2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
6 * Definitions for the AF_INET socket handler.
8 * Version: @(#)sock.h 1.0.4 05/13/93
11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12 * Corey Minyard <wf-rch!minyard@relay.EU.net>
13 * Florian La Roche <flla@stud.uni-sb.de>
16 * Alan Cox : Volatiles in skbuff pointers. See
17 * skbuff comments. May be overdone,
18 * better to prove they can be removed
20 * Alan Cox : Added a zapped field for tcp to note
21 * a socket is reset and must stay shut up
22 * Alan Cox : New fields for options
23 * Pauline Middelink : identd support
24 * Alan Cox : Eliminate low level recv/recvfrom
25 * David S. Miller : New socket lookup architecture.
26 * Steve Whitehouse: Default routines for sock_ops
27 * Arnaldo C. Melo : removed net_pinfo, tp_pinfo and made
28 * protinfo be just a void pointer, as the
29 * protocol specific parts were moved to
30 * respective headers and ipv4/v6, etc now
31 * use private slabcaches for its socks
32 * Pedro Hortas : New flags field for socket options
35 * This program is free software; you can redistribute it and/or
36 * modify it under the terms of the GNU General Public License
37 * as published by the Free Software Foundation; either version
38 * 2 of the License, or (at your option) any later version.
43 #include <linux/hardirq.h>
44 #include <linux/kernel.h>
45 #include <linux/list.h>
46 #include <linux/list_nulls.h>
47 #include <linux/timer.h>
48 #include <linux/cache.h>
49 #include <linux/lockdep.h>
50 #include <linux/netdevice.h>
51 #include <linux/skbuff.h> /* struct sk_buff */
53 #include <linux/security.h>
54 #include <linux/slab.h>
55 #include <linux/uaccess.h>
56 #include <linux/memcontrol.h>
57 #include <linux/res_counter.h>
58 #include <linux/static_key.h>
59 #include <linux/aio.h>
60 #include <linux/sched.h>
62 #include <linux/filter.h>
63 #include <linux/rculist_nulls.h>
64 #include <linux/poll.h>
66 #include <linux/atomic.h>
68 #include <net/checksum.h>
73 int mem_cgroup_sockets_init(struct mem_cgroup *memcg, struct cgroup_subsys *ss);
74 void mem_cgroup_sockets_destroy(struct mem_cgroup *memcg);
77 int mem_cgroup_sockets_init(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
82 void mem_cgroup_sockets_destroy(struct mem_cgroup *memcg)
87 * This structure really needs to be cleaned up.
88 * Most of it is for TCP, and not used by any of
89 * the other protocols.
92 /* Define this to get the SOCK_DBG debugging facility. */
93 #define SOCK_DEBUGGING
95 #define SOCK_DEBUG(sk, msg...) do { if ((sk) && sock_flag((sk), SOCK_DBG)) \
96 printk(KERN_DEBUG msg); } while (0)
98 /* Validate arguments and do nothing */
99 static inline __printf(2, 3)
100 void SOCK_DEBUG(const struct sock *sk, const char *msg, ...)
105 /* This is the per-socket lock. The spinlock provides a synchronization
106 * between user contexts and software interrupt processing, whereas the
107 * mini-semaphore synchronizes multiple users amongst themselves.
112 wait_queue_head_t wq;
114 * We express the mutex-alike socket_lock semantics
115 * to the lock validator by explicitly managing
116 * the slock as a lock variant (in addition to
119 #ifdef CONFIG_DEBUG_LOCK_ALLOC
120 struct lockdep_map dep_map;
129 * struct sock_common - minimal network layer representation of sockets
130 * @skc_daddr: Foreign IPv4 addr
131 * @skc_rcv_saddr: Bound local IPv4 addr
132 * @skc_hash: hash value used with various protocol lookup tables
133 * @skc_u16hashes: two u16 hash values used by UDP lookup tables
134 * @skc_family: network address family
135 * @skc_state: Connection state
136 * @skc_reuse: %SO_REUSEADDR setting
137 * @skc_bound_dev_if: bound device index if != 0
138 * @skc_bind_node: bind hash linkage for various protocol lookup tables
139 * @skc_portaddr_node: second hash linkage for UDP/UDP-Lite protocol
140 * @skc_prot: protocol handlers inside a network family
141 * @skc_net: reference to the network namespace of this socket
142 * @skc_node: main hash linkage for various protocol lookup tables
143 * @skc_nulls_node: main hash linkage for TCP/UDP/UDP-Lite protocol
144 * @skc_tx_queue_mapping: tx queue number for this connection
145 * @skc_refcnt: reference count
147 * This is the minimal network layer representation of sockets, the header
148 * for struct sock and struct inet_timewait_sock.
151 /* skc_daddr and skc_rcv_saddr must be grouped :
152 * cf INET_MATCH() and INET_TW_MATCH()
155 __be32 skc_rcv_saddr;
158 unsigned int skc_hash;
159 __u16 skc_u16hashes[2];
161 unsigned short skc_family;
162 volatile unsigned char skc_state;
163 unsigned char skc_reuse;
164 int skc_bound_dev_if;
166 struct hlist_node skc_bind_node;
167 struct hlist_nulls_node skc_portaddr_node;
169 struct proto *skc_prot;
174 * fields between dontcopy_begin/dontcopy_end
175 * are not copied in sock_copy()
178 int skc_dontcopy_begin[0];
181 struct hlist_node skc_node;
182 struct hlist_nulls_node skc_nulls_node;
184 int skc_tx_queue_mapping;
187 int skc_dontcopy_end[0];
193 * struct sock - network layer representation of sockets
194 * @__sk_common: shared layout with inet_timewait_sock
195 * @sk_shutdown: mask of %SEND_SHUTDOWN and/or %RCV_SHUTDOWN
196 * @sk_userlocks: %SO_SNDBUF and %SO_RCVBUF settings
197 * @sk_lock: synchronizer
198 * @sk_rcvbuf: size of receive buffer in bytes
199 * @sk_wq: sock wait queue and async head
200 * @sk_dst_cache: destination cache
201 * @sk_dst_lock: destination cache lock
202 * @sk_policy: flow policy
203 * @sk_receive_queue: incoming packets
204 * @sk_wmem_alloc: transmit queue bytes committed
205 * @sk_write_queue: Packet sending queue
206 * @sk_async_wait_queue: DMA copied packets
207 * @sk_omem_alloc: "o" is "option" or "other"
208 * @sk_wmem_queued: persistent queue size
209 * @sk_forward_alloc: space allocated forward
210 * @sk_allocation: allocation mode
211 * @sk_sndbuf: size of send buffer in bytes
212 * @sk_flags: %SO_LINGER (l_onoff), %SO_BROADCAST, %SO_KEEPALIVE,
213 * %SO_OOBINLINE settings, %SO_TIMESTAMPING settings
214 * @sk_no_check: %SO_NO_CHECK setting, wether or not checkup packets
215 * @sk_route_caps: route capabilities (e.g. %NETIF_F_TSO)
216 * @sk_route_nocaps: forbidden route capabilities (e.g NETIF_F_GSO_MASK)
217 * @sk_gso_type: GSO type (e.g. %SKB_GSO_TCPV4)
218 * @sk_gso_max_size: Maximum GSO segment size to build
219 * @sk_lingertime: %SO_LINGER l_linger setting
220 * @sk_backlog: always used with the per-socket spinlock held
221 * @sk_callback_lock: used with the callbacks in the end of this struct
222 * @sk_error_queue: rarely used
223 * @sk_prot_creator: sk_prot of original sock creator (see ipv6_setsockopt,
224 * IPV6_ADDRFORM for instance)
225 * @sk_err: last error
226 * @sk_err_soft: errors that don't cause failure but are the cause of a
227 * persistent failure not just 'timed out'
228 * @sk_drops: raw/udp drops counter
229 * @sk_ack_backlog: current listen backlog
230 * @sk_max_ack_backlog: listen backlog set in listen()
231 * @sk_priority: %SO_PRIORITY setting
232 * @sk_cgrp_prioidx: socket group's priority map index
233 * @sk_type: socket type (%SOCK_STREAM, etc)
234 * @sk_protocol: which protocol this socket belongs in this network family
235 * @sk_peer_pid: &struct pid for this socket's peer
236 * @sk_peer_cred: %SO_PEERCRED setting
237 * @sk_rcvlowat: %SO_RCVLOWAT setting
238 * @sk_rcvtimeo: %SO_RCVTIMEO setting
239 * @sk_sndtimeo: %SO_SNDTIMEO setting
240 * @sk_rxhash: flow hash received from netif layer
241 * @sk_filter: socket filtering instructions
242 * @sk_protinfo: private area, net family specific, when not using slab
243 * @sk_timer: sock cleanup timer
244 * @sk_stamp: time stamp of last packet received
245 * @sk_socket: Identd and reporting IO signals
246 * @sk_user_data: RPC layer private data
247 * @sk_sndmsg_page: cached page for sendmsg
248 * @sk_sndmsg_off: cached offset for sendmsg
249 * @sk_peek_off: current peek_offset value
250 * @sk_send_head: front of stuff to transmit
251 * @sk_security: used by security modules
252 * @sk_mark: generic packet mark
253 * @sk_classid: this socket's cgroup classid
254 * @sk_cgrp: this socket's cgroup-specific proto data
255 * @sk_write_pending: a write to stream socket waits to start
256 * @sk_state_change: callback to indicate change in the state of the sock
257 * @sk_data_ready: callback to indicate there is data to be processed
258 * @sk_write_space: callback to indicate there is bf sending space available
259 * @sk_error_report: callback to indicate errors (e.g. %MSG_ERRQUEUE)
260 * @sk_backlog_rcv: callback to process the backlog
261 * @sk_destruct: called at sock freeing time, i.e. when all refcnt == 0
265 * Now struct inet_timewait_sock also uses sock_common, so please just
266 * don't add nothing before this first member (__sk_common) --acme
268 struct sock_common __sk_common;
269 #define sk_node __sk_common.skc_node
270 #define sk_nulls_node __sk_common.skc_nulls_node
271 #define sk_refcnt __sk_common.skc_refcnt
272 #define sk_tx_queue_mapping __sk_common.skc_tx_queue_mapping
274 #define sk_dontcopy_begin __sk_common.skc_dontcopy_begin
275 #define sk_dontcopy_end __sk_common.skc_dontcopy_end
276 #define sk_hash __sk_common.skc_hash
277 #define sk_family __sk_common.skc_family
278 #define sk_state __sk_common.skc_state
279 #define sk_reuse __sk_common.skc_reuse
280 #define sk_bound_dev_if __sk_common.skc_bound_dev_if
281 #define sk_bind_node __sk_common.skc_bind_node
282 #define sk_prot __sk_common.skc_prot
283 #define sk_net __sk_common.skc_net
284 socket_lock_t sk_lock;
285 struct sk_buff_head sk_receive_queue;
287 * The backlog queue is special, it is always used with
288 * the per-socket spinlock held and requires low latency
289 * access. Therefore we special case it's implementation.
