global: Migrate CONFIG_STACKBASE to CFG
[platform/kernel/u-boot.git] / include / remoteproc.h
1 /* SPDX-License-Identifier: GPL-2.0 */
2 /*
3  * (C) Copyright 2015
4  * Texas Instruments Incorporated - http://www.ti.com/
5  */
6
7 #ifndef _RPROC_H_
8 #define _RPROC_H_
9
10 /*
11  * Note: The platform data support is not meant for use with newer
12  * platforms. This is meant only for legacy devices. This mode of
13  * initialization *will* be eventually removed once all necessary
14  * platforms have moved to dm/fdt.
15  */
16 #include <dm/platdata.h>        /* For platform data support - non dt world */
17
18 /**
19  * struct fw_rsc_hdr - firmware resource entry header
20  * @type: resource type
21  * @data: resource data
22  *
23  * Every resource entry begins with a 'struct fw_rsc_hdr' header providing
24  * its @type. The content of the entry itself will immediately follow
25  * this header, and it should be parsed according to the resource type.
26  */
27 struct fw_rsc_hdr {
28         u32 type;
29         u8 data[0];
30 };
31
32 /**
33  * enum fw_resource_type - types of resource entries
34  *
35  * @RSC_CARVEOUT:   request for allocation of a physically contiguous
36  *                  memory region.
37  * @RSC_DEVMEM:     request to iommu_map a memory-based peripheral.
38  * @RSC_TRACE:      announces the availability of a trace buffer into which
39  *                  the remote processor will be writing logs.
40  * @RSC_VDEV:       declare support for a virtio device, and serve as its
41  *                  virtio header.
42  * @RSC_PRELOAD_VENDOR: a vendor resource type that needs to be handled by
43  *                  remoteproc implementations before loading
44  * @RSC_POSTLOAD_VENDOR: a vendor resource type that needs to be handled by
45  *                  remoteproc implementations after loading
46  * @RSC_LAST:       just keep this one at the end
47  *
48  * For more details regarding a specific resource type, please see its
49  * dedicated structure below.
50  *
51  * Please note that these values are used as indices to the rproc_handle_rsc
52  * lookup table, so please keep them sane. Moreover, @RSC_LAST is used to
53  * check the validity of an index before the lookup table is accessed, so
54  * please update it as needed.
55  */
56 enum fw_resource_type {
57         RSC_CARVEOUT            = 0,
58         RSC_DEVMEM              = 1,
59         RSC_TRACE               = 2,
60         RSC_VDEV                = 3,
61         RSC_PRELOAD_VENDOR      = 4,
62         RSC_POSTLOAD_VENDOR     = 5,
63         RSC_LAST                = 6,
64 };
65
66 #define FW_RSC_ADDR_ANY (-1)
67
68 /**
69  * struct fw_rsc_carveout - physically contiguous memory request
70  * @da: device address
71  * @pa: physical address
72  * @len: length (in bytes)
73  * @flags: iommu protection flags
74  * @reserved: reserved (must be zero)
75  * @name: human-readable name of the requested memory region
76  *
77  * This resource entry requests the host to allocate a physically contiguous
78  * memory region.
79  *
80  * These request entries should precede other firmware resource entries,
81  * as other entries might request placing other data objects inside
82  * these memory regions (e.g. data/code segments, trace resource entries, ...).
83  *
84  * Allocating memory this way helps utilizing the reserved physical memory
85  * (e.g. CMA) more efficiently, and also minimizes the number of TLB entries
86  * needed to map it (in case @rproc is using an IOMMU). Reducing the TLB
87  * pressure is important; it may have a substantial impact on performance.
88  *
89  * If the firmware is compiled with static addresses, then @da should specify
90  * the expected device address of this memory region. If @da is set to
91  * FW_RSC_ADDR_ANY, then the host will dynamically allocate it, and then
92  * overwrite @da with the dynamically allocated address.
93  *
94  * We will always use @da to negotiate the device addresses, even if it
95  * isn't using an iommu. In that case, though, it will obviously contain
96  * physical addresses.
