2 * Copyright (c) 2016-2017, Mellanox Technologies. All rights reserved.
3 * Copyright (c) 2016-2017, Dave Watson <davejwatson@fb.com>. All rights reserved.
5 * This software is available to you under a choice of one of two
6 * licenses. You may choose to be licensed under the terms of the GNU
7 * General Public License (GPL) Version 2, available from the file
8 * COPYING in the main directory of this source tree, or the
9 * OpenIB.org BSD license below:
11 * Redistribution and use in source and binary forms, with or
12 * without modification, are permitted provided that the following
15 * - Redistributions of source code must retain the above
16 * copyright notice, this list of conditions and the following
19 * - Redistributions in binary form must reproduce the above
20 * copyright notice, this list of conditions and the following
21 * disclaimer in the documentation and/or other materials
22 * provided with the distribution.
24 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
25 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
26 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
27 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
28 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
29 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
30 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
34 #ifndef _TLS_OFFLOAD_H
35 #define _TLS_OFFLOAD_H
37 #include <linux/types.h>
38 #include <asm/byteorder.h>
39 #include <linux/crypto.h>
40 #include <linux/socket.h>
41 #include <linux/tcp.h>
42 #include <linux/skmsg.h>
43 #include <linux/mutex.h>
44 #include <linux/netdevice.h>
45 #include <linux/rcupdate.h>
47 #include <net/net_namespace.h>
49 #include <net/strparser.h>
50 #include <crypto/aead.h>
51 #include <uapi/linux/tls.h>
54 /* Maximum data size carried in a TLS record */
55 #define TLS_MAX_PAYLOAD_SIZE ((size_t)1 << 14)
57 #define TLS_HEADER_SIZE 5
58 #define TLS_NONCE_OFFSET TLS_HEADER_SIZE
60 #define TLS_CRYPTO_INFO_READY(info) ((info)->cipher_type)
62 #define TLS_RECORD_TYPE_DATA 0x17
64 #define TLS_AAD_SPACE_SIZE 13
66 #define MAX_IV_SIZE 16
67 #define TLS_MAX_REC_SEQ_SIZE 8
69 /* For AES-CCM, the full 16-bytes of IV is made of '4' fields of given sizes.
71 * IV[16] = b0[1] || implicit nonce[4] || explicit nonce[8] || length[3]
73 * The field 'length' is encoded in field 'b0' as '(length width - 1)'.
74 * Hence b0 contains (3 - 1) = 2.
76 #define TLS_AES_CCM_IV_B0_BYTE 2
78 #define __TLS_INC_STATS(net, field) \
79 __SNMP_INC_STATS((net)->mib.tls_statistics, field)
80 #define TLS_INC_STATS(net, field) \
81 SNMP_INC_STATS((net)->mib.tls_statistics, field)
82 #define __TLS_DEC_STATS(net, field) \
83 __SNMP_DEC_STATS((net)->mib.tls_statistics, field)
84 #define TLS_DEC_STATS(net, field) \
85 SNMP_DEC_STATS((net)->mib.tls_statistics, field)
95 /* TLS records are maintained in 'struct tls_rec'. It stores the memory pages
96 * allocated or mapped for each TLS record. After encryption, the records are
97 * stores in a linked list.