290 * Note : rmem_alloc is in this structure to fill a hole
291 * on 64bit arches, not because its logically part of
297 struct sk_buff *head;
298 struct sk_buff *tail;
300 #define sk_rmem_alloc sk_backlog.rmem_alloc
301 int sk_forward_alloc;
308 struct sk_filter __rcu *sk_filter;
309 struct socket_wq __rcu *sk_wq;
311 #ifdef CONFIG_NET_DMA
312 struct sk_buff_head sk_async_wait_queue;
316 struct xfrm_policy *sk_policy[2];
318 unsigned long sk_flags;
319 struct dst_entry *sk_dst_cache;
320 spinlock_t sk_dst_lock;
321 atomic_t sk_wmem_alloc;
322 atomic_t sk_omem_alloc;
324 struct sk_buff_head sk_write_queue;
325 kmemcheck_bitfield_begin(flags);
326 unsigned int sk_shutdown : 2,
331 kmemcheck_bitfield_end(flags);
334 netdev_features_t sk_route_caps;
335 netdev_features_t sk_route_nocaps;
337 unsigned int sk_gso_max_size;
339 unsigned long sk_lingertime;
340 struct sk_buff_head sk_error_queue;
341 struct proto *sk_prot_creator;
342 rwlock_t sk_callback_lock;
345 unsigned short sk_ack_backlog;
346 unsigned short sk_max_ack_backlog;
348 #ifdef CONFIG_CGROUPS
349 __u32 sk_cgrp_prioidx;
351 struct pid *sk_peer_pid;
352 const struct cred *sk_peer_cred;
356 struct timer_list sk_timer;
358 struct socket *sk_socket;
360 struct page *sk_sndmsg_page;
361 struct sk_buff *sk_send_head;
364 int sk_write_pending;
365 #ifdef CONFIG_SECURITY
370 struct cg_proto *sk_cgrp;
371 void (*sk_state_change)(struct sock *sk);
372 void (*sk_data_ready)(struct sock *sk, int bytes);
373 void (*sk_write_space)(struct sock *sk);
374 void (*sk_error_report)(struct sock *sk);
375 int (*sk_backlog_rcv)(struct sock *sk,
376 struct sk_buff *skb);
377 void (*sk_destruct)(struct sock *sk);
381 * SK_CAN_REUSE and SK_NO_REUSE on a socket mean that the socket is OK
382 * or not whether his port will be reused by someone else. SK_FORCE_REUSE
383 * on a socket means that the socket will reuse everybody else's port
384 * without looking at the other's sk_reuse value.
387 #define SK_NO_REUSE 0
388 #define SK_CAN_REUSE 1
389 #define SK_FORCE_REUSE 2
391 static inline int sk_peek_offset(struct sock *sk, int flags)
393 if ((flags & MSG_PEEK) && (sk->sk_peek_off >= 0))
394 return sk->sk_peek_off;
399 static inline void sk_peek_offset_bwd(struct sock *sk, int val)
401 if (sk->sk_peek_off >= 0) {
402 if (sk->sk_peek_off >= val)
403 sk->sk_peek_off -= val;
409 static inline void sk_peek_offset_fwd(struct sock *sk, int val)
411 if (sk->sk_peek_off >= 0)
412 sk->sk_peek_off += val;
416 * Hashed lists helper routines
418 static inline struct sock *sk_entry(const struct hlist_node *node)
420 return hlist_entry(node, struct sock, sk_node);
423 static inline struct sock *__sk_head(const struct hlist_head *head)
425 return hlist_entry(head->first, struct sock, sk_node);
428 static inline struct sock *sk_head(const struct hlist_head *head)
430 return hlist_empty(head) ? NULL : __sk_head(head);
433 static inline struct sock *__sk_nulls_head(const struct hlist_nulls_head *head)
435 return hlist_nulls_entry(head->first, struct sock, sk_nulls_node);
438 static inline struct sock *sk_nulls_head(const struct hlist_nulls_head *head)
440 return hlist_nulls_empty(head) ? NULL : __sk_nulls_head(head);
443 static inline struct sock *sk_next(const struct sock *sk)
445 return sk->sk_node.next ?
446 hlist_entry(sk->sk_node.next, struct sock, sk_node) : NULL;
449 static inline struct sock *sk_nulls_next(const struct sock *sk)
451 return (!is_a_nulls(sk->sk_nulls_node.next)) ?
452 hlist_nulls_entry(sk->sk_nulls_node.next,
453 struct sock, sk_nulls_node) :
457 static inline bool sk_unhashed(const struct sock *sk)
459 return hlist_unhashed(&sk->sk_node);
462 static inline bool sk_hashed(const struct sock *sk)
464 return !sk_unhashed(sk);
467 static inline void sk_node_init(struct hlist_node *node)
472 static inline void sk_nulls_node_init(struct hlist_nulls_node *node)
477 static inline void __sk_del_node(struct sock *sk)
479 __hlist_del(&sk->sk_node);
482 /* NB: equivalent to hlist_del_init_rcu */
483 static inline bool __sk_del_node_init(struct sock *sk)
487 sk_node_init(&sk->sk_node);
493 /* Grab socket reference count. This operation is valid only
494 when sk is ALREADY grabbed f.e. it is found in hash table
495 or a list and the lookup is made under lock preventing hash table
499 static inline void sock_hold(struct sock *sk)
501 atomic_inc(&sk->sk_refcnt);
504 /* Ungrab socket in the context, which assumes that socket refcnt
505 cannot hit zero, f.e. it is true in context of any socketcall.
