1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef __NET_SCHED_RED_H
3 #define __NET_SCHED_RED_H
5 #include <linux/types.h>
7 #include <net/pkt_sched.h>
8 #include <net/inet_ecn.h>
9 #include <net/dsfield.h>
10 #include <linux/reciprocal_div.h>
12 /* Random Early Detection (RED) algorithm.
13 =======================================
15 Source: Sally Floyd and Van Jacobson, "Random Early Detection Gateways
16 for Congestion Avoidance", 1993, IEEE/ACM Transactions on Networking.
18 This file codes a "divisionless" version of RED algorithm
19 as written down in Fig.17 of the paper.
24 When a new packet arrives we calculate the average queue length:
26 avg = (1-W)*avg + W*current_queue_len,
28 W is the filter time constant (chosen as 2^(-Wlog)), it controls
29 the inertia of the algorithm. To allow larger bursts, W should be
32 if (avg > th_max) -> packet marked (dropped).
33 if (avg < th_min) -> packet passes.
34 if (th_min < avg < th_max) we calculate probability:
36 Pb = max_P * (avg - th_min)/(th_max-th_min)
38 and mark (drop) packet with this probability.
39 Pb changes from 0 (at avg==th_min) to max_P (avg==th_max).
40 max_P should be small (not 1), usually 0.01..0.02 is good value.
42 max_P is chosen as a number, so that max_P/(th_max-th_min)
43 is a negative power of two in order arithmetics to contain
47 Parameters, settable by user:
48 -----------------------------
50 qth_min - bytes (should be < qth_max/2)
51 qth_max - bytes (should be at least 2*qth_min and less limit)
52 Wlog - bits (<32) log(1/W).
55 Plog is related to max_P by formula:
57 max_P = (qth_max-qth_min)/2^Plog;
59 F.e. if qth_max=128K and qth_min=32K, then Plog=22
60 corresponds to max_P=0.02
65 Lookup table for log((1-W)^(t/t_ave).
73 If you want to allow bursts of L packets of size S,
76 L + 1 - th_min/S < (1-(1-W)^L)/W
78 th_min/S = 32 th_min/S = 4
94 * Adaptative RED : An Algorithm for Increasing the Robustness of RED's AQM
95 * (Sally FLoyd, Ramakrishna Gummadi, and Scott Shenker) August 2001
98 * if (avg > target and max_p <= 0.5)
99 * increase max_p : max_p += alpha;
100 * else if (avg < target and max_p >= 0.01)
101 * decrease max_p : max_p *= beta;
103 * target :[qth_min + 0.4*(qth_min - qth_max),
104 * qth_min + 0.6*(qth_min - qth_max)].
105 * alpha : min(0.01, max_p / 4)
107 * max_P is a Q0.32 fixed point number (with 32 bits mantissa)
108 * max_P between 0.01 and 0.5 (1% - 50%) [ Its no longer a negative power of two ]
110 #define RED_ONE_PERCENT ((u32)DIV_ROUND_CLOSEST(1ULL<<32, 100))
112 #define MAX_P_MIN (1 * RED_ONE_PERCENT)
113 #define MAX_P_MAX (50 * RED_ONE_PERCENT)
114 #define MAX_P_ALPHA(val) min(MAX_P_MIN, val / 4)
116 #define RED_STAB_SIZE 256
117 #define RED_STAB_MASK (RED_STAB_SIZE - 1)
120 u32 prob_drop; /* Early probability drops */
121 u32 prob_mark; /* Early probability marks */
122 u32 forced_drop; /* Forced drops, qavg > max_thresh */
123 u32 forced_mark; /* Forced marks, qavg > max_thresh */
124 u32 pdrop; /* Drops due to queue limits */
125 u32 other; /* Drops due to drop() calls */
130 u32 qth_min; /* Min avg length threshold: Wlog scaled */
131 u32 qth_max; /* Max avg length threshold: Wlog scaled */
133 u32 max_P; /* probability, [0 .. 1.0] 32 scaled */
134 /* reciprocal_value(max_P / qth_delta) */
135 struct reciprocal_value max_P_reciprocal;
136 u32 qth_delta; /* max_th - min_th */
137 u32 target_min; /* min_th + 0.4*(max_th - min_th) */
138 u32 target_max; /* min_th + 0.6*(max_th - min_th) */
140 u8 Wlog; /* log(W) */
141 u8 Plog; /* random number bits */
142 u8 Stab[RED_STAB_SIZE];
147 int qcount; /* Number of packets since last random
149 u32 qR; /* Cached random number */
151 unsigned long qavg; /* Average queue length: Wlog scaled */
152 ktime_t qidlestart; /* Start of current idle period */
155 static inline u32 red_maxp(u8 Plog)
157 return Plog < 32 ? (~0U >> Plog) : ~0U;
160 static inline void red_set_vars(struct red_vars *v)
162 /* Reset average queue length, the value is strictly bound
163 * to the parameters below, reseting hurts a bit but leaving
164 * it might result in an unreasonable qavg for a while. --TGR
171 static inline void red_set_parms(struct red_parms *p,
172 u32 qth_min, u32 qth_max, u8 Wlog, u8 Plog,
173 u8 Scell_log, u8 *stab, u32 max_P)
175 int delta = qth_max - qth_min;
178 p->qth_min = qth_min << Wlog;
179 p->qth_max = qth_max << Wlog;
184 p->qth_delta = delta;
186 max_P = red_maxp(Plog);
187 max_P *= delta; /* max_P = (qth_max - qth_min)/2^Plog */
190 max_p_delta = max_P / delta;
191 max_p_delta = max(max_p_delta, 1U);
192 p->max_P_reciprocal = reciprocal_value(max_p_delta);
194 /* RED Adaptative target :
195 * [min_th + 0.4*(min_th - max_th),
196 * min_th + 0.6*(min_th - max_th)].
