syscall with given arguments.
4836 * long bpf_btf_find_by_name_kind(char *name, int name_sz, u32 kind, int flags)
4838 * Find BTF type with given name and kind in vmlinux BTF or in module's BTFs.
4840 * Returns btf_id and btf_obj_fd in lower and upper 32 bits.
4842 * long bpf_sys_close(u32 fd)
4844 * Execute close syscall for given FD.
4848 * long bpf_timer_init(struct bpf_timer *timer, struct bpf_map *map, u64 flags)
4850 * Initialize the timer.
4851 * First 4 bits of *flags* specify clockid.
4852 * Only CLOCK_MONOTONIC, CLOCK_REALTIME, CLOCK_BOOTTIME are allowed.
4853 * All other bits of *flags* are reserved.
4854 * The verifier will reject the program if *timer* is not from
4858 * **-EBUSY** if *timer* is already initialized.
4859 * **-EINVAL** if invalid *flags* are passed.
4860 * **-EPERM** if *timer* is in a map that doesn't have any user references.
4861 * The user space should either hold a file descriptor to a map with timers
4862 * or pin such map in bpffs. When map is unpinned or file descriptor is
4863 * closed all timers in the map will be cancelled and freed.
4865 * long bpf_timer_set_callback(struct bpf_timer *timer, void *callback_fn)
4867 * Configure the timer to call *callback_fn* static function.
4870 * **-EINVAL** if *timer* was not initialized with bpf_timer_init() earlier.
4871 * **-EPERM** if *timer* is in a map that doesn't have any user references.
4872 * The user space should either hold a file descriptor to a map with timers
4873 * or pin such map in bpffs. When map is unpinned or file descriptor is
4874 * closed all timers in the map will be cancelled and freed.
4876 * long bpf_timer_start(struct bpf_timer *timer, u64 nsecs, u64 flags)
4878 * Set timer expiration N nanoseconds from the current time. The
4879 * configured callback will be invoked in soft irq context on some cpu
4880 * and will not repeat unless another bpf_timer_start() is made.
4881 * In such case the next invocation can migrate to a different cpu.
4882 * Since struct bpf_timer is a field inside map element the map
4883 * owns the timer. The bpf_timer_set_callback() will increment refcnt
4884 * of BPF program to make sure that callback_fn code stays valid.
4885 * When user space reference to a map reaches zero all timers
4886 * in a map are cancelled and corresponding program's refcnts are
4887 * decremented. This is done to make sure that Ctrl-C of a user
4888 * process doesn't leave any timers running. If map is pinned in
4889 * bpffs the callback_fn can re-arm itself indefinitely.
4890 * bpf_map_update/delete_elem() helpers and user space sys_bpf commands
4891 * cancel and free the timer in the given map element.
4892 * The map can contain timers that invoke callback_fn-s from different
4893 * programs. The same callback_fn can serve different timers from
4894 * different maps if key/value layout matches across maps.
4895 * Every bpf_timer_set_callback() can have different callback_fn.
4899 * **-EINVAL** if *timer* was not initialized with bpf_timer_init() earlier
4900 * or invalid *flags* are passed.
4902 * long bpf_timer_cancel(struct bpf_timer *timer)
4904 * Cancel the timer and wait for callback_fn to finish if it was running.
4906 * 0 if the timer was not active.
4907 * 1 if the timer was active.
4908 * **-EINVAL** if *timer* was not initialized with bpf_timer_init() earlier.
4909 * **-EDEADLK** if callback_fn tried to call bpf_timer_cancel() on its
4910 * own timer which would have led to a deadlock otherwise.
4912 * u64 bpf_get_func_ip(void *ctx)
4914 * Get address of the traced function (for tracing and kprobe programs).
4916 * Address of the traced function.
4918 * u64 bpf_get_attach_cookie(void *ctx)
4920 * Get bpf_cookie value provided (optionally) during the program
4921 * attachment. It might be different for each individual
4922 * attachment, even if BPF program itself is the same.
4923 * Expects BPF program context *ctx* as a first argument.
4925 * Supported for the following program types:
4930 * Value specified by user at BPF link creation/attachment time
4931 * or 0, if it was not specified.
4933 * long bpf_task_pt_regs(struct task_struct *task)
4935 * Get the struct pt_regs associated with **task**.
4937 * A pointer to struct pt_regs.
4939 * long bpf_get_branch_snapshot(void *entries, u32 size, u64 flags)
4941 * Get branch trace from hardware engines like Intel LBR. The
4942 * hardware engine is stopped shortly after the helper is
4943 * called. Therefore, the user need to filter branch entries
4944 * based on the actual use case. To capture branch trace
4945 * before the trigger point of the BPF program, the helper
4946 * should be called at the beginning of the BPF program.
4948 * The data is stored as struct perf_branch_entry into output
4949 * buffer *entries*. *size* is the size of *entries* in bytes.
4950 * *flags* is reserved for now and must be zero.
4953 * On success, number of bytes written to *buf*. On error, a
4956 * **-EINVAL** if *flags* is not zero.
4958 * **-ENOENT** if architecture does not support branch records.
4960 * long bpf_trace_vprintk(const char *fmt, u32 fmt_size, const void *data, u32 data_len)
4962 * Behaves like **bpf_trace_printk**\ () helper, but takes an array of u64
4963 * to format and can handle more format args as a result.
4965 * Arguments are to be used as in **bpf_seq_printf**\ () helper.
4967 * The number of bytes written to the buffer, or a negative error
4968 * in case of failure.
4970 * struct unix_sock *bpf_skc_to_unix_sock(void *sk)
4972 * Dynamically cast a *sk* pointer to a *unix_sock* pointer.
4974 * *sk* if casting is valid, or **NULL** otherwise.
4976 * long bpf_kallsyms_lookup_name(const char *name, int name_sz, int flags, u64 *res)
4978 * Get the address of a kernel symbol, returned in *res*. *res* is
4979 * set to 0 if the symbol is not found.
4981 * On success, zero. On error, a negative value.
4983 * **-EINVAL** if *flags* is not zero.
4985 * **-EINVAL** if string *name* is not the same size as *name_sz*.
4987 * **-ENOENT** if symbol is not found.
4989 * **-EPERM** if caller does not have permission to obtain kernel address.
4991 * long bpf_find_vma(struct task_struct *task, u64 addr, void *callback_fn, void *callback_ctx, u64 flags)
4993 * Find vma of *task* that contains *addr*, call *callback_fn*
4994 * function with *task*, *vma*, and *callback_ctx*.
4995 * The *callback_fn* should be a static function and
4996 * the *callback_ctx* should be a pointer to the stack.
4997 * The *flags* is used to control certain aspects of the helper.
4998 * Currently, the *flags* must be 0.
5000 * The expected callback signature is
5002 * long (\*callback_fn)(struct task_struct \*task, struct vm_area_struct \*vma, void \*callback_ctx);
5006 * **-ENOENT** if *task->mm* is NULL, or no vma contains *addr*.
5007 * **-EBUSY** if failed to try lock mmap_lock.
5008 * **-EINVAL** for invalid **flags**.
5010 * long bpf_loop(u32 nr_loops, void *callback_fn, void *callback_ctx, u64 flags)
5012 * For **nr_loops**, call **callback_fn** function
5013 * with **callback_ctx** as the context parameter.
5014 * The **callback_fn** should be a static function and
5015 * the **callback_ctx** should be a pointer to the stack.
5016 * The **flags** is used to control certain aspects of the helper.
5017 * Currently, the **flags** must be 0. Currently, nr_loops is
5018 * limited to 1 << 23 (~8 million) loops.
5020 * long (\*callback_fn)(u32 index, void \*ctx);
5022 * where **index** is the current index in the loop. The index
5025 * If **callback_fn** returns 0, the helper will continue to the next
5026 * loop. If return value is 1, the helper will skip the rest of
5027 * the loops and return. Other return values are not used now,
5028 * and will be rejected by the verifier.
5031 * The number of loops performed, **-EINVAL** for invalid **flags**,
5032 * **-E2BIG** if **nr_loops** exceeds the maximum number of loops.
5034 * long bpf_strncmp(const char *s1, u32 s1_sz, const char *s2)
5036 * Do strncmp() between **s1** and **s2**. **s1** doesn't need
5037 * to be null-terminated and **s1_sz** is the maximum storage
5038 * size of **s1**. **s2** must be a read-only string.