507 static inline void __sock_put(struct sock *sk)
509 atomic_dec(&sk->sk_refcnt);
512 static inline bool sk_del_node_init(struct sock *sk)
514 bool rc = __sk_del_node_init(sk);
517 /* paranoid for a while -acme */
518 WARN_ON(atomic_read(&sk->sk_refcnt) == 1);
523 #define sk_del_node_init_rcu(sk) sk_del_node_init(sk)
525 static inline bool __sk_nulls_del_node_init_rcu(struct sock *sk)
528 hlist_nulls_del_init_rcu(&sk->sk_nulls_node);
534 static inline bool sk_nulls_del_node_init_rcu(struct sock *sk)
536 bool rc = __sk_nulls_del_node_init_rcu(sk);
539 /* paranoid for a while -acme */
540 WARN_ON(atomic_read(&sk->sk_refcnt) == 1);
546 static inline void __sk_add_node(struct sock *sk, struct hlist_head *list)
548 hlist_add_head(&sk->sk_node, list);
551 static inline void sk_add_node(struct sock *sk, struct hlist_head *list)
554 __sk_add_node(sk, list);
557 static inline void sk_add_node_rcu(struct sock *sk, struct hlist_head *list)
560 hlist_add_head_rcu(&sk->sk_node, list);
563 static inline void __sk_nulls_add_node_rcu(struct sock *sk, struct hlist_nulls_head *list)
565 hlist_nulls_add_head_rcu(&sk->sk_nulls_node, list);
568 static inline void sk_nulls_add_node_rcu(struct sock *sk, struct hlist_nulls_head *list)
571 __sk_nulls_add_node_rcu(sk, list);
574 static inline void __sk_del_bind_node(struct sock *sk)
576 __hlist_del(&sk->sk_bind_node);
579 static inline void sk_add_bind_node(struct sock *sk,
580 struct hlist_head *list)
582 hlist_add_head(&sk->sk_bind_node, list);
585 #define sk_for_each(__sk, node, list) \
586 hlist_for_each_entry(__sk, node, list, sk_node)
587 #define sk_for_each_rcu(__sk, node, list) \
588 hlist_for_each_entry_rcu(__sk, node, list, sk_node)
589 #define sk_nulls_for_each(__sk, node, list) \
590 hlist_nulls_for_each_entry(__sk, node, list, sk_nulls_node)
591 #define sk_nulls_for_each_rcu(__sk, node, list) \
592 hlist_nulls_for_each_entry_rcu(__sk, node, list, sk_nulls_node)
593 #define sk_for_each_from(__sk, node) \
594 if (__sk && ({ node = &(__sk)->sk_node; 1; })) \
595 hlist_for_each_entry_from(__sk, node, sk_node)
596 #define sk_nulls_for_each_from(__sk, node) \
597 if (__sk && ({ node = &(__sk)->sk_nulls_node; 1; })) \
598 hlist_nulls_for_each_entry_from(__sk, node, sk_nulls_node)
599 #define sk_for_each_safe(__sk, node, tmp, list) \
600 hlist_for_each_entry_safe(__sk, node, tmp, list, sk_node)
601 #define sk_for_each_bound(__sk, node, list) \
602 hlist_for_each_entry(__sk, node, list, sk_bind_node)
615 SOCK_USE_WRITE_QUEUE, /* whether to call sk->sk_write_space in sock_wfree */
616 SOCK_DBG, /* %SO_DEBUG setting */
617 SOCK_RCVTSTAMP, /* %SO_TIMESTAMP setting */
618 SOCK_RCVTSTAMPNS, /* %SO_TIMESTAMPNS setting */
619 SOCK_LOCALROUTE, /* route locally only, %SO_DONTROUTE setting */
620 SOCK_QUEUE_SHRUNK, /* write queue has been shrunk recently */
621 SOCK_TIMESTAMPING_TX_HARDWARE, /* %SOF_TIMESTAMPING_TX_HARDWARE */
622 SOCK_TIMESTAMPING_TX_SOFTWARE, /* %SOF_TIMESTAMPING_TX_SOFTWARE */
623 SOCK_TIMESTAMPING_RX_HARDWARE, /* %SOF_TIMESTAMPING_RX_HARDWARE */
624 SOCK_TIMESTAMPING_RX_SOFTWARE, /* %SOF_TIMESTAMPING_RX_SOFTWARE */
625 SOCK_TIMESTAMPING_SOFTWARE, /* %SOF_TIMESTAMPING_SOFTWARE */
626 SOCK_TIMESTAMPING_RAW_HARDWARE, /* %SOF_TIMESTAMPING_RAW_HARDWARE */
627 SOCK_TIMESTAMPING_SYS_HARDWARE, /* %SOF_TIMESTAMPING_SYS_HARDWARE */
628 SOCK_FASYNC, /* fasync() active */
630 SOCK_ZEROCOPY, /* buffers from userspace */
631 SOCK_WIFI_STATUS, /* push wifi status to userspace */
632 SOCK_NOFCS, /* Tell NIC not to do the Ethernet FCS.
633 * Will use last 4 bytes of packet sent from
634 * user-space instead.
638 static inline void sock_copy_flags(struct sock *nsk, struct sock *osk)
640 nsk->sk_flags = osk->sk_flags;
643 static inline void sock_set_flag(struct sock *sk, enum sock_flags flag)
645 __set_bit(flag, &sk->sk_flags);
648 static inline void sock_reset_flag(struct sock *sk, enum sock_flags flag)
650 __clear_bit(flag, &sk->sk_flags);
653 static inline bool sock_flag(const struct sock *sk, enum sock_flags flag)
655 return test_bit(flag, &sk->sk_flags);
658 static inline void sk_acceptq_removed(struct sock *sk)
660 sk->sk_ack_backlog--;
663 static inline void sk_acceptq_added(struct sock *sk)
665 sk->sk_ack_backlog++;
668 static inline bool sk_acceptq_is_full(const struct sock *sk)
670 return sk->sk_ack_backlog > sk->sk_max_ack_backlog;
674 * Compute minimal free write space needed to queue new packets.
676 static inline int sk_stream_min_wspace(const struct sock *sk)
678 return sk->sk_wmem_queued >> 1;
681 static inline int sk_stream_wspace(const struct sock *sk)
683 return sk->sk_sndbuf - sk->sk_wmem_queued;
686 extern void sk_stream_write_space(struct sock *sk);
688 static inline bool sk_stream_memory_free(const struct sock *sk)
690 return sk->sk_wmem_queued < sk->sk_sndbuf;
693 /* OOB backlog add */
694 static inline void __sk_add_backlog(struct sock *sk, struct sk_buff *skb)
696 /* dont let skb dst not refcounted, we are going to leave rcu lock */
699 if (!sk->sk_backlog.tail)
700 sk->sk_backlog.head = skb;
702 sk->sk_backlog.tail->next = skb;
704 sk->sk_backlog.tail = skb;
709 * Take into account size of receive queue and backlog queue
710 * Do not take into account this skb truesize,
711 * to allow even a single big packet to come.
713 static inline bool sk_rcvqueues_full(const struct sock *sk, const struct sk_buff *skb,
716 unsigned int qsize = sk->sk_backlog.len + atomic_read(&sk->sk_rmem_alloc);
718 return qsize > limit;
721 /* The per-socket spinlock must be held here. */
722 static inline __must_check int sk_add_backlog(struct sock *sk, struct sk_buff *skb,
725 if (sk_rcvqueues_full(sk, skb, limit))
728 __sk_add_backlog(sk, skb);
729 sk->sk_backlog.len += skb->truesize;
733 static inline int sk_backlog_rcv(struct sock *sk, struct sk_buff *skb)
735 return sk->sk_backlog_rcv(sk, skb);
738 static inline void sock_rps_record_flow(const struct sock *sk)
741 struct rps_sock_flow_table *sock_flow_table;
744 sock_flow_table = rcu_dereference(rps_sock_flow_table);
745 rps_record_sock_flow(sock_flow_table, sk->sk_rxhash);
750 static inline void sock_rps_reset_flow(const struct sock *sk)
753 struct rps_sock_flow_table *sock_flow_table;
756 sock_flow_table = rcu_dereference(rps_sock_flow_table);
757 rps_reset_sock_flow(sock_flow_table, sk->sk_rxhash);
762 static inline void sock_rps_save_rxhash(struct sock *sk,
763 const struct sk_buff *skb)
766 if (unlikely(sk->sk_rxhash != skb->rxhash)) {
767 sock_rps_reset_flow(sk);
768 sk->sk_rxhash = skb->rxhash;
773 static inline void sock_rps_reset_rxhash(struct sock *sk)
776 sock_rps_reset_flow(sk);
781 #define sk_wait_event(__sk, __timeo, __condition) \
783 release_sock(__sk); \
784 __rc = __condition; \
786 *(__timeo) = schedule_timeout(*(__timeo)); \
789 __rc = __condition; \
793 extern int sk_stream_wait_connect(struct sock *sk, long *timeo_p);
794 extern int sk_stream_wait_memory(struct sock *sk, long *timeo_p);
795 extern void sk_stream_wait_close(struct sock *sk, long timeo_p);
796 extern int sk_stream_error(struct sock *sk, int flags, int err);
797 extern void sk_stream_kill_queues(struct sock *sk);
799 extern int sk_wait_data(struct sock *sk, long *timeo);
801 struct request_sock_ops;
802 struct timewait_sock_ops;
803 struct inet_hashinfo;
807 /* Networking protocol blocks we attach to sockets.
