1 /* SPDX-License-Identifier: GPL-2.0+ */
3 * Common SPI Interface: Controller-specific definitions
6 * Gerald Van Baren, Custom IDEAS, vanbaren@cideas.com.
15 #define SPI_CPHA BIT(0) /* clock phase */
16 #define SPI_CPOL BIT(1) /* clock polarity */
17 #define SPI_MODE_0 (0|0) /* (original MicroWire) */
18 #define SPI_MODE_1 (0|SPI_CPHA)
19 #define SPI_MODE_2 (SPI_CPOL|0)
20 #define SPI_MODE_3 (SPI_CPOL|SPI_CPHA)
21 #define SPI_CS_HIGH BIT(2) /* CS active high */
22 #define SPI_LSB_FIRST BIT(3) /* per-word bits-on-wire */
23 #define SPI_3WIRE BIT(4) /* SI/SO signals shared */
24 #define SPI_LOOP BIT(5) /* loopback mode */
25 #define SPI_SLAVE BIT(6) /* slave mode */
26 #define SPI_PREAMBLE BIT(7) /* Skip preamble bytes */
27 #define SPI_TX_BYTE BIT(8) /* transmit with 1 wire byte */
28 #define SPI_TX_DUAL BIT(9) /* transmit with 2 wires */
29 #define SPI_TX_QUAD BIT(10) /* transmit with 4 wires */
30 #define SPI_RX_SLOW BIT(11) /* receive with 1 wire slow */
31 #define SPI_RX_DUAL BIT(12) /* receive with 2 wires */
32 #define SPI_RX_QUAD BIT(13) /* receive with 4 wires */
33 #define SPI_TX_OCTAL BIT(14) /* transmit with 8 wires */
34 #define SPI_RX_OCTAL BIT(15) /* receive with 8 wires */
36 /* Header byte that marks the start of the message */
37 #define SPI_PREAMBLE_END_BYTE 0xec
39 #define SPI_DEFAULT_WORDLEN 8
42 /* TODO(sjg@chromium.org): Remove this and use max_hz from struct spi_slave */
48 * struct dm_spi_platdata - platform data for all SPI slaves
50 * This describes a SPI slave, a child device of the SPI bus. To obtain this
51 * struct from a spi_slave, use dev_get_parent_platdata(dev) or
52 * dev_get_parent_platdata(slave->dev).
54 * This data is immuatable. Each time the device is probed, @max_hz and @mode
55 * will be copied to struct spi_slave.
57 * @cs: Chip select number (0..n-1)
58 * @max_hz: Maximum bus speed that this slave can tolerate
59 * @mode: SPI mode to use for this device (see SPI mode flags)
61 struct dm_spi_slave_platdata {
67 #endif /* CONFIG_DM_SPI */
70 * enum spi_clock_phase - indicates the clock phase to use for SPI (CPHA)
72 * @SPI_CLOCK_PHASE_FIRST: Data sampled on the first phase
73 * @SPI_CLOCK_PHASE_SECOND: Data sampled on the second phase
75 enum spi_clock_phase {
76 SPI_CLOCK_PHASE_FIRST,
77 SPI_CLOCK_PHASE_SECOND,
81 * enum spi_wire_mode - indicates the number of wires used for SPI
83 * @SPI_4_WIRE_MODE: Normal bidirectional mode with MOSI and MISO
84 * @SPI_3_WIRE_MODE: Unidirectional version with a single data line SISO
92 * enum spi_polarity - indicates the polarity of the SPI bus (CPOL)
94 * @SPI_POLARITY_LOW: Clock is low in idle state
95 * @SPI_POLARITY_HIGH: Clock is high in idle state
103 * struct spi_slave - Representation of a SPI slave
105 * For driver model this is the per-child data used by the SPI bus. It can
106 * be accessed using dev_get_parent_priv() on the slave device. The SPI uclass
107 * sets uip per_child_auto_alloc_size to sizeof(struct spi_slave), and the
108 * driver should not override it. Two platform data fields (max_hz and mode)
109 * are copied into this structure to provide an initial value. This allows
110 * them to be changed, since we should never change platform data in drivers.
