1 /* SPDX-License-Identifier: GPL-2.0-or-later */
3 * INET An implementation of the TCP/IP protocol suite for the LINUX
4 * operating system. INET is implemented using the BSD Socket
5 * interface as the means of communication with the user level.
7 * Definitions for the AF_INET socket handler.
9 * Version: @(#)sock.h 1.0.4 05/13/93
12 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
13 * Corey Minyard <wf-rch!minyard@relay.EU.net>
14 * Florian La Roche <flla@stud.uni-sb.de>
17 * Alan Cox : Volatiles in skbuff pointers. See
18 * skbuff comments. May be overdone,
19 * better to prove they can be removed
21 * Alan Cox : Added a zapped field for tcp to note
22 * a socket is reset and must stay shut up
23 * Alan Cox : New fields for options
24 * Pauline Middelink : identd support
25 * Alan Cox : Eliminate low level recv/recvfrom
26 * David S. Miller : New socket lookup architecture.
27 * Steve Whitehouse: Default routines for sock_ops
28 * Arnaldo C. Melo : removed net_pinfo, tp_pinfo and made
29 * protinfo be just a void pointer, as the
30 * protocol specific parts were moved to
31 * respective headers and ipv4/v6, etc now
32 * use private slabcaches for its socks
33 * Pedro Hortas : New flags field for socket options
38 #include <linux/hardirq.h>
39 #include <linux/kernel.h>
40 #include <linux/list.h>
41 #include <linux/list_nulls.h>
42 #include <linux/timer.h>
43 #include <linux/cache.h>
44 #include <linux/bitops.h>
45 #include <linux/lockdep.h>
46 #include <linux/netdevice.h>
47 #include <linux/skbuff.h> /* struct sk_buff */
49 #include <linux/security.h>
50 #include <linux/slab.h>
51 #include <linux/uaccess.h>
52 #include <linux/page_counter.h>
53 #include <linux/memcontrol.h>
54 #include <linux/static_key.h>
55 #include <linux/sched.h>
56 #include <linux/wait.h>
57 #include <linux/cgroup-defs.h>
58 #include <linux/rbtree.h>
59 #include <linux/rculist_nulls.h>
60 #include <linux/poll.h>
61 #include <linux/sockptr.h>
62 #include <linux/indirect_call_wrapper.h>
63 #include <linux/atomic.h>
64 #include <linux/refcount.h>
65 #include <linux/llist.h>
67 #include <net/checksum.h>
68 #include <net/tcp_states.h>
69 #include <linux/net_tstamp.h>
70 #include <net/l3mdev.h>
71 #include <uapi/linux/socket.h>
74 * This structure really needs to be cleaned up.
75 * Most of it is for TCP, and not used by any of
76 * the other protocols.
79 /* Define this to get the SOCK_DBG debugging facility. */
80 #define SOCK_DEBUGGING
82 #define SOCK_DEBUG(sk, msg...) do { if ((sk) && sock_flag((sk), SOCK_DBG)) \
83 printk(KERN_DEBUG msg); } while (0)
85 /* Validate arguments and do nothing */
86 static inline __printf(2, 3)
87 void SOCK_DEBUG(const struct sock *sk, const char *msg, ...)
92 /* This is the per-socket lock. The spinlock provides a synchronization
93 * between user contexts and software interrupt processing, whereas the
94 * mini-semaphore synchronizes multiple users amongst themselves.
101 * We express the mutex-alike socket_lock semantics
102 * to the lock validator by explicitly managing
103 * the slock as a lock variant (in addition to
106 #ifdef CONFIG_DEBUG_LOCK_ALLOC
107 struct lockdep_map dep_map;
115 typedef __u32 __bitwise __portpair;
116 typedef __u64 __bitwise __addrpair;
119 * struct sock_common - minimal network layer representation of sockets
120 * @skc_daddr: Foreign IPv4 addr
121 * @skc_rcv_saddr: Bound local IPv4 addr
122 * @skc_addrpair: 8-byte-aligned __u64 union of @skc_daddr & @skc_rcv_saddr
123 * @skc_hash: hash value used with various protocol lookup tables
124 * @skc_u16hashes: two u16 hash values used by UDP lookup tables
125 * @skc_dport: placeholder for inet_dport/tw_dport
126 * @skc_num: placeholder for inet_num/tw_num
127 * @skc_portpair: __u32 union of @skc_dport & @skc_num
128 * @skc_family: network address family
129 * @skc_state: Connection state
130 * @skc_reuse: %SO_REUSEADDR setting
131 * @skc_reuseport: %SO_REUSEPORT setting
132 * @skc_ipv6only: socket is IPV6 only
133 * @skc_net_refcnt: socket is using net ref counting
134 * @skc_bound_dev_if: bound device index if != 0
135 * @skc_bind_node: bind hash linkage for various protocol lookup tables
136 * @skc_portaddr_node: second hash linkage for UDP/UDP-Lite protocol
137 * @skc_prot: protocol handlers inside a network family
138 * @skc_net: reference to the network namespace of this socket
139 * @skc_v6_daddr: IPV6 destination address
140 * @skc_v6_rcv_saddr: IPV6 source address
141 * @skc_cookie: socket's cookie value
142 * @skc_node: main hash linkage for various protocol lookup tables
143 * @skc_nulls_node: main hash linkage for TCP/UDP/UDP-Lite protocol
144 * @skc_tx_queue_mapping: tx queue number for this connection
145 * @skc_rx_queue_mapping: rx queue number for this connection
146 * @skc_flags: place holder for sk_flags
147 * %SO_LINGER (l_onoff), %SO_BROADCAST, %SO_KEEPALIVE,
148 * %SO_OOBINLINE settings, %SO_TIMESTAMPING settings
149 * @skc_listener: connection request listener socket (aka rsk_listener)
150 * [union with @skc_flags]
151 * @skc_tw_dr: (aka tw_dr) ptr to &struct inet_timewait_death_row
152 * [union with @skc_flags]
153 * @skc_incoming_cpu: record/match cpu processing incoming packets
154 * @skc_rcv_wnd: (aka rsk_rcv_wnd) TCP receive window size (possibly scaled)
155 * [union with @skc_incoming_cpu]
156 * @skc_tw_rcv_nxt: (aka tw_rcv_nxt) TCP window next expected seq number
157 * [union with @skc_incoming_cpu]
158 * @skc_refcnt: reference count
160 * This is the minimal network layer representation of sockets, the header
161 * for struct sock and struct inet_timewait_sock.
165 __addrpair skc_addrpair;
168 __be32 skc_rcv_saddr;
172 unsigned int skc_hash;
173 __u16 skc_u16hashes[2];
175 /* skc_dport && skc_num must be grouped as well */
177 __portpair skc_portpair;
184 unsigned short skc_family;
185 volatile unsigned char skc_state;
186 unsigned char skc_reuse:4;
187 unsigned char skc_reuseport:1;
188 unsigned char skc_ipv6only:1;
189 unsigned char skc_net_refcnt:1;
190 int skc_bound_dev_if;
192 struct hlist_node skc_bind_node;
193 struct hlist_node skc_portaddr_node;
195 struct proto *skc_prot;
196 possible_net_t skc_net;
198 #if IS_ENABLED(CONFIG_IPV6)
199 struct in6_addr skc_v6_daddr;
200 struct in6_addr skc_v6_rcv_saddr;
203 atomic64_t skc_cookie;
205 /* following fields are padding to force
206 * offset(struct sock, sk_refcnt) == 128 on 64bit arches
207 * assuming IPV6 is enabled. We use this padding differently
208 * for different kind of 'sockets'
211 unsigned long skc_flags;
212 struct sock *skc_listener; /* request_sock */
213 struct inet_timewait_death_row *skc_tw_dr; /* inet_timewait_sock */
216 * fields between dontcopy_begin/dontcopy_end
217 * are not copied in sock_copy()
220 int skc_dontcopy_begin[0];
223 struct hlist_node skc_node;
224 struct hlist_nulls_node skc_nulls_node;
226 unsigned short skc_tx_queue_mapping;
227 #ifdef CONFIG_SOCK_RX_QUEUE_MAPPING
228 unsigned short skc_rx_queue_mapping;
231 int skc_incoming_cpu;
233 u32 skc_tw_rcv_nxt; /* struct tcp_timewait_sock */
236 refcount_t skc_refcnt;
238 int skc_dontcopy_end[0];
241 u32 skc_window_clamp;
242 u32 skc_tw_snd_nxt; /* struct tcp_timewait_sock */
247 struct bpf_local_storage;
251 * struct sock - network layer representation of sockets
252 * @__sk_common: shared layout with inet_timewait_sock
253 * @sk_shutdown: mask of %SEND_SHUTDOWN and/or %RCV_SHUTDOWN
254 * @sk_userlocks: %SO_SNDBUF and %SO_RCVBUF settings
255 * @sk_lock: synchronizer
256 * @sk_kern_sock: True if sock is using kernel lock classes
257 * @sk_rcvbuf: size of receive buffer in bytes
258 * @sk_wq: sock wait queue and async head
259 * @sk_rx_dst: receive input route used by early demux
260 * @sk_rx_dst_ifindex: ifindex for @sk_rx_dst
261 * @sk_rx_dst_cookie: cookie for @sk_rx_dst
262 * @sk_dst_cache: destination cache
263 * @sk_dst_pending_confirm: need to confirm neighbour
264 * @sk_policy: flow policy
265 * @sk_receive_queue: incoming packets
266 * @sk_wmem_alloc: transmit queue bytes committed
267 * @sk_tsq_flags: TCP Small Queues flags
268 * @sk_write_queue: Packet sending queue
269 * @sk_omem_alloc: "o" is "option" or "other"
270 * @sk_wmem_queued: persistent queue size
271 * @sk_forward_alloc: space allocated forward
272 * @sk_reserved_mem: space reserved and non-reclaimable for the socket
273 * @sk_napi_id: id of the last napi context to receive data for sk
274 * @sk_ll_usec: usecs to busypoll when there is no data
275 * @sk_allocation: allocation mode
276 * @sk_pacing_rate: Pacing rate (if supported by transport/packet scheduler)
277 * @sk_pacing_status: Pacing status (requested, handled by sch_fq)
278 * @sk_max_pacing_rate: Maximum pacing rate (%SO_MAX_PACING_RATE)
279 * @sk_sndbuf: size of send buffer in bytes
280 * @__sk_flags_offset: empty field used to determine location of bitfield
281 * @sk_padding: unused element for alignment
282 * @sk_no_check_tx: %SO_NO_CHECK setting, set checksum in TX packets
283 * @sk_no_check_rx: allow zero checksum in RX packets
284 * @sk_route_caps: route capabilities (e.g. %NETIF_F_TSO)
285 * @sk_gso_disabled: if set, NETIF_F_GSO_MASK is forbidden.