808 * socket layer -> transport layer interface
809 * transport -> network interface is defined by struct inet_proto
812 void (*close)(struct sock *sk,
814 int (*connect)(struct sock *sk,
815 struct sockaddr *uaddr,
817 int (*disconnect)(struct sock *sk, int flags);
819 struct sock * (*accept)(struct sock *sk, int flags, int *err);
821 int (*ioctl)(struct sock *sk, int cmd,
823 int (*init)(struct sock *sk);
824 void (*destroy)(struct sock *sk);
825 void (*shutdown)(struct sock *sk, int how);
826 int (*setsockopt)(struct sock *sk, int level,
827 int optname, char __user *optval,
828 unsigned int optlen);
829 int (*getsockopt)(struct sock *sk, int level,
830 int optname, char __user *optval,
833 int (*compat_setsockopt)(struct sock *sk,
835 int optname, char __user *optval,
836 unsigned int optlen);
837 int (*compat_getsockopt)(struct sock *sk,
839 int optname, char __user *optval,
841 int (*compat_ioctl)(struct sock *sk,
842 unsigned int cmd, unsigned long arg);
844 int (*sendmsg)(struct kiocb *iocb, struct sock *sk,
845 struct msghdr *msg, size_t len);
846 int (*recvmsg)(struct kiocb *iocb, struct sock *sk,
848 size_t len, int noblock, int flags,
850 int (*sendpage)(struct sock *sk, struct page *page,
851 int offset, size_t size, int flags);
852 int (*bind)(struct sock *sk,
853 struct sockaddr *uaddr, int addr_len);
855 int (*backlog_rcv) (struct sock *sk,
856 struct sk_buff *skb);
858 /* Keeping track of sk's, looking them up, and port selection methods. */
859 void (*hash)(struct sock *sk);
860 void (*unhash)(struct sock *sk);
861 void (*rehash)(struct sock *sk);
862 int (*get_port)(struct sock *sk, unsigned short snum);
863 void (*clear_sk)(struct sock *sk, int size);
865 /* Keeping track of sockets in use */
866 #ifdef CONFIG_PROC_FS
867 unsigned int inuse_idx;
870 /* Memory pressure */
871 void (*enter_memory_pressure)(struct sock *sk);
872 atomic_long_t *memory_allocated; /* Current allocated memory. */
873 struct percpu_counter *sockets_allocated; /* Current number of sockets. */
875 * Pressure flag: try to collapse.
876 * Technical note: it is used by multiple contexts non atomically.
877 * All the __sk_mem_schedule() is of this nature: accounting
878 * is strict, actions are advisory and have some latency.
880 int *memory_pressure;
887 struct kmem_cache *slab;
888 unsigned int obj_size;
891 struct percpu_counter *orphan_count;
893 struct request_sock_ops *rsk_prot;
894 struct timewait_sock_ops *twsk_prot;
897 struct inet_hashinfo *hashinfo;
898 struct udp_table *udp_table;
899 struct raw_hashinfo *raw_hash;
902 struct module *owner;
906 struct list_head node;
907 #ifdef SOCK_REFCNT_DEBUG
910 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_KMEM
912 * cgroup specific init/deinit functions. Called once for all
913 * protocols that implement it, from cgroups populate function.
914 * This function has to setup any files the protocol want to
915 * appear in the kmem cgroup filesystem.
917 int (*init_cgroup)(struct mem_cgroup *memcg,
918 struct cgroup_subsys *ss);
919 void (*destroy_cgroup)(struct mem_cgroup *memcg);
920 struct cg_proto *(*proto_cgroup)(struct mem_cgroup *memcg);
925 void (*enter_memory_pressure)(struct sock *sk);
926 struct res_counter *memory_allocated; /* Current allocated memory. */
927 struct percpu_counter *sockets_allocated; /* Current number of sockets. */
928 int *memory_pressure;
931 * memcg field is used to find which memcg we belong directly
932 * Each memcg struct can hold more than one cg_proto, so container_of
935 * The elegant solution would be having an inverse function to
936 * proto_cgroup in struct proto, but that means polluting the structure
937 * for everybody, instead of just for memcg users.
939 struct mem_cgroup *memcg;
942 extern int proto_register(struct proto *prot, int alloc_slab);
943 extern void proto_unregister(struct proto *prot);
945 #ifdef SOCK_REFCNT_DEBUG
946 static inline void sk_refcnt_debug_inc(struct sock *sk)
948 atomic_inc(&sk->sk_prot->socks);
951 static inline void sk_refcnt_debug_dec(struct sock *sk)
953 atomic_dec(&sk->sk_prot->socks);
954 printk(KERN_DEBUG "%s socket %p released, %d are still alive\n",
955 sk->sk_prot->name, sk, atomic_read(&sk->sk_prot->socks));
958 inline void sk_refcnt_debug_release(const struct sock *sk)
960 if (atomic_read(&sk->sk_refcnt) != 1)
961 printk(KERN_DEBUG "Destruction of the %s socket %p delayed, refcnt=%d\n",
962 sk->sk_prot->name, sk, atomic_read(&sk->sk_refcnt));
964 #else /* SOCK_REFCNT_DEBUG */
965 #define sk_refcnt_debug_inc(sk) do { } while (0)
966 #define sk_refcnt_debug_dec(sk) do { } while (0)
967 #define sk_refcnt_debug_release(sk) do { } while (0)
968 #endif /* SOCK_REFCNT_DEBUG */
970 #if defined(CONFIG_CGROUP_MEM_RES_CTLR_KMEM) && defined(CONFIG_NET)
971 extern struct static_key memcg_socket_limit_enabled;
972 static inline struct cg_proto *parent_cg_proto(struct proto *proto,
973 struct cg_proto *cg_proto)
975 return proto->proto_cgroup(parent_mem_cgroup(cg_proto->memcg));
977 #define mem_cgroup_sockets_enabled static_key_false(&memcg_socket_limit_enabled)
979 #define mem_cgroup_sockets_enabled 0
980 static inline struct cg_proto *parent_cg_proto(struct proto *proto,
981 struct cg_proto *cg_proto)
988 static inline bool sk_has_memory_pressure(const struct sock *sk)
990 return sk->sk_prot->memory_pressure != NULL;
993 static inline bool sk_under_memory_pressure(const struct sock *sk)
995 if (!sk->sk_prot->memory_pressure)
998 if (mem_cgroup_sockets_enabled && sk->sk_cgrp)
999 return !!*sk->sk_cgrp->memory_pressure;
1001 return !!*sk->sk_prot->memory_pressure;
1004 static inline void sk_leave_memory_pressure(struct sock *sk)
1006 int *memory_pressure = sk->sk_prot->memory_pressure;
1008 if (!memory_pressure)
1011 if (*memory_pressure)
1012 *memory_pressure = 0;
1014 if (mem_cgroup_sockets_enabled && sk->sk_cgrp) {
1015 struct cg_proto *cg_proto = sk->sk_cgrp;
1016 struct proto *prot = sk->sk_prot;
1018 for (; cg_proto; cg_proto = parent_cg_proto(prot, cg_proto))
1019 if (*cg_proto->memory_pressure)
1020 *cg_proto->memory_pressure = 0;
1025 static inline void sk_enter_memory_pressure(struct sock *sk)
1027 if (!sk->sk_prot->enter_memory_pressure)
1030 if (mem_cgroup_sockets_enabled && sk->sk_cgrp) {
1031 struct cg_proto *cg_proto = sk->sk_cgrp;
1032 struct proto *prot = sk->sk_prot;
1034 for (; cg_proto; cg_proto = parent_cg_proto(prot, cg_proto))
1035 cg_proto->enter_memory_pressure(sk);
1038 sk->sk_prot->enter_memory_pressure(sk);
1041 static inline long sk_prot_mem_limits(const struct sock *sk, int index)
1043 long *prot = sk->sk_prot->sysctl_mem;
1044 if (mem_cgroup_sockets_enabled && sk->sk_cgrp)
1045 prot = sk->sk_cgrp->sysctl_mem;
1049 static inline void memcg_memory_allocated_add(struct cg_proto *prot,
1053 struct res_counter *fail;
1056 ret = res_counter_charge_nofail(prot->memory_allocated,
1057 amt << PAGE_SHIFT, &fail);
1059 *parent_status = OVER_LIMIT;