5040 * An integer less than, equal to, or greater than zero
5041 * if the first **s1_sz** bytes of **s1** is found to be
5042 * less than, to match, or be greater than **s2**.
5044 * long bpf_get_func_arg(void *ctx, u32 n, u64 *value)
5046 * Get **n**-th argument (zero based) of the traced function (for tracing programs)
5047 * returned in **value**.
5051 * **-EINVAL** if n >= arguments count of traced function.
5053 * long bpf_get_func_ret(void *ctx, u64 *value)
5055 * Get return value of the traced function (for tracing programs)
5060 * **-EOPNOTSUPP** for tracing programs other than BPF_TRACE_FEXIT or BPF_MODIFY_RETURN.
5062 * long bpf_get_func_arg_cnt(void *ctx)
5064 * Get number of arguments of the traced function (for tracing programs).
5067 * The number of arguments of the traced function.
5069 * int bpf_get_retval(void)
5071 * Get the syscall's return value that will be returned to userspace.
5073 * This helper is currently supported by cgroup programs only.
5075 * The syscall's return value.
5077 * int bpf_set_retval(int retval)
5079 * Set the syscall's return value that will be returned to userspace.
5081 * This helper is currently supported by cgroup programs only.
5083 * 0 on success, or a negative error in case of failure.
5085 * u64 bpf_xdp_get_buff_len(struct xdp_buff *xdp_md)
5087 * Get the total size of a given xdp buff (linear and paged area)
5089 * The total size of a given xdp buffer.
5091 * long bpf_xdp_load_bytes(struct xdp_buff *xdp_md, u32 offset, void *buf, u32 len)
5093 * This helper is provided as an easy way to load data from a
5094 * xdp buffer. It can be used to load *len* bytes from *offset* from
5095 * the frame associated to *xdp_md*, into the buffer pointed by
5098 * 0 on success, or a negative error in case of failure.
5100 * long bpf_xdp_store_bytes(struct xdp_buff *xdp_md, u32 offset, void *buf, u32 len)
5102 * Store *len* bytes from buffer *buf* into the frame
5103 * associated to *xdp_md*, at *offset*.
5105 * 0 on success, or a negative error in case of failure.
5107 * long bpf_copy_from_user_task(void *dst, u32 size, const void *user_ptr, struct task_struct *tsk, u64 flags)
5109 * Read *size* bytes from user space address *user_ptr* in *tsk*'s
5110 * address space, and stores the data in *dst*. *flags* is not
5111 * used yet and is provided for future extensibility. This helper
5112 * can only be used by sleepable programs.
5114 * 0 on success, or a negative error in case of failure. On error
5115 * *dst* buffer is zeroed out.
5117 * long bpf_skb_set_tstamp(struct sk_buff *skb, u64 tstamp, u32 tstamp_type)
5119 * Change the __sk_buff->tstamp_type to *tstamp_type*
5120 * and set *tstamp* to the __sk_buff->tstamp together.
5122 * If there is no need to change the __sk_buff->tstamp_type,
5123 * the tstamp value can be directly written to __sk_buff->tstamp
5126 * BPF_SKB_TSTAMP_DELIVERY_MONO is the only tstamp that
5127 * will be kept during bpf_redirect_*(). A non zero
5128 * *tstamp* must be used with the BPF_SKB_TSTAMP_DELIVERY_MONO
5131 * A BPF_SKB_TSTAMP_UNSPEC *tstamp_type* can only be used
5132 * with a zero *tstamp*.
5134 * Only IPv4 and IPv6 skb->protocol are supported.
5136 * This function is most useful when it needs to set a
5137 * mono delivery time to __sk_buff->tstamp and then
5138 * bpf_redirect_*() to the egress of an iface. For example,
5139 * changing the (rcv) timestamp in __sk_buff->tstamp at
5140 * ingress to a mono delivery time and then bpf_redirect_*()
5141 * to sch_fq@phy-dev.
5144 * **-EINVAL** for invalid input
5145 * **-EOPNOTSUPP** for unsupported protocol
5147 * long bpf_ima_file_hash(struct file *file, void *dst, u32 size)
5149 * Returns a calculated IMA hash of the *file*.
5150 * If the hash is larger than *size*, then only *size*
5151 * bytes will be copied to *dst*
5153 * The **hash_algo** is returned on success,
5154 * **-EOPNOTSUP** if the hash calculation failed or **-EINVAL** if
5155 * invalid arguments are passed.
5157 * void *bpf_kptr_xchg(void *map_value, void *ptr)
5159 * Exchange kptr at pointer *map_value* with *ptr*, and return the
5160 * old value. *ptr* can be NULL, otherwise it must be a referenced
5161 * pointer which will be released when this helper is called.
5163 * The old value of kptr (which can be NULL). The returned pointer
5164 * if not NULL, is a reference which must be released using its
5165 * corresponding release function, or moved into a BPF map before
5168 * void *bpf_map_lookup_percpu_elem(struct bpf_map *map, const void *key, u32 cpu)
5170 * Perform a lookup in *percpu map* for an entry associated to
5173 * Map value associated to *key* on *cpu*, or **NULL** if no entry
5174 * was found or *cpu* is invalid.
5176 * struct mptcp_sock *bpf_skc_to_mptcp_sock(void *sk)
5178 * Dynamically cast a *sk* pointer to a *mptcp_sock* pointer.
5180 * *sk* if casting is valid, or **NULL** otherwise.
5182 * long bpf_dynptr_from_mem(void *data, u32 size, u64 flags, struct bpf_dynptr *ptr)
5184 * Get a dynptr to local memory *data*.
5186 * *data* must be a ptr to a map value.
5187 * The maximum *size* supported is DYNPTR_MAX_SIZE.
5188 * *flags* is currently unused.
5190 * 0 on success, -E2BIG if the size exceeds DYNPTR_MAX_SIZE,
5191 * -EINVAL if flags is not 0.
5193 * long bpf_ringbuf_reserve_dynptr(void *ringbuf, u32 size, u64 flags, struct bpf_dynptr *ptr)
5195 * Reserve *size* bytes of payload in a ring buffer *ringbuf*
5196 * through the dynptr interface. *flags* must be 0.
5198 * Please note that a corresponding bpf_ringbuf_submit_dynptr or
5199 * bpf_ringbuf_discard_dynptr must be called on *ptr*, even if the
5200 * reservation fails. This is enforced by the verifier.
5202 * 0 on success, or a negative error in case of failure.
5204 * void bpf_ringbuf_submit_dynptr(struct bpf_dynptr *ptr, u64 flags)
5206 * Submit reserved ring buffer sample, pointed to by *data*,
5207 * through the dynptr interface. This is a no-op if the dynptr is
5210 * For more information on *flags*, please see
5211 * 'bpf_ringbuf_submit'.
5213 * Nothing. Always succeeds.
5215 * void bpf_ringbuf_discard_dynptr(struct bpf_dynptr *ptr, u64 flags)
5217 * Discard reserved ring buffer sample through the dynptr
5218 * interface. This is a no-op if the dynptr is invalid/null.
5220 * For more information on *flags*, please see
5221 * 'bpf_ringbuf_discard'.
5223 * Nothing. Always succeeds.
5225 * long bpf_dynptr_read(void *dst, u32 len, struct bpf_dynptr *src, u32 offset, u64 flags)
5227 * Read *len* bytes from *src* into *dst*, starting from *offset*
5229 * *flags* is currently unused.
5231 * 0 on success, -E2BIG if *offset* + *len* exceeds the length
5232 * of *src*'s data, -EINVAL if *src* is an invalid dynptr or if
5235 * long bpf_dynptr_write(struct bpf_dynptr *dst, u32 offset, void *src, u32 len, u64 flags)
5237 * Write *len* bytes from *src* into *dst*, starting from *offset*
5239 * *flags* is currently unused.
5241 * 0 on success, -E2BIG if *offset* + *len* exceeds the length
5242 * of *dst*'s data, -EINVAL if *dst* is an invalid dynptr or if *dst*
5243 * is a read-only dynptr or if *flags* is not 0.
5245 * void *bpf_dynptr_data(struct bpf_dynptr *ptr, u32 offset, u32 len)
5247 * Get a pointer to the underlying dynptr data.
5249 * *len* must be a statically known value. The returned data slice
5250 * is invalidated whenever the dynptr is invalidated.