199 p->target_min = qth_min + 2*delta;
200 p->target_max = qth_min + 3*delta;
202 p->Scell_log = Scell_log;
203 p->Scell_max = (255 << Scell_log);
206 memcpy(p->Stab, stab, sizeof(p->Stab));
209 static inline int red_is_idling(const struct red_vars *v)
211 return v->qidlestart != 0;
214 static inline void red_start_of_idle_period(struct red_vars *v)
216 v->qidlestart = ktime_get();
219 static inline void red_end_of_idle_period(struct red_vars *v)
224 static inline void red_restart(struct red_vars *v)
226 red_end_of_idle_period(v);
231 static inline unsigned long red_calc_qavg_from_idle_time(const struct red_parms *p,
232 const struct red_vars *v)
234 s64 delta = ktime_us_delta(ktime_get(), v->qidlestart);
235 long us_idle = min_t(s64, delta, p->Scell_max);
239 * The problem: ideally, average length queue recalcultion should
240 * be done over constant clock intervals. This is too expensive, so
241 * that the calculation is driven by outgoing packets.
242 * When the queue is idle we have to model this clock by hand.
244 * SF+VJ proposed to "generate":
246 * m = idletime / (average_pkt_size / bandwidth)
248 * dummy packets as a burst after idle time, i.e.
252 * This is an apparently overcomplicated solution (f.e. we have to
253 * precompute a table to make this calculation in reasonable time)
254 * I believe that a simpler model may be used here,
255 * but it is field for experiments.
258 shift = p->Stab[(us_idle >> p->Scell_log) & RED_STAB_MASK];
261 return v->qavg >> shift;
263 /* Approximate initial part of exponent with linear function:
265 * (1-W)^m ~= 1-mW + ...
267 * Seems, it is the best solution to
268 * problem of too coarse exponent tabulation.
270 us_idle = (v->qavg * (u64)us_idle) >> p->Scell_log;
272 if (us_idle < (v->qavg >> 1))
273 return v->qavg - us_idle;
279 static inline unsigned long red_calc_qavg_no_idle_time(const struct red_parms *p,
280 const struct red_vars *v,
281 unsigned int backlog)
284 * NOTE: v->qavg is fixed point number with point at Wlog.
285 * The formula below is equvalent to floating point
288 * qavg = qavg*(1-W) + backlog*W;
292 return v->qavg + (backlog - (v->qavg >> p->Wlog));
295 static inline unsigned long red_calc_qavg(const struct red_parms *p,
296 const struct red_vars *v,
297 unsigned int backlog)
299 if (!red_is_idling(v))
300 return red_calc_qavg_no_idle_time(p, v, backlog);
302 return red_calc_qavg_from_idle_time(p, v);
306 static inline u32 red_random(const struct red_parms *p)
308 return reciprocal_divide(prandom_u32(), p->max_P_reciprocal);
311 static inline int red_mark_probability(const struct red_parms *p,
312 const struct red_vars *v,
315 /* The formula used below causes questions.
317 OK. qR is random number in the interval
318 (0..1/max_P)*(qth_max-qth_min)
319 i.e. 0..(2^Plog). If we used floating point
320 arithmetics, it would be: (2^Plog)*rnd_num,
321 where rnd_num is less 1.
323 Taking into account, that qavg have fixed
324 point at Wlog, two lines
325 below have the following floating point equivalent:
327 max_P*(qavg - qth_min)/(qth_max-qth_min) < rnd/qcount
329 Any questions? --ANK (980924)
331 return !(((qavg - p->qth_min) >> p->Wlog) * v->qcount < v->qR);
335 RED_BELOW_MIN_THRESH,
340 static inline int red_cmp_thresh(const struct red_parms *p, unsigned long qavg)
342 if (qavg < p->qth_min)
343 return RED_BELOW_MIN_THRESH;
344 else if (qavg >= p->qth_max)
345 return RED_ABOVE_MAX_TRESH;
347 return RED_BETWEEN_TRESH;
356 static inline int red_action(const struct red_parms *p,
360 switch (red_cmp_thresh(p, qavg)) {
361 case RED_BELOW_MIN_THRESH:
363 return RED_DONT_MARK;
365 case RED_BETWEEN_TRESH:
367 if (red_mark_probability(p, v, qavg)) {
369 v->qR = red_random(p);
370 return RED_PROB_MARK;
373 v->qR = red_random(p);
375 return RED_DONT_MARK;
377 case RED_ABOVE_MAX_TRESH:
379 return RED_HARD_MARK;
383 return RED_DONT_MARK;
386 static inline void red_adaptative_algo(struct red_parms *p, struct red_vars *v)
392 if (red_is_idling(v))
393 qavg = red_calc_qavg_from_idle_time(p, v);
395 /* v->qavg is fixed point number with point at Wlog */
398 if (qavg > p->target_max && p->max_P <= MAX_P_MAX)
399 p->max_P += MAX_P_ALPHA(p->max_P); /* maxp = maxp + alpha */
400 else if (qavg < p->target_min && p->max_P >= MAX_P_MIN)
401 p->max_P = (p->max_P/10)*9; /* maxp = maxp * Beta */
403 max_p_delta = DIV_ROUND_CLOSEST(p->max_P, p->qth_delta);
404 max_p_delta = max(max_p_delta, 1U);
405 p->max_P_reciprocal = reciprocal_value(max_p_delta);