97  *
98  * Some remote processors needs to know the allocated physical address
99  * even if they do use an iommu. This is needed, e.g., if they control
100  * hardware accelerators which access the physical memory directly (this
101  * is the case with OMAP4 for instance). In that case, the host will
102  * overwrite @pa with the dynamically allocated physical address.
103  * Generally we don't want to expose physical addresses if we don't have to
104  * (remote processors are generally _not_ trusted), so we might want to
105  * change this to happen _only_ when explicitly required by the hardware.
106  *
107  * @flags is used to provide IOMMU protection flags, and @name should
108  * (optionally) contain a human readable name of this carveout region
109  * (mainly for debugging purposes).
110  */
111 struct fw_rsc_carveout {
112         u32 da;
113         u32 pa;
114         u32 len;
115         u32 flags;
116         u32 reserved;
117         u8 name[32];
118 };
119
120 /**
121  * struct fw_rsc_devmem - iommu mapping request
122  * @da: device address
123  * @pa: physical address
124  * @len: length (in bytes)
125  * @flags: iommu protection flags
126  * @reserved: reserved (must be zero)
127  * @name: human-readable name of the requested region to be mapped
128  *
129  * This resource entry requests the host to iommu map a physically contiguous
130  * memory region. This is needed in case the remote processor requires
131  * access to certain memory-based peripherals; _never_ use it to access
132  * regular memory.
133  *
134  * This is obviously only needed if the remote processor is accessing memory
135  * via an iommu.
136  *
137  * @da should specify the required device address, @pa should specify
138  * the physical address we want to map, @len should specify the size of
139  * the mapping and @flags is the IOMMU protection flags. As always, @name may
140  * (optionally) contain a human readable name of this mapping (mainly for
141  * debugging purposes).
142  *
143  * Note: at this point we just "trust" those devmem entries to contain valid
144  * physical addresses, but this isn't safe and will be changed: eventually we
145  * want remoteproc implementations to provide us ranges of physical addresses
146  * the firmware is allowed to request, and not allow firmwares to request
147  * access to physical addresses that are outside those ranges.
148  */
149 struct fw_rsc_devmem {
150         u32 da;
151         u32 pa;
152         u32 len;
153         u32 flags;
154         u32 reserved;
155         u8 name[32];
156 };
157
158 /**
159  * struct fw_rsc_trace - trace buffer declaration
160  * @da: device address
161  * @len: length (in bytes)
162  * @reserved: reserved (must be zero)
163  * @name: human-readable name of the trace buffer
164  *
165  * This resource entry provides the host information about a trace buffer
166  * into which the remote processor will write log messages.
167  *
168  * @da specifies the device address of the buffer, @len specifies
169  * its size, and @name may contain a human readable name of the trace buffer.
170  *
171  * After booting the remote processor, the trace buffers are exposed to the
172  * user via debugfs entries (called trace0, trace1, etc..).
173  */
174 struct fw_rsc_trace {
175         u32 da;
176         u32 len;
177         u32 reserved;
178         u8 name[32];
179 };
180
181 /**
182  * struct fw_rsc_vdev_vring - vring descriptor entry
183  * @da: device address
184  * @align: the alignment between the consumer and producer parts of the vring
185  * @num: num of buffers supported by this vring (must be power of two)
186  * @notifyid is a unique rproc-wide notify index for this vring. This notify
187  * index is used when kicking a remote processor, to let it know that this
188  * vring is triggered.
189  * @pa: physical address
190  *
191  * This descriptor is not a resource entry by itself; it is part of the
192  * vdev resource type (see below).
193  *
194  * Note that @da should either contain the device address where
195  * the remote processor is expecting the vring, or indicate that
196  * dynamically allocation of the vring's device address is supported.
197  */
198 struct fw_rsc_vdev_vring {
199         u32 da;
200         u32 align;
201         u32 num;
202         u32 notifyid;
203         u32 pa;
204 };
205
206 /**
207  * struct fw_rsc_vdev - virtio device header
208  * @id: virtio device id (as in virtio_ids.h)
209  * @notifyid is a unique rproc-wide notify index for this vdev. This notify
210  * index is used when kicking a remote processor, to let it know that the
211  * status/features of this vdev have changes.