5252 * Pointer to the underlying dynptr data, NULL if the dynptr is
5253 * read-only, if the dynptr is invalid, or if the offset and length
5256 #define __BPF_FUNC_MAPPER(FN) \
5258 FN(map_lookup_elem), \
5259 FN(map_update_elem), \
5260 FN(map_delete_elem), \
5264 FN(get_prandom_u32), \
5265 FN(get_smp_processor_id), \
5266 FN(skb_store_bytes), \
5267 FN(l3_csum_replace), \
5268 FN(l4_csum_replace), \
5270 FN(clone_redirect), \
5271 FN(get_current_pid_tgid), \
5272 FN(get_current_uid_gid), \
5273 FN(get_current_comm), \
5274 FN(get_cgroup_classid), \
5275 FN(skb_vlan_push), \
5277 FN(skb_get_tunnel_key), \
5278 FN(skb_set_tunnel_key), \
5279 FN(perf_event_read), \
5281 FN(get_route_realm), \
5282 FN(perf_event_output), \
5283 FN(skb_load_bytes), \
5286 FN(skb_get_tunnel_opt), \
5287 FN(skb_set_tunnel_opt), \
5288 FN(skb_change_proto), \
5289 FN(skb_change_type), \
5290 FN(skb_under_cgroup), \
5291 FN(get_hash_recalc), \
5292 FN(get_current_task), \
5293 FN(probe_write_user), \
5294 FN(current_task_under_cgroup), \
5295 FN(skb_change_tail), \
5296 FN(skb_pull_data), \
5298 FN(set_hash_invalid), \
5299 FN(get_numa_node_id), \
5300 FN(skb_change_head), \
5301 FN(xdp_adjust_head), \
5302 FN(probe_read_str), \
5303 FN(get_socket_cookie), \
5304 FN(get_socket_uid), \
5307 FN(skb_adjust_room), \
5309 FN(sk_redirect_map), \
5310 FN(sock_map_update), \
5311 FN(xdp_adjust_meta), \
5312 FN(perf_event_read_value), \
5313 FN(perf_prog_read_value), \
5315 FN(override_return), \
5316 FN(sock_ops_cb_flags_set), \
5317 FN(msg_redirect_map), \
5318 FN(msg_apply_bytes), \
5319 FN(msg_cork_bytes), \
5320 FN(msg_pull_data), \
5322 FN(xdp_adjust_tail), \
5323 FN(skb_get_xfrm_state), \
5325 FN(skb_load_bytes_relative), \
5327 FN(sock_hash_update), \
5328 FN(msg_redirect_hash), \
5329 FN(sk_redirect_hash), \
5330 FN(lwt_push_encap), \
5331 FN(lwt_seg6_store_bytes), \
5332 FN(lwt_seg6_adjust_srh), \
5333 FN(lwt_seg6_action), \
5336 FN(skb_cgroup_id), \
5337 FN(get_current_cgroup_id), \
5338 FN(get_local_storage), \
5339 FN(sk_select_reuseport), \
5340 FN(skb_ancestor_cgroup_id), \
5341 FN(sk_lookup_tcp), \
5342 FN(sk_lookup_udp), \
5344 FN(map_push_elem), \
5346 FN(map_peek_elem), \
5347 FN(msg_push_data), \
5349 FN(rc_pointer_rel), \
5354 FN(skb_ecn_set_ce), \
5355 FN(get_listener_sock), \
5356 FN(skc_lookup_tcp), \
5357 FN(tcp_check_syncookie), \
5358 FN(sysctl_get_name), \
5359 FN(sysctl_get_current_value), \
5360 FN(sysctl_get_new_value), \
5361 FN(sysctl_set_new_value), \
5364 FN(sk_storage_get), \
5365 FN(sk_storage_delete), \
5367 FN(tcp_gen_syncookie), \
5369 FN(probe_read_user), \
5370 FN(probe_read_kernel), \
5371 FN(probe_read_user_str), \
5372 FN(probe_read_kernel_str), \
5374 FN(send_signal_thread), \
5376 FN(read_branch_records), \
5377 FN(get_ns_current_pid_tgid), \
5379 FN(get_netns_cookie), \
5380 FN(get_current_ancestor_cgroup_id), \
5382 FN(ktime_get_boot_ns), \
5386 FN(sk_ancestor_cgroup_id), \
5387 FN(ringbuf_output), \
5388 FN(ringbuf_reserve), \
5389 FN(ringbuf_submit), \
5390 FN(ringbuf_discard), \
5391 FN(ringbuf_query), \
5393 FN(skc_to_tcp6_sock), \
5394 FN(skc_to_tcp_sock), \
5395 FN(skc_to_tcp_timewait_sock), \
5396 FN(skc_to_tcp_request_sock), \
5397 FN(skc_to_udp6_sock), \
5398 FN(get_task_stack), \
5400 FN(store_hdr_opt), \
5401 FN(reserve_hdr_opt), \
5402 FN(inode_storage_get), \
5403 FN(inode_storage_delete), \
5405 FN(copy_from_user), \
5407 FN(seq_printf_btf), \
5408 FN(skb_cgroup_classid), \
5409 FN(redirect_neigh), \
5412 FN(redirect_peer), \
5413 FN(task_storage_get), \
5414 FN(task_storage_delete), \
5415 FN(get_current_task_btf), \
5416 FN(bprm_opts_set), \
5417 FN(ktime_get_coarse_ns), \
5418 FN(ima_inode_hash), \
5419 FN(sock_from_file), \
5421 FN(for_each_map_elem), \
5424 FN(btf_find_by_name_kind), \
5427 FN(timer_set_callback), \
5431 FN(get_attach_cookie), \
5433 FN(get_branch_snapshot), \
5434 FN(trace_vprintk), \
5435 FN(skc_to_unix_sock), \
5436 FN(kallsyms_lookup_name), \
5442 FN(get_func_arg_cnt), \
5445 FN(xdp_get_buff_len), \
5446 FN(xdp_load_bytes), \
5447 FN(xdp_store_bytes), \
5448 FN(copy_from_user_task), \
5449 FN(skb_set_tstamp), \
5450 FN(ima_file_hash), \
5452 FN(map_lookup_percpu_elem), \
5453 FN(skc_to_mptcp_sock), \
5454 FN(dynptr_from_mem), \
5455 FN(ringbuf_reserve_dynptr), \
5456 FN(ringbuf_submit_dynptr), \
5457 FN(ringbuf_discard_dynptr), \
5463 /* integer value in 'imm' field of BPF_CALL instruction selects which helper
5464 * function eBPF program intends to call
5466 #define __BPF_ENUM_FN(x) BPF_FUNC_ ## x
5468 __BPF_FUNC_MAPPER(__BPF_ENUM_FN)
5471 #undef __BPF_ENUM_FN
5473 /* All flags used by eBPF helper functions, placed here. */
5475 /* BPF_FUNC_skb_store_bytes flags. */
5477 BPF_F_RECOMPUTE_CSUM = (1ULL << 0),
5478 BPF_F_INVALIDATE_HASH = (1ULL << 1),
5481 /* BPF_FUNC_l3_csum_replace and BPF_FUNC_l4_csum_replace flags.
5482 * First 4 bits are for passing the header field size.
5485 BPF_F_HDR_FIELD_MASK = 0xfULL,
5488 /* BPF_FUNC_l4_csum_replace flags. */
5490 BPF_F_PSEUDO_HDR = (1ULL << 4),
5491 BPF_F_MARK_MANGLED_0 = (1ULL << 5),
5492 BPF_F_MARK_ENFORCE = (1ULL << 6),
5495 /* BPF_FUNC_clone_redirect and BPF_FUNC_redirect flags. */
5497 BPF_F_INGRESS = (1ULL << 0),
5500 /* BPF_FUNC_skb_set_tunnel_key and BPF_FUNC_skb_get_tunnel_key flags. */
5502 BPF_F_TUNINFO_IPV6 = (1ULL << 0),
5505 /* flags for both BPF_FUNC_get_stackid and BPF_FUNC_get_stack. */
5507 BPF_F_SKIP_FIELD_MASK = 0xffULL,
5508 BPF_F_USER_STACK = (1ULL << 8),
5509 /* flags used by BPF_FUNC_get_stackid only. */
5510 BPF_F_FAST_STACK_CMP = (1ULL << 9),
5511 BPF_F_REUSE_STACKID = (1ULL << 10),
5512 /* flags used by BPF_FUNC_get_stack only. */
5513 BPF_F_USER_BUILD_ID = (1ULL << 11),
5516 /* BPF_FUNC_skb_set_tunnel_key flags. */
5518 BPF_F_ZERO_CSUM_TX = (1ULL << 1),
5519 BPF_F_DONT_FRAGMENT = (1ULL << 2),
5520 BPF_F_SEQ_NUMBER = (1ULL << 3),
5523 /* BPF_FUNC_perf_event_output, BPF_FUNC_perf_event_read and
5524 * BPF_FUNC_perf_event_read_value flags.