286 * @sk_gso_type: GSO type (e.g. %SKB_GSO_TCPV4)
287 * @sk_gso_max_size: Maximum GSO segment size to build
288 * @sk_gso_max_segs: Maximum number of GSO segments
289 * @sk_pacing_shift: scaling factor for TCP Small Queues
290 * @sk_lingertime: %SO_LINGER l_linger setting
291 * @sk_backlog: always used with the per-socket spinlock held
292 * @sk_callback_lock: used with the callbacks in the end of this struct
293 * @sk_error_queue: rarely used
294 * @sk_prot_creator: sk_prot of original sock creator (see ipv6_setsockopt,
295 * IPV6_ADDRFORM for instance)
296 * @sk_err: last error
297 * @sk_err_soft: errors that don't cause failure but are the cause of a
298 * persistent failure not just 'timed out'
299 * @sk_drops: raw/udp drops counter
300 * @sk_ack_backlog: current listen backlog
301 * @sk_max_ack_backlog: listen backlog set in listen()
302 * @sk_uid: user id of owner
303 * @sk_prefer_busy_poll: prefer busypolling over softirq processing
304 * @sk_busy_poll_budget: napi processing budget when busypolling
305 * @sk_priority: %SO_PRIORITY setting
306 * @sk_type: socket type (%SOCK_STREAM, etc)
307 * @sk_protocol: which protocol this socket belongs in this network family
308 * @sk_peer_lock: lock protecting @sk_peer_pid and @sk_peer_cred
309 * @sk_peer_pid: &struct pid for this socket's peer
310 * @sk_peer_cred: %SO_PEERCRED setting
311 * @sk_rcvlowat: %SO_RCVLOWAT setting
312 * @sk_rcvtimeo: %SO_RCVTIMEO setting
313 * @sk_sndtimeo: %SO_SNDTIMEO setting
314 * @sk_txhash: computed flow hash for use on transmit
315 * @sk_txrehash: enable TX hash rethink
316 * @sk_filter: socket filtering instructions
317 * @sk_timer: sock cleanup timer
318 * @sk_stamp: time stamp of last packet received
319 * @sk_stamp_seq: lock for accessing sk_stamp on 32 bit architectures only
320 * @sk_tsflags: SO_TIMESTAMPING flags
321 * @sk_bind_phc: SO_TIMESTAMPING bind PHC index of PTP virtual clock
323 * @sk_tskey: counter to disambiguate concurrent tstamp requests
324 * @sk_zckey: counter to order MSG_ZEROCOPY notifications
325 * @sk_socket: Identd and reporting IO signals
326 * @sk_user_data: RPC layer private data
327 * @sk_frag: cached page frag
328 * @sk_peek_off: current peek_offset value
329 * @sk_send_head: front of stuff to transmit
330 * @tcp_rtx_queue: TCP re-transmit queue [union with @sk_send_head]
331 * @sk_security: used by security modules
332 * @sk_mark: generic packet mark
333 * @sk_cgrp_data: cgroup data for this cgroup
334 * @sk_memcg: this socket's memory cgroup association
335 * @sk_write_pending: a write to stream socket waits to start
336 * @sk_state_change: callback to indicate change in the state of the sock
337 * @sk_data_ready: callback to indicate there is data to be processed
338 * @sk_write_space: callback to indicate there is bf sending space available
339 * @sk_error_report: callback to indicate errors (e.g. %MSG_ERRQUEUE)
340 * @sk_backlog_rcv: callback to process the backlog
341 * @sk_validate_xmit_skb: ptr to an optional validate function
342 * @sk_destruct: called at sock freeing time, i.e. when all refcnt == 0
343 * @sk_reuseport_cb: reuseport group container
344 * @sk_bpf_storage: ptr to cache and control for bpf_sk_storage
345 * @sk_rcu: used during RCU grace period
346 * @sk_clockid: clockid used by time-based scheduling (SO_TXTIME)
347 * @sk_txtime_deadline_mode: set deadline mode for SO_TXTIME
348 * @sk_txtime_report_errors: set report errors mode for SO_TXTIME
349 * @sk_txtime_unused: unused txtime flags
350 * @ns_tracker: tracker for netns reference
354 * Now struct inet_timewait_sock also uses sock_common, so please just
355 * don't add nothing before this first member (__sk_common) --acme
357 struct sock_common __sk_common;
358 #define sk_node __sk_common.skc_node
359 #define sk_nulls_node __sk_common.skc_nulls_node
360 #define sk_refcnt __sk_common.skc_refcnt
361 #define sk_tx_queue_mapping __sk_common.skc_tx_queue_mapping
362 #ifdef CONFIG_SOCK_RX_QUEUE_MAPPING
363 #define sk_rx_queue_mapping __sk_common.skc_rx_queue_mapping
366 #define sk_dontcopy_begin __sk_common.skc_dontcopy_begin
367 #define sk_dontcopy_end __sk_common.skc_dontcopy_end
368 #define sk_hash __sk_common.skc_hash
369 #define sk_portpair __sk_common.skc_portpair
370 #define sk_num __sk_common.skc_num
371 #define sk_dport __sk_common.skc_dport
372 #define sk_addrpair __sk_common.skc_addrpair
373 #define sk_daddr __sk_common.skc_daddr
374 #define sk_rcv_saddr __sk_common.skc_rcv_saddr
375 #define sk_family __sk_common.skc_family
376 #define sk_state __sk_common.skc_state
377 #define sk_reuse __sk_common.skc_reuse
378 #define sk_reuseport __sk_common.skc_reuseport
379 #define sk_ipv6only __sk_common.skc_ipv6only
380 #define sk_net_refcnt __sk_common.skc_net_refcnt
381 #define sk_bound_dev_if __sk_common.skc_bound_dev_if
382 #define sk_bind_node __sk_common.skc_bind_node
383 #define sk_prot __sk_common.skc_prot
384 #define sk_net __sk_common.skc_net
385 #define sk_v6_daddr __sk_common.skc_v6_daddr
386 #define sk_v6_rcv_saddr __sk_common.skc_v6_rcv_saddr
387 #define sk_cookie __sk_common.skc_cookie
388 #define sk_incoming_cpu __sk_common.skc_incoming_cpu
389 #define sk_flags __sk_common.skc_flags
390 #define sk_rxhash __sk_common.skc_rxhash
392 /* early demux fields */
393 struct dst_entry __rcu *sk_rx_dst;
394 int sk_rx_dst_ifindex;
395 u32 sk_rx_dst_cookie;
397 socket_lock_t sk_lock;
400 struct sk_buff_head sk_error_queue;
401 struct sk_buff_head sk_receive_queue;
403 * The backlog queue is special, it is always used with
404 * the per-socket spinlock held and requires low latency
405 * access. Therefore we special case it's implementation.
406 * Note : rmem_alloc is in this structure to fill a hole
407 * on 64bit arches, not because its logically part of
413 struct sk_buff *head;
414 struct sk_buff *tail;
417 #define sk_rmem_alloc sk_backlog.rmem_alloc
419 int sk_forward_alloc;
421 #ifdef CONFIG_NET_RX_BUSY_POLL
422 unsigned int sk_ll_usec;
423 /* ===== mostly read cache line ===== */
424 unsigned int sk_napi_id;
428 struct sk_filter __rcu *sk_filter;
430 struct socket_wq __rcu *sk_wq;
432 struct socket_wq *sk_wq_raw;
436 struct xfrm_policy __rcu *sk_policy[2];
439 struct dst_entry __rcu *sk_dst_cache;
440 atomic_t sk_omem_alloc;
443 /* ===== cache line for TX ===== */
445 refcount_t sk_wmem_alloc;
446 unsigned long sk_tsq_flags;
448 struct sk_buff *sk_send_head;
449 struct rb_root tcp_rtx_queue;
451 struct sk_buff_head sk_write_queue;
453 int sk_write_pending;
454 __u32 sk_dst_pending_confirm;
455 u32 sk_pacing_status; /* see enum sk_pacing */
457 struct timer_list sk_timer;
460 unsigned long sk_pacing_rate; /* bytes per second */
461 unsigned long sk_max_pacing_rate;
462 struct page_frag sk_frag;
463 netdev_features_t sk_route_caps;
465 unsigned int sk_gso_max_size;
470 * Because of non atomicity rules, all
471 * changes are protected by socket lock.
473 u8 sk_gso_disabled : 1,
482 unsigned long sk_lingertime;
483 struct proto *sk_prot_creator;
484 rwlock_t sk_callback_lock;
488 u32 sk_max_ack_backlog;
491 #ifdef CONFIG_NET_RX_BUSY_POLL
492 u8 sk_prefer_busy_poll;
493 u16 sk_busy_poll_budget;
495 spinlock_t sk_peer_lock;
497 struct pid *sk_peer_pid;
498 const struct cred *sk_peer_cred;
502 #if BITS_PER_LONG==32
503 seqlock_t sk_stamp_seq;
511 u8 sk_txtime_deadline_mode : 1,
512 sk_txtime_report_errors : 1,
513 sk_txtime_unused : 6;
515 struct socket *sk_socket;
517 #ifdef CONFIG_SECURITY
520 struct sock_cgroup_data sk_cgrp_data;
521 struct mem_cgroup *sk_memcg;
522 void (*sk_state_change)(struct sock *sk);
523 void (*sk_data_ready)(struct sock *sk);
524 void (*sk_write_space)(struct sock *sk);
525 void (*sk_error_report)(struct sock *sk);
526 int (*sk_backlog_rcv)(struct sock *sk,
527 struct sk_buff *skb);
528 #ifdef CONFIG_SOCK_VALIDATE_XMIT
529 struct sk_buff* (*sk_validate_xmit_skb)(struct sock *sk,
530 struct net_device *dev,
531 struct sk_buff *skb);
533 void (*sk_destruct)(struct sock *sk);
534 struct sock_reuseport __rcu *sk_reuseport_cb;
535 #ifdef CONFIG_BPF_SYSCALL
536 struct bpf_local_storage __rcu *sk_bpf_storage;
538 struct rcu_head sk_rcu;
539 netns_tracker ns_tracker;
544 SK_PACING_NEEDED = 1,
548 /* flag bits in sk_user_data
550 * - SK_USER_DATA_NOCOPY: Pointer stored in sk_user_data might
551 * not be suitable for copying when cloning the socket. For instance,
552 * it can point to a reference counted object. sk_user_data bottom
553 * bit is set if pointer must not be copied.
555 * - SK_USER_DATA_BPF: Mark whether sk_user_data field is
556 * managed/owned by a BPF reuseport array. This bit should be set
557 * when sk_user_data's sk is added to the bpf's reuseport_array.
559 * - SK_USER_DATA_PSOCK: Mark whether pointer stored in
560 * sk_user_data points to psock type. This bit should be set
561 * when sk_user_data is assigned to a psock object.
563 #define SK_USER_DATA_NOCOPY 1UL
564 #define SK_USER_DATA_BPF 2UL
565 #define SK_USER_DATA_PSOCK 4UL
566 #define SK_USER_DATA_PTRMASK ~(SK_USER_DATA_NOCOPY | SK_USER_DATA_BPF |\
570 * sk_user_data_is_nocopy - Test if sk_user_data pointer must not be copied
573 static inline bool sk_user_data_is_nocopy(const struct sock *sk)
575 return ((uintptr_t)sk->sk_user_data & SK_USER_DATA_NOCOPY);
578 #define __sk_user_data(sk) ((*((void __rcu **)&(sk)->sk_user_data)))
581 * __locked_read_sk_user_data_with_flags - return the pointer
582 * only if argument flags all has been set in sk_user_data. Otherwise
588 * The caller must be holding sk->sk_callback_lock.
591 __locked_read_sk_user_data_with_flags(const struct sock *sk,
594 uintptr_t sk_user_data =
595 (uintptr_t)rcu_dereference_check(__sk_user_data(sk),
596 lockdep_is_held(&sk->sk_callback_lock));
598 WARN_ON_ONCE(flags & SK_USER_DATA_PTRMASK);
600 if ((sk_user_data & flags) == flags)
601 return (void *)(sk_user_data & SK_USER_DATA_PTRMASK);
606 * __rcu_dereference_sk_user_data_with_flags - return the pointer
607 * only if argument flags all has been set in sk_user_data. Otherwise
614 __rcu_dereference_sk_user_data_with_flags(const struct sock *sk,
617 uintptr_t sk_user_data = (uintptr_t)rcu_dereference(__sk_user_data(sk));
619 WARN_ON_ONCE(flags & SK_USER_DATA_PTRMASK);
621 if ((sk_user_data & flags) == flags)
622 return (void *)(sk_user_data & SK_USER_DATA_PTRMASK);
626 #define rcu_dereference_sk_user_data(sk) \
627 __rcu_dereference_sk_user_data_with_flags(sk, 0)
628 #define __rcu_assign_sk_user_data_with_flags(sk, ptr, flags) \
630 uintptr_t __tmp1 = (uintptr_t)(ptr), \
631 __tmp2 = (uintptr_t)(flags); \
632 WARN_ON_ONCE(__tmp1 & ~SK_USER_DATA_PTRMASK); \
633 WARN_ON_ONCE(__tmp2 & SK_USER_DATA_PTRMASK); \
634 rcu_assign_pointer(__sk_user_data((sk)), \
637 #define rcu_assign_sk_user_data(sk, ptr) \
638 __rcu_assign_sk_user_data_with_flags(sk, ptr, 0)
641 struct net *sock_net(const struct sock *sk)
643 return read_pnet(&sk->sk_net);
647 void sock_net_set(struct sock *sk, struct net *net)
649 write_pnet(&sk->sk_net, net);
653 * SK_CAN_REUSE and SK_NO_REUSE on a socket mean that the socket is OK
654 * or not whether his port will be reused by someone else. SK_FORCE_REUSE
655 * on a socket means that the socket will reuse everybody else's port
656 * without looking at the other's sk_reuse value.