1062 static inline void memcg_memory_allocated_sub(struct cg_proto *prot,
1065 res_counter_uncharge(prot->memory_allocated, amt << PAGE_SHIFT);
1068 static inline u64 memcg_memory_allocated_read(struct cg_proto *prot)
1071 ret = res_counter_read_u64(prot->memory_allocated, RES_USAGE);
1072 return ret >> PAGE_SHIFT;
1076 sk_memory_allocated(const struct sock *sk)
1078 struct proto *prot = sk->sk_prot;
1079 if (mem_cgroup_sockets_enabled && sk->sk_cgrp)
1080 return memcg_memory_allocated_read(sk->sk_cgrp);
1082 return atomic_long_read(prot->memory_allocated);
1086 sk_memory_allocated_add(struct sock *sk, int amt, int *parent_status)
1088 struct proto *prot = sk->sk_prot;
1090 if (mem_cgroup_sockets_enabled && sk->sk_cgrp) {
1091 memcg_memory_allocated_add(sk->sk_cgrp, amt, parent_status);
1092 /* update the root cgroup regardless */
1093 atomic_long_add_return(amt, prot->memory_allocated);
1094 return memcg_memory_allocated_read(sk->sk_cgrp);
1097 return atomic_long_add_return(amt, prot->memory_allocated);
1101 sk_memory_allocated_sub(struct sock *sk, int amt)
1103 struct proto *prot = sk->sk_prot;
1105 if (mem_cgroup_sockets_enabled && sk->sk_cgrp)
1106 memcg_memory_allocated_sub(sk->sk_cgrp, amt);
1108 atomic_long_sub(amt, prot->memory_allocated);
1111 static inline void sk_sockets_allocated_dec(struct sock *sk)
1113 struct proto *prot = sk->sk_prot;
1115 if (mem_cgroup_sockets_enabled && sk->sk_cgrp) {
1116 struct cg_proto *cg_proto = sk->sk_cgrp;
1118 for (; cg_proto; cg_proto = parent_cg_proto(prot, cg_proto))
1119 percpu_counter_dec(cg_proto->sockets_allocated);
1122 percpu_counter_dec(prot->sockets_allocated);
1125 static inline void sk_sockets_allocated_inc(struct sock *sk)
1127 struct proto *prot = sk->sk_prot;
1129 if (mem_cgroup_sockets_enabled && sk->sk_cgrp) {
1130 struct cg_proto *cg_proto = sk->sk_cgrp;
1132 for (; cg_proto; cg_proto = parent_cg_proto(prot, cg_proto))
1133 percpu_counter_inc(cg_proto->sockets_allocated);
1136 percpu_counter_inc(prot->sockets_allocated);
1140 sk_sockets_allocated_read_positive(struct sock *sk)
1142 struct proto *prot = sk->sk_prot;
1144 if (mem_cgroup_sockets_enabled && sk->sk_cgrp)
1145 return percpu_counter_read_positive(sk->sk_cgrp->sockets_allocated);
1147 return percpu_counter_read_positive(prot->sockets_allocated);
1151 proto_sockets_allocated_sum_positive(struct proto *prot)
1153 return percpu_counter_sum_positive(prot->sockets_allocated);
1157 proto_memory_allocated(struct proto *prot)
1159 return atomic_long_read(prot->memory_allocated);
1163 proto_memory_pressure(struct proto *prot)
1165 if (!prot->memory_pressure)
1167 return !!*prot->memory_pressure;
1171 #ifdef CONFIG_PROC_FS
1172 /* Called with local bh disabled */
1173 extern void sock_prot_inuse_add(struct net *net, struct proto *prot, int inc);
1174 extern int sock_prot_inuse_get(struct net *net, struct proto *proto);
1176 static inline void sock_prot_inuse_add(struct net *net, struct proto *prot,
1183 /* With per-bucket locks this operation is not-atomic, so that
1184 * this version is not worse.
1186 static inline void __sk_prot_rehash(struct sock *sk)
1188 sk->sk_prot->unhash(sk);
1189 sk->sk_prot->hash(sk);
1192 void sk_prot_clear_portaddr_nulls(struct sock *sk, int size);
1194 /* About 10 seconds */
1195 #define SOCK_DESTROY_TIME (10*HZ)
1197 /* Sockets 0-1023 can't be bound to unless you are superuser */
1198 #define PROT_SOCK 1024
1200 #define SHUTDOWN_MASK 3
1201 #define RCV_SHUTDOWN 1
1202 #define SEND_SHUTDOWN 2
1204 #define SOCK_SNDBUF_LOCK 1
1205 #define SOCK_RCVBUF_LOCK 2
1206 #define SOCK_BINDADDR_LOCK 4
1207 #define SOCK_BINDPORT_LOCK 8
1209 /* sock_iocb: used to kick off async processing of socket ios */
1211 struct list_head list;
1215 struct socket *sock;
1217 struct scm_cookie *scm;
1218 struct msghdr *msg, async_msg;
1219 struct kiocb *kiocb;
1222 static inline struct sock_iocb *kiocb_to_siocb(struct kiocb *iocb)
1224 return (struct sock_iocb *)iocb->private;
1227 static inline struct kiocb *siocb_to_kiocb(struct sock_iocb *si)
1232 struct socket_alloc {
1233 struct socket socket;
1234 struct inode vfs_inode;
1237 static inline struct socket *SOCKET_I(struct inode *inode)
1239 return &container_of(inode, struct socket_alloc, vfs_inode)->socket;
1242 static inline struct inode *SOCK_INODE(struct socket *socket)
1244 return &container_of(socket, struct socket_alloc, socket)->vfs_inode;
1248 * Functions for memory accounting
1250 extern int __sk_mem_schedule(struct sock *sk, int size, int kind);
1251 extern void __sk_mem_reclaim(struct sock *sk);
1253 #define SK_MEM_QUANTUM ((int)PAGE_SIZE)
1254 #define SK_MEM_QUANTUM_SHIFT ilog2(SK_MEM_QUANTUM)
1255 #define SK_MEM_SEND 0
1256 #define SK_MEM_RECV 1
1258 static inline int sk_mem_pages(int amt)
1260 return (amt + SK_MEM_QUANTUM - 1) >> SK_MEM_QUANTUM_SHIFT;
1263 static inline bool sk_has_account(struct sock *sk)
1265 /* return true if protocol supports memory accounting */
1266 return !!sk->sk_prot->memory_allocated;
1269 static inline bool sk_wmem_schedule(struct sock *sk, int size)
1271 if (!sk_has_account(sk))
1273 return size <= sk->sk_forward_alloc ||
1274 __sk_mem_schedule(sk, size, SK_MEM_SEND);
1277 static inline bool sk_rmem_schedule(struct sock *sk, int size)
1279 if (!sk_has_account(sk))
1281 return size <= sk->sk_forward_alloc ||
1282 __sk_mem_schedule(sk, size, SK_MEM_RECV);
1285 static inline void sk_mem_reclaim(struct sock *sk)
1287 if (!sk_has_account(sk))
1289 if (sk->sk_forward_alloc >= SK_MEM_QUANTUM)
1290 __sk_mem_reclaim(sk);
1293 static inline void sk_mem_reclaim_partial(struct sock *sk)
1295 if (!sk_has_account(sk))
1297 if (sk->sk_forward_alloc > SK_MEM_QUANTUM)
1298 __sk_mem_reclaim(sk);
1301 static inline void sk_mem_charge(struct sock *sk, int size)
1303 if (!sk_has_account(sk))
1305 sk->sk_forward_alloc -= size;
1308 static inline void sk_mem_uncharge(struct sock *sk, int size)
1310 if (!sk_has_account(sk))
1312 sk->sk_forward_alloc += size;
1315 static inline void sk_wmem_free_skb(struct sock *sk, struct sk_buff *skb)
1317 sock_set_flag(sk, SOCK_QUEUE_SHRUNK);
1318 sk->sk_wmem_queued -= skb->truesize;
1319 sk_mem_uncharge(sk, skb->truesize);
1323 /* Used by processes to "lock" a socket state, so that
1324 * interrupts and bottom half handlers won't change it
1325 * from under us. It essentially blocks any incoming
1326 * packets, so that we won't get any new data or any
1327 * packets that change the state of the socket.
1329 * While locked, BH processing will add new packets to
1330 * the backlog queue. This queue is processed by the
1331 * owner of the socket lock right before it is released.
1333 * Since ~2.3.5 it is also exclusive sleep lock serializing
1334 * accesses from user process context.
1336 #define sock_owned_by_user(sk) ((sk)->sk_lock.owned)
1339 * Macro so as to not evaluate some arguments when
1340 * lockdep is not enabled.
1342 * Mark both the sk_lock and the sk_lock.slock as a
1343 * per-address-family lock class.