5527 BPF_F_INDEX_MASK = 0xffffffffULL,
5528 BPF_F_CURRENT_CPU = BPF_F_INDEX_MASK,
5529 /* BPF_FUNC_perf_event_output for sk_buff input context. */
5530 BPF_F_CTXLEN_MASK = (0xfffffULL << 32),
5533 /* Current network namespace */
5535 BPF_F_CURRENT_NETNS = (-1L),
5538 /* BPF_FUNC_csum_level level values. */
5540 BPF_CSUM_LEVEL_QUERY,
5543 BPF_CSUM_LEVEL_RESET,
5546 /* BPF_FUNC_skb_adjust_room flags. */
5548 BPF_F_ADJ_ROOM_FIXED_GSO = (1ULL << 0),
5549 BPF_F_ADJ_ROOM_ENCAP_L3_IPV4 = (1ULL << 1),
5550 BPF_F_ADJ_ROOM_ENCAP_L3_IPV6 = (1ULL << 2),
5551 BPF_F_ADJ_ROOM_ENCAP_L4_GRE = (1ULL << 3),
5552 BPF_F_ADJ_ROOM_ENCAP_L4_UDP = (1ULL << 4),
5553 BPF_F_ADJ_ROOM_NO_CSUM_RESET = (1ULL << 5),
5554 BPF_F_ADJ_ROOM_ENCAP_L2_ETH = (1ULL << 6),
5558 BPF_ADJ_ROOM_ENCAP_L2_MASK = 0xff,
5559 BPF_ADJ_ROOM_ENCAP_L2_SHIFT = 56,
5562 #define BPF_F_ADJ_ROOM_ENCAP_L2(len) (((__u64)len & \
5563 BPF_ADJ_ROOM_ENCAP_L2_MASK) \
5564 << BPF_ADJ_ROOM_ENCAP_L2_SHIFT)
5566 /* BPF_FUNC_sysctl_get_name flags. */
5568 BPF_F_SYSCTL_BASE_NAME = (1ULL << 0),
5571 /* BPF_FUNC_<kernel_obj>_storage_get flags */
5573 BPF_LOCAL_STORAGE_GET_F_CREATE = (1ULL << 0),
5574 /* BPF_SK_STORAGE_GET_F_CREATE is only kept for backward compatibility
5575 * and BPF_LOCAL_STORAGE_GET_F_CREATE must be used instead.
5577 BPF_SK_STORAGE_GET_F_CREATE = BPF_LOCAL_STORAGE_GET_F_CREATE,
5580 /* BPF_FUNC_read_branch_records flags. */
5582 BPF_F_GET_BRANCH_RECORDS_SIZE = (1ULL << 0),
5585 /* BPF_FUNC_bpf_ringbuf_commit, BPF_FUNC_bpf_ringbuf_discard, and
5586 * BPF_FUNC_bpf_ringbuf_output flags.
5589 BPF_RB_NO_WAKEUP = (1ULL << 0),
5590 BPF_RB_FORCE_WAKEUP = (1ULL << 1),
5593 /* BPF_FUNC_bpf_ringbuf_query flags */
5595 BPF_RB_AVAIL_DATA = 0,
5596 BPF_RB_RING_SIZE = 1,
5597 BPF_RB_CONS_POS = 2,
5598 BPF_RB_PROD_POS = 3,
5601 /* BPF ring buffer constants */
5603 BPF_RINGBUF_BUSY_BIT = (1U << 31),
5604 BPF_RINGBUF_DISCARD_BIT = (1U << 30),
5605 BPF_RINGBUF_HDR_SZ = 8,
5608 /* BPF_FUNC_sk_assign flags in bpf_sk_lookup context. */
5610 BPF_SK_LOOKUP_F_REPLACE = (1ULL << 0),
5611 BPF_SK_LOOKUP_F_NO_REUSEPORT = (1ULL << 1),
5614 /* Mode for BPF_FUNC_skb_adjust_room helper. */
5615 enum bpf_adj_room_mode {
5620 /* Mode for BPF_FUNC_skb_load_bytes_relative helper. */
5621 enum bpf_hdr_start_off {
5626 /* Encapsulation type for BPF_FUNC_lwt_push_encap helper. */
5627 enum bpf_lwt_encap_mode {
5629 BPF_LWT_ENCAP_SEG6_INLINE,
5633 /* Flags for bpf_bprm_opts_set helper */
5635 BPF_F_BPRM_SECUREEXEC = (1ULL << 0),
5638 /* Flags for bpf_redirect_map helper */
5640 BPF_F_BROADCAST = (1ULL << 3),
5641 BPF_F_EXCLUDE_INGRESS = (1ULL << 4),
5644 #define __bpf_md_ptr(type, name) \
5648 } __attribute__((aligned(8)))
5651 BPF_SKB_TSTAMP_UNSPEC,
5652 BPF_SKB_TSTAMP_DELIVERY_MONO, /* tstamp has mono delivery time */
5653 /* For any BPF_SKB_TSTAMP_* that the bpf prog cannot handle,
5654 * the bpf prog should handle it like BPF_SKB_TSTAMP_UNSPEC
5655 * and try to deduce it by ingress, egress or skb->sk->sk_clockid.
5659 /* user accessible mirror of in-kernel sk_buff.
5660 * new fields can only be added to the end of this structure
5666 __u32 queue_mapping;
5672 __u32 ingress_ifindex;
5682 /* Accessed by BPF_PROG_TYPE_sk_skb types from here to ... */
5684 __u32 remote_ip4; /* Stored in network byte order */
5685 __u32 local_ip4; /* Stored in network byte order */
5686 __u32 remote_ip6[4]; /* Stored in network byte order */
5687 __u32 local_ip6[4]; /* Stored in network byte order */
5688 __u32 remote_port; /* Stored in network byte order */
5689 __u32 local_port; /* stored in host byte order */
5693 __bpf_md_ptr(struct bpf_flow_keys *, flow_keys);
5697 __bpf_md_ptr(struct bpf_sock *, sk);
5700 __u32 :24; /* Padding, future use. */
5704 struct bpf_tunnel_key {
5708 __u32 remote_ipv6[4];
5712 __u16 tunnel_ext; /* Padding, future use. */
5716 __u32 local_ipv6[4];
5720 /* user accessible mirror of in-kernel xfrm_state.
5721 * new fields can only be added to the end of this structure
5723 struct bpf_xfrm_state {
5725 __u32 spi; /* Stored in network byte order */
5727 __u16 ext; /* Padding, future use. */
5729 __u32 remote_ipv4; /* Stored in network byte order */
5730 __u32 remote_ipv6[4]; /* Stored in network byte order */
5734 /* Generic BPF return codes which all BPF program types may support.
5735 * The values are binary compatible with their TC_ACT_* counter-part to
5736 * provide backwards compatibility with existing SCHED_CLS and SCHED_ACT
5739 * XDP is handled seprately, see XDP_*.
5747 /* >127 are reserved for prog type specific return codes.
5749 * BPF_LWT_REROUTE: used by BPF_PROG_TYPE_LWT_IN and
5750 * BPF_PROG_TYPE_LWT_XMIT to indicate that skb had been
5751 * changed and should be routed based on its new L3 header.
5752 * (This is an L3 redirect, as opposed to L2 redirect
5753 * represented by BPF_REDIRECT above).