659 #define SK_NO_REUSE 0
660 #define SK_CAN_REUSE 1
661 #define SK_FORCE_REUSE 2
663 int sk_set_peek_off(struct sock *sk, int val);
665 static inline int sk_peek_offset(const struct sock *sk, int flags)
667 if (unlikely(flags & MSG_PEEK)) {
668 return READ_ONCE(sk->sk_peek_off);
674 static inline void sk_peek_offset_bwd(struct sock *sk, int val)
676 s32 off = READ_ONCE(sk->sk_peek_off);
678 if (unlikely(off >= 0)) {
679 off = max_t(s32, off - val, 0);
680 WRITE_ONCE(sk->sk_peek_off, off);
684 static inline void sk_peek_offset_fwd(struct sock *sk, int val)
686 sk_peek_offset_bwd(sk, -val);
690 * Hashed lists helper routines
692 static inline struct sock *sk_entry(const struct hlist_node *node)
694 return hlist_entry(node, struct sock, sk_node);
697 static inline struct sock *__sk_head(const struct hlist_head *head)
699 return hlist_entry(head->first, struct sock, sk_node);
702 static inline struct sock *sk_head(const struct hlist_head *head)
704 return hlist_empty(head) ? NULL : __sk_head(head);
707 static inline struct sock *__sk_nulls_head(const struct hlist_nulls_head *head)
709 return hlist_nulls_entry(head->first, struct sock, sk_nulls_node);
712 static inline struct sock *sk_nulls_head(const struct hlist_nulls_head *head)
714 return hlist_nulls_empty(head) ? NULL : __sk_nulls_head(head);
717 static inline struct sock *sk_next(const struct sock *sk)
719 return hlist_entry_safe(sk->sk_node.next, struct sock, sk_node);
722 static inline struct sock *sk_nulls_next(const struct sock *sk)
724 return (!is_a_nulls(sk->sk_nulls_node.next)) ?
725 hlist_nulls_entry(sk->sk_nulls_node.next,
726 struct sock, sk_nulls_node) :
730 static inline bool sk_unhashed(const struct sock *sk)
732 return hlist_unhashed(&sk->sk_node);
735 static inline bool sk_hashed(const struct sock *sk)
737 return !sk_unhashed(sk);
740 static inline void sk_node_init(struct hlist_node *node)
745 static inline void sk_nulls_node_init(struct hlist_nulls_node *node)
750 static inline void __sk_del_node(struct sock *sk)
752 __hlist_del(&sk->sk_node);
755 /* NB: equivalent to hlist_del_init_rcu */
756 static inline bool __sk_del_node_init(struct sock *sk)
760 sk_node_init(&sk->sk_node);
766 /* Grab socket reference count. This operation is valid only
767 when sk is ALREADY grabbed f.e. it is found in hash table
768 or a list and the lookup is made under lock preventing hash table
772 static __always_inline void sock_hold(struct sock *sk)
774 refcount_inc(&sk->sk_refcnt);
777 /* Ungrab socket in the context, which assumes that socket refcnt
778 cannot hit zero, f.e. it is true in context of any socketcall.
780 static __always_inline void __sock_put(struct sock *sk)
782 refcount_dec(&sk->sk_refcnt);
785 static inline bool sk_del_node_init(struct sock *sk)
787 bool rc = __sk_del_node_init(sk);
790 /* paranoid for a while -acme */
791 WARN_ON(refcount_read(&sk->sk_refcnt) == 1);
796 #define sk_del_node_init_rcu(sk) sk_del_node_init(sk)
798 static inline bool __sk_nulls_del_node_init_rcu(struct sock *sk)
801 hlist_nulls_del_init_rcu(&sk->sk_nulls_node);
807 static inline bool sk_nulls_del_node_init_rcu(struct sock *sk)
809 bool rc = __sk_nulls_del_node_init_rcu(sk);
812 /* paranoid for a while -acme */
813 WARN_ON(refcount_read(&sk->sk_refcnt) == 1);
819 static inline void __sk_add_node(struct sock *sk, struct hlist_head *list)
821 hlist_add_head(&sk->sk_node, list);
824 static inline void sk_add_node(struct sock *sk, struct hlist_head *list)
827 __sk_add_node(sk, list);
830 static inline void sk_add_node_rcu(struct sock *sk, struct hlist_head *list)
833 if (IS_ENABLED(CONFIG_IPV6) && sk->sk_reuseport &&
834 sk->sk_family == AF_INET6)
835 hlist_add_tail_rcu(&sk->sk_node, list);
837 hlist_add_head_rcu(&sk->sk_node, list);
840 static inline void sk_add_node_tail_rcu(struct sock *sk, struct hlist_head *list)
843 hlist_add_tail_rcu(&sk->sk_node, list);
846 static inline void __sk_nulls_add_node_rcu(struct sock *sk, struct hlist_nulls_head *list)
848 hlist_nulls_add_head_rcu(&sk->sk_nulls_node, list);
851 static inline void __sk_nulls_add_node_tail_rcu(struct sock *sk, struct hlist_nulls_head *list)
853 hlist_nulls_add_tail_rcu(&sk->sk_nulls_node, list);
856 static inline void sk_nulls_add_node_rcu(struct sock *sk, struct hlist_nulls_head *list)
859 __sk_nulls_add_node_rcu(sk, list);
862 static inline void __sk_del_bind_node(struct sock *sk)
864 __hlist_del(&sk->sk_bind_node);
867 static inline void sk_add_bind_node(struct sock *sk,
868 struct hlist_head *list)
870 hlist_add_head(&sk->sk_bind_node, list);
873 #define sk_for_each(__sk, list) \
874 hlist_for_each_entry(__sk, list, sk_node)
875 #define sk_for_each_rcu(__sk, list) \
876 hlist_for_each_entry_rcu(__sk, list, sk_node)
877 #define sk_nulls_for_each(__sk, node, list) \
878 hlist_nulls_for_each_entry(__sk, node, list, sk_nulls_node)
879 #define sk_nulls_for_each_rcu(__sk, node, list) \
880 hlist_nulls_for_each_entry_rcu(__sk, node, list, sk_nulls_node)
881 #define sk_for_each_from(__sk) \
882 hlist_for_each_entry_from(__sk, sk_node)
883 #define sk_nulls_for_each_from(__sk, node) \
884 if (__sk && ({ node = &(__sk)->sk_nulls_node; 1; })) \
885 hlist_nulls_for_each_entry_from(__sk, node, sk_nulls_node)
886 #define sk_for_each_safe(__sk, tmp, list) \
887 hlist_for_each_entry_safe(__sk, tmp, list, sk_node)
888 #define sk_for_each_bound(__sk, list) \
889 hlist_for_each_entry(__sk, list, sk_bind_node)
892 * sk_for_each_entry_offset_rcu - iterate over a list at a given struct offset
893 * @tpos: the type * to use as a loop cursor.
894 * @pos: the &struct hlist_node to use as a loop cursor.
895 * @head: the head for your list.
896 * @offset: offset of hlist_node within the struct.
899 #define sk_for_each_entry_offset_rcu(tpos, pos, head, offset) \
900 for (pos = rcu_dereference(hlist_first_rcu(head)); \
902 ({ tpos = (typeof(*tpos) *)((void *)pos - offset); 1;}); \
903 pos = rcu_dereference(hlist_next_rcu(pos)))
905 static inline struct user_namespace *sk_user_ns(const struct sock *sk)
907 /* Careful only use this in a context where these parameters
908 * can not change and must all be valid, such as recvmsg from
911 return sk->sk_socket->file->f_cred->user_ns;
925 SOCK_USE_WRITE_QUEUE, /* whether to call sk->sk_write_space in sock_wfree */
926 SOCK_DBG, /* %SO_DEBUG setting */
927 SOCK_RCVTSTAMP, /* %SO_TIMESTAMP setting */
928 SOCK_RCVTSTAMPNS, /* %SO_TIMESTAMPNS setting */
929 SOCK_LOCALROUTE, /* route locally only, %SO_DONTROUTE setting */
930 SOCK_MEMALLOC, /* VM depends on this socket for swapping */
931 SOCK_TIMESTAMPING_RX_SOFTWARE, /* %SOF_TIMESTAMPING_RX_SOFTWARE */
932 SOCK_FASYNC, /* fasync() active */
934 SOCK_ZEROCOPY, /* buffers from userspace */
935 SOCK_WIFI_STATUS, /* push wifi status to userspace */
936 SOCK_NOFCS, /* Tell NIC not to do the Ethernet FCS.
937 * Will use last 4 bytes of packet sent from
938 * user-space instead.
940 SOCK_FILTER_LOCKED, /* Filter cannot be changed anymore */
941 SOCK_SELECT_ERR_QUEUE, /* Wake select on error queue */
942 SOCK_RCU_FREE, /* wait rcu grace period in sk_destruct() */
944 SOCK_XDP, /* XDP is attached */
945 SOCK_TSTAMP_NEW, /* Indicates 64 bit timestamps always */
946 SOCK_RCVMARK, /* Receive SO_MARK ancillary data with packet */
949 #define SK_FLAGS_TIMESTAMP ((1UL << SOCK_TIMESTAMP) | (1UL << SOCK_TIMESTAMPING_RX_SOFTWARE))
951 static inline void sock_copy_flags(struct sock *nsk, const struct sock *osk)
953 nsk->sk_flags = osk->sk_flags;
956 static inline void sock_set_flag(struct sock *sk, enum sock_flags flag)
958 __set_bit(flag, &sk->sk_flags);
961 static inline void sock_reset_flag(struct sock *sk, enum sock_flags flag)
963 __clear_bit(flag, &sk->sk_flags);
966 static inline void sock_valbool_flag(struct sock *sk, enum sock_flags bit,
970 sock_set_flag(sk, bit);
972 sock_reset_flag(sk, bit);
975 static inline bool sock_flag(const struct sock *sk, enum sock_flags flag)
977 return test_bit(flag, &sk->sk_flags);
981 DECLARE_STATIC_KEY_FALSE(memalloc_socks_key);
982 static inline int sk_memalloc_socks(void)
984 return static_branch_unlikely(&memalloc_socks_key);
987 void __receive_sock(struct file *file);
990 static inline int sk_memalloc_socks(void)
995 static inline void __receive_sock(struct file *file)
999 static inline gfp_t sk_gfp_mask(const struct sock *sk, gfp_t gfp_mask)
1001 return gfp_mask | (sk->sk_allocation & __GFP_MEMALLOC);
1004 static inline void sk_acceptq_removed(struct sock *sk)
1006 WRITE_ONCE(sk->sk_ack_backlog, sk->sk_ack_backlog - 1);
1009 static inline void sk_acceptq_added(struct sock *sk)
1011 WRITE_ONCE(sk->sk_ack_backlog, sk->sk_ack_backlog + 1);
1014 /* Note: If you think the test should be:
1015 * return READ_ONCE(sk->sk_ack_backlog) >= READ_ONCE(sk->sk_max_ack_backlog);
1016 * Then please take a look at commit 64a146513f8f ("[NET]: Revert incorrect accept queue backlog changes.")
1018 static inline bool sk_acceptq_is_full(const struct sock *sk)
1020 return READ_ONCE(sk->sk_ack_backlog) > READ_ONCE(sk->sk_max_ack_backlog);
1024 * Compute minimal free write space needed to queue new packets.
1026 static inline int sk_stream_min_wspace(const struct sock *sk)
1028 return READ_ONCE(sk->sk_wmem_queued) >> 1;
1031 static inline int sk_stream_wspace(const struct sock *sk)
1033 return READ_ONCE(sk->sk_sndbuf) - READ_ONCE(sk->sk_wmem_queued);
1036 static inline void sk_wmem_queued_add(struct sock *sk, int val)
1038 WRITE_ONCE(sk->sk_wmem_queued, sk->sk_wmem_queued + val);
1041 void sk_stream_write_space(struct sock *sk);
1043 /* OOB backlog add */
1044 static inline void __sk_add_backlog(struct sock *sk, struct sk_buff *skb)
1046 /* dont let skb dst not refcounted, we are going to leave rcu lock */
1049 if (!sk->sk_backlog.tail)
1050 WRITE_ONCE(sk->sk_backlog.head, skb);
1052 sk->sk_backlog.tail->next = skb;
1054 WRITE_ONCE(sk->sk_backlog.tail, skb);
1059 * Take into account size of receive queue and backlog queue
1060 * Do not take into account this skb truesize,
1061 * to allow even a single big packet to come.