112 * If not using driver model, drivers are expected to extend this with
113 * controller-specific data.
115 * @dev: SPI slave device
116 * @max_hz: Maximum speed for this slave
117 * @speed: Current bus speed. This is 0 until the bus is first
119 * @bus: ID of the bus that the slave is attached to. For
120 * driver model this is the sequence number of the SPI
121 * bus (bus->seq) so does not need to be stored
122 * @cs: ID of the chip select connected to the slave.
123 * @mode: SPI mode to use for this slave (see SPI mode flags)
124 * @wordlen: Size of SPI word in number of bits
125 * @max_read_size: If non-zero, the maximum number of bytes which can
127 * @max_write_size: If non-zero, the maximum number of bytes which can
128 * be written at once.
129 * @memory_map: Address of read-only SPI flash access.
130 * @flags: Indication of SPI flags.
134 struct udevice *dev; /* struct spi_slave is dev->parentdata */
142 unsigned int wordlen;
143 unsigned int max_read_size;
144 unsigned int max_write_size;
148 #define SPI_XFER_BEGIN BIT(0) /* Assert CS before transfer */
149 #define SPI_XFER_END BIT(1) /* Deassert CS after transfer */
150 #define SPI_XFER_ONCE (SPI_XFER_BEGIN | SPI_XFER_END)
151 #define SPI_XFER_MMAP BIT(2) /* Memory Mapped start */
152 #define SPI_XFER_MMAP_END BIT(3) /* Memory Mapped End */
156 * spi_do_alloc_slave - Allocate a new SPI slave (internal)
158 * Allocate and zero all fields in the spi slave, and set the bus/chip
159 * select. Use the helper macro spi_alloc_slave() to call this.
161 * @offset: Offset of struct spi_slave within slave structure.
162 * @size: Size of slave structure.
163 * @bus: Bus ID of the slave chip.
164 * @cs: Chip select ID of the slave chip on the specified bus.
166 void *spi_do_alloc_slave(int offset, int size, unsigned int bus,
170 * spi_alloc_slave - Allocate a new SPI slave
172 * Allocate and zero all fields in the spi slave, and set the bus/chip
175 * @_struct: Name of structure to allocate (e.g. struct tegra_spi).
176 * This structure must contain a member 'struct spi_slave *slave'.
177 * @bus: Bus ID of the slave chip.
178 * @cs: Chip select ID of the slave chip on the specified bus.
180 #define spi_alloc_slave(_struct, bus, cs) \
181 spi_do_alloc_slave(offsetof(_struct, slave), \
182 sizeof(_struct), bus, cs)
185 * spi_alloc_slave_base - Allocate a new SPI slave with no private data
187 * Allocate and zero all fields in the spi slave, and set the bus/chip
190 * @bus: Bus ID of the slave chip.
191 * @cs: Chip select ID of the slave chip on the specified bus.
193 #define spi_alloc_slave_base(bus, cs) \
194 spi_do_alloc_slave(0, sizeof(struct spi_slave), bus, cs)
197 * Set up communications parameters for a SPI slave.
199 * This must be called once for each slave. Note that this function
200 * usually doesn't touch any actual hardware, it only initializes the
201 * contents of spi_slave so that the hardware can be easily
204 * @bus: Bus ID of the slave chip.
205 * @cs: Chip select ID of the slave chip on the specified bus.
206 * @max_hz: Maximum SCK rate in Hz.
207 * @mode: Clock polarity, clock phase and other parameters.
209 * Returns: A spi_slave reference that can be used in subsequent SPI
210 * calls, or NULL if one or more of the parameters are not supported.
212 struct spi_slave *spi_setup_slave(unsigned int bus, unsigned int cs,
213 unsigned int max_hz, unsigned int mode);
216 * Free any memory associated with a SPI slave.
218 * @slave: The SPI slave
220 void spi_free_slave(struct spi_slave *slave);
223 * Claim the bus and prepare it for communication with a given slave.