5755 BPF_LWT_REROUTE = 128,
5765 /* IP address also allows 1 and 2 bytes access */
5768 __u32 src_port; /* host byte order */
5769 __be16 dst_port; /* network byte order */
5770 __u16 :16; /* zero padding */
5774 __s32 rx_queue_mapping;
5777 struct bpf_tcp_sock {
5778 __u32 snd_cwnd; /* Sending congestion window */
5779 __u32 srtt_us; /* smoothed round trip time << 3 in usecs */
5781 __u32 snd_ssthresh; /* Slow start size threshold */
5782 __u32 rcv_nxt; /* What we want to receive next */
5783 __u32 snd_nxt; /* Next sequence we send */
5784 __u32 snd_una; /* First byte we want an ack for */
5785 __u32 mss_cache; /* Cached effective mss, not including SACKS */
5786 __u32 ecn_flags; /* ECN status bits. */
5787 __u32 rate_delivered; /* saved rate sample: packets delivered */
5788 __u32 rate_interval_us; /* saved rate sample: time elapsed */
5789 __u32 packets_out; /* Packets which are "in flight" */
5790 __u32 retrans_out; /* Retransmitted packets out */
5791 __u32 total_retrans; /* Total retransmits for entire connection */
5792 __u32 segs_in; /* RFC4898 tcpEStatsPerfSegsIn
5793 * total number of segments in.
5795 __u32 data_segs_in; /* RFC4898 tcpEStatsPerfDataSegsIn
5796 * total number of data segments in.
5798 __u32 segs_out; /* RFC4898 tcpEStatsPerfSegsOut
5799 * The total number of segments sent.
5801 __u32 data_segs_out; /* RFC4898 tcpEStatsPerfDataSegsOut
5802 * total number of data segments sent.
5804 __u32 lost_out; /* Lost packets */
5805 __u32 sacked_out; /* SACK'd packets */
5806 __u64 bytes_received; /* RFC4898 tcpEStatsAppHCThruOctetsReceived
5807 * sum(delta(rcv_nxt)), or how many bytes
5810 __u64 bytes_acked; /* RFC4898 tcpEStatsAppHCThruOctetsAcked
5811 * sum(delta(snd_una)), or how many bytes
5814 __u32 dsack_dups; /* RFC4898 tcpEStatsStackDSACKDups
5815 * total number of DSACK blocks received
5817 __u32 delivered; /* Total data packets delivered incl. rexmits */
5818 __u32 delivered_ce; /* Like the above but only ECE marked packets */
5819 __u32 icsk_retransmits; /* Number of unrecovered [RTO] timeouts */
5822 struct bpf_sock_tuple {
5839 struct bpf_xdp_sock {
5843 #define XDP_PACKET_HEADROOM 256
5845 /* User return codes for XDP prog type.
5846 * A valid XDP program must return one of these defined values. All other
5847 * return codes are reserved for future use. Unknown return codes will
5848 * result in packet drops and a warning via bpf_warn_invalid_xdp_action().
5858 /* user accessible metadata for XDP packet hook
5859 * new fields must be added to the end of this structure
5865 /* Below access go through struct xdp_rxq_info */
5866 __u32 ingress_ifindex; /* rxq->dev->ifindex */
5867 __u32 rx_queue_index; /* rxq->queue_index */
5869 __u32 egress_ifindex; /* txq->dev->ifindex */
5872 /* DEVMAP map-value layout
5874 * The struct data-layout of map-value is a configuration interface.
5875 * New members can only be added to the end of this structure.
5877 struct bpf_devmap_val {
5878 __u32 ifindex; /* device index */
5880 int fd; /* prog fd on map write */
5881 __u32 id; /* prog id on map read */
5885 /* CPUMAP map-value layout
5887 * The struct data-layout of map-value is a configuration interface.
5888 * New members can only be added to the end of this structure.
5890 struct bpf_cpumap_val {
5891 __u32 qsize; /* queue size to remote target CPU */
5893 int fd; /* prog fd on map write */
5894 __u32 id; /* prog id on map read */
5903 /* user accessible metadata for SK_MSG packet hook, new fields must
5904 * be added to the end of this structure
5907 __bpf_md_ptr(void *, data);
5908 __bpf_md_ptr(void *, data_end);
5911 __u32 remote_ip4; /* Stored in network byte order */
5912 __u32 local_ip4; /* Stored in network byte order */
5913 __u32 remote_ip6[4]; /* Stored in network byte order */
5914 __u32 local_ip6[4]; /* Stored in network byte order */
5915 __u32 remote_port; /* Stored in network byte order */
5916 __u32 local_port; /* stored in host byte order */
5917 __u32 size; /* Total size of sk_msg */
5919 __bpf_md_ptr(struct bpf_sock *, sk); /* current socket */
5922 struct sk_reuseport_md {
5924 * Start of directly accessible data. It begins from
5925 * the tcp/udp header.
5927 __bpf_md_ptr(void *, data);
5928 /* End of directly accessible data */
5929 __bpf_md_ptr(void *, data_end);
5931 * Total length of packet (starting from the tcp/udp header).
5932 * Note that the directly accessible bytes (data_end - data)
5933 * could be less than this "len". Those bytes could be
5934 * indirectly read by a helper "bpf_skb_load_bytes()".
5938 * Eth protocol in the mac header (network byte order). e.g.
5939 * ETH_P_IP(0x0800) and ETH_P_IPV6(0x86DD)
5942 __u32 ip_protocol; /* IP protocol. e.g. IPPROTO_TCP, IPPROTO_UDP */
5943 __u32 bind_inany; /* Is sock bound to an INANY address? */
5944 __u32 hash; /* A hash of the packet 4 tuples */
5945 /* When reuse->migrating_sk is NULL, it is selecting a sk for the
5946 * new incoming connection request (e.g. selecting a listen sk for
5947 * the received SYN in the TCP case). reuse->sk is one of the sk
5948 * in the reuseport group. The bpf prog can use reuse->sk to learn
5949 * the local listening ip/port without looking into the skb.
5951 * When reuse->migrating_sk is not NULL, reuse->sk is closed and
5952 * reuse->migrating_sk is the socket that needs to be migrated
5953 * to another listening socket. migrating_sk could be a fullsock
5954 * sk that is fully established or a reqsk that is in-the-middle
5955 * of 3-way handshake.
5957 __bpf_md_ptr(struct bpf_sock *, sk);
5958 __bpf_md_ptr(struct bpf_sock *, migrating_sk);
5961 #define BPF_TAG_SIZE 8
5963 struct bpf_prog_info {
5966 __u8 tag[BPF_TAG_SIZE];
5967 __u32 jited_prog_len;
5968 __u32 xlated_prog_len;
5969 __aligned_u64 jited_prog_insns;
5970 __aligned_u64 xlated_prog_insns;
5971 __u64 load_time; /* ns since boottime */
5972 __u32 created_by_uid;
5974 __aligned_u64 map_ids;
5975 char name[BPF_OBJ_NAME_LEN];
5977 __u32 gpl_compatible:1;
5978 __u32 :31; /* alignment pad */
5981 __u32 nr_jited_ksyms;
5982 __u32 nr_jited_func_lens;
5983 __aligned_u64 jited_ksyms;
5984 __aligned_u64 jited_func_lens;
5986 __u32 func_info_rec_size;
5987 __aligned_u64 func_info;
5990 __aligned_u64 line_info;
5991 __aligned_u64 jited_line_info;
5992 __u32 nr_jited_line_info;
5993 __u32 line_info_rec_size;
5994 __u32 jited_line_info_rec_size;
5996 __aligned_u64 prog_tags;
5999 __u64 recursion_misses;
6000 __u32 verified_insns;
6001 } __attribute__((aligned(8)));
6003 struct bpf_map_info {
6010 char name[BPF_OBJ_NAME_LEN];
6012 __u32 btf_vmlinux_value_type_id;
6016 __u32 btf_key_type_id;
6017 __u32 btf_value_type_id;
6018 __u32 :32; /* alignment pad */
6020 } __attribute__((aligned(8)));
6022 struct bpf_btf_info {
6029 } __attribute__((aligned(8)));
6031 struct bpf_link_info {
6037 __aligned_u64 tp_name; /* in/out: tp_name buffer ptr */
6038 __u32 tp_name_len; /* in/out: tp_name buffer len */
6042 __u32 target_obj_id; /* prog_id for PROG_EXT, otherwise btf object id */
6043 __u32 target_btf_id; /* BTF type id inside the object */
6050 __aligned_u64 target_name; /* in/out: target_name buffer ptr */
6051 __u32 target_name_len; /* in/out: target_name buffer len */
6066 } __attribute__((aligned(8)));
6068 /* User bpf_sock_addr struct to access socket fields and sockaddr struct passed
6069 * by user and intended to be used by socket (e.g. to bind to, depends on
6072 struct bpf_sock_addr {
6073 __u32 user_family; /* Allows 4-byte read, but no write. */
6074 __u32 user_ip4; /* Allows 1,2,4-byte read and 4-byte write.