212  * @dfeatures specifies the virtio device features supported by the firmware
213  * @gfeatures is a place holder used by the host to write back the
214  * negotiated features that are supported by both sides.
215  * @config_len is the size of the virtio config space of this vdev. The config
216  * space lies in the resource table immediate after this vdev header.
217  * @status is a place holder where the host will indicate its virtio progress.
218  * @num_of_vrings indicates how many vrings are described in this vdev header
219  * @reserved: reserved (must be zero)
220  * @vring is an array of @num_of_vrings entries of 'struct fw_rsc_vdev_vring'.
221  *
222  * This resource is a virtio device header: it provides information about
223  * the vdev, and is then used by the host and its peer remote processors
224  * to negotiate and share certain virtio properties.
225  *
226  * By providing this resource entry, the firmware essentially asks remoteproc
227  * to statically allocate a vdev upon registration of the rproc (dynamic vdev
228  * allocation is not yet supported).
229  *
230  * Note: unlike virtualization systems, the term 'host' here means
231  * the Linux side which is running remoteproc to control the remote
232  * processors. We use the name 'gfeatures' to comply with virtio's terms,
233  * though there isn't really any virtualized guest OS here: it's the host
234  * which is responsible for negotiating the final features.
235  * Yeah, it's a bit confusing.
236  *
237  * Note: immediately following this structure is the virtio config space for
238  * this vdev (which is specific to the vdev; for more info, read the virtio
239  * spec). the size of the config space is specified by @config_len.
240  */
241 struct fw_rsc_vdev {
242         u32 id;
243         u32 notifyid;
244         u32 dfeatures;
245         u32 gfeatures;
246         u32 config_len;
247         u8 status;
248         u8 num_of_vrings;
249         u8 reserved[2];
250         struct fw_rsc_vdev_vring vring[0];
251 };
252
253 /**
254  * struct rproc_mem_entry - memory entry descriptor
255  * @va: virtual address
256  * @dma: dma address
257  * @len: length, in bytes
258  * @da: device address
259  * @priv: associated data
260  * @name: associated memory region name (optional)
261  * @node: list node
262  */
263 struct rproc_mem_entry {
264         void *va;
265         dma_addr_t dma;
266         int len;
267         u32 da;
268         void *priv;
269         char name[32];
270         struct list_head node;
271 };
272
273 struct rproc;
274
275 typedef u32(*init_func_proto) (u32 core_id, struct rproc *cfg);
276
277 struct l3_map {
278         u32 priv_addr;
279         u32 l3_addr;
280         u32 len;
281 };
282
283 struct rproc_intmem_to_l3_mapping {
284         u32 num_entries;
285         struct l3_map mappings[16];
286 };
287
288 /**
289  * enum rproc_crash_type - remote processor crash types
290  * @RPROC_MMUFAULT:     iommu fault
291  * @RPROC_WATCHDOG:     watchdog bite
292  * @RPROC_FATAL_ERROR   fatal error
293  *
294  * Each element of the enum is used as an array index. So that, the value of
295  * the elements should be always something sane.
296  *
297  * Feel free to add more types when needed.
298  */
299 enum rproc_crash_type {
300         RPROC_MMUFAULT,
301         RPROC_WATCHDOG,
302         RPROC_FATAL_ERROR,
303 };
304
305 /* we currently support only two vrings per rvdev */
306 #define RVDEV_NUM_VRINGS 2
307
308 #define RPMSG_NUM_BUFS         (512)
309 #define RPMSG_BUF_SIZE         (512)
310 #define RPMSG_TOTAL_BUF_SPACE  (RPMSG_NUM_BUFS * RPMSG_BUF_SIZE)
311
312 /**
313  * struct rproc_vring - remoteproc vring state
314  * @va: virtual address
315  * @dma: dma address
316  * @len: length, in bytes
317  * @da: device address
318  * @align: vring alignment
319  * @notifyid: rproc-specific unique vring index
320  * @rvdev: remote vdev
321  * @vq: the virtqueue of this vring
322  */
323 struct rproc_vring {
324         void *va;
325         dma_addr_t dma;
326         int len;
327         u32 da;
328         u32 align;
329         int notifyid;
330         struct rproc_vdev *rvdev;
331         struct virtqueue *vq;
332 };
333
334 /** struct rproc - structure with all processor specific information for
335  * loading remotecore from boot loader.
