USB: otg.h: Fix the mixup in parameters order.
[platform/adaptation/renesas_rcar/renesas_kernel.git] / include / net / mac80211.h
1 /*
2  * mac80211 <-> driver interface
3  *
4  * Copyright 2002-2005, Devicescape Software, Inc.
5  * Copyright 2006-2007  Jiri Benc <jbenc@suse.cz>
6  * Copyright 2007-2010  Johannes Berg <johannes@sipsolutions.net>
7  *
8  * This program is free software; you can redistribute it and/or modify
9  * it under the terms of the GNU General Public License version 2 as
10  * published by the Free Software Foundation.
11  */
12
13 #ifndef MAC80211_H
14 #define MAC80211_H
15
16 #include <linux/kernel.h>
17 #include <linux/if_ether.h>
18 #include <linux/skbuff.h>
19 #include <linux/wireless.h>
20 #include <linux/device.h>
21 #include <linux/ieee80211.h>
22 #include <net/cfg80211.h>
23
24 /**
25  * DOC: Introduction
26  *
27  * mac80211 is the Linux stack for 802.11 hardware that implements
28  * only partial functionality in hard- or firmware. This document
29  * defines the interface between mac80211 and low-level hardware
30  * drivers.
31  */
32
33 /**
34  * DOC: Calling mac80211 from interrupts
35  *
36  * Only ieee80211_tx_status_irqsafe() and ieee80211_rx_irqsafe() can be
37  * called in hardware interrupt context. The low-level driver must not call any
38  * other functions in hardware interrupt context. If there is a need for such
39  * call, the low-level driver should first ACK the interrupt and perform the
40  * IEEE 802.11 code call after this, e.g. from a scheduled workqueue or even
41  * tasklet function.
42  *
43  * NOTE: If the driver opts to use the _irqsafe() functions, it may not also
44  *       use the non-IRQ-safe functions!
45  */
46
47 /**
48  * DOC: Warning
49  *
50  * If you're reading this document and not the header file itself, it will
51  * be incomplete because not all documentation has been converted yet.
52  */
53
54 /**
55  * DOC: Frame format
56  *
57  * As a general rule, when frames are passed between mac80211 and the driver,
58  * they start with the IEEE 802.11 header and include the same octets that are
59  * sent over the air except for the FCS which should be calculated by the
60  * hardware.
61  *
62  * There are, however, various exceptions to this rule for advanced features:
63  *
64  * The first exception is for hardware encryption and decryption offload
65  * where the IV/ICV may or may not be generated in hardware.
66  *
67  * Secondly, when the hardware handles fragmentation, the frame handed to
68  * the driver from mac80211 is the MSDU, not the MPDU.
69  *
70  * Finally, for received frames, the driver is able to indicate that it has
71  * filled a radiotap header and put that in front of the frame; if it does
72  * not do so then mac80211 may add this under certain circumstances.
73  */
74
75 /**
76  * DOC: mac80211 workqueue
77  *
78  * mac80211 provides its own workqueue for drivers and internal mac80211 use.
79  * The workqueue is a single threaded workqueue and can only be accessed by
80  * helpers for sanity checking. Drivers must ensure all work added onto the
81  * mac80211 workqueue should be cancelled on the driver stop() callback.
82  *
83  * mac80211 will flushed the workqueue upon interface removal and during
84  * suspend.
85  *
86  * All work performed on the mac80211 workqueue must not acquire the RTNL lock.
87  *
88  */
89
90 /**
91  * enum ieee80211_max_queues - maximum number of queues
92  *
93  * @IEEE80211_MAX_QUEUES: Maximum number of regular device queues.
94  */
95 enum ieee80211_max_queues {
96         IEEE80211_MAX_QUEUES =          4,
97 };
98
99 /**
100  * struct ieee80211_tx_queue_params - transmit queue configuration
101  *
102  * The information provided in this structure is required for QoS
103  * transmit queue configuration. Cf. IEEE 802.11 7.3.2.29.