6075 * Stored in network byte order.
6077 __u32 user_ip6[4]; /* Allows 1,2,4,8-byte read and 4,8-byte write.
6078 * Stored in network byte order.
6080 __u32 user_port; /* Allows 1,2,4-byte read and 4-byte write.
6081 * Stored in network byte order
6083 __u32 family; /* Allows 4-byte read, but no write */
6084 __u32 type; /* Allows 4-byte read, but no write */
6085 __u32 protocol; /* Allows 4-byte read, but no write */
6086 __u32 msg_src_ip4; /* Allows 1,2,4-byte read and 4-byte write.
6087 * Stored in network byte order.
6089 __u32 msg_src_ip6[4]; /* Allows 1,2,4,8-byte read and 4,8-byte write.
6090 * Stored in network byte order.
6092 __bpf_md_ptr(struct bpf_sock *, sk);
6095 /* User bpf_sock_ops struct to access socket values and specify request ops
6096 * and their replies.
6097 * Some of this fields are in network (bigendian) byte order and may need
6098 * to be converted before use (bpf_ntohl() defined in samples/bpf/bpf_endian.h).
6099 * New fields can only be added at the end of this structure
6101 struct bpf_sock_ops {
6104 __u32 args[4]; /* Optionally passed to bpf program */
6105 __u32 reply; /* Returned by bpf program */
6106 __u32 replylong[4]; /* Optionally returned by bpf prog */
6109 __u32 remote_ip4; /* Stored in network byte order */
6110 __u32 local_ip4; /* Stored in network byte order */
6111 __u32 remote_ip6[4]; /* Stored in network byte order */
6112 __u32 local_ip6[4]; /* Stored in network byte order */
6113 __u32 remote_port; /* Stored in network byte order */
6114 __u32 local_port; /* stored in host byte order */
6115 __u32 is_fullsock; /* Some TCP fields are only valid if
6116 * there is a full socket. If not, the
6117 * fields read as zero.
6120 __u32 srtt_us; /* Averaged RTT << 3 in usecs */
6121 __u32 bpf_sock_ops_cb_flags; /* flags defined in uapi/linux/tcp.h */
6130 __u32 rate_delivered;
6131 __u32 rate_interval_us;
6134 __u32 total_retrans;
6138 __u32 data_segs_out;
6142 __u64 bytes_received;
6144 __bpf_md_ptr(struct bpf_sock *, sk);
6145 /* [skb_data, skb_data_end) covers the whole TCP header.
6147 * BPF_SOCK_OPS_PARSE_HDR_OPT_CB: The packet received
6148 * BPF_SOCK_OPS_HDR_OPT_LEN_CB: Not useful because the
6149 * header has not been written.
6150 * BPF_SOCK_OPS_WRITE_HDR_OPT_CB: The header and options have
6151 * been written so far.
6152 * BPF_SOCK_OPS_ACTIVE_ESTABLISHED_CB: The SYNACK that concludes
6154 * BPF_SOCK_OPS_PASSIVE_ESTABLISHED_CB: The ACK that concludes
6157 * bpf_load_hdr_opt() can also be used to read a particular option.
6159 __bpf_md_ptr(void *, skb_data);
6160 __bpf_md_ptr(void *, skb_data_end);
6161 __u32 skb_len; /* The total length of a packet.
6162 * It includes the header, options,
6165 __u32 skb_tcp_flags; /* tcp_flags of the header. It provides
6166 * an easy way to check for tcp_flags
6167 * without parsing skb_data.
6169 * In particular, the skb_tcp_flags
6170 * will still be available in
6171 * BPF_SOCK_OPS_HDR_OPT_LEN even though
6172 * the outgoing header has not
6177 /* Definitions for bpf_sock_ops_cb_flags */
6179 BPF_SOCK_OPS_RTO_CB_FLAG = (1<<0),
6180 BPF_SOCK_OPS_RETRANS_CB_FLAG = (1<<1),
6181 BPF_SOCK_OPS_STATE_CB_FLAG = (1<<2),
6182 BPF_SOCK_OPS_RTT_CB_FLAG = (1<<3),
6183 /* Call bpf for all received TCP headers. The bpf prog will be
6184 * called under sock_ops->op == BPF_SOCK_OPS_PARSE_HDR_OPT_CB
6186 * Please refer to the comment in BPF_SOCK_OPS_PARSE_HDR_OPT_CB
6187 * for the header option related helpers that will be useful
6188 * to the bpf programs.
6190 * It could be used at the client/active side (i.e. connect() side)
6191 * when the server told it that the server was in syncookie
6192 * mode and required the active side to resend the bpf-written
6193 * options. The active side can keep writing the bpf-options until
6194 * it received a valid packet from the server side to confirm
6195 * the earlier packet (and options) has been received. The later
6196 * example patch is using it like this at the active side when the
6197 * server is in syncookie mode.
6199 * The bpf prog will usually turn this off in the common cases.
6201 BPF_SOCK_OPS_PARSE_ALL_HDR_OPT_CB_FLAG = (1<<4),
6202 /* Call bpf when kernel has received a header option that
6203 * the kernel cannot handle. The bpf prog will be called under
6204 * sock_ops->op == BPF_SOCK_OPS_PARSE_HDR_OPT_CB.
6206 * Please refer to the comment in BPF_SOCK_OPS_PARSE_HDR_OPT_CB
6207 * for the header option related helpers that will be useful
6208 * to the bpf programs.
6210 BPF_SOCK_OPS_PARSE_UNKNOWN_HDR_OPT_CB_FLAG = (1<<5),
6211 /* Call bpf when the kernel is writing header options for the
6212 * outgoing packet. The bpf prog will first be called
6213 * to reserve space in a skb under
6214 * sock_ops->op == BPF_SOCK_OPS_HDR_OPT_LEN_CB. Then
6215 * the bpf prog will be called to write the header option(s)
6216 * under sock_ops->op == BPF_SOCK_OPS_WRITE_HDR_OPT_CB.
6218 * Please refer to the comment in BPF_SOCK_OPS_HDR_OPT_LEN_CB
6219 * and BPF_SOCK_OPS_WRITE_HDR_OPT_CB for the header option
6220 * related helpers that will be useful to the bpf programs.
6222 * The kernel gets its chance to reserve space and write
6223 * options first before the BPF program does.
6225 BPF_SOCK_OPS_WRITE_HDR_OPT_CB_FLAG = (1<<6),
6226 /* Mask of all currently supported cb flags */
6227 BPF_SOCK_OPS_ALL_CB_FLAGS = 0x7F,
6230 /* List of known BPF sock_ops operators.
6231 * New entries can only be added at the end
6235 BPF_SOCK_OPS_TIMEOUT_INIT, /* Should return SYN-RTO value to use or
6236 * -1 if default value should be used
6238 BPF_SOCK_OPS_RWND_INIT, /* Should return initial advertized
6239 * window (in packets) or -1 if default
6240 * value should be used
6242 BPF_SOCK_OPS_TCP_CONNECT_CB, /* Calls BPF program right before an
6243 * active connection is initialized
6245 BPF_SOCK_OPS_ACTIVE_ESTABLISHED_CB, /* Calls BPF program when an
6246 * active connection is
6249 BPF_SOCK_OPS_PASSIVE_ESTABLISHED_CB, /* Calls BPF program when a
6250 * passive connection is
6253 BPF_SOCK_OPS_NEEDS_ECN, /* If connection's congestion control
6256 BPF_SOCK_OPS_BASE_RTT, /* Get base RTT. The correct value is
6257 * based on the path and may be
6258 * dependent on the congestion control
6259 * algorithm. In general it indicates
6260 * a congestion threshold. RTTs above
6261 * this indicate congestion
6263 BPF_SOCK_OPS_RTO_CB, /* Called when an RTO has triggered.
6264 * Arg1: value of icsk_retransmits
6265 * Arg2: value of icsk_rto
6266 * Arg3: whether RTO has expired
6268 BPF_SOCK_OPS_RETRANS_CB, /* Called when skb is retransmitted.
6269 * Arg1: sequence number of 1st byte
6271 * Arg3: return value of
6272 * tcp_transmit_skb (0 => success)
6274 BPF_SOCK_OPS_STATE_CB, /* Called when TCP changes state.
6278 BPF_SOCK_OPS_TCP_LISTEN_CB, /* Called on listen(2), right after
6279 * socket transition to LISTEN state.