336  *
337  * @num_iommus: Number of IOMMUs for this remote core. Zero indicates that the
338  * processor does not have an IOMMU.
339  *
340  * @cma_base: Base address of the carveout for this remotecore.
341  *
342  * @cma_size: Length of the carveout in bytes.
343  *
344  * @page_table_addr: array with the physical address of the page table. We are
345  * using the same page table for both IOMMU's. There is currently no strong
346  * usecase for maintaining different page tables for different MMU's servicing
347  * the same CPU.
348  *
349  * @mmu_base_addr: base address of the MMU
350  *
351  * @entry_point: address that is the entry point for the remote core. This
352  * address is in the memory view of the remotecore.
353  *
354  * @load_addr: Address to which the bootloader loads the firmware from
355  * persistent storage before invoking the ELF loader. Keeping this address
356  * configurable allows future optimizations such as loading the firmware from
357  * storage for remotecore2 via EDMA while the CPU is processing the ELF image
358  * of remotecore1. This address is in the memory view of the A15.
359  *
360  * @firmware_name: Name of the file that is expected to contain the ELF image.
361  *
362  * @has_rsc_table: Flag populated after parsing the ELF binary on target.
363  */
364
365 struct rproc {
366         u32 num_iommus;
367         unsigned long cma_base;
368         u32 cma_size;
369         unsigned long page_table_addr;
370         unsigned long mmu_base_addr[2];
371         unsigned long load_addr;
372         unsigned long entry_point;
373         char *core_name;
374         char *firmware_name;
375         char *ptn;
376         init_func_proto start_clocks;
377         init_func_proto config_mmu;
378         init_func_proto config_peripherals;
379         init_func_proto start_core;
380         u32 has_rsc_table;
381         struct rproc_intmem_to_l3_mapping *intmem_to_l3_mapping;
382         u32 trace_pa;
383         u32 trace_len;
384 };
385
386 extern struct rproc *rproc_cfg_arr[2];
387 /**
388  * enum rproc_mem_type - What type of memory model does the rproc use
389  * @RPROC_INTERNAL_MEMORY_MAPPED: Remote processor uses own memory and is memory
390  *      mapped to the host processor over an address range.
391  *
392  * Please note that this is an enumeration of memory model of different types
393  * of remote processors. Few of the remote processors do have own internal
394  * memories, while others use external memory for instruction and data.
395  */
396 enum rproc_mem_type {
397         RPROC_INTERNAL_MEMORY_MAPPED    = 0,
398 };
399
400 /**
401  * struct dm_rproc_uclass_pdata - platform data for a CPU
402  * @name: Platform-specific way of naming the Remote proc
403  * @mem_type: one of 'enum rproc_mem_type'
404  * @driver_plat_data: driver specific platform data that may be needed.
405  *
406  * This can be accessed with dev_get_uclass_plat() for any UCLASS_REMOTEPROC
407  * device.
408  *
409  */
410 struct dm_rproc_uclass_pdata {
411         const char *name;
412         enum rproc_mem_type mem_type;
413         void *driver_plat_data;
414 };
415
416 /**
417  * struct dm_rproc_ops - Driver model remote proc operations.
418  *
419  * This defines the operations provided by remote proc driver.
420  */
421 struct dm_rproc_ops {
422         /**
423          * init() - Initialize the remoteproc device (optional)
424          *
425          * This is called after the probe is completed allowing the remote
426          * processor drivers to split up the initializations between probe and
427          * init if needed.
428          *
429          * @dev:        Remote proc device
430          * @return 0 if all ok, else appropriate error value.
431          */
432         int (*init)(struct udevice *dev);
433
434         /**
435          * load() - Load the remoteproc device using data provided (mandatory)
436          *
437          * Load the remoteproc device with an image, do not start the device.
438          *
439          * @dev:        Remote proc device
440          * @addr:       Address of the image to be loaded
441          * @size:       Size of the image to be loaded
442          * @return 0 if all ok, else appropriate error value.