1063 static inline bool sk_rcvqueues_full(const struct sock *sk, unsigned int limit)
1065 unsigned int qsize = sk->sk_backlog.len + atomic_read(&sk->sk_rmem_alloc);
1067 return qsize > limit;
1070 /* The per-socket spinlock must be held here. */
1071 static inline __must_check int sk_add_backlog(struct sock *sk, struct sk_buff *skb,
1074 if (sk_rcvqueues_full(sk, limit))
1078 * If the skb was allocated from pfmemalloc reserves, only
1079 * allow SOCK_MEMALLOC sockets to use it as this socket is
1080 * helping free memory
1082 if (skb_pfmemalloc(skb) && !sock_flag(sk, SOCK_MEMALLOC))
1085 __sk_add_backlog(sk, skb);
1086 sk->sk_backlog.len += skb->truesize;
1090 int __sk_backlog_rcv(struct sock *sk, struct sk_buff *skb);
1092 INDIRECT_CALLABLE_DECLARE(int tcp_v4_do_rcv(struct sock *sk, struct sk_buff *skb));
1093 INDIRECT_CALLABLE_DECLARE(int tcp_v6_do_rcv(struct sock *sk, struct sk_buff *skb));
1095 static inline int sk_backlog_rcv(struct sock *sk, struct sk_buff *skb)
1097 if (sk_memalloc_socks() && skb_pfmemalloc(skb))
1098 return __sk_backlog_rcv(sk, skb);
1100 return INDIRECT_CALL_INET(sk->sk_backlog_rcv,
1106 static inline void sk_incoming_cpu_update(struct sock *sk)
1108 int cpu = raw_smp_processor_id();
1110 if (unlikely(READ_ONCE(sk->sk_incoming_cpu) != cpu))
1111 WRITE_ONCE(sk->sk_incoming_cpu, cpu);
1114 static inline void sock_rps_record_flow_hash(__u32 hash)
1117 struct rps_sock_flow_table *sock_flow_table;
1120 sock_flow_table = rcu_dereference(rps_sock_flow_table);
1121 rps_record_sock_flow(sock_flow_table, hash);
1126 static inline void sock_rps_record_flow(const struct sock *sk)
1129 if (static_branch_unlikely(&rfs_needed)) {
1130 /* Reading sk->sk_rxhash might incur an expensive cache line
1133 * TCP_ESTABLISHED does cover almost all states where RFS
1134 * might be useful, and is cheaper [1] than testing :
1135 * IPv4: inet_sk(sk)->inet_daddr
1136 * IPv6: ipv6_addr_any(&sk->sk_v6_daddr)
1137 * OR an additional socket flag
1138 * [1] : sk_state and sk_prot are in the same cache line.
1140 if (sk->sk_state == TCP_ESTABLISHED)
1141 sock_rps_record_flow_hash(sk->sk_rxhash);
1146 static inline void sock_rps_save_rxhash(struct sock *sk,
1147 const struct sk_buff *skb)
1150 if (unlikely(sk->sk_rxhash != skb->hash))
1151 sk->sk_rxhash = skb->hash;
1155 static inline void sock_rps_reset_rxhash(struct sock *sk)
1162 #define sk_wait_event(__sk, __timeo, __condition, __wait) \
1164 release_sock(__sk); \
1165 __rc = __condition; \
1167 *(__timeo) = wait_woken(__wait, \
1168 TASK_INTERRUPTIBLE, \
1171 sched_annotate_sleep(); \
1173 __rc = __condition; \
1177 int sk_stream_wait_connect(struct sock *sk, long *timeo_p);
1178 int sk_stream_wait_memory(struct sock *sk, long *timeo_p);
1179 void sk_stream_wait_close(struct sock *sk, long timeo_p);
1180 int sk_stream_error(struct sock *sk, int flags, int err);
1181 void sk_stream_kill_queues(struct sock *sk);
1182 void sk_set_memalloc(struct sock *sk);
1183 void sk_clear_memalloc(struct sock *sk);
1185 void __sk_flush_backlog(struct sock *sk);
1187 static inline bool sk_flush_backlog(struct sock *sk)
1189 if (unlikely(READ_ONCE(sk->sk_backlog.tail))) {
1190 __sk_flush_backlog(sk);
1196 int sk_wait_data(struct sock *sk, long *timeo, const struct sk_buff *skb);
1198 struct request_sock_ops;
1199 struct timewait_sock_ops;
1200 struct inet_hashinfo;
1201 struct raw_hashinfo;
1202 struct smc_hashinfo;
1207 * caches using SLAB_TYPESAFE_BY_RCU should let .next pointer from nulls nodes
1208 * un-modified. Special care is taken when initializing object to zero.
1210 static inline void sk_prot_clear_nulls(struct sock *sk, int size)
1212 if (offsetof(struct sock, sk_node.next) != 0)
1213 memset(sk, 0, offsetof(struct sock, sk_node.next));
1214 memset(&sk->sk_node.pprev, 0,
1215 size - offsetof(struct sock, sk_node.pprev));
1218 /* Networking protocol blocks we attach to sockets.
1219 * socket layer -> transport layer interface
1222 void (*close)(struct sock *sk,
1224 int (*pre_connect)(struct sock *sk,
1225 struct sockaddr *uaddr,
1227 int (*connect)(struct sock *sk,
1228 struct sockaddr *uaddr,
1230 int (*disconnect)(struct sock *sk, int flags);
1232 struct sock * (*accept)(struct sock *sk, int flags, int *err,
1235 int (*ioctl)(struct sock *sk, int cmd,
1237 int (*init)(struct sock *sk);
1238 void (*destroy)(struct sock *sk);
1239 void (*shutdown)(struct sock *sk, int how);
1240 int (*setsockopt)(struct sock *sk, int level,
1241 int optname, sockptr_t optval,
1242 unsigned int optlen);
1243 int (*getsockopt)(struct sock *sk, int level,
1244 int optname, char __user *optval,
1245 int __user *option);
1246 void (*keepalive)(struct sock *sk, int valbool);
1247 #ifdef CONFIG_COMPAT
1248 int (*compat_ioctl)(struct sock *sk,
1249 unsigned int cmd, unsigned long arg);
1251 int (*sendmsg)(struct sock *sk, struct msghdr *msg,
1253 int (*recvmsg)(struct sock *sk, struct msghdr *msg,
1254 size_t len, int flags, int *addr_len);
1255 int (*sendpage)(struct sock *sk, struct page *page,
1256 int offset, size_t size, int flags);
1257 int (*bind)(struct sock *sk,
1258 struct sockaddr *addr, int addr_len);
1259 int (*bind_add)(struct sock *sk,
1260 struct sockaddr *addr, int addr_len);
1262 int (*backlog_rcv) (struct sock *sk,
1263 struct sk_buff *skb);
1264 bool (*bpf_bypass_getsockopt)(int level,
1267 void (*release_cb)(struct sock *sk);
1269 /* Keeping track of sk's, looking them up, and port selection methods. */
1270 int (*hash)(struct sock *sk);
1271 void (*unhash)(struct sock *sk);
1272 void (*rehash)(struct sock *sk);
1273 int (*get_port)(struct sock *sk, unsigned short snum);
1274 void (*put_port)(struct sock *sk);
1275 #ifdef CONFIG_BPF_SYSCALL
1276 int (*psock_update_sk_prot)(struct sock *sk,
1277 struct sk_psock *psock,
1281 /* Keeping track of sockets in use */
1282 #ifdef CONFIG_PROC_FS
1283 unsigned int inuse_idx;
1286 #if IS_ENABLED(CONFIG_MPTCP)
1287 int (*forward_alloc_get)(const struct sock *sk);
1290 bool (*stream_memory_free)(const struct sock *sk, int wake);
1291 bool (*sock_is_readable)(struct sock *sk);
1292 /* Memory pressure */
1293 void (*enter_memory_pressure)(struct sock *sk);
1294 void (*leave_memory_pressure)(struct sock *sk);
1295 atomic_long_t *memory_allocated; /* Current allocated memory. */
1296 int __percpu *per_cpu_fw_alloc;
1297 struct percpu_counter *sockets_allocated; /* Current number of sockets. */
1300 * Pressure flag: try to collapse.
1301 * Technical note: it is used by multiple contexts non atomically.
1302 * All the __sk_mem_schedule() is of this nature: accounting
1303 * is strict, actions are advisory and have some latency.
1305 unsigned long *memory_pressure;
1310 u32 sysctl_wmem_offset;
1311 u32 sysctl_rmem_offset;
1316 struct kmem_cache *slab;
1317 unsigned int obj_size;
1318 slab_flags_t slab_flags;
1319 unsigned int useroffset; /* Usercopy region offset */
1320 unsigned int usersize; /* Usercopy region size */
1322 unsigned int __percpu *orphan_count;
1324 struct request_sock_ops *rsk_prot;
1325 struct timewait_sock_ops *twsk_prot;
1328 struct inet_hashinfo *hashinfo;
1329 struct udp_table *udp_table;
1330 struct raw_hashinfo *raw_hash;
1331 struct smc_hashinfo *smc_hash;
1334 struct module *owner;
1338 struct list_head node;
1339 #ifdef SOCK_REFCNT_DEBUG
1342 int (*diag_destroy)(struct sock *sk, int err);
1343 } __randomize_layout;
1345 int proto_register(struct proto *prot, int alloc_slab);
1346 void proto_unregister(struct proto *prot);
1347 int sock_load_diag_module(int family, int protocol);
1349 #ifdef SOCK_REFCNT_DEBUG
1350 static inline void sk_refcnt_debug_inc(struct sock *sk)
1352 atomic_inc(&sk->sk_prot->socks);
1355 static inline void sk_refcnt_debug_dec(struct sock *sk)
1357 atomic_dec(&sk->sk_prot->socks);
1358 printk(KERN_DEBUG "%s socket %p released, %d are still alive\n",
1359 sk->sk_prot->name, sk, atomic_read(&sk->sk_prot->socks));
1362 static inline void sk_refcnt_debug_release(const struct sock *sk)
1364 if (refcount_read(&sk->sk_refcnt) != 1)
1365 printk(KERN_DEBUG "Destruction of the %s socket %p delayed, refcnt=%d\n",
1366 sk->sk_prot->name, sk, refcount_read(&sk->sk_refcnt));
1368 #else /* SOCK_REFCNT_DEBUG */
1369 #define sk_refcnt_debug_inc(sk) do { } while (0)
1370 #define sk_refcnt_debug_dec(sk) do { } while (0)
1371 #define sk_refcnt_debug_release(sk) do { } while (0)
1372 #endif /* SOCK_REFCNT_DEBUG */
1374 INDIRECT_CALLABLE_DECLARE(bool tcp_stream_memory_free(const struct sock *sk, int wake));
1376 static inline int sk_forward_alloc_get(const struct sock *sk)
1378 #if IS_ENABLED(CONFIG_MPTCP)
1379 if (sk->sk_prot->forward_alloc_get)
1380 return sk->sk_prot->forward_alloc_get(sk);
1382 return sk->sk_forward_alloc;
1385 static inline bool __sk_stream_memory_free(const struct sock *sk, int wake)
1387 if (READ_ONCE(sk->sk_wmem_queued) >= READ_ONCE(sk->sk_sndbuf))
1390 return sk->sk_prot->stream_memory_free ?