100 struct list_head list;
104 struct sk_msg msg_plaintext;
105 struct sk_msg msg_encrypted;
107 /* AAD | msg_plaintext.sg.data | sg_tag */
108 struct scatterlist sg_aead_in[2];
109 /* AAD | msg_encrypted.sg.data (data contains overhead for hdr & iv & tag) */
110 struct scatterlist sg_aead_out[2];
113 struct scatterlist sg_content_type;
115 char aad_space[TLS_AAD_SPACE_SIZE];
116 u8 iv_data[MAX_IV_SIZE];
117 struct aead_request aead_req;
127 struct delayed_work work;
131 struct tls_sw_context_tx {
132 struct crypto_aead *aead_send;
133 struct crypto_wait async_wait;
134 struct tx_work tx_work;
135 struct tls_rec *open_rec;
136 struct list_head tx_list;
137 atomic_t encrypt_pending;
138 /* protect crypto_wait with encrypt_pending */
139 spinlock_t encrypt_compl_lock;
143 #define BIT_TX_SCHEDULED 0
144 #define BIT_TX_CLOSING 1
145 unsigned long tx_bitmask;
148 struct tls_sw_context_rx {
149 struct crypto_aead *aead_recv;
150 struct crypto_wait async_wait;
151 struct strparser strp;
152 struct sk_buff_head rx_list; /* list of decrypted 'data' records */
153 void (*saved_data_ready)(struct sock *sk);
155 struct sk_buff *recv_pkt;
159 atomic_t decrypt_pending;
160 /* protect crypto_wait with decrypt_pending*/
161 spinlock_t decrypt_compl_lock;
165 struct tls_record_info {
166 struct list_head list;
170 skb_frag_t frags[MAX_SKB_FRAGS];
173 struct tls_offload_context_tx {
174 struct crypto_aead *aead_send;
175 spinlock_t lock; /* protects records list */
176 struct list_head records_list;
177 struct tls_record_info *open_record;
178 struct tls_record_info *retransmit_hint;
180 u64 unacked_record_sn;
182 struct scatterlist sg_tx_data[MAX_SKB_FRAGS];
183 void (*sk_destruct)(struct sock *sk);
184 u8 driver_state[] __aligned(8);
185 /* The TLS layer reserves room for driver specific state
186 * Currently the belief is that there is not enough
187 * driver specific state to justify another layer of indirection
189 #define TLS_DRIVER_STATE_SIZE_TX 16
192 #define TLS_OFFLOAD_CONTEXT_SIZE_TX \
193 (sizeof(struct tls_offload_context_tx) + TLS_DRIVER_STATE_SIZE_TX)
195 enum tls_context_flags {
196 TLS_RX_SYNC_RUNNING = 0,
197 /* Unlike RX where resync is driven entirely by the core in TX only
198 * the driver knows when things went out of sync, so we need the flag
201 TLS_TX_SYNC_SCHED = 1,
202 /* tls_dev_del was called for the RX side, device state was released,
203 * but tls_ctx->netdev might still be kept, because TX-side driver
204 * resources might not be released yet. Used to prevent the second
205 * tls_dev_del call in tls_device_down if it happens simultaneously.
207 TLS_RX_DEV_CLOSED = 2,
210 struct cipher_context {
215 union tls_crypto_context {
216 struct tls_crypto_info info;
218 struct tls12_crypto_info_aes_gcm_128 aes_gcm_128;
219 struct tls12_crypto_info_aes_gcm_256 aes_gcm_256;
220 struct tls12_crypto_info_chacha20_poly1305 chacha20_poly1305;
224 struct tls_prot_info {
238 /* read-only cache line */
239 struct tls_prot_info prot_info;
244 int (*push_pending_record)(struct sock *sk, int flags);
245 void (*sk_write_space)(struct sock *sk);
250 struct net_device *netdev;
253 struct cipher_context tx;
254 struct cipher_context rx;
256 struct scatterlist *partially_sent_record;
257 u16 partially_sent_offset;
259 bool in_tcp_sendpages;
260 bool pending_open_record_frags;
262 struct mutex tx_lock; /* protects partially_sent_* fields and
267 /* cache cold stuff */
268 struct proto *sk_proto;
270 void (*sk_destruct)(struct sock *sk);
272 union tls_crypto_context crypto_send;