443          */
444         int (*load)(struct udevice *dev, ulong addr, ulong size);
445
446         /**
447          * start() - Start the remoteproc device (mandatory)
448          *
449          * @dev:        Remote proc device
450          * @return 0 if all ok, else appropriate error value.
451          */
452         int (*start)(struct udevice *dev);
453
454         /**
455          * stop() - Stop the remoteproc device (optional)
456          *
457          * @dev:        Remote proc device
458          * @return 0 if all ok, else appropriate error value.
459          */
460         int (*stop)(struct udevice *dev);
461
462         /**
463          * reset() - Reset the remoteproc device (optional)
464          *
465          * @dev:        Remote proc device
466          * @return 0 if all ok, else appropriate error value.
467          */
468         int (*reset)(struct udevice *dev);
469
470         /**
471          * is_running() - Check if the remote processor is running (optional)
472          *
473          * @dev:        Remote proc device
474          * @return 0 if running, 1 if not running, -ve on error.
475          */
476         int (*is_running)(struct udevice *dev);
477
478         /**
479          * ping() - Ping the remote device for basic communication (optional)
480          *
481          * @dev:        Remote proc device
482          * @return 0 on success, 1 if not responding, -ve on other errors.
483          */
484         int (*ping)(struct udevice *dev);
485
486         /**
487          * device_to_virt() - Return translated virtual address (optional)
488          *
489          * Translate a device address (remote processor view) to virtual
490          * address (main processor view).
491          *
492          * @dev:        Remote proc device
493          * @da:         Device address
494          * @size:       Size of the memory region @da is pointing to
495          * @return virtual address.
496          */
497         void * (*device_to_virt)(struct udevice *dev, ulong da, ulong size);
498         int (*add_res)(struct udevice *dev,
499                        struct rproc_mem_entry *mapping);
500         void * (*alloc_mem)(struct udevice *dev, unsigned long len,
501                             unsigned long align);
502         unsigned int (*config_pagetable)(struct udevice *dev, unsigned int virt,
503                                          unsigned int phys, unsigned int len);
504 };
505
506 /* Accessor */
507 #define rproc_get_ops(dev) ((struct dm_rproc_ops *)(dev)->driver->ops)
508
509 #if CONFIG_IS_ENABLED(REMOTEPROC)
510 /**
511  * rproc_init() - Initialize all bound remote proc devices
512  * Return: 0 if all ok, else appropriate error value.
513  */
514 int rproc_init(void);
515
516 /**
517  * rproc_dev_init() - Initialize a remote proc device based on id
518  * @id:         id of the remote processor
519  * Return: 0 if all ok, else appropriate error value.
520  */
521 int rproc_dev_init(int id);
522
523 /**
524  * rproc_is_initialized() - check to see if remoteproc devices are initialized
525  * Return: true if all devices are initialized, false otherwise.
526  */
527 bool rproc_is_initialized(void);
528
529 /**
530  * rproc_load() - load binary or elf to a remote processor
531  * @id:         id of the remote processor
532  * @addr:       address in memory where the image is located
533  * @size:       size of the image
534  * Return: 0 if all ok, else appropriate error value.
535  */
536 int rproc_load(int id, ulong addr, ulong size);
537
538 /**
539  * rproc_start() - Start a remote processor
540  * @id:         id of the remote processor
541  * Return: 0 if all ok, else appropriate error value.
542  */
543 int rproc_start(int id);
544
545 /**
546  * rproc_stop() - Stop a remote processor
547  * @id:         id of the remote processor
548  * Return: 0 if all ok, else appropriate error value.
549  */
550 int rproc_stop(int id);
551
552 /**
553  * rproc_reset() - reset a remote processor
554  * @id:         id of the remote processor
555  * Return: 0 if all ok, else appropriate error value.
556  */
557 int rproc_reset(int id);
558
559 /**
560  * rproc_ping() - ping a remote processor to check if it can communicate
561  * @id:         id of the remote processor
562  * Return: 0 if all ok, else appropriate error value.