225 * This must be called before doing any transfers with a SPI slave. It
226 * will enable and initialize any SPI hardware as necessary, and make
227 * sure that the SCK line is in the correct idle state. It is not
228 * allowed to claim the same bus for several slaves without releasing
229 * the bus in between.
231 * @slave: The SPI slave
233 * Returns: 0 if the bus was claimed successfully, or a negative value
236 int spi_claim_bus(struct spi_slave *slave);
239 * Release the SPI bus
241 * This must be called once for every call to spi_claim_bus() after
242 * all transfers have finished. It may disable any SPI hardware as
245 * @slave: The SPI slave
247 void spi_release_bus(struct spi_slave *slave);
250 * Set the word length for SPI transactions
252 * Set the word length (number of bits per word) for SPI transactions.
254 * @slave: The SPI slave
255 * @wordlen: The number of bits in a word
257 * Returns: 0 on success, -1 on failure.
259 int spi_set_wordlen(struct spi_slave *slave, unsigned int wordlen);
262 * SPI transfer (optional if mem_ops is used)
264 * This writes "bitlen" bits out the SPI MOSI port and simultaneously clocks
265 * "bitlen" bits in the SPI MISO port. That's just the way SPI works.
267 * The source of the outgoing bits is the "dout" parameter and the
268 * destination of the input bits is the "din" parameter. Note that "dout"
269 * and "din" can point to the same memory location, in which case the
270 * input data overwrites the output data (since both are buffered by
271 * temporary variables, this is OK).
273 * spi_xfer() interface:
274 * @slave: The SPI slave which will be sending/receiving the data.
275 * @bitlen: How many bits to write and read.
276 * @dout: Pointer to a string of bits to send out. The bits are
277 * held in a byte array and are sent MSB first.
278 * @din: Pointer to a string of bits that will be filled in.
279 * @flags: A bitwise combination of SPI_XFER_* flags.
281 * Returns: 0 on success, not 0 on failure
283 int spi_xfer(struct spi_slave *slave, unsigned int bitlen, const void *dout,
284 void *din, unsigned long flags);
287 * spi_write_then_read - SPI synchronous write followed by read
289 * This performs a half duplex transaction in which the first transaction
290 * is to send the opcode and if the length of buf is non-zero then it start
291 * the second transaction as tx or rx based on the need from respective slave.
293 * @slave: The SPI slave device with which opcode/data will be exchanged
294 * @opcode: opcode used for specific transfer
295 * @n_opcode: size of opcode, in bytes
296 * @txbuf: buffer into which data to be written
297 * @rxbuf: buffer into which data will be read
298 * @n_buf: size of buf (whether it's [tx|rx]buf), in bytes
300 * Returns: 0 on success, not 0 on failure
302 int spi_write_then_read(struct spi_slave *slave, const u8 *opcode,
303 size_t n_opcode, const u8 *txbuf, u8 *rxbuf,
306 /* Copy memory mapped data */
307 void spi_flash_copy_mmap(void *data, void *offset, size_t len);
310 * Determine if a SPI chipselect is valid.
311 * This function is provided by the board if the low-level SPI driver
312 * needs it to determine if a given chipselect is actually valid.
314 * Returns: 1 if bus:cs identifies a valid chip on this board, 0
317 int spi_cs_is_valid(unsigned int bus, unsigned int cs);
319 #ifndef CONFIG_DM_SPI
321 * Activate a SPI chipselect.
322 * This function is provided by the board code when using a driver
323 * that can't control its chipselects automatically (e.g.
324 * common/soft_spi.c). When called, it should activate the chip select
325 * to the device identified by "slave".
327 void spi_cs_activate(struct spi_slave *slave);
330 * Deactivate a SPI chipselect.
331 * This function is provided by the board code when using a driver
332 * that can't control its chipselects automatically (e.g.
333 * common/soft_spi.c). When called, it should deactivate the chip
334 * select to the device identified by "slave".
336 void spi_cs_deactivate(struct spi_slave *slave);
339 * Set transfer speed.
340 * This sets a new speed to be applied for next spi_xfer().