6281 BPF_SOCK_OPS_RTT_CB, /* Called on every RTT.
6283 BPF_SOCK_OPS_PARSE_HDR_OPT_CB, /* Parse the header option.
6284 * It will be called to handle
6285 * the packets received at
6286 * an already established
6289 * sock_ops->skb_data:
6290 * Referring to the received skb.
6291 * It covers the TCP header only.
6293 * bpf_load_hdr_opt() can also
6294 * be used to search for a
6295 * particular option.
6297 BPF_SOCK_OPS_HDR_OPT_LEN_CB, /* Reserve space for writing the
6298 * header option later in
6299 * BPF_SOCK_OPS_WRITE_HDR_OPT_CB.
6300 * Arg1: bool want_cookie. (in
6301 * writing SYNACK only)
6303 * sock_ops->skb_data:
6304 * Not available because no header has
6307 * sock_ops->skb_tcp_flags:
6308 * The tcp_flags of the
6309 * outgoing skb. (e.g. SYN, ACK, FIN).
6311 * bpf_reserve_hdr_opt() should
6312 * be used to reserve space.
6314 BPF_SOCK_OPS_WRITE_HDR_OPT_CB, /* Write the header options
6315 * Arg1: bool want_cookie. (in
6316 * writing SYNACK only)
6318 * sock_ops->skb_data:
6319 * Referring to the outgoing skb.
6320 * It covers the TCP header
6321 * that has already been written
6322 * by the kernel and the
6323 * earlier bpf-progs.
6325 * sock_ops->skb_tcp_flags:
6326 * The tcp_flags of the outgoing
6327 * skb. (e.g. SYN, ACK, FIN).
6329 * bpf_store_hdr_opt() should
6330 * be used to write the
6333 * bpf_load_hdr_opt() can also
6334 * be used to search for a
6335 * particular option that
6336 * has already been written
6337 * by the kernel or the
6338 * earlier bpf-progs.
6342 /* List of TCP states. There is a build check in net/ipv4/tcp.c to detect
6343 * changes between the TCP and BPF versions. Ideally this should never happen.
6344 * If it does, we need to add code to convert them before calling
6345 * the BPF sock_ops function.
6348 BPF_TCP_ESTABLISHED = 1,
6358 BPF_TCP_CLOSING, /* Now a valid state */
6359 BPF_TCP_NEW_SYN_RECV,
6361 BPF_TCP_MAX_STATES /* Leave at the end! */
6365 TCP_BPF_IW = 1001, /* Set TCP initial congestion window */
6366 TCP_BPF_SNDCWND_CLAMP = 1002, /* Set sndcwnd_clamp */
6367 TCP_BPF_DELACK_MAX = 1003, /* Max delay ack in usecs */
6368 TCP_BPF_RTO_MIN = 1004, /* Min delay ack in usecs */
6369 /* Copy the SYN pkt to optval
6371 * BPF_PROG_TYPE_SOCK_OPS only. It is similar to the
6372 * bpf_getsockopt(TCP_SAVED_SYN) but it does not limit
6373 * to only getting from the saved_syn. It can either get the
6376 * 1. the just-received SYN packet (only available when writing the
6377 * SYNACK). It will be useful when it is not necessary to
6378 * save the SYN packet for latter use. It is also the only way
6379 * to get the SYN during syncookie mode because the syn
6380 * packet cannot be saved during syncookie.
6384 * 2. the earlier saved syn which was done by
6385 * bpf_setsockopt(TCP_SAVE_SYN).
6387 * The bpf_getsockopt(TCP_BPF_SYN*) option will hide where the
6388 * SYN packet is obtained.
6390 * If the bpf-prog does not need the IP[46] header, the
6391 * bpf-prog can avoid parsing the IP header by using
6392 * TCP_BPF_SYN. Otherwise, the bpf-prog can get both
6393 * IP[46] and TCP header by using TCP_BPF_SYN_IP.
6395 * >0: Total number of bytes copied
6396 * -ENOSPC: Not enough space in optval. Only optlen number of
6398 * -ENOENT: The SYN skb is not available now and the earlier SYN pkt
6399 * is not saved by setsockopt(TCP_SAVE_SYN).
6401 TCP_BPF_SYN = 1005, /* Copy the TCP header */
6402 TCP_BPF_SYN_IP = 1006, /* Copy the IP[46] and TCP header */
6403 TCP_BPF_SYN_MAC = 1007, /* Copy the MAC, IP[46], and TCP header */
6407 BPF_LOAD_HDR_OPT_TCP_SYN = (1ULL << 0),
6410 /* args[0] value during BPF_SOCK_OPS_HDR_OPT_LEN_CB and
6411 * BPF_SOCK_OPS_WRITE_HDR_OPT_CB.
6414 BPF_WRITE_HDR_TCP_CURRENT_MSS = 1, /* Kernel is finding the
6415 * total option spaces
6416 * required for an established
6417 * sk in order to calculate the
6418 * MSS. No skb is actually
6421 BPF_WRITE_HDR_TCP_SYNACK_COOKIE = 2, /* Kernel is in syncookie mode
6422 * when sending a SYN.
6426 struct bpf_perf_event_value {
6433 BPF_DEVCG_ACC_MKNOD = (1ULL << 0),
6434 BPF_DEVCG_ACC_READ = (1ULL << 1),
6435 BPF_DEVCG_ACC_WRITE = (1ULL << 2),
6439 BPF_DEVCG_DEV_BLOCK = (1ULL << 0),
6440 BPF_DEVCG_DEV_CHAR = (1ULL << 1),
6443 struct bpf_cgroup_dev_ctx {
6444 /* access_type encoded as (BPF_DEVCG_ACC_* << 16) | BPF_DEVCG_DEV_* */
6450 struct bpf_raw_tracepoint_args {
6454 /* DIRECT: Skip the FIB rules and go to FIB table associated with device
6455 * OUTPUT: Do lookup from egress perspective; default is ingress
6458 BPF_FIB_LOOKUP_DIRECT = (1U << 0),
6459 BPF_FIB_LOOKUP_OUTPUT = (1U << 1),
6463 BPF_FIB_LKUP_RET_SUCCESS, /* lookup successful */
6464 BPF_FIB_LKUP_RET_BLACKHOLE, /* dest is blackholed; can be dropped */
6465 BPF_FIB_LKUP_RET_UNREACHABLE, /* dest is unreachable; can be dropped */
6466 BPF_FIB_LKUP_RET_PROHIBIT, /* dest not allowed; can be dropped */
6467 BPF_FIB_LKUP_RET_NOT_FWDED, /* packet is not forwarded */
6468 BPF_FIB_LKUP_RET_FWD_DISABLED, /* fwding is not enabled on ingress */
6469 BPF_FIB_LKUP_RET_UNSUPP_LWT, /* fwd requires encapsulation */
6470 BPF_FIB_LKUP_RET_NO_NEIGH, /* no neighbor entry for nh */
6471 BPF_FIB_LKUP_RET_FRAG_NEEDED, /* fragmentation required to fwd */
6474 struct bpf_fib_lookup {
6475 /* input: network family for lookup (AF_INET, AF_INET6)
6476 * output: network family of egress nexthop
6480 /* set if lookup is to consider L4 data - e.g., FIB rules */
6485 union { /* used for MTU check */
6486 /* input to lookup */
6487 __u16 tot_len; /* L3 length from network hdr (iph->tot_len) */
6489 /* output: MTU value */
6492 /* input: L3 device index for lookup
6493 * output: device index from FIB lookup
6498 /* inputs to lookup */
6499 __u8 tos; /* AF_INET */
6500 __be32 flowinfo; /* AF_INET6, flow_label + priority */
6502 /* output: metric of fib result (IPv4/IPv6 only) */
6508 __u32 ipv6_src[4]; /* in6_addr; network order */
6511 /* input to bpf_fib_lookup, ipv{4,6}_dst is destination address in
6512 * network header. output: bpf_fib_lookup sets to gateway address
6513 * if FIB lookup returns gateway route
6517 __u32 ipv6_dst[4]; /* in6_addr; network order */
6521 __be16 h_vlan_proto;
6523 __u8 smac[6]; /* ETH_ALEN */
6524 __u8 dmac[6]; /* ETH_ALEN */
6527 struct bpf_redir_neigh {
6528 /* network family for lookup (AF_INET, AF_INET6) */
6530 /* network address of nexthop; skips fib lookup to find gateway */
6533 __u32 ipv6_nh[4]; /* in6_addr; network order */
6537 /* bpf_check_mtu flags*/
6538 enum bpf_check_mtu_flags {
6539 BPF_MTU_CHK_SEGS = (1U << 0),
6542 enum bpf_check_mtu_ret {
6543 BPF_MTU_CHK_RET_SUCCESS, /* check and lookup successful */
6544 BPF_MTU_CHK_RET_FRAG_NEEDED, /* fragmentation required to fwd */
6545 BPF_MTU_CHK_RET_SEGS_TOOBIG, /* GSO re-segmentation needed to fwd */
6548 enum bpf_task_fd_type {
6549 BPF_FD_TYPE_RAW_TRACEPOINT, /* tp name */
6550 BPF_FD_TYPE_TRACEPOINT, /* tp name */
6551 BPF_FD_TYPE_KPROBE, /* (symbol + offset) or addr */
6552 BPF_FD_TYPE_KRETPROBE, /* (symbol + offset) or addr */
6553 BPF_FD_TYPE_UPROBE, /* filename + offset */
6554 BPF_FD_TYPE_URETPROBE, /* filename + offset */
6558 BPF_FLOW_DISSECTOR_F_PARSE_1ST_FRAG = (1U << 0),
6559 BPF_FLOW_DISSECTOR_F_STOP_AT_FLOW_LABEL = (1U << 1),
6560 BPF_FLOW_DISSECTOR_F_STOP_AT_ENCAP = (1U << 2),
6563 struct bpf_flow_keys {
6566 __u16 addr_proto; /* ETH_P_* of valid addrs */
6580 __u32 ipv6_src[4]; /* in6_addr; network order */
6581 __u32 ipv6_dst[4]; /* in6_addr; network order */
6588 struct bpf_func_info {
6593 #define BPF_LINE_INFO_LINE_NUM(line_col) ((line_col) >> 10)
6594 #define BPF_LINE_INFO_LINE_COL(line_col) ((line_col) & 0x3ff)
6596 struct bpf_line_info {
6598 __u32 file_name_off;
6603 struct bpf_spin_lock {
6610 } __attribute__((aligned(8)));
6615 } __attribute__((aligned(8)));
6618 __u32 write; /* Sysctl is being read (= 0) or written (= 1).