563  *
564  * NOTE: this might need communication path available, which is not implemented
565  * as part of remoteproc framework - hook on to appropriate bus architecture to
566  * do the same
567  */
568 int rproc_ping(int id);
569
570 /**
571  * rproc_is_running() - check to see if remote processor is running
572  * @id:         id of the remote processor
573  * Return: 0 if running, 1 if not running, -ve on error.
574  *
575  * NOTE: this may not involve actual communication capability of the remote
576  * processor, but just ensures that it is out of reset and executing code.
577  */
578 int rproc_is_running(int id);
579
580 /**
581  * rproc_elf32_sanity_check() - Verify if an image is a valid ELF32 one
582  *
583  * Check if a valid ELF32 image exists at the given memory location. Verify
584  * basic ELF32 format requirements like magic number and sections size.
585  *
586  * @addr:       address of the image to verify
587  * @size:       size of the image
588  * Return: 0 if the image looks good, else appropriate error value.
589  */
590 int rproc_elf32_sanity_check(ulong addr, ulong size);
591
592 /**
593  * rproc_elf64_sanity_check() - Verify if an image is a valid ELF32 one
594  *
595  * Check if a valid ELF64 image exists at the given memory location. Verify
596  * basic ELF64 format requirements like magic number and sections size.
597  *
598  * @addr:       address of the image to verify
599  * @size:       size of the image
600  * Return: 0 if the image looks good, else appropriate error value.
601  */
602 int rproc_elf64_sanity_check(ulong addr, ulong size);
603
604 /**
605  * rproc_elf32_load_image() - load an ELF32 image
606  * @dev:        device loading the ELF32 image
607  * @addr:       valid ELF32 image address
608  * @size:       size of the image
609  * Return: 0 if the image is successfully loaded, else appropriate error value.
610  */
611 int rproc_elf32_load_image(struct udevice *dev, unsigned long addr, ulong size);
612
613 /**
614  * rproc_elf64_load_image() - load an ELF64 image
615  * @dev:        device loading the ELF64 image
616  * @addr:       valid ELF64 image address
617  * @size:       size of the image
618  * Return: 0 if the image is successfully loaded, else appropriate error value.
619  */
620 int rproc_elf64_load_image(struct udevice *dev, ulong addr, ulong size);
621
622 /**
623  * rproc_elf_load_image() - load an ELF image
624  * @dev:        device loading the ELF image
625  * @addr:       valid ELF image address
626  * @size:       size of the image
627  *
628  * Auto detects if the image is ELF32 or ELF64 image and load accordingly.
629  * Return: 0 if the image is successfully loaded, else appropriate error value.
630  */
631 int rproc_elf_load_image(struct udevice *dev, unsigned long addr, ulong size);
632
633 /**
634  * rproc_elf_get_boot_addr() - Get rproc's boot address.
635  * @dev:        device loading the ELF image
636  * @addr:       valid ELF image address
637  *
638  * This function returns the entry point address of the ELF
639  * image.
640  */
641 ulong rproc_elf_get_boot_addr(struct udevice *dev, ulong addr);
642
643 /**
644  * rproc_elf32_load_rsc_table() - load the resource table from an ELF32 image
645  *
646  * Search for the resource table in an ELF32 image, and if found, copy it to
647  * device memory.
648  *
649  * @dev:        device loading the resource table
650  * @fw_addr:    ELF image address
651  * @fw_size:    size of the ELF image
652  * @rsc_addr:   pointer to the found resource table address. Updated on
653  *              operation success
654  * @rsc_size:   pointer to the found resource table size. Updated on operation
655  *              success
656  *
657  * Return: 0 if a valid resource table is successfully loaded, -ENODATA if there
658  * is no resource table (which is optional), or another appropriate error value.
659  */
660 int rproc_elf32_load_rsc_table(struct udevice *dev, ulong fw_addr,
661                                ulong fw_size, ulong *rsc_addr, ulong *rsc_size);
662 /**
663  * rproc_elf64_load_rsc_table() - load the resource table from an ELF64 image
664  *
665  * Search for the resource table in an ELF64 image, and if found, copy it to
666  * device memory.