273 union tls_crypto_context crypto_recv;
275 struct list_head list;
280 enum tls_offload_ctx_dir {
281 TLS_OFFLOAD_CTX_DIR_RX,
282 TLS_OFFLOAD_CTX_DIR_TX,
286 int (*tls_dev_add)(struct net_device *netdev, struct sock *sk,
287 enum tls_offload_ctx_dir direction,
288 struct tls_crypto_info *crypto_info,
289 u32 start_offload_tcp_sn);
290 void (*tls_dev_del)(struct net_device *netdev,
291 struct tls_context *ctx,
292 enum tls_offload_ctx_dir direction);
293 int (*tls_dev_resync)(struct net_device *netdev,
294 struct sock *sk, u32 seq, u8 *rcd_sn,
295 enum tls_offload_ctx_dir direction);
298 enum tls_offload_sync_type {
299 TLS_OFFLOAD_SYNC_TYPE_DRIVER_REQ = 0,
300 TLS_OFFLOAD_SYNC_TYPE_CORE_NEXT_HINT = 1,
301 TLS_OFFLOAD_SYNC_TYPE_DRIVER_REQ_ASYNC = 2,
304 #define TLS_DEVICE_RESYNC_NH_START_IVAL 2
305 #define TLS_DEVICE_RESYNC_NH_MAX_IVAL 128
307 #define TLS_DEVICE_RESYNC_ASYNC_LOGMAX 13
308 struct tls_offload_resync_async {
312 u32 log[TLS_DEVICE_RESYNC_ASYNC_LOGMAX];
315 struct tls_offload_context_rx {
316 /* sw must be the first member of tls_offload_context_rx */
317 struct tls_sw_context_rx sw;
318 enum tls_offload_sync_type resync_type;
319 /* this member is set regardless of resync_type, to avoid branches */
320 u8 resync_nh_reset:1;
321 /* CORE_NEXT_HINT-only member, but use the hole here */
322 u8 resync_nh_do_now:1;
324 /* TLS_OFFLOAD_SYNC_TYPE_DRIVER_REQ */
326 atomic64_t resync_req;
328 /* TLS_OFFLOAD_SYNC_TYPE_CORE_NEXT_HINT */
330 u32 decrypted_failed;
333 /* TLS_OFFLOAD_SYNC_TYPE_DRIVER_REQ_ASYNC */
335 struct tls_offload_resync_async *resync_async;
338 u8 driver_state[] __aligned(8);
339 /* The TLS layer reserves room for driver specific state
340 * Currently the belief is that there is not enough
341 * driver specific state to justify another layer of indirection
343 #define TLS_DRIVER_STATE_SIZE_RX 8
346 #define TLS_OFFLOAD_CONTEXT_SIZE_RX \
347 (sizeof(struct tls_offload_context_rx) + TLS_DRIVER_STATE_SIZE_RX)
349 struct tls_context *tls_ctx_create(struct sock *sk);
350 void tls_ctx_free(struct sock *sk, struct tls_context *ctx);
351 void update_sk_prot(struct sock *sk, struct tls_context *ctx);
353 int wait_on_pending_writer(struct sock *sk, long *timeo);
354 int tls_sk_query(struct sock *sk, int optname, char __user *optval,
356 int tls_sk_attach(struct sock *sk, int optname, char __user *optval,
357 unsigned int optlen);
359 int tls_set_sw_offload(struct sock *sk, struct tls_context *ctx, int tx);
360 void tls_sw_strparser_arm(struct sock *sk, struct tls_context *ctx);
361 void tls_sw_strparser_done(struct tls_context *tls_ctx);
362 int tls_sw_sendmsg(struct sock *sk, struct msghdr *msg, size_t size);
363 int tls_sw_sendpage_locked(struct sock *sk, struct page *page,
364 int offset, size_t size, int flags);
365 int tls_sw_sendpage(struct sock *sk, struct page *page,
366 int offset, size_t size, int flags);
367 void tls_sw_cancel_work_tx(struct tls_context *tls_ctx);
368 void tls_sw_release_resources_tx(struct sock *sk);
369 void tls_sw_free_ctx_tx(struct tls_context *tls_ctx);
370 void tls_sw_free_resources_rx(struct sock *sk);
371 void tls_sw_release_resources_rx(struct sock *sk);
372 void tls_sw_free_ctx_rx(struct tls_context *tls_ctx);
373 int tls_sw_recvmsg(struct sock *sk, struct msghdr *msg, size_t len,
374 int nonblock, int flags, int *addr_len);
375 bool tls_sw_stream_read(const struct sock *sk);
376 ssize_t tls_sw_splice_read(struct socket *sock, loff_t *ppos,
377 struct pipe_inode_info *pipe,