104  *
105  * @aifs: arbitration interframe space [0..255]
106  * @cw_min: minimum contention window [a value of the form
107  *      2^n-1 in the range 1..32767]
108  * @cw_max: maximum contention window [like @cw_min]
109  * @txop: maximum burst time in units of 32 usecs, 0 meaning disabled
110  * @uapsd: is U-APSD mode enabled for the queue
111  */
112 struct ieee80211_tx_queue_params {
113         u16 txop;
114         u16 cw_min;
115         u16 cw_max;
116         u8 aifs;
117         bool uapsd;
118 };
119
120 struct ieee80211_low_level_stats {
121         unsigned int dot11ACKFailureCount;
122         unsigned int dot11RTSFailureCount;
123         unsigned int dot11FCSErrorCount;
124         unsigned int dot11RTSSuccessCount;
125 };
126
127 /**
128  * enum ieee80211_bss_change - BSS change notification flags
129  *
130  * These flags are used with the bss_info_changed() callback
131  * to indicate which BSS parameter changed.
132  *
133  * @BSS_CHANGED_ASSOC: association status changed (associated/disassociated),
134  *      also implies a change in the AID.
135  * @BSS_CHANGED_ERP_CTS_PROT: CTS protection changed
136  * @BSS_CHANGED_ERP_PREAMBLE: preamble changed
137  * @BSS_CHANGED_ERP_SLOT: slot timing changed
138  * @BSS_CHANGED_HT: 802.11n parameters changed
139  * @BSS_CHANGED_BASIC_RATES: Basic rateset changed
140  * @BSS_CHANGED_BEACON_INT: Beacon interval changed
141  * @BSS_CHANGED_BSSID: BSSID changed, for whatever
142  *      reason (IBSS and managed mode)
143  * @BSS_CHANGED_BEACON: Beacon data changed, retrieve
144  *      new beacon (beaconing modes)
145  * @BSS_CHANGED_BEACON_ENABLED: Beaconing should be
146  *      enabled/disabled (beaconing modes)
147  * @BSS_CHANGED_CQM: Connection quality monitor config changed
148  * @BSS_CHANGED_IBSS: IBSS join status changed
149  * @BSS_CHANGED_ARP_FILTER: Hardware ARP filter address list or state changed.
150  * @BSS_CHANGED_QOS: QoS for this association was enabled/disabled. Note
151  *      that it is only ever disabled for station mode.
152  */
153 enum ieee80211_bss_change {
154         BSS_CHANGED_ASSOC               = 1<<0,
155         BSS_CHANGED_ERP_CTS_PROT        = 1<<1,
156         BSS_CHANGED_ERP_PREAMBLE        = 1<<2,
157         BSS_CHANGED_ERP_SLOT            = 1<<3,
158         BSS_CHANGED_HT                  = 1<<4,
159         BSS_CHANGED_BASIC_RATES         = 1<<5,
160         BSS_CHANGED_BEACON_INT          = 1<<6,
161         BSS_CHANGED_BSSID               = 1<<7,
162         BSS_CHANGED_BEACON              = 1<<8,
163         BSS_CHANGED_BEACON_ENABLED      = 1<<9,
164         BSS_CHANGED_CQM                 = 1<<10,
165         BSS_CHANGED_IBSS                = 1<<11,
166         BSS_CHANGED_ARP_FILTER          = 1<<12,
167         BSS_CHANGED_QOS                 = 1<<13,
168
169         /* when adding here, make sure to change ieee80211_reconfig */
170 };
171
172 /*
173  * The maximum number of IPv4 addresses listed for ARP filtering. If the number
174  * of addresses for an interface increase beyond this value, hardware ARP
175  * filtering will be disabled.
176  */
177 #define IEEE80211_BSS_ARP_ADDR_LIST_LEN 4
178
179 /**
180  * struct ieee80211_bss_conf - holds the BSS's changing parameters
181  *
182  * This structure keeps information about a BSS (and an association
183  * to that BSS) that can change during the lifetime of the BSS.
