1 /* SPDX-License-Identifier: GPL-2.0+ */
3 * Copyright (c) 2015 Google, Inc
4 * Written by Simon Glass <sjg@chromium.org>
10 #include <linux/delay.h>
15 * Regmaps are an abstraction mechanism that allows device drivers to access
16 * register maps irrespective of the underlying bus architecture. This entails
17 * that for devices that support multiple busses (e.g. I2C and SPI for a GPIO
18 * expander chip) only one driver has to be written. This driver will
19 * instantiate a regmap with a backend depending on the bus the device is
20 * attached to, and use the regmap API to access the register map through that
23 * Read and write functions are supplied, which can read/write data of
24 * arbitrary length from/to the regmap.
26 * The endianness of regmap accesses is selectable for each map through device
27 * tree settings via the boolean "little-endian", "big-endian", and
28 * "native-endian" properties.
30 * Furthermore, the register map described by a regmap can be split into
31 * multiple disjoint areas called ranges. In this way, register maps with
32 * "holes", i.e. areas of addressable memory that are not part of the register
33 * map, can be accessed in a concise manner.
35 * Currently, only a bare "mem" backend for regmaps is supported, which
36 * accesses the register map as regular IO-mapped memory.
40 * enum regmap_size_t - Access sizes for regmap reads and writes
42 * @REGMAP_SIZE_8: 8-bit read/write access size
43 * @REGMAP_SIZE_16: 16-bit read/write access size
44 * @REGMAP_SIZE_32: 32-bit read/write access size
45 * @REGMAP_SIZE_64: 64-bit read/write access size
55 * enum regmap_endianness_t - Endianness for regmap reads and writes
57 * @REGMAP_NATIVE_ENDIAN: Native endian read/write accesses
58 * @REGMAP_LITTLE_ENDIAN: Little endian read/write accesses
59 * @REGMAP_BIG_ENDIAN: Big endian read/write accesses
61 enum regmap_endianness_t {
68 * struct regmap_range - a register map range
70 * @start: Start address
71 * @size: Size in bytes
81 * struct regmap_config - Configure the behaviour of a regmap
83 * @width: Width of the read/write operations. Defaults to
84 * REGMAP_SIZE_32 if set to 0.
85 * @reg_offset_shift Left shift the register offset by this value before
86 * performing read or write.
87 * @r_start: If specified, the regmap is created with one range
88 * which starts at this address, instead of finding the
89 * start from device tree.
90 * @r_size: Same as above for the range size
92 struct regmap_config {
93 enum regmap_size_t width;
100 * struct regmap - a way of accessing hardware/bus registers
102 * @width: Width of the read/write operations. Defaults to
103 * REGMAP_SIZE_32 if set to 0.
104 * @reg_offset_shift Left shift the register offset by this value before
105 * performing read or write.
106 * @range_count: Number of ranges available within the map
107 * @ranges: Array of ranges
110 enum regmap_endianness_t endianness;
111 enum regmap_size_t width;
112 u32 reg_offset_shift;
114 struct regmap_range ranges[0];
118 * Interface to provide access to registers either through a direct memory
119 * bus or through a peripheral bus like I2C, SPI.