1391 INDIRECT_CALL_INET_1(sk->sk_prot->stream_memory_free,
1392 tcp_stream_memory_free, sk, wake) : true;
1395 static inline bool sk_stream_memory_free(const struct sock *sk)
1397 return __sk_stream_memory_free(sk, 0);
1400 static inline bool __sk_stream_is_writeable(const struct sock *sk, int wake)
1402 return sk_stream_wspace(sk) >= sk_stream_min_wspace(sk) &&
1403 __sk_stream_memory_free(sk, wake);
1406 static inline bool sk_stream_is_writeable(const struct sock *sk)
1408 return __sk_stream_is_writeable(sk, 0);
1411 static inline int sk_under_cgroup_hierarchy(struct sock *sk,
1412 struct cgroup *ancestor)
1414 #ifdef CONFIG_SOCK_CGROUP_DATA
1415 return cgroup_is_descendant(sock_cgroup_ptr(&sk->sk_cgrp_data),
1422 static inline bool sk_has_memory_pressure(const struct sock *sk)
1424 return sk->sk_prot->memory_pressure != NULL;
1427 static inline bool sk_under_memory_pressure(const struct sock *sk)
1429 if (!sk->sk_prot->memory_pressure)
1432 if (mem_cgroup_sockets_enabled && sk->sk_memcg &&
1433 mem_cgroup_under_socket_pressure(sk->sk_memcg))
1436 return !!*sk->sk_prot->memory_pressure;
1440 proto_memory_allocated(const struct proto *prot)
1442 return max(0L, atomic_long_read(prot->memory_allocated));
1446 sk_memory_allocated(const struct sock *sk)
1448 return proto_memory_allocated(sk->sk_prot);
1451 /* 1 MB per cpu, in page units */
1452 #define SK_MEMORY_PCPU_RESERVE (1 << (20 - PAGE_SHIFT))
1455 sk_memory_allocated_add(struct sock *sk, int amt)
1460 local_reserve = __this_cpu_add_return(*sk->sk_prot->per_cpu_fw_alloc, amt);
1461 if (local_reserve >= SK_MEMORY_PCPU_RESERVE) {
1462 __this_cpu_sub(*sk->sk_prot->per_cpu_fw_alloc, local_reserve);
1463 atomic_long_add(local_reserve, sk->sk_prot->memory_allocated);
1469 sk_memory_allocated_sub(struct sock *sk, int amt)
1474 local_reserve = __this_cpu_sub_return(*sk->sk_prot->per_cpu_fw_alloc, amt);
1475 if (local_reserve <= -SK_MEMORY_PCPU_RESERVE) {
1476 __this_cpu_sub(*sk->sk_prot->per_cpu_fw_alloc, local_reserve);
1477 atomic_long_add(local_reserve, sk->sk_prot->memory_allocated);
1482 #define SK_ALLOC_PERCPU_COUNTER_BATCH 16
1484 static inline void sk_sockets_allocated_dec(struct sock *sk)
1486 percpu_counter_add_batch(sk->sk_prot->sockets_allocated, -1,
1487 SK_ALLOC_PERCPU_COUNTER_BATCH);
1490 static inline void sk_sockets_allocated_inc(struct sock *sk)
1492 percpu_counter_add_batch(sk->sk_prot->sockets_allocated, 1,
1493 SK_ALLOC_PERCPU_COUNTER_BATCH);
1497 sk_sockets_allocated_read_positive(struct sock *sk)
1499 return percpu_counter_read_positive(sk->sk_prot->sockets_allocated);
1503 proto_sockets_allocated_sum_positive(struct proto *prot)
1505 return percpu_counter_sum_positive(prot->sockets_allocated);
1509 proto_memory_pressure(struct proto *prot)
1511 if (!prot->memory_pressure)
1513 return !!*prot->memory_pressure;
1517 #ifdef CONFIG_PROC_FS
1518 #define PROTO_INUSE_NR 64 /* should be enough for the first time */
1521 int val[PROTO_INUSE_NR];
1524 static inline void sock_prot_inuse_add(const struct net *net,
1525 const struct proto *prot, int val)
1527 this_cpu_add(net->core.prot_inuse->val[prot->inuse_idx], val);
1530 static inline void sock_inuse_add(const struct net *net, int val)
1532 this_cpu_add(net->core.prot_inuse->all, val);
1535 int sock_prot_inuse_get(struct net *net, struct proto *proto);
1536 int sock_inuse_get(struct net *net);
1538 static inline void sock_prot_inuse_add(const struct net *net,
1539 const struct proto *prot, int val)
1543 static inline void sock_inuse_add(const struct net *net, int val)
1549 /* With per-bucket locks this operation is not-atomic, so that
1550 * this version is not worse.
1552 static inline int __sk_prot_rehash(struct sock *sk)
1554 sk->sk_prot->unhash(sk);
1555 return sk->sk_prot->hash(sk);
1558 /* About 10 seconds */
1559 #define SOCK_DESTROY_TIME (10*HZ)
1561 /* Sockets 0-1023 can't be bound to unless you are superuser */
1562 #define PROT_SOCK 1024
1564 #define SHUTDOWN_MASK 3
1565 #define RCV_SHUTDOWN 1
1566 #define SEND_SHUTDOWN 2
1568 #define SOCK_BINDADDR_LOCK 4
1569 #define SOCK_BINDPORT_LOCK 8
1571 struct socket_alloc {
1572 struct socket socket;
1573 struct inode vfs_inode;
1576 static inline struct socket *SOCKET_I(struct inode *inode)
1578 return &container_of(inode, struct socket_alloc, vfs_inode)->socket;
1581 static inline struct inode *SOCK_INODE(struct socket *socket)
1583 return &container_of(socket, struct socket_alloc, socket)->vfs_inode;
1587 * Functions for memory accounting
1589 int __sk_mem_raise_allocated(struct sock *sk, int size, int amt, int kind);
1590 int __sk_mem_schedule(struct sock *sk, int size, int kind);
1591 void __sk_mem_reduce_allocated(struct sock *sk, int amount);
1592 void __sk_mem_reclaim(struct sock *sk, int amount);
1594 #define SK_MEM_SEND 0
1595 #define SK_MEM_RECV 1
1597 /* sysctl_mem values are in pages */
1598 static inline long sk_prot_mem_limits(const struct sock *sk, int index)
1600 return READ_ONCE(sk->sk_prot->sysctl_mem[index]);
1603 static inline int sk_mem_pages(int amt)
1605 return (amt + PAGE_SIZE - 1) >> PAGE_SHIFT;
1608 static inline bool sk_has_account(struct sock *sk)
1610 /* return true if protocol supports memory accounting */
1611 return !!sk->sk_prot->memory_allocated;
1614 static inline bool sk_wmem_schedule(struct sock *sk, int size)
1618 if (!sk_has_account(sk))
1620 delta = size - sk->sk_forward_alloc;
1621 return delta <= 0 || __sk_mem_schedule(sk, delta, SK_MEM_SEND);
1625 sk_rmem_schedule(struct sock *sk, struct sk_buff *skb, int size)
1629 if (!sk_has_account(sk))
1631 delta = size - sk->sk_forward_alloc;
1632 return delta <= 0 || __sk_mem_schedule(sk, delta, SK_MEM_RECV) ||
1633 skb_pfmemalloc(skb);
1636 static inline int sk_unused_reserved_mem(const struct sock *sk)
1640 if (likely(!sk->sk_reserved_mem))
1643 unused_mem = sk->sk_reserved_mem - sk->sk_wmem_queued -
1644 atomic_read(&sk->sk_rmem_alloc);
1646 return unused_mem > 0 ? unused_mem : 0;
1649 static inline void sk_mem_reclaim(struct sock *sk)
1653 if (!sk_has_account(sk))
1656 reclaimable = sk->sk_forward_alloc - sk_unused_reserved_mem(sk);
1658 if (reclaimable >= (int)PAGE_SIZE)
1659 __sk_mem_reclaim(sk, reclaimable);
1662 static inline void sk_mem_reclaim_final(struct sock *sk)
1664 sk->sk_reserved_mem = 0;
1668 static inline void sk_mem_charge(struct sock *sk, int size)
1670 if (!sk_has_account(sk))
1672 sk->sk_forward_alloc -= size;
1675 static inline void sk_mem_uncharge(struct sock *sk, int size)
1677 if (!sk_has_account(sk))
1679 sk->sk_forward_alloc += size;
1684 * Macro so as to not evaluate some arguments when
1685 * lockdep is not enabled.
1687 * Mark both the sk_lock and the sk_lock.slock as a
1688 * per-address-family lock class.
1690 #define sock_lock_init_class_and_name(sk, sname, skey, name, key) \
1692 sk->sk_lock.owned = 0; \
1693 init_waitqueue_head(&sk->sk_lock.wq); \
1694 spin_lock_init(&(sk)->sk_lock.slock); \
1695 debug_check_no_locks_freed((void *)&(sk)->sk_lock, \
1696 sizeof((sk)->sk_lock)); \
1697 lockdep_set_class_and_name(&(sk)->sk_lock.slock, \
1699 lockdep_init_map(&(sk)->sk_lock.dep_map, (name), (key), 0); \
1702 static inline bool lockdep_sock_is_held(const struct sock *sk)
1704 return lockdep_is_held(&sk->sk_lock) ||
1705 lockdep_is_held(&sk->sk_lock.slock);
1708 void lock_sock_nested(struct sock *sk, int subclass);
1710 static inline void lock_sock(struct sock *sk)
1712 lock_sock_nested(sk, 0);
1715 void __lock_sock(struct sock *sk);
1716 void __release_sock(struct sock *sk);
1717 void release_sock(struct sock *sk);
1719 /* BH context may only use the following locking interface. */
1720 #define bh_lock_sock(__sk) spin_lock(&((__sk)->sk_lock.slock))
1721 #define bh_lock_sock_nested(__sk) \
1722 spin_lock_nested(&((__sk)->sk_lock.slock), \
1723 SINGLE_DEPTH_NESTING)
1724 #define bh_unlock_sock(__sk) spin_unlock(&((__sk)->sk_lock.slock))
1726 bool __lock_sock_fast(struct sock *sk) __acquires(&sk->sk_lock.slock);
1729 * lock_sock_fast - fast version of lock_sock
1732 * This version should be used for very small section, where process wont block
1733 * return false if fast path is taken:
1735 * sk_lock.slock locked, owned = 0, BH disabled
1737 * return true if slow path is taken:
1739 * sk_lock.slock unlocked, owned = 1, BH enabled
1741 static inline bool lock_sock_fast(struct sock *sk)
1743 /* The sk_lock has mutex_lock() semantics here. */
1744 mutex_acquire(&sk->sk_lock.dep_map, 0, 0, _RET_IP_);
1746 return __lock_sock_fast(sk);
1749 /* fast socket lock variant for caller already holding a [different] socket lock */
1750 static inline bool lock_sock_fast_nested(struct sock *sk)
1752 mutex_acquire(&sk->sk_lock.dep_map, SINGLE_DEPTH_NESTING, 0, _RET_IP_);
1754 return __lock_sock_fast(sk);
1758 * unlock_sock_fast - complement of lock_sock_fast
1762 * fast unlock socket for user context.
1763 * If slow mode is on, we call regular release_sock()
1765 static inline void unlock_sock_fast(struct sock *sk, bool slow)
1766 __releases(&sk->sk_lock.slock)
1770 __release(&sk->sk_lock.slock);
1772 mutex_release(&sk->sk_lock.dep_map, _RET_IP_);
1773 spin_unlock_bh(&sk->sk_lock.slock);
1777 /* Used by processes to "lock" a socket state, so that
1778 * interrupts and bottom half handlers won't change it
1779 * from under us. It essentially blocks any incoming
1780 * packets, so that we won't get any new data or any
1781 * packets that change the state of the socket.
1783 * While locked, BH processing will add new packets to
1784 * the backlog queue. This queue is processed by the
1785 * owner of the socket lock right before it is released.
1787 * Since ~2.3.5 it is also exclusive sleep lock serializing
1788 * accesses from user process context.
1791 static inline void sock_owned_by_me(const struct sock *sk)
1793 #ifdef CONFIG_LOCKDEP
1794 WARN_ON_ONCE(!lockdep_sock_is_held(sk) && debug_locks);
1798 static inline bool sock_owned_by_user(const struct sock *sk)
1800 sock_owned_by_me(sk);
1801 return sk->sk_lock.owned;
1804 static inline bool sock_owned_by_user_nocheck(const struct sock *sk)
1806 return sk->sk_lock.owned;
1809 static inline void sock_release_ownership(struct sock *sk)
1811 if (sock_owned_by_user_nocheck(sk)) {
1812 sk->sk_lock.owned = 0;
1814 /* The sk_lock has mutex_unlock() semantics: */
1815 mutex_release(&sk->sk_lock.dep_map, _RET_IP_);
1819 /* no reclassification while locks are held */
1820 static inline bool sock_allow_reclassification(const struct sock *csk)
1822 struct sock *sk = (struct sock *)csk;
1824 return !sock_owned_by_user_nocheck(sk) &&
1825 !spin_is_locked(&sk->sk_lock.slock);
1828 struct sock *sk_alloc(struct net *net, int family, gfp_t priority,
1829 struct proto *prot, int kern);
1830 void sk_free(struct sock *sk);
1831 void sk_destruct(struct sock *sk);
1832 struct sock *sk_clone_lock(const struct sock *sk, const gfp_t priority);
1833 void sk_free_unlock_clone(struct sock *sk);
1835 struct sk_buff *sock_wmalloc(struct sock *sk, unsigned long size, int force,
1837 void __sock_wfree(struct sk_buff *skb);
1838 void sock_wfree(struct sk_buff *skb);
1839 struct sk_buff *sock_omalloc(struct sock *sk, unsigned long size,
1841 void skb_orphan_partial(struct sk_buff *skb);
1842 void sock_rfree(struct sk_buff *skb);
1843 void sock_efree(struct sk_buff *skb);
1845 void sock_edemux(struct sk_buff *skb);
1846 void sock_pfree(struct sk_buff *skb);
1848 #define sock_edemux sock_efree
1851 int sock_setsockopt(struct socket *sock, int level, int op,
1852 sockptr_t optval, unsigned int optlen);
1854 int sock_getsockopt(struct socket *sock, int level, int op,
1855 char __user *optval, int __user *optlen);
1856 int sock_gettstamp(struct socket *sock, void __user *userstamp,
1857 bool timeval, bool time32);
1858 struct sk_buff *sock_alloc_send_pskb(struct sock *sk, unsigned long header_len,
1859 unsigned long data_len, int noblock,
1860 int *errcode, int max_page_order);
1862 static inline struct sk_buff *sock_alloc_send_skb(struct sock *sk,
1864 int noblock, int *errcode)
1866 return sock_alloc_send_pskb(sk, size, 0, noblock, errcode, 0);
1869 void *sock_kmalloc(struct sock *sk, int size, gfp_t priority);
1870 void sock_kfree_s(struct sock *sk, void *mem, int size);
1871 void sock_kzfree_s(struct sock *sk, void *mem, int size);
1872 void sk_send_sigurg(struct sock *sk);
1874 struct sockcm_cookie {
1880 static inline void sockcm_init(struct sockcm_cookie *sockc,
1881 const struct sock *sk)
1883 *sockc = (struct sockcm_cookie) { .tsflags = sk->sk_tsflags };
1886 int __sock_cmsg_send(struct sock *sk, struct msghdr *msg, struct cmsghdr *cmsg,
1887 struct sockcm_cookie *sockc);
1888 int sock_cmsg_send(struct sock *sk, struct msghdr *msg,
1889 struct sockcm_cookie *sockc);
1892 * Functions to fill in entries in struct proto_ops when a protocol
1893 * does not implement a particular function.