341 * @slave: The SPI slave
342 * @hz: The transfer speed
344 void spi_set_speed(struct spi_slave *slave, uint hz);
348 * Write 8 bits, then read 8 bits.
349 * @slave: The SPI slave we're communicating with
350 * @byte: Byte to be written
352 * Returns: The value that was read, or a negative value on error.
354 * TODO: This function probably shouldn't be inlined.
356 static inline int spi_w8r8(struct spi_slave *slave, unsigned char byte)
358 unsigned char dout[2];
359 unsigned char din[2];
365 ret = spi_xfer(slave, 16, dout, din, SPI_XFER_BEGIN | SPI_XFER_END);
366 return ret < 0 ? ret : din[1];
372 * struct spi_cs_info - Information about a bus chip select
374 * @dev: Connected device, or NULL if none
381 * struct struct dm_spi_ops - Driver model SPI operations
383 * The uclass interface is implemented by all SPI devices which use
388 * Claim the bus and prepare it for communication.
390 * The device provided is the slave device. It's parent controller
391 * will be used to provide the communication.
393 * This must be called before doing any transfers with a SPI slave. It
394 * will enable and initialize any SPI hardware as necessary, and make
395 * sure that the SCK line is in the correct idle state. It is not
396 * allowed to claim the same bus for several slaves without releasing
397 * the bus in between.
399 * @dev: The SPI slave
401 * Returns: 0 if the bus was claimed successfully, or a negative value
404 int (*claim_bus)(struct udevice *dev);
407 * Release the SPI bus
409 * This must be called once for every call to spi_claim_bus() after
410 * all transfers have finished. It may disable any SPI hardware as
413 * @dev: The SPI slave
415 int (*release_bus)(struct udevice *dev);
418 * Set the word length for SPI transactions
420 * Set the word length (number of bits per word) for SPI transactions.
422 * @bus: The SPI slave
423 * @wordlen: The number of bits in a word
425 * Returns: 0 on success, -ve on failure.
427 int (*set_wordlen)(struct udevice *dev, unsigned int wordlen);
432 * This writes "bitlen" bits out the SPI MOSI port and simultaneously
433 * clocks "bitlen" bits in the SPI MISO port. That's just the way SPI
436 * The source of the outgoing bits is the "dout" parameter and the
437 * destination of the input bits is the "din" parameter. Note that
438 * "dout" and "din" can point to the same memory location, in which
439 * case the input data overwrites the output data (since both are
440 * buffered by temporary variables, this is OK).
442 * spi_xfer() interface:
443 * @dev: The slave device to communicate with
444 * @bitlen: How many bits to write and read.
445 * @dout: Pointer to a string of bits to send out. The bits are
446 * held in a byte array and are sent MSB first.
447 * @din: Pointer to a string of bits that will be filled in.
448 * @flags: A bitwise combination of SPI_XFER_* flags.
450 * Returns: 0 on success, not -1 on failure
452 int (*xfer)(struct udevice *dev, unsigned int bitlen, const void *dout,
453 void *din, unsigned long flags);
456 * Optimized handlers for SPI memory-like operations.
458 * Optimized/dedicated operations for interactions with SPI memory. This
459 * field is optional and should only be implemented if the controller
460 * has native support for memory like operations.
462 const struct spi_controller_mem_ops *mem_ops;
465 * Set transfer speed.
466 * This sets a new speed to be applied for next spi_xfer().
468 * @hz: The transfer speed
469 * @return 0 if OK, -ve on error
471 int (*set_speed)(struct udevice *bus, uint hz);
474 * Set the SPI mode/flags
476 * It is unclear if we want to set speed and mode together instead
480 * @mode: Requested SPI mode (SPI_... flags)
481 * @return 0 if OK, -ve on error
483 int (*set_mode)(struct udevice *bus, uint mode);
486 * Get information on a chip select
488 * This is only called when the SPI uclass does not know about a
489 * chip select, i.e. it has no attached device. It gives the driver
490 * a chance to allow activity on that chip select even so.
493 * @cs: The chip select (0..n-1)
494 * @info: Returns information about the chip select, if valid.