378 size_t len, unsigned int flags);
380 int tls_device_sendmsg(struct sock *sk, struct msghdr *msg, size_t size);
381 int tls_device_sendpage(struct sock *sk, struct page *page,
382 int offset, size_t size, int flags);
383 int tls_tx_records(struct sock *sk, int flags);
385 struct tls_record_info *tls_get_record(struct tls_offload_context_tx *context,
386 u32 seq, u64 *p_record_sn);
388 static inline bool tls_record_is_start_marker(struct tls_record_info *rec)
390 return rec->len == 0;
393 static inline u32 tls_record_start_seq(struct tls_record_info *rec)
395 return rec->end_seq - rec->len;
398 int tls_push_sg(struct sock *sk, struct tls_context *ctx,
399 struct scatterlist *sg, u16 first_offset,
401 int tls_push_partial_record(struct sock *sk, struct tls_context *ctx,
403 void tls_free_partial_record(struct sock *sk, struct tls_context *ctx);
405 static inline struct tls_msg *tls_msg(struct sk_buff *skb)
407 return (struct tls_msg *)strp_msg(skb);
410 static inline bool tls_is_partially_sent_record(struct tls_context *ctx)
412 return !!ctx->partially_sent_record;
415 static inline bool tls_is_pending_open_record(struct tls_context *tls_ctx)
417 return tls_ctx->pending_open_record_frags;
420 static inline bool is_tx_ready(struct tls_sw_context_tx *ctx)
424 rec = list_first_entry(&ctx->tx_list, struct tls_rec, list);
428 return READ_ONCE(rec->tx_ready);
431 static inline u16 tls_user_config(struct tls_context *ctx, bool tx)
433 u16 config = tx ? ctx->tx_conf : ctx->rx_conf;
437 return TLS_CONF_BASE;
443 return TLS_CONF_HW_RECORD;
449 tls_validate_xmit_skb(struct sock *sk, struct net_device *dev,
450 struct sk_buff *skb);
452 static inline bool tls_is_sk_tx_device_offloaded(struct sock *sk)
454 #ifdef CONFIG_SOCK_VALIDATE_XMIT
455 return sk_fullsock(sk) &&
456 (smp_load_acquire(&sk->sk_validate_xmit_skb) ==
457 &tls_validate_xmit_skb);
463 static inline void tls_err_abort(struct sock *sk, int err)
466 sk->sk_error_report(sk);
469 static inline bool tls_bigint_increment(unsigned char *seq, int len)
473 for (i = len - 1; i >= 0; i--) {
482 static inline void tls_bigint_subtract(unsigned char *seq, int n)
487 BUILD_BUG_ON(TLS_MAX_REC_SEQ_SIZE != 8);
490 rcd_sn = be64_to_cpu(*p);
491 *p = cpu_to_be64(rcd_sn - n);
494 static inline struct tls_context *tls_get_ctx(const struct sock *sk)
496 struct inet_connection_sock *icsk = inet_csk(sk);
498 /* Use RCU on icsk_ulp_data only for sock diag code,
499 * TLS data path doesn't need rcu_dereference().
501 return (__force void *)icsk->icsk_ulp_data;
504 static inline void tls_advance_record_sn(struct sock *sk,
505 struct tls_prot_info *prot,
506 struct cipher_context *ctx)
508 if (tls_bigint_increment(ctx->rec_seq, prot->rec_seq_size))
509 tls_err_abort(sk, EBADMSG);
511 if (prot->version != TLS_1_3_VERSION &&
512 prot->cipher_type != TLS_CIPHER_CHACHA20_POLY1305)
513 tls_bigint_increment(ctx->iv + prot->salt_size,
517 static inline void tls_fill_prepend(struct tls_context *ctx,
519 size_t plaintext_len,
520 unsigned char record_type)
522 struct tls_prot_info *prot = &ctx->prot_info;
523 size_t pkt_len, iv_size = prot->iv_size;
525 pkt_len = plaintext_len + prot->tag_size;
526 if (prot->version != TLS_1_3_VERSION &&
527 prot->cipher_type != TLS_CIPHER_CHACHA20_POLY1305) {
530 memcpy(buf + TLS_NONCE_OFFSET,
531 ctx->tx.iv + prot->salt_size, iv_size);
534 /* we cover nonce explicit here as well, so buf should be of
535 * size KTLS_DTLS_HEADER_SIZE + KTLS_DTLS_NONCE_EXPLICIT_SIZE
537 buf[0] = prot->version == TLS_1_3_VERSION ?