1895 int sock_no_bind(struct socket *, struct sockaddr *, int);
1896 int sock_no_connect(struct socket *, struct sockaddr *, int, int);
1897 int sock_no_socketpair(struct socket *, struct socket *);
1898 int sock_no_accept(struct socket *, struct socket *, int, bool);
1899 int sock_no_getname(struct socket *, struct sockaddr *, int);
1900 int sock_no_ioctl(struct socket *, unsigned int, unsigned long);
1901 int sock_no_listen(struct socket *, int);
1902 int sock_no_shutdown(struct socket *, int);
1903 int sock_no_sendmsg(struct socket *, struct msghdr *, size_t);
1904 int sock_no_sendmsg_locked(struct sock *sk, struct msghdr *msg, size_t len);
1905 int sock_no_recvmsg(struct socket *, struct msghdr *, size_t, int);
1906 int sock_no_mmap(struct file *file, struct socket *sock,
1907 struct vm_area_struct *vma);
1908 ssize_t sock_no_sendpage(struct socket *sock, struct page *page, int offset,
1909 size_t size, int flags);
1910 ssize_t sock_no_sendpage_locked(struct sock *sk, struct page *page,
1911 int offset, size_t size, int flags);
1914 * Functions to fill in entries in struct proto_ops when a protocol
1915 * uses the inet style.
1917 int sock_common_getsockopt(struct socket *sock, int level, int optname,
1918 char __user *optval, int __user *optlen);
1919 int sock_common_recvmsg(struct socket *sock, struct msghdr *msg, size_t size,
1921 int sock_common_setsockopt(struct socket *sock, int level, int optname,
1922 sockptr_t optval, unsigned int optlen);
1924 void sk_common_release(struct sock *sk);
1927 * Default socket callbacks and setup code
1930 /* Initialise core socket variables */
1931 void sock_init_data(struct socket *sock, struct sock *sk);
1934 * Socket reference counting postulates.
1936 * * Each user of socket SHOULD hold a reference count.
1937 * * Each access point to socket (an hash table bucket, reference from a list,
1938 * running timer, skb in flight MUST hold a reference count.
1939 * * When reference count hits 0, it means it will never increase back.
1940 * * When reference count hits 0, it means that no references from
1941 * outside exist to this socket and current process on current CPU
1942 * is last user and may/should destroy this socket.
1943 * * sk_free is called from any context: process, BH, IRQ. When
1944 * it is called, socket has no references from outside -> sk_free
1945 * may release descendant resources allocated by the socket, but
1946 * to the time when it is called, socket is NOT referenced by any
1947 * hash tables, lists etc.
1948 * * Packets, delivered from outside (from network or from another process)
1949 * and enqueued on receive/error queues SHOULD NOT grab reference count,
1950 * when they sit in queue. Otherwise, packets will leak to hole, when
1951 * socket is looked up by one cpu and unhasing is made by another CPU.
1952 * It is true for udp/raw, netlink (leak to receive and error queues), tcp
1953 * (leak to backlog). Packet socket does all the processing inside
1954 * BR_NETPROTO_LOCK, so that it has not this race condition. UNIX sockets
1955 * use separate SMP lock, so that they are prone too.
1958 /* Ungrab socket and destroy it, if it was the last reference. */
1959 static inline void sock_put(struct sock *sk)
1961 if (refcount_dec_and_test(&sk->sk_refcnt))
1964 /* Generic version of sock_put(), dealing with all sockets
1965 * (TCP_TIMEWAIT, TCP_NEW_SYN_RECV, ESTABLISHED...)
1967 void sock_gen_put(struct sock *sk);
1969 int __sk_receive_skb(struct sock *sk, struct sk_buff *skb, const int nested,
1970 unsigned int trim_cap, bool refcounted);
1971 static inline int sk_receive_skb(struct sock *sk, struct sk_buff *skb,
1974 return __sk_receive_skb(sk, skb, nested, 1, true);
1977 static inline void sk_tx_queue_set(struct sock *sk, int tx_queue)
1979 /* sk_tx_queue_mapping accept only upto a 16-bit value */
1980 if (WARN_ON_ONCE((unsigned short)tx_queue >= USHRT_MAX))
1982 sk->sk_tx_queue_mapping = tx_queue;
1985 #define NO_QUEUE_MAPPING USHRT_MAX
1987 static inline void sk_tx_queue_clear(struct sock *sk)
1989 sk->sk_tx_queue_mapping = NO_QUEUE_MAPPING;
1992 static inline int sk_tx_queue_get(const struct sock *sk)
1994 if (sk && sk->sk_tx_queue_mapping != NO_QUEUE_MAPPING)
1995 return sk->sk_tx_queue_mapping;
2000 static inline void __sk_rx_queue_set(struct sock *sk,
2001 const struct sk_buff *skb,
2004 #ifdef CONFIG_SOCK_RX_QUEUE_MAPPING
2005 if (skb_rx_queue_recorded(skb)) {
2006 u16 rx_queue = skb_get_rx_queue(skb);
2009 unlikely(READ_ONCE(sk->sk_rx_queue_mapping) != rx_queue))
2010 WRITE_ONCE(sk->sk_rx_queue_mapping, rx_queue);
2015 static inline void sk_rx_queue_set(struct sock *sk, const struct sk_buff *skb)
2017 __sk_rx_queue_set(sk, skb, true);
2020 static inline void sk_rx_queue_update(struct sock *sk, const struct sk_buff *skb)
2022 __sk_rx_queue_set(sk, skb, false);
2025 static inline void sk_rx_queue_clear(struct sock *sk)
2027 #ifdef CONFIG_SOCK_RX_QUEUE_MAPPING
2028 WRITE_ONCE(sk->sk_rx_queue_mapping, NO_QUEUE_MAPPING);
2032 static inline int sk_rx_queue_get(const struct sock *sk)
2034 #ifdef CONFIG_SOCK_RX_QUEUE_MAPPING
2036 int res = READ_ONCE(sk->sk_rx_queue_mapping);
2038 if (res != NO_QUEUE_MAPPING)
2046 static inline void sk_set_socket(struct sock *sk, struct socket *sock)
2048 sk->sk_socket = sock;
2051 static inline wait_queue_head_t *sk_sleep(struct sock *sk)
2053 BUILD_BUG_ON(offsetof(struct socket_wq, wait) != 0);
2054 return &rcu_dereference_raw(sk->sk_wq)->wait;
2056 /* Detach socket from process context.
2057 * Announce socket dead, detach it from wait queue and inode.
2058 * Note that parent inode held reference count on this struct sock,
2059 * we do not release it in this function, because protocol
2060 * probably wants some additional cleanups or even continuing
2061 * to work with this socket (TCP).
2063 static inline void sock_orphan(struct sock *sk)
2065 write_lock_bh(&sk->sk_callback_lock);
2066 sock_set_flag(sk, SOCK_DEAD);
2067 sk_set_socket(sk, NULL);
2069 write_unlock_bh(&sk->sk_callback_lock);
2072 static inline void sock_graft(struct sock *sk, struct socket *parent)
2074 WARN_ON(parent->sk);
2075 write_lock_bh(&sk->sk_callback_lock);
2076 rcu_assign_pointer(sk->sk_wq, &parent->wq);
2078 sk_set_socket(sk, parent);
2079 sk->sk_uid = SOCK_INODE(parent)->i_uid;
2080 security_sock_graft(sk, parent);
2081 write_unlock_bh(&sk->sk_callback_lock);
2084 kuid_t sock_i_uid(struct sock *sk);
2085 unsigned long sock_i_ino(struct sock *sk);
2087 static inline kuid_t sock_net_uid(const struct net *net, const struct sock *sk)
2089 return sk ? sk->sk_uid : make_kuid(net->user_ns, 0);
2092 static inline u32 net_tx_rndhash(void)
2094 u32 v = prandom_u32();
2099 static inline void sk_set_txhash(struct sock *sk)
2101 /* This pairs with READ_ONCE() in skb_set_hash_from_sk() */
2102 WRITE_ONCE(sk->sk_txhash, net_tx_rndhash());
2105 static inline bool sk_rethink_txhash(struct sock *sk)
2107 if (sk->sk_txhash && sk->sk_txrehash == SOCK_TXREHASH_ENABLED) {
2114 static inline struct dst_entry *
2115 __sk_dst_get(struct sock *sk)
2117 return rcu_dereference_check(sk->sk_dst_cache,
2118 lockdep_sock_is_held(sk));
2121 static inline struct dst_entry *
2122 sk_dst_get(struct sock *sk)
2124 struct dst_entry *dst;
2127 dst = rcu_dereference(sk->sk_dst_cache);
2128 if (dst && !atomic_inc_not_zero(&dst->__refcnt))
2134 static inline void __dst_negative_advice(struct sock *sk)
2136 struct dst_entry *ndst, *dst = __sk_dst_get(sk);
2138 if (dst && dst->ops->negative_advice) {
2139 ndst = dst->ops->negative_advice(dst);
2142 rcu_assign_pointer(sk->sk_dst_cache, ndst);
2143 sk_tx_queue_clear(sk);
2144 sk->sk_dst_pending_confirm = 0;
2149 static inline void dst_negative_advice(struct sock *sk)
2151 sk_rethink_txhash(sk);
2152 __dst_negative_advice(sk);
2156 __sk_dst_set(struct sock *sk, struct dst_entry *dst)
2158 struct dst_entry *old_dst;
2160 sk_tx_queue_clear(sk);
2161 sk->sk_dst_pending_confirm = 0;
2162 old_dst = rcu_dereference_protected(sk->sk_dst_cache,
2163 lockdep_sock_is_held(sk));
2164 rcu_assign_pointer(sk->sk_dst_cache, dst);
2165 dst_release(old_dst);
2169 sk_dst_set(struct sock *sk, struct dst_entry *dst)
2171 struct dst_entry *old_dst;
2173 sk_tx_queue_clear(sk);
2174 sk->sk_dst_pending_confirm = 0;
2175 old_dst = xchg((__force struct dst_entry **)&sk->sk_dst_cache, dst);
2176 dst_release(old_dst);
2180 __sk_dst_reset(struct sock *sk)
2182 __sk_dst_set(sk, NULL);
2186 sk_dst_reset(struct sock *sk)
2188 sk_dst_set(sk, NULL);
2191 struct dst_entry *__sk_dst_check(struct sock *sk, u32 cookie);
2193 struct dst_entry *sk_dst_check(struct sock *sk, u32 cookie);
2195 static inline void sk_dst_confirm(struct sock *sk)
2197 if (!READ_ONCE(sk->sk_dst_pending_confirm))
2198 WRITE_ONCE(sk->sk_dst_pending_confirm, 1);
2201 static inline void sock_confirm_neigh(struct sk_buff *skb, struct neighbour *n)
2203 if (skb_get_dst_pending_confirm(skb)) {
2204 struct sock *sk = skb->sk;
2206 if (sk && READ_ONCE(sk->sk_dst_pending_confirm))
2207 WRITE_ONCE(sk->sk_dst_pending_confirm, 0);
2212 bool sk_mc_loop(struct sock *sk);
2214 static inline bool sk_can_gso(const struct sock *sk)
2216 return net_gso_ok(sk->sk_route_caps, sk->sk_gso_type);
2219 void sk_setup_caps(struct sock *sk, struct dst_entry *dst);
2221 static inline void sk_gso_disable(struct sock *sk)
2223 sk->sk_gso_disabled = 1;
2224 sk->sk_route_caps &= ~NETIF_F_GSO_MASK;
2227 static inline int skb_do_copy_data_nocache(struct sock *sk, struct sk_buff *skb,
2228 struct iov_iter *from, char *to,
2229 int copy, int offset)
2231 if (skb->ip_summed == CHECKSUM_NONE) {
2233 if (!csum_and_copy_from_iter_full(to, copy, &csum, from))
2235 skb->csum = csum_block_add(skb->csum, csum, offset);
2236 } else if (sk->sk_route_caps & NETIF_F_NOCACHE_COPY) {
2237 if (!copy_from_iter_full_nocache(to, copy, from))
2239 } else if (!copy_from_iter_full(to, copy, from))
2245 static inline int skb_add_data_nocache(struct sock *sk, struct sk_buff *skb,
2246 struct iov_iter *from, int copy)
2248 int err, offset = skb->len;
2250 err = skb_do_copy_data_nocache(sk, skb, from, skb_put(skb, copy),
2253 __skb_trim(skb, offset);
2258 static inline int skb_copy_to_page_nocache(struct sock *sk, struct iov_iter *from,
2259 struct sk_buff *skb,
2265 err = skb_do_copy_data_nocache(sk, skb, from, page_address(page) + off,
2270 skb_len_add(skb, copy);
2271 sk_wmem_queued_add(sk, copy);
2272 sk_mem_charge(sk, copy);
2277 * sk_wmem_alloc_get - returns write allocations
2280 * Return: sk_wmem_alloc minus initial offset of one
2282 static inline int sk_wmem_alloc_get(const struct sock *sk)
2284 return refcount_read(&sk->sk_wmem_alloc) - 1;
2288 * sk_rmem_alloc_get - returns read allocations
2291 * Return: sk_rmem_alloc
2293 static inline int sk_rmem_alloc_get(const struct sock *sk)
2295 return atomic_read(&sk->sk_rmem_alloc);
2299 * sk_has_allocations - check if allocations are outstanding
2302 * Return: true if socket has write or read allocations
2304 static inline bool sk_has_allocations(const struct sock *sk)
2306 return sk_wmem_alloc_get(sk) || sk_rmem_alloc_get(sk);
2310 * skwq_has_sleeper - check if there are any waiting processes
2311 * @wq: struct socket_wq
2313 * Return: true if socket_wq has waiting processes
2315 * The purpose of the skwq_has_sleeper and sock_poll_wait is to wrap the memory
2316 * barrier call. They were added due to the race found within the tcp code.