184  *
185  * @assoc: association status
186  * @ibss_joined: indicates whether this station is part of an IBSS
187  *      or not
188  * @aid: association ID number, valid only when @assoc is true
189  * @use_cts_prot: use CTS protection
190  * @use_short_preamble: use 802.11b short preamble;
191  *      if the hardware cannot handle this it must set the
192  *      IEEE80211_HW_2GHZ_SHORT_PREAMBLE_INCAPABLE hardware flag
193  * @use_short_slot: use short slot time (only relevant for ERP);
194  *      if the hardware cannot handle this it must set the
195  *      IEEE80211_HW_2GHZ_SHORT_SLOT_INCAPABLE hardware flag
196  * @dtim_period: num of beacons before the next DTIM, for beaconing,
197  *      valid in station mode only while @assoc is true and if also
198  *      requested by %IEEE80211_HW_NEED_DTIM_PERIOD (cf. also hw conf
199  *      @ps_dtim_period)
200  * @timestamp: beacon timestamp
201  * @beacon_int: beacon interval
202  * @assoc_capability: capabilities taken from assoc resp
203  * @basic_rates: bitmap of basic rates, each bit stands for an
204  *      index into the rate table configured by the driver in
205  *      the current band.
206  * @bssid: The BSSID for this BSS
207  * @enable_beacon: whether beaconing should be enabled or not
208  * @channel_type: Channel type for this BSS -- the hardware might be
209  *      configured for HT40+ while this BSS only uses no-HT, for
210  *      example.
211  * @ht_operation_mode: HT operation mode (like in &struct ieee80211_ht_info).
212  *      This field is only valid when the channel type is one of the HT types.
213  * @cqm_rssi_thold: Connection quality monitor RSSI threshold, a zero value
214  *      implies disabled
215  * @cqm_rssi_hyst: Connection quality monitor RSSI hysteresis
216  * @arp_addr_list: List of IPv4 addresses for hardware ARP filtering. The
217  *      may filter ARP queries targeted for other addresses than listed here.
218  *      The driver must allow ARP queries targeted for all address listed here
219  *      to pass through. An empty list implies no ARP queries need to pass.
220  * @arp_addr_cnt: Number of addresses currently on the list.
221  * @arp_filter_enabled: Enable ARP filtering - if enabled, the hardware may
222  *      filter ARP queries based on the @arp_addr_list, if disabled, the
223  *      hardware must not perform any ARP filtering. Note, that the filter will
224  *      be enabled also in promiscuous mode.
225  * @qos: This is a QoS-enabled BSS.
226  */
227 struct ieee80211_bss_conf {
228         const u8 *bssid;
229         /* association related data */
230         bool assoc, ibss_joined;
231         u16 aid;
232         /* erp related data */
233         bool use_cts_prot;
234         bool use_short_preamble;
235         bool use_short_slot;
236         bool enable_beacon;
237         u8 dtim_period;
238         u16 beacon_int;
239         u16 assoc_capability;
240         u64 timestamp;
241         u32 basic_rates;
242         u16 ht_operation_mode;
243         s32 cqm_rssi_thold;
244         u32 cqm_rssi_hyst;
245         enum nl80211_channel_type channel_type;
246         __be32 arp_addr_list[IEEE80211_BSS_ARP_ADDR_LIST_LEN];
247         u8 arp_addr_cnt;
248         bool arp_filter_enabled;
249         bool qos;
250 };
251
252 /**
253  * enum mac80211_tx_control_flags - flags to describe transmission information/status
254  *
255  * These flags are used with the @flags member of &ieee80211_tx_info.
256  *
257  * @IEEE80211_TX_CTL_REQ_TX_STATUS: require TX status callback for this frame.
258  * @IEEE80211_TX_CTL_ASSIGN_SEQ: The driver has to assign a sequence
259  *      number to this frame, taking care of not overwriting the fragment
260  *      number and increasing the sequence number only when the
261  *      IEEE80211_TX_CTL_FIRST_FRAGMENT flag is set. mac80211 will properly
262  *      assign sequence numbers to QoS-data frames but cannot do so correctly
263  *      for non-QoS-data and management frames because beacons need them from
264  *      that counter as well and mac80211 cannot guarantee proper sequencing.
265  *      If this flag is set, the driver should instruct the hardware to
266  *      assign a sequence number to the frame or assign one itself. Cf. IEEE
267  *      802.11-2007 7.1.3.4.1 paragraph 3. This flag will always be set for
268  *      beacons and always be clear for frames without a sequence number field.
269  * @IEEE80211_TX_CTL_NO_ACK: tell the low level not to wait for an ack
270  * @IEEE80211_TX_CTL_CLEAR_PS_FILT: clear powersave filter for destination
271  *      station
272  * @IEEE80211_TX_CTL_FIRST_FRAGMENT: this is a first fragment of the frame
273  * @IEEE80211_TX_CTL_SEND_AFTER_DTIM: send this frame after DTIM beacon
274  * @IEEE80211_TX_CTL_AMPDU: this frame should be sent as part of an A-MPDU
275  * @IEEE80211_TX_CTL_INJECTED: Frame was injected, internal to mac80211.