123 * regmap_write() - Write a value to a regmap
125 * @map: Regmap to write to
126 * @offset: Offset in the regmap to write to
127 * @val: Data to write to the regmap at the specified offset
129 * Return: 0 if OK, -ve on error
131 int regmap_write(struct regmap *map, uint offset, uint val);
134 * regmap_read() - Read a value from a regmap
136 * @map: Regmap to read from
137 * @offset: Offset in the regmap to read from
138 * @valp: Pointer to the buffer to receive the data read from the regmap
139 * at the specified offset
141 * Return: 0 if OK, -ve on error
143 int regmap_read(struct regmap *map, uint offset, uint *valp);
146 * regmap_raw_write() - Write a value of specified length to a regmap
148 * @map: Regmap to write to
149 * @offset: Offset in the regmap to write to
150 * @val: Value to write to the regmap at the specified offset
151 * @val_len: Length of the data to be written to the regmap
153 * Note that this function will, as opposed to regmap_write, write data of
154 * arbitrary length to the regmap, and not just the size configured in the
155 * regmap (defaults to 32-bit) and is thus a generalized version of
158 * Return: 0 if OK, -ve on error
160 int regmap_raw_write(struct regmap *map, uint offset, const void *val,
164 * regmap_raw_read() - Read a value of specified length from a regmap
166 * @map: Regmap to read from
167 * @offset: Offset in the regmap to read from
168 * @valp: Pointer to the buffer to receive the data read from the regmap
169 * at the specified offset
170 * @val_len: Length of the data to be read from the regmap
172 * Note that this function will, as opposed to regmap_read, read data of
173 * arbitrary length from the regmap, and not just the size configured in the
174 * regmap (defaults to 32-bit) and is thus a generalized version of
177 * Return: 0 if OK, -ve on error
179 int regmap_raw_read(struct regmap *map, uint offset, void *valp,
183 * regmap_raw_write_range() - Write a value of specified length to a range of a
186 * @map: Regmap to write to
187 * @range_num: Number of the range in the regmap to write to
188 * @offset: Offset in the regmap to write to
189 * @val: Value to write to the regmap at the specified offset
190 * @val_len: Length of the data to be written to the regmap
192 * Return: 0 if OK, -ve on error
194 int regmap_raw_write_range(struct regmap *map, uint range_num, uint offset,
195 const void *val, size_t val_len);
198 * regmap_raw_read_range() - Read a value of specified length from a range of a
201 * @map: Regmap to read from
202 * @range_num: Number of the range in the regmap to write to
203 * @offset: Offset in the regmap to read from
204 * @valp: Pointer to the buffer to receive the data read from the regmap
205 * at the specified offset
206 * @val_len: Length of the data to be read from the regmap
208 * Return: 0 if OK, -ve on error
210 int regmap_raw_read_range(struct regmap *map, uint range_num, uint offset,
211 void *valp, size_t val_len);
214 * regmap_range_set() - Set a value in a regmap range described by a struct
215 * @map: Regmap in which a value should be set
216 * @range: Range of the regmap in which a value should be set
217 * @type: Structure type that describes the memory layout of the regmap range
218 * @member: Member of the describing structure that should be set in the regmap
220 * @val: Value which should be written to the regmap range
222 #define regmap_range_set(map, range, type, member, val) \
224 typeof(((type *)0)->member) __tmp = val; \
225 regmap_raw_write_range(map, range, offsetof(type, member), \
226 &__tmp, sizeof(((type *)0)->member)); \
230 * regmap_set() - Set a value in a regmap described by a struct
231 * @map: Regmap in which a value should be set
232 * @type: Structure type that describes the memory layout of the regmap
233 * @member: Member of the describing structure that should be set in the regmap
234 * @val: Value which should be written to the regmap
236 #define regmap_set(map, type, member, val) \
237 regmap_range_set(map, 0, type, member, val)
240 * regmap_range_get() - Get a value from a regmap range described by a struct
241 * @map: Regmap from which a value should be read
242 * @range: Range of the regmap from which a value should be read
243 * @type: Structure type that describes the memory layout of the regmap
245 * @member: Member of the describing structure that should be read in the
247 * @valp: Variable that receives the value read from the regmap range
249 #define regmap_range_get(map, range, type, member, valp) \
250 regmap_raw_read_range(map, range, offsetof(type, member), \
251 (void *)valp, sizeof(((type *)0)->member))
254 * regmap_get() - Get a value from a regmap described by a struct
255 * @map: Regmap from which a value should be read
256 * @type: Structure type that describes the memory layout of the regmap
258 * @member: Member of the describing structure that should be read in the
260 * @valp: Variable that receives the value read from the regmap
262 #define regmap_get(map, type, member, valp) \
263 regmap_range_get(map, 0, type, member, valp)
266 * regmap_read_poll_timeout - Poll until a condition is met or a timeout occurs
268 * @map: Regmap to read from
269 * @addr: Offset to poll
270 * @val: Unsigned integer variable to read the value into
271 * @cond: Break condition (usually involving @val)
272 * @sleep_us: Maximum time to sleep between reads in us (0 tight-loops).