2318 * Consider following tcp code paths::
2321 * sys_select receive packet
2323 * __add_wait_queue update tp->rcv_nxt
2325 * tp->rcv_nxt check sock_def_readable
2327 * schedule rcu_read_lock();
2328 * wq = rcu_dereference(sk->sk_wq);
2329 * if (wq && waitqueue_active(&wq->wait))
2330 * wake_up_interruptible(&wq->wait)
2334 * The race for tcp fires when the __add_wait_queue changes done by CPU1 stay
2335 * in its cache, and so does the tp->rcv_nxt update on CPU2 side. The CPU1
2336 * could then endup calling schedule and sleep forever if there are no more
2337 * data on the socket.
2340 static inline bool skwq_has_sleeper(struct socket_wq *wq)
2342 return wq && wq_has_sleeper(&wq->wait);
2346 * sock_poll_wait - place memory barrier behind the poll_wait call.
2348 * @sock: socket to wait on
2351 * See the comments in the wq_has_sleeper function.
2353 static inline void sock_poll_wait(struct file *filp, struct socket *sock,
2356 if (!poll_does_not_wait(p)) {
2357 poll_wait(filp, &sock->wq.wait, p);
2358 /* We need to be sure we are in sync with the
2359 * socket flags modification.
2361 * This memory barrier is paired in the wq_has_sleeper.
2367 static inline void skb_set_hash_from_sk(struct sk_buff *skb, struct sock *sk)
2369 /* This pairs with WRITE_ONCE() in sk_set_txhash() */
2370 u32 txhash = READ_ONCE(sk->sk_txhash);
2378 void skb_set_owner_w(struct sk_buff *skb, struct sock *sk);
2381 * Queue a received datagram if it will fit. Stream and sequenced
2382 * protocols can't normally use this as they need to fit buffers in
2383 * and play with them.
2385 * Inlined as it's very short and called for pretty much every
2386 * packet ever received.
2388 static inline void skb_set_owner_r(struct sk_buff *skb, struct sock *sk)
2392 skb->destructor = sock_rfree;
2393 atomic_add(skb->truesize, &sk->sk_rmem_alloc);
2394 sk_mem_charge(sk, skb->truesize);
2397 static inline __must_check bool skb_set_owner_sk_safe(struct sk_buff *skb, struct sock *sk)
2399 if (sk && refcount_inc_not_zero(&sk->sk_refcnt)) {
2401 skb->destructor = sock_efree;
2408 static inline void skb_prepare_for_gro(struct sk_buff *skb)
2410 if (skb->destructor != sock_wfree) {
2417 void sk_reset_timer(struct sock *sk, struct timer_list *timer,
2418 unsigned long expires);
2420 void sk_stop_timer(struct sock *sk, struct timer_list *timer);
2422 void sk_stop_timer_sync(struct sock *sk, struct timer_list *timer);
2424 int __sk_queue_drop_skb(struct sock *sk, struct sk_buff_head *sk_queue,
2425 struct sk_buff *skb, unsigned int flags,
2426 void (*destructor)(struct sock *sk,
2427 struct sk_buff *skb));
2428 int __sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb);
2430 int sock_queue_rcv_skb_reason(struct sock *sk, struct sk_buff *skb,
2431 enum skb_drop_reason *reason);
2433 static inline int sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
2435 return sock_queue_rcv_skb_reason(sk, skb, NULL);
2438 int sock_queue_err_skb(struct sock *sk, struct sk_buff *skb);
2439 struct sk_buff *sock_dequeue_err_skb(struct sock *sk);
2442 * Recover an error report and clear atomically
2445 static inline int sock_error(struct sock *sk)
2449 /* Avoid an atomic operation for the common case.
2450 * This is racy since another cpu/thread can change sk_err under us.
2452 if (likely(data_race(!sk->sk_err)))
2455 err = xchg(&sk->sk_err, 0);
2459 void sk_error_report(struct sock *sk);
2461 static inline unsigned long sock_wspace(struct sock *sk)
2465 if (!(sk->sk_shutdown & SEND_SHUTDOWN)) {
2466 amt = sk->sk_sndbuf - refcount_read(&sk->sk_wmem_alloc);
2474 * We use sk->sk_wq_raw, from contexts knowing this
2475 * pointer is not NULL and cannot disappear/change.
2477 static inline void sk_set_bit(int nr, struct sock *sk)
2479 if ((nr == SOCKWQ_ASYNC_NOSPACE || nr == SOCKWQ_ASYNC_WAITDATA) &&
2480 !sock_flag(sk, SOCK_FASYNC))
2483 set_bit(nr, &sk->sk_wq_raw->flags);
2486 static inline void sk_clear_bit(int nr, struct sock *sk)
2488 if ((nr == SOCKWQ_ASYNC_NOSPACE || nr == SOCKWQ_ASYNC_WAITDATA) &&
2489 !sock_flag(sk, SOCK_FASYNC))
2492 clear_bit(nr, &sk->sk_wq_raw->flags);
2495 static inline void sk_wake_async(const struct sock *sk, int how, int band)
2497 if (sock_flag(sk, SOCK_FASYNC)) {
2499 sock_wake_async(rcu_dereference(sk->sk_wq), how, band);
2504 /* Since sk_{r,w}mem_alloc sums skb->truesize, even a small frame might
2505 * need sizeof(sk_buff) + MTU + padding, unless net driver perform copybreak.
2506 * Note: for send buffers, TCP works better if we can build two skbs at
2509 #define TCP_SKB_MIN_TRUESIZE (2048 + SKB_DATA_ALIGN(sizeof(struct sk_buff)))
2511 #define SOCK_MIN_SNDBUF (TCP_SKB_MIN_TRUESIZE * 2)
2512 #define SOCK_MIN_RCVBUF TCP_SKB_MIN_TRUESIZE
2514 static inline void sk_stream_moderate_sndbuf(struct sock *sk)
2518 if (sk->sk_userlocks & SOCK_SNDBUF_LOCK)
2521 val = min(sk->sk_sndbuf, sk->sk_wmem_queued >> 1);
2522 val = max_t(u32, val, sk_unused_reserved_mem(sk));
2524 WRITE_ONCE(sk->sk_sndbuf, max_t(u32, val, SOCK_MIN_SNDBUF));
2528 * sk_page_frag - return an appropriate page_frag
2531 * Use the per task page_frag instead of the per socket one for
2532 * optimization when we know that we're in process context and own
2533 * everything that's associated with %current.
2535 * Both direct reclaim and page faults can nest inside other
2536 * socket operations and end up recursing into sk_page_frag()
2537 * while it's already in use: explicitly avoid task page_frag
2538 * usage if the caller is potentially doing any of them.
2539 * This assumes that page fault handlers use the GFP_NOFS flags.
2541 * Return: a per task page_frag if context allows that,
2542 * otherwise a per socket one.
2544 static inline struct page_frag *sk_page_frag(struct sock *sk)
2546 if ((sk->sk_allocation & (__GFP_DIRECT_RECLAIM | __GFP_MEMALLOC | __GFP_FS)) ==
2547 (__GFP_DIRECT_RECLAIM | __GFP_FS))
2548 return ¤t->task_frag;
2550 return &sk->sk_frag;
2553 bool sk_page_frag_refill(struct sock *sk, struct page_frag *pfrag);
2556 * Default write policy as shown to user space via poll/select/SIGIO
2558 static inline bool sock_writeable(const struct sock *sk)
2560 return refcount_read(&sk->sk_wmem_alloc) < (READ_ONCE(sk->sk_sndbuf) >> 1);
2563 static inline gfp_t gfp_any(void)
2565 return in_softirq() ? GFP_ATOMIC : GFP_KERNEL;
2568 static inline gfp_t gfp_memcg_charge(void)
2570 return in_softirq() ? GFP_NOWAIT : GFP_KERNEL;
2573 static inline long sock_rcvtimeo(const struct sock *sk, bool noblock)
2575 return noblock ? 0 : sk->sk_rcvtimeo;
2578 static inline long sock_sndtimeo(const struct sock *sk, bool noblock)
2580 return noblock ? 0 : sk->sk_sndtimeo;
2583 static inline int sock_rcvlowat(const struct sock *sk, int waitall, int len)
2585 int v = waitall ? len : min_t(int, READ_ONCE(sk->sk_rcvlowat), len);
2590 /* Alas, with timeout socket operations are not restartable.
2591 * Compare this to poll().
2593 static inline int sock_intr_errno(long timeo)
2595 return timeo == MAX_SCHEDULE_TIMEOUT ? -ERESTARTSYS : -EINTR;
2598 struct sock_skb_cb {
2602 /* Store sock_skb_cb at the end of skb->cb[] so protocol families
2603 * using skb->cb[] would keep using it directly and utilize its
2604 * alignement guarantee.