6619 * Allows 1,2,4-byte read, but no write.
6621 __u32 file_pos; /* Sysctl file position to read from, write to.
6622 * Allows 1,2,4-byte read an 4-byte write.
6626 struct bpf_sockopt {
6627 __bpf_md_ptr(struct bpf_sock *, sk);
6628 __bpf_md_ptr(void *, optval);
6629 __bpf_md_ptr(void *, optval_end);
6637 struct bpf_pidns_info {
6642 /* User accessible data for SK_LOOKUP programs. Add new fields at the end. */
6643 struct bpf_sk_lookup {
6645 __bpf_md_ptr(struct bpf_sock *, sk); /* Selected socket */
6646 __u64 cookie; /* Non-zero if socket was selected in PROG_TEST_RUN */
6649 __u32 family; /* Protocol family (AF_INET, AF_INET6) */
6650 __u32 protocol; /* IP protocol (IPPROTO_TCP, IPPROTO_UDP) */
6651 __u32 remote_ip4; /* Network byte order */
6652 __u32 remote_ip6[4]; /* Network byte order */
6653 __be16 remote_port; /* Network byte order */
6654 __u16 :16; /* Zero padding */
6655 __u32 local_ip4; /* Network byte order */
6656 __u32 local_ip6[4]; /* Network byte order */
6657 __u32 local_port; /* Host byte order */
6658 __u32 ingress_ifindex; /* The arriving interface. Determined by inet_iif. */
6662 * struct btf_ptr is used for typed pointer representation; the
6663 * type id is used to render the pointer data as the appropriate type
6664 * via the bpf_snprintf_btf() helper described above. A flags field -
6665 * potentially to specify additional details about the BTF pointer
6666 * (rather than its mode of display) - is included for future use.
6667 * Display flags - BTF_F_* - are passed to bpf_snprintf_btf separately.
6672 __u32 flags; /* BTF ptr flags; unused at present. */
6676 * Flags to control bpf_snprintf_btf() behaviour.
6677 * - BTF_F_COMPACT: no formatting around type information
6678 * - BTF_F_NONAME: no struct/union member names/types
6679 * - BTF_F_PTR_RAW: show raw (unobfuscated) pointer values;
6680 * equivalent to %px.
6681 * - BTF_F_ZERO: show zero-valued struct/union members; they
6682 * are not displayed by default
6685 BTF_F_COMPACT = (1ULL << 0),
6686 BTF_F_NONAME = (1ULL << 1),
6687 BTF_F_PTR_RAW = (1ULL << 2),
6688 BTF_F_ZERO = (1ULL << 3),
6691 /* bpf_core_relo_kind encodes which aspect of captured field/type/enum value
6692 * has to be adjusted by relocations. It is emitted by llvm and passed to
6693 * libbpf and later to the kernel.
6695 enum bpf_core_relo_kind {
6696 BPF_CORE_FIELD_BYTE_OFFSET = 0, /* field byte offset */
6697 BPF_CORE_FIELD_BYTE_SIZE = 1, /* field size in bytes */
6698 BPF_CORE_FIELD_EXISTS = 2, /* field existence in target kernel */
6699 BPF_CORE_FIELD_SIGNED = 3, /* field signedness (0 - unsigned, 1 - signed) */
6700 BPF_CORE_FIELD_LSHIFT_U64 = 4, /* bitfield-specific left bitshift */
6701 BPF_CORE_FIELD_RSHIFT_U64 = 5, /* bitfield-specific right bitshift */
6702 BPF_CORE_TYPE_ID_LOCAL = 6, /* type ID in local BPF object */
6703 BPF_CORE_TYPE_ID_TARGET = 7, /* type ID in target kernel */
6704 BPF_CORE_TYPE_EXISTS = 8, /* type existence in target kernel */
6705 BPF_CORE_TYPE_SIZE = 9, /* type size in bytes */
6706 BPF_CORE_ENUMVAL_EXISTS = 10, /* enum value existence in target kernel */
6707 BPF_CORE_ENUMVAL_VALUE = 11, /* enum value integer value */
6711 * "struct bpf_core_relo" is used to pass relocation data form LLVM to libbpf
6712 * and from libbpf to the kernel.
6714 * CO-RE relocation captures the following data:
6715 * - insn_off - instruction offset (in bytes) within a BPF program that needs
6716 * its insn->imm field to be relocated with actual field info;
6717 * - type_id - BTF type ID of the "root" (containing) entity of a relocatable
6719 * - access_str_off - offset into corresponding .BTF string section. String
6720 * interpretation depends on specific relocation kind:
6721 * - for field-based relocations, string encodes an accessed field using
6722 * a sequence of field and array indices, separated by colon (:). It's
6723 * conceptually very close to LLVM's getelementptr ([0]) instruction's
6724 * arguments for identifying offset to a field.
6725 * - for type-based relocations, strings is expected to be just "0";
6726 * - for enum value-based relocations, string contains an index of enum
6727 * value within its enum type;
6728 * - kind - one of enum bpf_core_relo_kind;
6738 * struct sample *s = ...;
6739 * int *x = &s->a; // encoded as "0:0" (a is field #0)
6740 * int *y = &s->b[5]; // encoded as "0:1:0:5" (anon struct is field #1,
6741 * // b is field #0 inside anon struct, accessing elem #5)
6742 * int *z = &s[10]->b; // encoded as "10:1" (ptr is used as an array)
6744 * type_id for all relocs in this example will capture BTF type id of
6747 * Such relocation is emitted when using __builtin_preserve_access_index()
6748 * Clang built-in, passing expression that captures field address, e.g.:
6750 * bpf_probe_read(&dst, sizeof(dst),
6751 * __builtin_preserve_access_index(&src->a.b.c));
6753 * In this case Clang will emit field relocation recording necessary data to
6754 * be able to find offset of embedded `a.b.c` field within `src` struct.
6756 * [0] https://llvm.org/docs/LangRef.html#getelementptr-instruction
6758 struct bpf_core_relo {
6761 __u32 access_str_off;
6762 enum bpf_core_relo_kind kind;
6765 #endif /* _UAPI__LINUX_BPF_H__ */