667  *
668  * @dev:        device loading the resource table
669  * @fw_addr:    ELF image address
670  * @fw_size:    size of the ELF image
671  * @rsc_addr:   pointer to the found resource table address. Updated on
672  *              operation success
673  * @rsc_size:   pointer to the found resource table size. Updated on operation
674  *              success
675  *
676  * Return: 0 if a valid resource table is successfully loaded, -ENODATA if there
677  * is no resource table (which is optional), or another appropriate error value.
678  */
679 int rproc_elf64_load_rsc_table(struct udevice *dev, ulong fw_addr,
680                                ulong fw_size, ulong *rsc_addr, ulong *rsc_size);
681 /**
682  * rproc_elf_load_rsc_table() - load the resource table from an ELF image
683  *
684  * Auto detects if the image is ELF32 or ELF64 image and search accordingly for
685  * the resource table, and if found, copy it to device memory.
686  *
687  * @dev:        device loading the resource table
688  * @fw_addr:    ELF image address
689  * @fw_size:    size of the ELF image
690  * @rsc_addr:   pointer to the found resource table address. Updated on
691  *              operation success
692  * @rsc_size:   pointer to the found resource table size. Updated on operation
693  *              success
694  *
695  * Return: 0 if a valid resource table is successfully loaded, -ENODATA if there
696  * is no resource table (which is optional), or another appropriate error value.
697  */
698 int rproc_elf_load_rsc_table(struct udevice *dev, ulong fw_addr,
699                              ulong fw_size, ulong *rsc_addr, ulong *rsc_size);
700
701 unsigned long rproc_parse_resource_table(struct udevice *dev,
702                                          struct rproc *cfg);
703
704 struct resource_table *rproc_find_resource_table(struct udevice *dev,
705                                                  unsigned int addr,
706                                                  int *tablesz);
707 #else
708 static inline int rproc_init(void) { return -ENOSYS; }
709 static inline int rproc_dev_init(int id) { return -ENOSYS; }
710 static inline bool rproc_is_initialized(void) { return false; }
711 static inline int rproc_load(int id, ulong addr, ulong size) { return -ENOSYS; }
712 static inline int rproc_start(int id) { return -ENOSYS; }
713 static inline int rproc_stop(int id) { return -ENOSYS; }
714 static inline int rproc_reset(int id) { return -ENOSYS; }
715 static inline int rproc_ping(int id) { return -ENOSYS; }
716 static inline int rproc_is_running(int id) { return -ENOSYS; }
717 static inline int rproc_elf32_sanity_check(ulong addr,
718                                            ulong size) { return -ENOSYS; }
719 static inline int rproc_elf64_sanity_check(ulong addr,
720                                            ulong size) { return -ENOSYS; }
721 static inline int rproc_elf_sanity_check(ulong addr,
722                                          ulong size) { return -ENOSYS; }
723 static inline int rproc_elf32_load_image(struct udevice *dev,
724                                          unsigned long addr, ulong size)
725 { return -ENOSYS; }
726 static inline int rproc_elf64_load_image(struct udevice *dev, ulong addr,
727                                          ulong size)
728 { return -ENOSYS; }
729 static inline int rproc_elf_load_image(struct udevice *dev, ulong addr,
730                                        ulong size)
731 { return -ENOSYS; }
732 static inline ulong rproc_elf_get_boot_addr(struct udevice *dev, ulong addr)
733 { return 0; }
734 static inline int rproc_elf32_load_rsc_table(struct udevice *dev, ulong fw_addr,
735                                              ulong fw_size, ulong *rsc_addr,
736                                              ulong *rsc_size)
737 { return -ENOSYS; }
738 static inline int rproc_elf64_load_rsc_table(struct udevice *dev, ulong fw_addr,
739                                              ulong fw_size, ulong *rsc_addr,
740                                              ulong *rsc_size)
741 { return -ENOSYS; }
742 static inline int rproc_elf_load_rsc_table(struct udevice *dev, ulong fw_addr,
743                                            ulong fw_size, ulong *rsc_addr,
744                                            ulong *rsc_size)
745 { return -ENOSYS; }
746 #endif
747
748 #endif  /* _RPROC_H_ */