276  * @IEEE80211_TX_STAT_TX_FILTERED: The frame was not transmitted
277  *      because the destination STA was in powersave mode. Note that to
278  *      avoid race conditions, the filter must be set by the hardware or
279  *      firmware upon receiving a frame that indicates that the station
280  *      went to sleep (must be done on device to filter frames already on
281  *      the queue) and may only be unset after mac80211 gives the OK for
282  *      that by setting the IEEE80211_TX_CTL_CLEAR_PS_FILT (see above),
283  *      since only then is it guaranteed that no more frames are in the
284  *      hardware queue.
285  * @IEEE80211_TX_STAT_ACK: Frame was acknowledged
286  * @IEEE80211_TX_STAT_AMPDU: The frame was aggregated, so status
287  *      is for the whole aggregation.
288  * @IEEE80211_TX_STAT_AMPDU_NO_BACK: no block ack was returned,
289  *      so consider using block ack request (BAR).
290  * @IEEE80211_TX_CTL_RATE_CTRL_PROBE: internal to mac80211, can be
291  *      set by rate control algorithms to indicate probe rate, will
292  *      be cleared for fragmented frames (except on the last fragment)
293  * @IEEE80211_TX_INTFL_NEED_TXPROCESSING: completely internal to mac80211,
294  *      used to indicate that a pending frame requires TX processing before
295  *      it can be sent out.
296  * @IEEE80211_TX_INTFL_RETRIED: completely internal to mac80211,
297  *      used to indicate that a frame was already retried due to PS
298  * @IEEE80211_TX_INTFL_DONT_ENCRYPT: completely internal to mac80211,
299  *      used to indicate frame should not be encrypted
300  * @IEEE80211_TX_CTL_PSPOLL_RESPONSE: (internal?)
301  *      This frame is a response to a PS-poll frame and should be sent
302  *      although the station is in powersave mode.
303  * @IEEE80211_TX_CTL_MORE_FRAMES: More frames will be passed to the
304  *      transmit function after the current frame, this can be used
305  *      by drivers to kick the DMA queue only if unset or when the
306  *      queue gets full.
307  * @IEEE80211_TX_INTFL_RETRANSMISSION: This frame is being retransmitted
308  *      after TX status because the destination was asleep, it must not
309  *      be modified again (no seqno assignment, crypto, etc.)
310  * @IEEE80211_TX_INTFL_HAS_RADIOTAP: This frame was injected and still
311  *      has a radiotap header at skb->data.
312  * @IEEE80211_TX_INTFL_NL80211_FRAME_TX: Frame was requested through nl80211
313  *      MLME command (internal to mac80211 to figure out whether to send TX
314  *      status to user space)
315  * @IEEE80211_TX_CTL_LDPC: tells the driver to use LDPC for this frame
316  * @IEEE80211_TX_CTL_STBC: Enables Space-Time Block Coding (STBC) for this
317  *      frame and selects the maximum number of streams that it can use.