538 TLS_RECORD_TYPE_DATA : record_type;
539 /* Note that VERSION must be TLS_1_2 for both TLS1.2 and TLS1.3 */
540 buf[1] = TLS_1_2_VERSION_MINOR;
541 buf[2] = TLS_1_2_VERSION_MAJOR;
542 /* we can use IV for nonce explicit according to spec */
543 buf[3] = pkt_len >> 8;
544 buf[4] = pkt_len & 0xFF;
547 static inline void tls_make_aad(char *buf,
549 char *record_sequence,
550 unsigned char record_type,
551 struct tls_prot_info *prot)
553 if (prot->version != TLS_1_3_VERSION) {
554 memcpy(buf, record_sequence, prot->rec_seq_size);
557 size += prot->tag_size;
560 buf[0] = prot->version == TLS_1_3_VERSION ?
561 TLS_RECORD_TYPE_DATA : record_type;
562 buf[1] = TLS_1_2_VERSION_MAJOR;
563 buf[2] = TLS_1_2_VERSION_MINOR;
565 buf[4] = size & 0xFF;
568 static inline void xor_iv_with_seq(struct tls_prot_info *prot, char *iv, char *seq)
572 if (prot->version == TLS_1_3_VERSION ||
573 prot->cipher_type == TLS_CIPHER_CHACHA20_POLY1305) {
574 for (i = 0; i < 8; i++)
580 static inline struct tls_sw_context_rx *tls_sw_ctx_rx(
581 const struct tls_context *tls_ctx)
583 return (struct tls_sw_context_rx *)tls_ctx->priv_ctx_rx;
586 static inline struct tls_sw_context_tx *tls_sw_ctx_tx(
587 const struct tls_context *tls_ctx)
589 return (struct tls_sw_context_tx *)tls_ctx->priv_ctx_tx;
592 static inline struct tls_offload_context_tx *
593 tls_offload_ctx_tx(const struct tls_context *tls_ctx)
595 return (struct tls_offload_context_tx *)tls_ctx->priv_ctx_tx;
598 static inline bool tls_sw_has_ctx_tx(const struct sock *sk)
600 struct tls_context *ctx = tls_get_ctx(sk);
604 return !!tls_sw_ctx_tx(ctx);
607 static inline bool tls_sw_has_ctx_rx(const struct sock *sk)
609 struct tls_context *ctx = tls_get_ctx(sk);
613 return !!tls_sw_ctx_rx(ctx);
616 void tls_sw_write_space(struct sock *sk, struct tls_context *ctx);
617 void tls_device_write_space(struct sock *sk, struct tls_context *ctx);
619 static inline struct tls_offload_context_rx *
620 tls_offload_ctx_rx(const struct tls_context *tls_ctx)
622 return (struct tls_offload_context_rx *)tls_ctx->priv_ctx_rx;
625 #if IS_ENABLED(CONFIG_TLS_DEVICE)
626 static inline void *__tls_driver_ctx(struct tls_context *tls_ctx,
627 enum tls_offload_ctx_dir direction)
629 if (direction == TLS_OFFLOAD_CTX_DIR_TX)
630 return tls_offload_ctx_tx(tls_ctx)->driver_state;
632 return tls_offload_ctx_rx(tls_ctx)->driver_state;
636 tls_driver_ctx(const struct sock *sk, enum tls_offload_ctx_dir direction)
638 return __tls_driver_ctx(tls_get_ctx(sk), direction);
642 #define RESYNC_REQ BIT(0)
643 #define RESYNC_REQ_ASYNC BIT(1)
644 /* The TLS context is valid until sk_destruct is called */
645 static inline void tls_offload_rx_resync_request(struct sock *sk, __be32 seq)
647 struct tls_context *tls_ctx = tls_get_ctx(sk);
648 struct tls_offload_context_rx *rx_ctx = tls_offload_ctx_rx(tls_ctx);
650 atomic64_set(&rx_ctx->resync_req, ((u64)ntohl(seq) << 32) | RESYNC_REQ);
653 /* Log all TLS record header TCP sequences in [seq, seq+len] */
655 tls_offload_rx_resync_async_request_start(struct sock *sk, __be32 seq, u16 len)