1345 #define sock_lock_init_class_and_name(sk, sname, skey, name, key) \
1347 sk->sk_lock.owned = 0; \
1348 init_waitqueue_head(&sk->sk_lock.wq); \
1349 spin_lock_init(&(sk)->sk_lock.slock); \
1350 debug_check_no_locks_freed((void *)&(sk)->sk_lock, \
1351 sizeof((sk)->sk_lock)); \
1352 lockdep_set_class_and_name(&(sk)->sk_lock.slock, \
1354 lockdep_init_map(&(sk)->sk_lock.dep_map, (name), (key), 0); \
1357 extern void lock_sock_nested(struct sock *sk, int subclass);
1359 static inline void lock_sock(struct sock *sk)
1361 lock_sock_nested(sk, 0);
1364 extern void release_sock(struct sock *sk);
1366 /* BH context may only use the following locking interface. */
1367 #define bh_lock_sock(__sk) spin_lock(&((__sk)->sk_lock.slock))
1368 #define bh_lock_sock_nested(__sk) \
1369 spin_lock_nested(&((__sk)->sk_lock.slock), \
1370 SINGLE_DEPTH_NESTING)
1371 #define bh_unlock_sock(__sk) spin_unlock(&((__sk)->sk_lock.slock))
1373 extern bool lock_sock_fast(struct sock *sk);
1375 * unlock_sock_fast - complement of lock_sock_fast
1379 * fast unlock socket for user context.
1380 * If slow mode is on, we call regular release_sock()
1382 static inline void unlock_sock_fast(struct sock *sk, bool slow)
1387 spin_unlock_bh(&sk->sk_lock.slock);
1391 extern struct sock *sk_alloc(struct net *net, int family,
1393 struct proto *prot);
1394 extern void sk_free(struct sock *sk);
1395 extern void sk_release_kernel(struct sock *sk);
1396 extern struct sock *sk_clone_lock(const struct sock *sk,
1397 const gfp_t priority);
1399 extern struct sk_buff *sock_wmalloc(struct sock *sk,
1400 unsigned long size, int force,
1402 extern struct sk_buff *sock_rmalloc(struct sock *sk,
1403 unsigned long size, int force,
1405 extern void sock_wfree(struct sk_buff *skb);
1406 extern void sock_rfree(struct sk_buff *skb);
1408 extern int sock_setsockopt(struct socket *sock, int level,
1409 int op, char __user *optval,
1410 unsigned int optlen);
1412 extern int sock_getsockopt(struct socket *sock, int level,
1413 int op, char __user *optval,
1414 int __user *optlen);
1415 extern struct sk_buff *sock_alloc_send_skb(struct sock *sk,
1419 extern struct sk_buff *sock_alloc_send_pskb(struct sock *sk,
1420 unsigned long header_len,
1421 unsigned long data_len,
1424 extern void *sock_kmalloc(struct sock *sk, int size,
1426 extern void sock_kfree_s(struct sock *sk, void *mem, int size);
1427 extern void sk_send_sigurg(struct sock *sk);
1429 #ifdef CONFIG_CGROUPS
1430 extern void sock_update_classid(struct sock *sk);
1432 static inline void sock_update_classid(struct sock *sk)
1438 * Functions to fill in entries in struct proto_ops when a protocol
1439 * does not implement a particular function.
1441 extern int sock_no_bind(struct socket *,
1442 struct sockaddr *, int);
1443 extern int sock_no_connect(struct socket *,
1444 struct sockaddr *, int, int);
1445 extern int sock_no_socketpair(struct socket *,
1447 extern int sock_no_accept(struct socket *,
1448 struct socket *, int);
1449 extern int sock_no_getname(struct socket *,
1450 struct sockaddr *, int *, int);
1451 extern unsigned int sock_no_poll(struct file *, struct socket *,
1452 struct poll_table_struct *);
1453 extern int sock_no_ioctl(struct socket *, unsigned int,
1455 extern int sock_no_listen(struct socket *, int);
1456 extern int sock_no_shutdown(struct socket *, int);
1457 extern int sock_no_getsockopt(struct socket *, int , int,
1458 char __user *, int __user *);
1459 extern int sock_no_setsockopt(struct socket *, int, int,
1460 char __user *, unsigned int);
1461 extern int sock_no_sendmsg(struct kiocb *, struct socket *,
1462 struct msghdr *, size_t);
1463 extern int sock_no_recvmsg(struct kiocb *, struct socket *,
1464 struct msghdr *, size_t, int);
1465 extern int sock_no_mmap(struct file *file,
1466 struct socket *sock,
1467 struct vm_area_struct *vma);
1468 extern ssize_t sock_no_sendpage(struct socket *sock,
1470 int offset, size_t size,
1474 * Functions to fill in entries in struct proto_ops when a protocol
1475 * uses the inet style.
1477 extern int sock_common_getsockopt(struct socket *sock, int level, int optname,
1478 char __user *optval, int __user *optlen);
1479 extern int sock_common_recvmsg(struct kiocb *iocb, struct socket *sock,
1480 struct msghdr *msg, size_t size, int flags);
1481 extern int sock_common_setsockopt(struct socket *sock, int level, int optname,
1482 char __user *optval, unsigned int optlen);
1483 extern int compat_sock_common_getsockopt(struct socket *sock, int level,
1484 int optname, char __user *optval, int __user *optlen);
1485 extern int compat_sock_common_setsockopt(struct socket *sock, int level,
1486 int optname, char __user *optval, unsigned int optlen);
1488 extern void sk_common_release(struct sock *sk);
1491 * Default socket callbacks and setup code
1494 /* Initialise core socket variables */
1495 extern void sock_init_data(struct socket *sock, struct sock *sk);
1497 extern void sk_filter_release_rcu(struct rcu_head *rcu);
1500 * sk_filter_release - release a socket filter
1501 * @fp: filter to remove
1503 * Remove a filter from a socket and release its resources.
1506 static inline void sk_filter_release(struct sk_filter *fp)
1508 if (atomic_dec_and_test(&fp->refcnt))
1509 call_rcu(&fp->rcu, sk_filter_release_rcu);
1512 static inline void sk_filter_uncharge(struct sock *sk, struct sk_filter *fp)
1514 unsigned int size = sk_filter_len(fp);
1516 atomic_sub(size, &sk->sk_omem_alloc);
1517 sk_filter_release(fp);
1520 static inline void sk_filter_charge(struct sock *sk, struct sk_filter *fp)
1522 atomic_inc(&fp->refcnt);
1523 atomic_add(sk_filter_len(fp), &sk->sk_omem_alloc);
1527 * Socket reference counting postulates.
1529 * * Each user of socket SHOULD hold a reference count.
1530 * * Each access point to socket (an hash table bucket, reference from a list,
1531 * running timer, skb in flight MUST hold a reference count.
1532 * * When reference count hits 0, it means it will never increase back.
1533 * * When reference count hits 0, it means that no references from
1534 * outside exist to this socket and current process on current CPU
1535 * is last user and may/should destroy this socket.
1536 * * sk_free is called from any context: process, BH, IRQ. When
1537 * it is called, socket has no references from outside -> sk_free
1538 * may release descendant resources allocated by the socket, but
1539 * to the time when it is called, socket is NOT referenced by any
1540 * hash tables, lists etc.
1541 * * Packets, delivered from outside (from network or from another process)
1542 * and enqueued on receive/error queues SHOULD NOT grab reference count,
1543 * when they sit in queue. Otherwise, packets will leak to hole, when
1544 * socket is looked up by one cpu and unhasing is made by another CPU.
1545 * It is true for udp/raw, netlink (leak to receive and error queues), tcp
1546 * (leak to backlog). Packet socket does all the processing inside
1547 * BR_NETPROTO_LOCK, so that it has not this race condition. UNIX sockets
1548 * use separate SMP lock, so that they are prone too.
1551 /* Ungrab socket and destroy it, if it was the last reference. */
1552 static inline void sock_put(struct sock *sk)
1554 if (atomic_dec_and_test(&sk->sk_refcnt))
1558 extern int sk_receive_skb(struct sock *sk, struct sk_buff *skb,
1561 static inline void sk_tx_queue_set(struct sock *sk, int tx_queue)
1563 sk->sk_tx_queue_mapping = tx_queue;
1566 static inline void sk_tx_queue_clear(struct sock *sk)
1568 sk->sk_tx_queue_mapping = -1;
1571 static inline int sk_tx_queue_get(const struct sock *sk)
1573 return sk ? sk->sk_tx_queue_mapping : -1;
1576 static inline void sk_set_socket(struct sock *sk, struct socket *sock)
1578 sk_tx_queue_clear(sk);
1579 sk->sk_socket = sock;
1582 static inline wait_queue_head_t *sk_sleep(struct sock *sk)
1584 BUILD_BUG_ON(offsetof(struct socket_wq, wait) != 0);
1585 return &rcu_dereference_raw(sk->sk_wq)->wait;
1587 /* Detach socket from process context.
1588 * Announce socket dead, detach it from wait queue and inode.
1589 * Note that parent inode held reference count on this struct sock,
1590 * we do not release it in this function, because protocol
1591 * probably wants some additional cleanups or even continuing
1592 * to work with this socket (TCP).