273 * @timeout_ms: Timeout in ms, 0 means never timeout
274 * @test_add_time: Used for sandbox testing - amount of time to add after
275 * starting the loop (0 if not testing)
277 * Returns 0 on success and -ETIMEDOUT upon a timeout or the regmap_read
278 * error return value in case of a error read. In the two former cases,
279 * the last read value at @addr is stored in @val. Must not be called
280 * from atomic context if sleep_us or timeout_us are used.
282 * This is modelled after the regmap_read_poll_timeout macros in linux but
283 * with millisecond timeout.
285 * The _test version is for sandbox testing only. Do not use this in normal
286 * code as it advances the timer.
288 #define regmap_read_poll_timeout_test(map, addr, val, cond, sleep_us, \
289 timeout_ms, test_add_time) \
291 unsigned long __start = get_timer(0); \
294 __ret = regmap_read((map), (addr), &(val)); \
299 if (IS_ENABLED(CONFIG_SANDBOX) && test_add_time) \
300 timer_test_add_offset(test_add_time); \
301 if ((timeout_ms) && get_timer(__start) > (timeout_ms)) { \
302 __ret = regmap_read((map), (addr), &(val)); \
306 udelay((sleep_us)); \
308 __ret ?: ((cond) ? 0 : -ETIMEDOUT); \
311 #define regmap_read_poll_timeout(map, addr, val, cond, sleep_us, timeout_ms) \
312 regmap_read_poll_timeout_test(map, addr, val, cond, sleep_us, \
316 * regmap_field_read_poll_timeout - Poll until a condition is met or a timeout
319 * @field: Regmap field to read from
320 * @val: Unsigned integer variable to read the value into
321 * @cond: Break condition (usually involving @val)
322 * @sleep_us: Maximum time to sleep between reads in us (0 tight-loops).
323 * @timeout_ms: Timeout in ms, 0 means never timeout
325 * Returns 0 on success and -ETIMEDOUT upon a timeout or the regmap_field_read
326 * error return value in case of a error read. In the two former cases,
327 * the last read value at @addr is stored in @val.
329 * This is modelled after the regmap_read_poll_timeout macros in linux but
330 * with millisecond timeout.
332 #define regmap_field_read_poll_timeout(field, val, cond, sleep_us, timeout_ms) \
334 unsigned long __start = get_timer(0); \
337 __ret = regmap_field_read((field), &(val)); \
342 if ((timeout_ms) && get_timer(__start) > (timeout_ms)) { \
343 __ret = regmap_field_read((field), &(val)); \
347 udelay((sleep_us)); \
349 __ret ?: ((cond) ? 0 : -ETIMEDOUT); \
353 * regmap_update_bits() - Perform a read/modify/write using a mask
355 * @map: The map returned by regmap_init_mem*()
356 * @offset: Offset of the memory
357 * @mask: Mask to apply to the read value
358 * @val: Value to OR with the read value after masking. Note that any
359 * bits set in @val which are not set in @mask are ignored
360 * Return: 0 if OK, -ve on error
362 int regmap_update_bits(struct regmap *map, uint offset, uint mask, uint val);
365 * regmap_init_mem() - Set up a new register map that uses memory access
367 * @node: Device node that uses this map
368 * @mapp: Returns allocated map
369 * Return: 0 if OK, -ve on error
371 * Use regmap_uninit() to free it.
373 int regmap_init_mem(ofnode node, struct regmap **mapp);
376 * regmap_init_mem_plat() - Set up a new memory register map for
379 * @dev: Device that uses this map
380 * @reg: List of address, size pairs
381 * @count: Number of pairs (e.g. 1 if the regmap has a single entry)
382 * @mapp: Returns allocated map
383 * Return: 0 if OK, -ve on error
385 * This creates a new regmap with a list of regions passed in, rather than
386 * using the device tree. It only supports 32-bit machines.
388 * Use regmap_uninit() to free it.
391 int regmap_init_mem_plat(struct udevice *dev, fdt_val_t *reg, int count,
392 struct regmap **mapp);
394 int regmap_init_mem_index(ofnode node, struct regmap **mapp, int index);
397 * regmap_init_mem_range() - Set up a new memory region for ofnode with the
400 * @node: The ofnode for the map.