657 struct tls_context *tls_ctx = tls_get_ctx(sk);
658 struct tls_offload_context_rx *rx_ctx = tls_offload_ctx_rx(tls_ctx);
660 atomic64_set(&rx_ctx->resync_async->req, ((u64)ntohl(seq) << 32) |
661 ((u64)len << 16) | RESYNC_REQ | RESYNC_REQ_ASYNC);
662 rx_ctx->resync_async->loglen = 0;
663 rx_ctx->resync_async->rcd_delta = 0;
667 tls_offload_rx_resync_async_request_end(struct sock *sk, __be32 seq)
669 struct tls_context *tls_ctx = tls_get_ctx(sk);
670 struct tls_offload_context_rx *rx_ctx = tls_offload_ctx_rx(tls_ctx);
672 atomic64_set(&rx_ctx->resync_async->req,
673 ((u64)ntohl(seq) << 32) | RESYNC_REQ);
677 tls_offload_rx_resync_set_type(struct sock *sk, enum tls_offload_sync_type type)
679 struct tls_context *tls_ctx = tls_get_ctx(sk);
681 tls_offload_ctx_rx(tls_ctx)->resync_type = type;
684 /* Driver's seq tracking has to be disabled until resync succeeded */
685 static inline bool tls_offload_tx_resync_pending(struct sock *sk)
687 struct tls_context *tls_ctx = tls_get_ctx(sk);
690 ret = test_bit(TLS_TX_SYNC_SCHED, &tls_ctx->flags);
691 smp_mb__after_atomic();
695 int __net_init tls_proc_init(struct net *net);
696 void __net_exit tls_proc_fini(struct net *net);
698 int tls_proccess_cmsg(struct sock *sk, struct msghdr *msg,
699 unsigned char *record_type);
700 int decrypt_skb(struct sock *sk, struct sk_buff *skb,
701 struct scatterlist *sgout);
702 struct sk_buff *tls_encrypt_skb(struct sk_buff *skb);
704 int tls_sw_fallback_init(struct sock *sk,
705 struct tls_offload_context_tx *offload_ctx,
706 struct tls_crypto_info *crypto_info);
708 #ifdef CONFIG_TLS_DEVICE
709 void tls_device_init(void);
710 void tls_device_cleanup(void);
711 void tls_device_sk_destruct(struct sock *sk);
712 int tls_set_device_offload(struct sock *sk, struct tls_context *ctx);
713 void tls_device_free_resources_tx(struct sock *sk);
714 int tls_set_device_offload_rx(struct sock *sk, struct tls_context *ctx);
715 void tls_device_offload_cleanup_rx(struct sock *sk);
716 void tls_device_rx_resync_new_rec(struct sock *sk, u32 rcd_len, u32 seq);
717 void tls_offload_tx_resync_request(struct sock *sk, u32 got_seq, u32 exp_seq);
718 int tls_device_decrypted(struct sock *sk, struct tls_context *tls_ctx,
719 struct sk_buff *skb, struct strp_msg *rxm);
721 static inline bool tls_is_sk_rx_device_offloaded(struct sock *sk)
723 if (!sk_fullsock(sk) ||
724 smp_load_acquire(&sk->sk_destruct) != tls_device_sk_destruct)
726 return tls_get_ctx(sk)->rx_conf == TLS_HW;
729 static inline void tls_device_init(void) {}
730 static inline void tls_device_cleanup(void) {}
733 tls_set_device_offload(struct sock *sk, struct tls_context *ctx)
738 static inline void tls_device_free_resources_tx(struct sock *sk) {}
741 tls_set_device_offload_rx(struct sock *sk, struct tls_context *ctx)
746 static inline void tls_device_offload_cleanup_rx(struct sock *sk) {}
748 tls_device_rx_resync_new_rec(struct sock *sk, u32 rcd_len, u32 seq) {}
751 tls_device_decrypted(struct sock *sk, struct tls_context *tls_ctx,
752 struct sk_buff *skb, struct strp_msg *rxm)
757 #endif /* _TLS_OFFLOAD_H */