1594 static inline void sock_orphan(struct sock *sk)
1596 write_lock_bh(&sk->sk_callback_lock);
1597 sock_set_flag(sk, SOCK_DEAD);
1598 sk_set_socket(sk, NULL);
1600 write_unlock_bh(&sk->sk_callback_lock);
1603 static inline void sock_graft(struct sock *sk, struct socket *parent)
1605 write_lock_bh(&sk->sk_callback_lock);
1606 sk->sk_wq = parent->wq;
1608 sk_set_socket(sk, parent);
1609 security_sock_graft(sk, parent);
1610 write_unlock_bh(&sk->sk_callback_lock);
1613 extern int sock_i_uid(struct sock *sk);
1614 extern unsigned long sock_i_ino(struct sock *sk);
1616 static inline struct dst_entry *
1617 __sk_dst_get(struct sock *sk)
1619 return rcu_dereference_check(sk->sk_dst_cache, sock_owned_by_user(sk) ||
1620 lockdep_is_held(&sk->sk_lock.slock));
1623 static inline struct dst_entry *
1624 sk_dst_get(struct sock *sk)
1626 struct dst_entry *dst;
1629 dst = rcu_dereference(sk->sk_dst_cache);
1636 extern void sk_reset_txq(struct sock *sk);
1638 static inline void dst_negative_advice(struct sock *sk)
1640 struct dst_entry *ndst, *dst = __sk_dst_get(sk);
1642 if (dst && dst->ops->negative_advice) {
1643 ndst = dst->ops->negative_advice(dst);
1646 rcu_assign_pointer(sk->sk_dst_cache, ndst);
1653 __sk_dst_set(struct sock *sk, struct dst_entry *dst)
1655 struct dst_entry *old_dst;
1657 sk_tx_queue_clear(sk);
1659 * This can be called while sk is owned by the caller only,
1660 * with no state that can be checked in a rcu_dereference_check() cond
1662 old_dst = rcu_dereference_raw(sk->sk_dst_cache);
1663 rcu_assign_pointer(sk->sk_dst_cache, dst);
1664 dst_release(old_dst);
1668 sk_dst_set(struct sock *sk, struct dst_entry *dst)
1670 spin_lock(&sk->sk_dst_lock);
1671 __sk_dst_set(sk, dst);
1672 spin_unlock(&sk->sk_dst_lock);
1676 __sk_dst_reset(struct sock *sk)
1678 __sk_dst_set(sk, NULL);
1682 sk_dst_reset(struct sock *sk)
1684 spin_lock(&sk->sk_dst_lock);
1686 spin_unlock(&sk->sk_dst_lock);
1689 extern struct dst_entry *__sk_dst_check(struct sock *sk, u32 cookie);
1691 extern struct dst_entry *sk_dst_check(struct sock *sk, u32 cookie);
1693 static inline bool sk_can_gso(const struct sock *sk)
1695 return net_gso_ok(sk->sk_route_caps, sk->sk_gso_type);
1698 extern void sk_setup_caps(struct sock *sk, struct dst_entry *dst);
1700 static inline void sk_nocaps_add(struct sock *sk, netdev_features_t flags)
1702 sk->sk_route_nocaps |= flags;
1703 sk->sk_route_caps &= ~flags;
1706 static inline int skb_do_copy_data_nocache(struct sock *sk, struct sk_buff *skb,
1707 char __user *from, char *to,
1708 int copy, int offset)
1710 if (skb->ip_summed == CHECKSUM_NONE) {
1712 __wsum csum = csum_and_copy_from_user(from, to, copy, 0, &err);
1715 skb->csum = csum_block_add(skb->csum, csum, offset);
1716 } else if (sk->sk_route_caps & NETIF_F_NOCACHE_COPY) {
1717 if (!access_ok(VERIFY_READ, from, copy) ||
1718 __copy_from_user_nocache(to, from, copy))
1720 } else if (copy_from_user(to, from, copy))
1726 static inline int skb_add_data_nocache(struct sock *sk, struct sk_buff *skb,
1727 char __user *from, int copy)
1729 int err, offset = skb->len;
1731 err = skb_do_copy_data_nocache(sk, skb, from, skb_put(skb, copy),
1734 __skb_trim(skb, offset);
1739 static inline int skb_copy_to_page_nocache(struct sock *sk, char __user *from,
1740 struct sk_buff *skb,
1746 err = skb_do_copy_data_nocache(sk, skb, from, page_address(page) + off,
1752 skb->data_len += copy;
1753 skb->truesize += copy;
1754 sk->sk_wmem_queued += copy;
1755 sk_mem_charge(sk, copy);
1759 static inline int skb_copy_to_page(struct sock *sk, char __user *from,
1760 struct sk_buff *skb, struct page *page,
1763 if (skb->ip_summed == CHECKSUM_NONE) {
1765 __wsum csum = csum_and_copy_from_user(from,
1766 page_address(page) + off,
1770 skb->csum = csum_block_add(skb->csum, csum, skb->len);
1771 } else if (copy_from_user(page_address(page) + off, from, copy))
1775 skb->data_len += copy;
1776 skb->truesize += copy;
1777 sk->sk_wmem_queued += copy;
1778 sk_mem_charge(sk, copy);
1783 * sk_wmem_alloc_get - returns write allocations
1786 * Returns sk_wmem_alloc minus initial offset of one
1788 static inline int sk_wmem_alloc_get(const struct sock *sk)
1790 return atomic_read(&sk->sk_wmem_alloc) - 1;
1794 * sk_rmem_alloc_get - returns read allocations
1797 * Returns sk_rmem_alloc
1799 static inline int sk_rmem_alloc_get(const struct sock *sk)
1801 return atomic_read(&sk->sk_rmem_alloc);
1805 * sk_has_allocations - check if allocations are outstanding
1808 * Returns true if socket has write or read allocations
1810 static inline bool sk_has_allocations(const struct sock *sk)
1812 return sk_wmem_alloc_get(sk) || sk_rmem_alloc_get(sk);
1816 * wq_has_sleeper - check if there are any waiting processes
1817 * @wq: struct socket_wq
1819 * Returns true if socket_wq has waiting processes
1821 * The purpose of the wq_has_sleeper and sock_poll_wait is to wrap the memory
1822 * barrier call. They were added due to the race found within the tcp code.
1824 * Consider following tcp code paths:
1828 * sys_select receive packet
1830 * __add_wait_queue update tp->rcv_nxt
1832 * tp->rcv_nxt check sock_def_readable
1834 * schedule rcu_read_lock();
1835 * wq = rcu_dereference(sk->sk_wq);
1836 * if (wq && waitqueue_active(&wq->wait))
1837 * wake_up_interruptible(&wq->wait)
1841 * The race for tcp fires when the __add_wait_queue changes done by CPU1 stay
1842 * in its cache, and so does the tp->rcv_nxt update on CPU2 side. The CPU1
1843 * could then endup calling schedule and sleep forever if there are no more
1844 * data on the socket.
1847 static inline bool wq_has_sleeper(struct socket_wq *wq)
1849 /* We need to be sure we are in sync with the
1850 * add_wait_queue modifications to the wait queue.
1852 * This memory barrier is paired in the sock_poll_wait.
1855 return wq && waitqueue_active(&wq->wait);
1859 * sock_poll_wait - place memory barrier behind the poll_wait call.
1861 * @wait_address: socket wait queue
1864 * See the comments in the wq_has_sleeper function.
1866 static inline void sock_poll_wait(struct file *filp,
1867 wait_queue_head_t *wait_address, poll_table *p)
1869 if (!poll_does_not_wait(p) && wait_address) {
1870 poll_wait(filp, wait_address, p);
1871 /* We need to be sure we are in sync with the
1872 * socket flags modification.
1874 * This memory barrier is paired in the wq_has_sleeper.
1881 * Queue a received datagram if it will fit. Stream and sequenced
1882 * protocols can't normally use this as they need to fit buffers in
1883 * and play with them.
1885 * Inlined as it's very short and called for pretty much every
1886 * packet ever received.