401 * @r_start: Start of the range.
402 * @r_size: Size of the range.
403 * @mapp: Returns allocated map.
405 * Return: 0 in success, -errno otherwise
407 * This creates a regmap with one range where instead of extracting the range
408 * from 'node', it is created based on the parameters specified. This is
409 * useful when a driver needs to calculate the base of the regmap at runtime,
410 * and can't specify it in device tree.
412 int regmap_init_mem_range(ofnode node, ulong r_start, ulong r_size,
413 struct regmap **mapp);
416 * devm_regmap_init() - Initialise register map (device managed)
418 * @dev: Device that will be interacted with
419 * @bus: Bus-specific callbacks to use with device (IGNORED)
420 * @bus_context: Data passed to bus-specific callbacks (IGNORED)
421 * @config: Configuration for register map
423 * @Return a valid pointer to a struct regmap or a ERR_PTR() on error.
424 * The structure is automatically freed when the device is unbound
426 struct regmap *devm_regmap_init(struct udevice *dev,
427 const struct regmap_bus *bus,
429 const struct regmap_config *config);
431 * regmap_get_range() - Obtain the base memory address of a regmap range
433 * @map: Regmap to query
434 * @range_num: Range to look up
435 * Return: Pointer to the range in question if OK, NULL on error
437 void *regmap_get_range(struct regmap *map, unsigned int range_num);
440 * regmap_uninit() - free a previously inited regmap
442 * @map: Regmap to free
443 * Return: 0 if OK, -ve on error
445 int regmap_uninit(struct regmap *map);
448 * struct reg_field - Description of an register field
450 * @reg: Offset of the register within the regmap bank
451 * @lsb: lsb of the register field.
452 * @msb: msb of the register field.
463 * REG_FIELD() - A convenient way to initialize a 'struct reg_field'.
465 * @_reg: Offset of the register within the regmap bank
466 * @_lsb: lsb of the register field.
467 * @_msb: msb of the register field.
469 * Register fields are often described in terms of 3 things: the register it
470 * belongs to, its LSB, and its MSB. This macro can be used by drivers to
471 * clearly and easily initialize a 'struct regmap_field'.
473 * For example, say a device has a register at offset DEV_REG1 (0x100) and a
474 * field of DEV_REG1 is on bits [7:3]. So a driver can initialize a regmap
475 * field for this by doing:
476 * struct reg_field field = REG_FIELD(DEV_REG1, 3, 7);
478 #define REG_FIELD(_reg, _lsb, _msb) { \
485 * devm_regmap_field_alloc() - Allocate and initialise a register field.
487 * @dev: Device that will be interacted with
488 * @regmap: regmap bank in which this register field is located.
489 * @reg_field: Register field with in the bank.
491 * The return value will be an ERR_PTR() on error or a valid pointer
492 * to a struct regmap_field. The regmap_field will be automatically freed
493 * by the device management code.
495 struct regmap_field *devm_regmap_field_alloc(struct udevice *dev,
496 struct regmap *regmap,
497 struct reg_field reg_field);
499 * devm_regmap_field_free() - Free a register field allocated using
500 * devm_regmap_field_alloc.
502 * @dev: Device that will be interacted with
503 * @field: regmap field which should be freed.
505 * Free register field allocated using devm_regmap_field_alloc(). Usually
506 * drivers need not call this function, as the memory allocated via devm
507 * will be freed as per device-driver life-cyle.
509 void devm_regmap_field_free(struct udevice *dev, struct regmap_field *field);
512 * regmap_field_write() - Write a value to a regmap field
514 * @field: Regmap field to write to
515 * @val: Data to write to the regmap at the specified offset
517 * Return: 0 if OK, -ve on error
519 int regmap_field_write(struct regmap_field *field, unsigned int val);
522 * regmap_field_read() - Read a 32-bit value from a regmap
524 * @field: Regmap field to read from
525 * @valp: Pointer to the buffer to receive the data read from the regmap
528 * Return: 0 if OK, -ve on error
530 int regmap_field_read(struct regmap_field *field, unsigned int *val);