2606 #define SOCK_SKB_CB_OFFSET ((sizeof_field(struct sk_buff, cb) - \
2607 sizeof(struct sock_skb_cb)))
2609 #define SOCK_SKB_CB(__skb) ((struct sock_skb_cb *)((__skb)->cb + \
2610 SOCK_SKB_CB_OFFSET))
2612 #define sock_skb_cb_check_size(size) \
2613 BUILD_BUG_ON((size) > SOCK_SKB_CB_OFFSET)
2616 sock_skb_set_dropcount(const struct sock *sk, struct sk_buff *skb)
2618 SOCK_SKB_CB(skb)->dropcount = sock_flag(sk, SOCK_RXQ_OVFL) ?
2619 atomic_read(&sk->sk_drops) : 0;
2622 static inline void sk_drops_add(struct sock *sk, const struct sk_buff *skb)
2624 int segs = max_t(u16, 1, skb_shinfo(skb)->gso_segs);
2626 atomic_add(segs, &sk->sk_drops);
2629 static inline ktime_t sock_read_timestamp(struct sock *sk)
2631 #if BITS_PER_LONG==32
2636 seq = read_seqbegin(&sk->sk_stamp_seq);
2638 } while (read_seqretry(&sk->sk_stamp_seq, seq));
2642 return READ_ONCE(sk->sk_stamp);
2646 static inline void sock_write_timestamp(struct sock *sk, ktime_t kt)
2648 #if BITS_PER_LONG==32
2649 write_seqlock(&sk->sk_stamp_seq);
2651 write_sequnlock(&sk->sk_stamp_seq);
2653 WRITE_ONCE(sk->sk_stamp, kt);
2657 void __sock_recv_timestamp(struct msghdr *msg, struct sock *sk,
2658 struct sk_buff *skb);
2659 void __sock_recv_wifi_status(struct msghdr *msg, struct sock *sk,
2660 struct sk_buff *skb);
2663 sock_recv_timestamp(struct msghdr *msg, struct sock *sk, struct sk_buff *skb)
2665 ktime_t kt = skb->tstamp;
2666 struct skb_shared_hwtstamps *hwtstamps = skb_hwtstamps(skb);
2669 * generate control messages if
2670 * - receive time stamping in software requested
2671 * - software time stamp available and wanted
2672 * - hardware time stamps available and wanted
2674 if (sock_flag(sk, SOCK_RCVTSTAMP) ||
2675 (sk->sk_tsflags & SOF_TIMESTAMPING_RX_SOFTWARE) ||
2676 (kt && sk->sk_tsflags & SOF_TIMESTAMPING_SOFTWARE) ||
2677 (hwtstamps->hwtstamp &&
2678 (sk->sk_tsflags & SOF_TIMESTAMPING_RAW_HARDWARE)))
2679 __sock_recv_timestamp(msg, sk, skb);
2681 sock_write_timestamp(sk, kt);
2683 if (sock_flag(sk, SOCK_WIFI_STATUS) && skb->wifi_acked_valid)
2684 __sock_recv_wifi_status(msg, sk, skb);
2687 void __sock_recv_cmsgs(struct msghdr *msg, struct sock *sk,
2688 struct sk_buff *skb);
2690 #define SK_DEFAULT_STAMP (-1L * NSEC_PER_SEC)
2691 static inline void sock_recv_cmsgs(struct msghdr *msg, struct sock *sk,
2692 struct sk_buff *skb)
2694 #define FLAGS_RECV_CMSGS ((1UL << SOCK_RXQ_OVFL) | \
2695 (1UL << SOCK_RCVTSTAMP) | \
2696 (1UL << SOCK_RCVMARK))
2697 #define TSFLAGS_ANY (SOF_TIMESTAMPING_SOFTWARE | \
2698 SOF_TIMESTAMPING_RAW_HARDWARE)
2700 if (sk->sk_flags & FLAGS_RECV_CMSGS || sk->sk_tsflags & TSFLAGS_ANY)
2701 __sock_recv_cmsgs(msg, sk, skb);
2702 else if (unlikely(sock_flag(sk, SOCK_TIMESTAMP)))
2703 sock_write_timestamp(sk, skb->tstamp);
2704 else if (unlikely(sk->sk_stamp == SK_DEFAULT_STAMP))
2705 sock_write_timestamp(sk, 0);
2708 void __sock_tx_timestamp(__u16 tsflags, __u8 *tx_flags);
2711 * _sock_tx_timestamp - checks whether the outgoing packet is to be time stamped
2712 * @sk: socket sending this packet
2713 * @tsflags: timestamping flags to use
2714 * @tx_flags: completed with instructions for time stamping
2715 * @tskey: filled in with next sk_tskey (not for TCP, which uses seqno)
2717 * Note: callers should take care of initial ``*tx_flags`` value (usually 0)
2719 static inline void _sock_tx_timestamp(struct sock *sk, __u16 tsflags,
2720 __u8 *tx_flags, __u32 *tskey)
2722 if (unlikely(tsflags)) {
2723 __sock_tx_timestamp(tsflags, tx_flags);
2724 if (tsflags & SOF_TIMESTAMPING_OPT_ID && tskey &&
2725 tsflags & SOF_TIMESTAMPING_TX_RECORD_MASK)
2726 *tskey = atomic_inc_return(&sk->sk_tskey) - 1;
2728 if (unlikely(sock_flag(sk, SOCK_WIFI_STATUS)))
2729 *tx_flags |= SKBTX_WIFI_STATUS;
2732 static inline void sock_tx_timestamp(struct sock *sk, __u16 tsflags,
2735 _sock_tx_timestamp(sk, tsflags, tx_flags, NULL);
2738 static inline void skb_setup_tx_timestamp(struct sk_buff *skb, __u16 tsflags)
2740 _sock_tx_timestamp(skb->sk, tsflags, &skb_shinfo(skb)->tx_flags,
2741 &skb_shinfo(skb)->tskey);
2744 static inline bool sk_is_tcp(const struct sock *sk)
2746 return sk->sk_type == SOCK_STREAM && sk->sk_protocol == IPPROTO_TCP;
2750 * sk_eat_skb - Release a skb if it is no longer needed
2751 * @sk: socket to eat this skb from
2752 * @skb: socket buffer to eat
2754 * This routine must be called with interrupts disabled or with the socket
2755 * locked so that the sk_buff queue operation is ok.
2757 static inline void sk_eat_skb(struct sock *sk, struct sk_buff *skb)
2759 __skb_unlink(skb, &sk->sk_receive_queue);
2764 skb_sk_is_prefetched(struct sk_buff *skb)
2767 return skb->destructor == sock_pfree;
2770 #endif /* CONFIG_INET */
2773 /* This helper checks if a socket is a full socket,
2774 * ie _not_ a timewait or request socket.
2776 static inline bool sk_fullsock(const struct sock *sk)
2778 return (1 << sk->sk_state) & ~(TCPF_TIME_WAIT | TCPF_NEW_SYN_RECV);
2782 sk_is_refcounted(struct sock *sk)
2784 /* Only full sockets have sk->sk_flags. */
2785 return !sk_fullsock(sk) || !sock_flag(sk, SOCK_RCU_FREE);
2789 * skb_steal_sock - steal a socket from an sk_buff
2790 * @skb: sk_buff to steal the socket from
2791 * @refcounted: is set to true if the socket is reference-counted
2793 static inline struct sock *
2794 skb_steal_sock(struct sk_buff *skb, bool *refcounted)
2797 struct sock *sk = skb->sk;
2800 if (skb_sk_is_prefetched(skb))
2801 *refcounted = sk_is_refcounted(sk);
2802 skb->destructor = NULL;
2806 *refcounted = false;
2810 /* Checks if this SKB belongs to an HW offloaded socket
2811 * and whether any SW fallbacks are required based on dev.
2812 * Check decrypted mark in case skb_orphan() cleared socket.
2814 static inline struct sk_buff *sk_validate_xmit_skb(struct sk_buff *skb,
2815 struct net_device *dev)
2817 #ifdef CONFIG_SOCK_VALIDATE_XMIT
2818 struct sock *sk = skb->sk;
2820 if (sk && sk_fullsock(sk) && sk->sk_validate_xmit_skb) {
2821 skb = sk->sk_validate_xmit_skb(sk, dev, skb);
2822 #ifdef CONFIG_TLS_DEVICE
2823 } else if (unlikely(skb->decrypted)) {
2824 pr_warn_ratelimited("unencrypted skb with no associated socket - dropping\n");
2834 /* This helper checks if a socket is a LISTEN or NEW_SYN_RECV
2835 * SYNACK messages can be attached to either ones (depending on SYNCOOKIE)
2837 static inline bool sk_listener(const struct sock *sk)
2839 return (1 << sk->sk_state) & (TCPF_LISTEN | TCPF_NEW_SYN_RECV);
2842 void sock_enable_timestamp(struct sock *sk, enum sock_flags flag);
2843 int sock_recv_errqueue(struct sock *sk, struct msghdr *msg, int len, int level,
2846 bool sk_ns_capable(const struct sock *sk,
2847 struct user_namespace *user_ns, int cap);
2848 bool sk_capable(const struct sock *sk, int cap);
2849 bool sk_net_capable(const struct sock *sk, int cap);
2851 void sk_get_meminfo(const struct sock *sk, u32 *meminfo);
2853 /* Take into consideration the size of the struct sk_buff overhead in the
2854 * determination of these values, since that is non-constant across
2855 * platforms. This makes socket queueing behavior and performance
2856 * not depend upon such differences.
2858 #define _SK_MEM_PACKETS 256
2859 #define _SK_MEM_OVERHEAD SKB_TRUESIZE(256)
2860 #define SK_WMEM_MAX (_SK_MEM_OVERHEAD * _SK_MEM_PACKETS)
2861 #define SK_RMEM_MAX (_SK_MEM_OVERHEAD * _SK_MEM_PACKETS)
2863 extern __u32 sysctl_wmem_max;
2864 extern __u32 sysctl_rmem_max;
2866 extern int sysctl_tstamp_allow_data;
2867 extern int sysctl_optmem_max;
2869 extern __u32 sysctl_wmem_default;
2870 extern __u32 sysctl_rmem_default;
2872 #define SKB_FRAG_PAGE_ORDER get_order(32768)
2873 DECLARE_STATIC_KEY_FALSE(net_high_order_alloc_disable_key);
2875 static inline int sk_get_wmem0(const struct sock *sk, const struct proto *proto)
2877 /* Does this proto have per netns sysctl_wmem ? */
2878 if (proto->sysctl_wmem_offset)
2879 return READ_ONCE(*(int *)((void *)sock_net(sk) + proto->sysctl_wmem_offset));
2881 return READ_ONCE(*proto->sysctl_wmem);
2884 static inline int sk_get_rmem0(const struct sock *sk, const struct proto *proto)
2886 /* Does this proto have per netns sysctl_rmem ? */
2887 if (proto->sysctl_rmem_offset)
2888 return READ_ONCE(*(int *)((void *)sock_net(sk) + proto->sysctl_rmem_offset));
2890 return READ_ONCE(*proto->sysctl_rmem);
2893 /* Default TCP Small queue budget is ~1 ms of data (1sec >> 10)
2894 * Some wifi drivers need to tweak it to get more chunks.
2895 * They can use this helper from their ndo_start_xmit()
2897 static inline void sk_pacing_shift_update(struct sock *sk, int val)
2899 if (!sk || !sk_fullsock(sk) || READ_ONCE(sk->sk_pacing_shift) == val)
2901 WRITE_ONCE(sk->sk_pacing_shift, val);
2904 /* if a socket is bound to a device, check that the given device
2905 * index is either the same or that the socket is bound to an L3
2906 * master device and the given device index is also enslaved to
2909 static inline bool sk_dev_equal_l3scope(struct sock *sk, int dif)
2911 int bound_dev_if = READ_ONCE(sk->sk_bound_dev_if);
2914 if (!bound_dev_if || bound_dev_if == dif)
2917 mdif = l3mdev_master_ifindex_by_index(sock_net(sk), dif);
2918 if (mdif && mdif == bound_dev_if)
2924 void sock_def_readable(struct sock *sk);
2926 int sock_bindtoindex(struct sock *sk, int ifindex, bool lock_sk);
2927 void sock_set_timestamp(struct sock *sk, int optname, bool valbool);
2928 int sock_set_timestamping(struct sock *sk, int optname,
2929 struct so_timestamping timestamping);
2931 void sock_enable_timestamps(struct sock *sk);
2932 void sock_no_linger(struct sock *sk);
2933 void sock_set_keepalive(struct sock *sk);
2934 void sock_set_priority(struct sock *sk, u32 priority);
2935 void sock_set_rcvbuf(struct sock *sk, int val);
2936 void sock_set_mark(struct sock *sk, u32 val);
2937 void sock_set_reuseaddr(struct sock *sk);
2938 void sock_set_reuseport(struct sock *sk);
2939 void sock_set_sndtimeo(struct sock *sk, s64 secs);
2941 int sock_bind_add(struct sock *sk, struct sockaddr *addr, int addr_len);
2943 int sock_get_timeout(long timeo, void *optval, bool old_timeval);
2944 int sock_copy_user_timeval(struct __kernel_sock_timeval *tv,
2945 sockptr_t optval, int optlen, bool old_timeval);
2947 static inline bool sk_is_readable(struct sock *sk)
2949 if (sk->sk_prot->sock_is_readable)
2950 return sk->sk_prot->sock_is_readable(sk);
2953 #endif /* _SOCK_H */