495 * On entry info->dev is NULL
496 * @return 0 if OK (and @info is set up), -EINVAL if the chip select
497 * is invalid, other -ve value on error
499 int (*cs_info)(struct udevice *bus, uint cs, struct spi_cs_info *info);
502 * get_mmap() - Get memory-mapped SPI
504 * @dev: The SPI flash slave device
505 * @map_basep: Returns base memory address for mapped SPI
506 * @map_sizep: Returns size of mapped SPI
507 * @offsetp: Returns start offset of SPI flash where the map works
508 * correctly (offsets before this are not visible)
509 * @return 0 if OK, -EFAULT if memory mapping is not available
511 int (*get_mmap)(struct udevice *dev, ulong *map_basep,
512 uint *map_sizep, uint *offsetp);
515 struct dm_spi_emul_ops {
519 * This writes "bitlen" bits out the SPI MOSI port and simultaneously
520 * clocks "bitlen" bits in the SPI MISO port. That's just the way SPI
521 * works. Here the device is a slave.
523 * The source of the outgoing bits is the "dout" parameter and the
524 * destination of the input bits is the "din" parameter. Note that
525 * "dout" and "din" can point to the same memory location, in which
526 * case the input data overwrites the output data (since both are
527 * buffered by temporary variables, this is OK).
529 * spi_xfer() interface:
530 * @slave: The SPI slave which will be sending/receiving the data.
531 * @bitlen: How many bits to write and read.
532 * @dout: Pointer to a string of bits sent to the device. The
533 * bits are held in a byte array and are sent MSB first.
534 * @din: Pointer to a string of bits that will be sent back to
536 * @flags: A bitwise combination of SPI_XFER_* flags.
538 * Returns: 0 on success, not -1 on failure
540 int (*xfer)(struct udevice *slave, unsigned int bitlen,
541 const void *dout, void *din, unsigned long flags);
545 * spi_find_bus_and_cs() - Find bus and slave devices by number
547 * Given a bus number and chip select, this finds the corresponding bus
548 * device and slave device. Neither device is activated by this function,
549 * although they may have been activated previously.
551 * @busnum: SPI bus number
552 * @cs: Chip select to look for
553 * @busp: Returns bus device
554 * @devp: Return slave device
555 * @return 0 if found, -ENODEV on error
557 int spi_find_bus_and_cs(int busnum, int cs, struct udevice **busp,
558 struct udevice **devp);
561 * spi_get_bus_and_cs() - Find and activate bus and slave devices by number
563 * Given a bus number and chip select, this finds the corresponding bus
564 * device and slave device.
566 * If no such slave exists, and drv_name is not NULL, then a new slave device
567 * is automatically bound on this chip select with requested speed and mode.
569 * Ths new slave device is probed ready for use with the speed and mode
570 * from platdata when available or the requested values.
572 * @busnum: SPI bus number
573 * @cs: Chip select to look for
574 * @speed: SPI speed to use for this slave when not available in platdata
575 * @mode: SPI mode to use for this slave when not available in platdata
576 * @drv_name: Name of driver to attach to this chip select
577 * @dev_name: Name of the new device thus created
578 * @busp: Returns bus device
579 * @devp: Return slave device
580 * @return 0 if found, -ve on error
582 int spi_get_bus_and_cs(int busnum, int cs, int speed, int mode,
583 const char *drv_name, const char *dev_name,
584 struct udevice **busp, struct spi_slave **devp);
587 * spi_chip_select() - Get the chip select for a slave
589 * @return the chip select this slave is attached to
591 int spi_chip_select(struct udevice *slave);
594 * spi_find_chip_select() - Find the slave attached to chip select
596 * @bus: SPI bus to search
597 * @cs: Chip select to look for
598 * @devp: Returns the slave device if found
599 * @return 0 if found, -EINVAL if cs is invalid, -ENODEV if no device attached,
600 * other -ve value on error
602 int spi_find_chip_select(struct udevice *bus, int cs, struct udevice **devp);
605 * spi_slave_ofdata_to_platdata() - decode standard SPI platform data
607 * This decodes the speed and mode for a slave from a device tree node
609 * @blob: Device tree blob
610 * @node: Node offset to read from
611 * @plat: Place to put the decoded information
613 int spi_slave_ofdata_to_platdata(struct udevice *dev,
614 struct dm_spi_slave_platdata *plat);
617 * spi_cs_info() - Check information on a chip select
619 * This checks a particular chip select on a bus to see if it has a device
620 * attached, or is even valid.