1889 static inline void skb_set_owner_w(struct sk_buff *skb, struct sock *sk)
1893 skb->destructor = sock_wfree;
1895 * We used to take a refcount on sk, but following operation
1896 * is enough to guarantee sk_free() wont free this sock until
1897 * all in-flight packets are completed
1899 atomic_add(skb->truesize, &sk->sk_wmem_alloc);
1902 static inline void skb_set_owner_r(struct sk_buff *skb, struct sock *sk)
1906 skb->destructor = sock_rfree;
1907 atomic_add(skb->truesize, &sk->sk_rmem_alloc);
1908 sk_mem_charge(sk, skb->truesize);
1911 extern void sk_reset_timer(struct sock *sk, struct timer_list *timer,
1912 unsigned long expires);
1914 extern void sk_stop_timer(struct sock *sk, struct timer_list *timer);
1916 extern int sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb);
1918 extern int sock_queue_err_skb(struct sock *sk, struct sk_buff *skb);
1921 * Recover an error report and clear atomically
1924 static inline int sock_error(struct sock *sk)
1927 if (likely(!sk->sk_err))
1929 err = xchg(&sk->sk_err, 0);
1933 static inline unsigned long sock_wspace(struct sock *sk)
1937 if (!(sk->sk_shutdown & SEND_SHUTDOWN)) {
1938 amt = sk->sk_sndbuf - atomic_read(&sk->sk_wmem_alloc);
1945 static inline void sk_wake_async(struct sock *sk, int how, int band)
1947 if (sock_flag(sk, SOCK_FASYNC))
1948 sock_wake_async(sk->sk_socket, how, band);
1951 #define SOCK_MIN_SNDBUF 2048
1953 * Since sk_rmem_alloc sums skb->truesize, even a small frame might need
1954 * sizeof(sk_buff) + MTU + padding, unless net driver perform copybreak
1956 #define SOCK_MIN_RCVBUF (2048 + sizeof(struct sk_buff))
1958 static inline void sk_stream_moderate_sndbuf(struct sock *sk)
1960 if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK)) {
1961 sk->sk_sndbuf = min(sk->sk_sndbuf, sk->sk_wmem_queued >> 1);
1962 sk->sk_sndbuf = max(sk->sk_sndbuf, SOCK_MIN_SNDBUF);
1966 struct sk_buff *sk_stream_alloc_skb(struct sock *sk, int size, gfp_t gfp);
1968 static inline struct page *sk_stream_alloc_page(struct sock *sk)
1970 struct page *page = NULL;
1972 page = alloc_pages(sk->sk_allocation, 0);
1974 sk_enter_memory_pressure(sk);
1975 sk_stream_moderate_sndbuf(sk);
1981 * Default write policy as shown to user space via poll/select/SIGIO
1983 static inline bool sock_writeable(const struct sock *sk)
1985 return atomic_read(&sk->sk_wmem_alloc) < (sk->sk_sndbuf >> 1);
1988 static inline gfp_t gfp_any(void)
1990 return in_softirq() ? GFP_ATOMIC : GFP_KERNEL;
1993 static inline long sock_rcvtimeo(const struct sock *sk, bool noblock)
1995 return noblock ? 0 : sk->sk_rcvtimeo;
1998 static inline long sock_sndtimeo(const struct sock *sk, bool noblock)
2000 return noblock ? 0 : sk->sk_sndtimeo;
2003 static inline int sock_rcvlowat(const struct sock *sk, int waitall, int len)
2005 return (waitall ? len : min_t(int, sk->sk_rcvlowat, len)) ? : 1;
2008 /* Alas, with timeout socket operations are not restartable.
2009 * Compare this to poll().
2011 static inline int sock_intr_errno(long timeo)
2013 return timeo == MAX_SCHEDULE_TIMEOUT ? -ERESTARTSYS : -EINTR;
2016 extern void __sock_recv_timestamp(struct msghdr *msg, struct sock *sk,
2017 struct sk_buff *skb);
2018 extern void __sock_recv_wifi_status(struct msghdr *msg, struct sock *sk,
2019 struct sk_buff *skb);
2022 sock_recv_timestamp(struct msghdr *msg, struct sock *sk, struct sk_buff *skb)
2024 ktime_t kt = skb->tstamp;
2025 struct skb_shared_hwtstamps *hwtstamps = skb_hwtstamps(skb);
2028 * generate control messages if
2029 * - receive time stamping in software requested (SOCK_RCVTSTAMP
2030 * or SOCK_TIMESTAMPING_RX_SOFTWARE)
2031 * - software time stamp available and wanted
2032 * (SOCK_TIMESTAMPING_SOFTWARE)
2033 * - hardware time stamps available and wanted
2034 * (SOCK_TIMESTAMPING_SYS_HARDWARE or
2035 * SOCK_TIMESTAMPING_RAW_HARDWARE)
2037 if (sock_flag(sk, SOCK_RCVTSTAMP) ||
2038 sock_flag(sk, SOCK_TIMESTAMPING_RX_SOFTWARE) ||
2039 (kt.tv64 && sock_flag(sk, SOCK_TIMESTAMPING_SOFTWARE)) ||
2040 (hwtstamps->hwtstamp.tv64 &&
2041 sock_flag(sk, SOCK_TIMESTAMPING_RAW_HARDWARE)) ||
2042 (hwtstamps->syststamp.tv64 &&
2043 sock_flag(sk, SOCK_TIMESTAMPING_SYS_HARDWARE)))
2044 __sock_recv_timestamp(msg, sk, skb);
2048 if (sock_flag(sk, SOCK_WIFI_STATUS) && skb->wifi_acked_valid)
2049 __sock_recv_wifi_status(msg, sk, skb);
2052 extern void __sock_recv_ts_and_drops(struct msghdr *msg, struct sock *sk,
2053 struct sk_buff *skb);
2055 static inline void sock_recv_ts_and_drops(struct msghdr *msg, struct sock *sk,
2056 struct sk_buff *skb)
2058 #define FLAGS_TS_OR_DROPS ((1UL << SOCK_RXQ_OVFL) | \
2059 (1UL << SOCK_RCVTSTAMP) | \
2060 (1UL << SOCK_TIMESTAMPING_RX_SOFTWARE) | \
2061 (1UL << SOCK_TIMESTAMPING_SOFTWARE) | \
2062 (1UL << SOCK_TIMESTAMPING_RAW_HARDWARE) | \
2063 (1UL << SOCK_TIMESTAMPING_SYS_HARDWARE))
2065 if (sk->sk_flags & FLAGS_TS_OR_DROPS)
2066 __sock_recv_ts_and_drops(msg, sk, skb);
2068 sk->sk_stamp = skb->tstamp;
2072 * sock_tx_timestamp - checks whether the outgoing packet is to be time stamped
2073 * @sk: socket sending this packet
2074 * @tx_flags: filled with instructions for time stamping
2076 * Currently only depends on SOCK_TIMESTAMPING* flags. Returns error code if
2077 * parameters are invalid.
2079 extern int sock_tx_timestamp(struct sock *sk, __u8 *tx_flags);
2082 * sk_eat_skb - Release a skb if it is no longer needed
2083 * @sk: socket to eat this skb from
2084 * @skb: socket buffer to eat
2085 * @copied_early: flag indicating whether DMA operations copied this data early
2087 * This routine must be called with interrupts disabled or with the socket
2088 * locked so that the sk_buff queue operation is ok.
2090 #ifdef CONFIG_NET_DMA
2091 static inline void sk_eat_skb(struct sock *sk, struct sk_buff *skb, bool copied_early)
2093 __skb_unlink(skb, &sk->sk_receive_queue);
2097 __skb_queue_tail(&sk->sk_async_wait_queue, skb);
2100 static inline void sk_eat_skb(struct sock *sk, struct sk_buff *skb, bool copied_early)
2102 __skb_unlink(skb, &sk->sk_receive_queue);
2108 struct net *sock_net(const struct sock *sk)
2110 return read_pnet(&sk->sk_net);
2114 void sock_net_set(struct sock *sk, struct net *net)
2116 write_pnet(&sk->sk_net, net);
2120 * Kernel sockets, f.e. rtnl or icmp_socket, are a part of a namespace.
2121 * They should not hold a reference to a namespace in order to allow
2123 * Sockets after sk_change_net should be released using sk_release_kernel
2125 static inline void sk_change_net(struct sock *sk, struct net *net)
2127 put_net(sock_net(sk));
2128 sock_net_set(sk, hold_net(net));
2131 static inline struct sock *skb_steal_sock(struct sk_buff *skb)
2133 if (unlikely(skb->sk)) {
2134 struct sock *sk = skb->sk;
2136 skb->destructor = NULL;
2143 extern void sock_enable_timestamp(struct sock *sk, int flag);
2144 extern int sock_get_timestamp(struct sock *, struct timeval __user *);
2145 extern int sock_get_timestampns(struct sock *, struct timespec __user *);
2148 * Enable debug/info messages
2150 extern int net_msg_warn;
2151 #define NETDEBUG(fmt, args...) \
2152 do { if (net_msg_warn) printk(fmt,##args); } while (0)
2154 #define LIMIT_NETDEBUG(fmt, args...) \
2155 do { if (net_msg_warn && net_ratelimit()) printk(fmt,##args); } while(0)
2157 extern __u32 sysctl_wmem_max;
2158 extern __u32 sysctl_rmem_max;
2160 extern void sk_init(void);
2162 extern int sysctl_optmem_max;
2164 extern __u32 sysctl_wmem_default;
2165 extern __u32 sysctl_rmem_default;
2167 #endif /* _SOCK_H */