623 * @cs: The chip select (0..n-1)
624 * @info: Returns information about the chip select, if valid
625 * @return 0 if OK (and @info is set up), -ENODEV if the chip select
626 * is invalid, other -ve value on error
628 int spi_cs_info(struct udevice *bus, uint cs, struct spi_cs_info *info);
630 struct sandbox_state;
633 * sandbox_spi_get_emul() - get an emulator for a SPI slave
635 * This provides a way to attach an emulated SPI device to a particular SPI
636 * slave, so that xfer() operations on the slave will be handled by the
637 * emulator. If a emulator already exists on that chip select it is returned.
638 * Otherwise one is created.
640 * @state: Sandbox state
641 * @bus: SPI bus requesting the emulator
642 * @slave: SPI slave device requesting the emulator
643 * @emuip: Returns pointer to emulator
644 * @return 0 if OK, -ve on error
646 int sandbox_spi_get_emul(struct sandbox_state *state,
647 struct udevice *bus, struct udevice *slave,
648 struct udevice **emulp);
651 * Claim the bus and prepare it for communication with a given slave.
653 * This must be called before doing any transfers with a SPI slave. It
654 * will enable and initialize any SPI hardware as necessary, and make
655 * sure that the SCK line is in the correct idle state. It is not
656 * allowed to claim the same bus for several slaves without releasing
657 * the bus in between.
659 * @dev: The SPI slave device
661 * Returns: 0 if the bus was claimed successfully, or a negative value
664 int dm_spi_claim_bus(struct udevice *dev);
667 * Release the SPI bus
669 * This must be called once for every call to dm_spi_claim_bus() after
670 * all transfers have finished. It may disable any SPI hardware as
673 * @slave: The SPI slave device
675 void dm_spi_release_bus(struct udevice *dev);
680 * This writes "bitlen" bits out the SPI MOSI port and simultaneously clocks
681 * "bitlen" bits in the SPI MISO port. That's just the way SPI works.
683 * The source of the outgoing bits is the "dout" parameter and the
684 * destination of the input bits is the "din" parameter. Note that "dout"
685 * and "din" can point to the same memory location, in which case the
686 * input data overwrites the output data (since both are buffered by
687 * temporary variables, this is OK).
689 * dm_spi_xfer() interface:
690 * @dev: The SPI slave device which will be sending/receiving the data.
691 * @bitlen: How many bits to write and read.
692 * @dout: Pointer to a string of bits to send out. The bits are
693 * held in a byte array and are sent MSB first.
694 * @din: Pointer to a string of bits that will be filled in.
695 * @flags: A bitwise combination of SPI_XFER_* flags.
697 * Returns: 0 on success, not 0 on failure
699 int dm_spi_xfer(struct udevice *dev, unsigned int bitlen,
700 const void *dout, void *din, unsigned long flags);
703 * spi_get_mmap() - Get memory-mapped SPI
705 * @dev: SPI slave device to check
706 * @map_basep: Returns base memory address for mapped SPI
707 * @map_sizep: Returns size of mapped SPI
708 * @offsetp: Returns start offset of SPI flash where the map works
709 * correctly (offsets before this are not visible)
710 * @return 0 if OK, -ENOSYS if no operation, -EFAULT if memory mapping is not
713 int dm_spi_get_mmap(struct udevice *dev, ulong *map_basep, uint *map_sizep,
716 /* Access the operations for a SPI device */
717 #define spi_get_ops(dev) ((struct dm_spi_ops *)(dev)->driver->ops)
718 #define spi_emul_get_ops(dev) ((struct dm_spi_emul_ops *)(dev)->driver->ops)
719 #endif /* CONFIG_DM_SPI */