318  */
319 enum mac80211_tx_control_flags {
320         IEEE80211_TX_CTL_REQ_TX_STATUS          = BIT(0),
321         IEEE80211_TX_CTL_ASSIGN_SEQ             = BIT(1),
322         IEEE80211_TX_CTL_NO_ACK                 = BIT(2),
323         IEEE80211_TX_CTL_CLEAR_PS_FILT          = BIT(3),
324         IEEE80211_TX_CTL_FIRST_FRAGMENT         = BIT(4),
325         IEEE80211_TX_CTL_SEND_AFTER_DTIM        = BIT(5),
326         IEEE80211_TX_CTL_AMPDU                  = BIT(6),
327         IEEE80211_TX_CTL_INJECTED               = BIT(7),
328         IEEE80211_TX_STAT_TX_FILTERED           = BIT(8),
329         IEEE80211_TX_STAT_ACK                   = BIT(9),
330         IEEE80211_TX_STAT_AMPDU                 = BIT(10),
331         IEEE80211_TX_STAT_AMPDU_NO_BACK         = BIT(11),
332         IEEE80211_TX_CTL_RATE_CTRL_PROBE        = BIT(12),
333         IEEE80211_TX_INTFL_NEED_TXPROCESSING    = BIT(14),
334         IEEE80211_TX_INTFL_RETRIED              = BIT(15),
335         IEEE80211_TX_INTFL_DONT_ENCRYPT         = BIT(16),
336         IEEE80211_TX_CTL_PSPOLL_RESPONSE        = BIT(17),
337         IEEE80211_TX_CTL_MORE_FRAMES            = BIT(18),
338         IEEE80211_TX_INTFL_RETRANSMISSION       = BIT(19),
339         IEEE80211_TX_INTFL_HAS_RADIOTAP         = BIT(20),
340         IEEE80211_TX_INTFL_NL80211_FRAME_TX     = BIT(21),
341         IEEE80211_TX_CTL_LDPC                   = BIT(22),
342         IEEE80211_TX_CTL_STBC                   = BIT(23) | BIT(24),
343 };
344
345 #define IEEE80211_TX_CTL_STBC_SHIFT             23
346
347 /**
348  * enum mac80211_rate_control_flags - per-rate flags set by the
349  *      Rate Control algorithm.
350  *
351  * These flags are set by the Rate control algorithm for each rate during tx,
352  * in the @flags member of struct ieee80211_tx_rate.
353  *
354  * @IEEE80211_TX_RC_USE_RTS_CTS: Use RTS/CTS exchange for this rate.
355  * @IEEE80211_TX_RC_USE_CTS_PROTECT: CTS-to-self protection is required.
356  *      This is set if the current BSS requires ERP protection.
357  * @IEEE80211_TX_RC_USE_SHORT_PREAMBLE: Use short preamble.
358  * @IEEE80211_TX_RC_MCS: HT rate.
359  * @IEEE80211_TX_RC_GREEN_FIELD: Indicates whether this rate should be used in
360  *      Greenfield mode.
361  * @IEEE80211_TX_RC_40_MHZ_WIDTH: Indicates if the Channel Width should be 40 MHz.
362  * @IEEE80211_TX_RC_DUP_DATA: The frame should be transmitted on both of the
363  *      adjacent 20 MHz channels, if the current channel type is
364  *      NL80211_CHAN_HT40MINUS or NL80211_CHAN_HT40PLUS.
365  * @IEEE80211_TX_RC_SHORT_GI: Short Guard interval should be used for this rate.
366  */
367 enum mac80211_rate_control_flags {
368         IEEE80211_TX_RC_USE_RTS_CTS             = BIT(0),
369         IEEE80211_TX_RC_USE_CTS_PROTECT         = BIT(1),
370         IEEE80211_TX_RC_USE_SHORT_PREAMBLE      = BIT(2),
371
372         /* rate index is an MCS rate number instead of an index */
373         IEEE80211_TX_RC_MCS                     = BIT(3),
374         IEEE80211_TX_RC_GREEN_FIELD             = BIT(4),
375         IEEE80211_TX_RC_40_MHZ_WIDTH            = BIT(5),
376         IEEE80211_TX_RC_DUP_DATA                = BIT(6),
377         IEEE80211_TX_RC_SHORT_GI                = BIT(7),
378 };
379
380
381 /* there are 40 bytes if you don't need the rateset to be kept */
382 #define IEEE80211_TX_INFO_DRIVER_DATA_SIZE 40
383
384 /* if you do need the rateset, then you have less space */
385 #define IEEE80211_TX_INFO_RATE_DRIVER_DATA_SIZE 24
386
387 /* maximum number of rate stages */
388 #define IEEE80211_TX_MAX_RATES  5
389
390 /**
391  * struct ieee80211_tx_rate - rate selection/status
392  *
393  * @idx: rate index to attempt to send with
394  * @flags: rate control flags (&enum mac80211_rate_control_flags)
395  * @count: number of tries in this rate before going to the next rate
396  *
397  * A value of -1 for @idx indicates an invalid rate and, if used
398  * in an array of retry rates, that no more rates should be tried.
399  *
400  * When used for transmit status reporting, the driver should
401  * always report the rate along with the flags it used.
402  *
403  * &struct ieee80211_tx_info contains an array of these structs
404  * in the control information, and it will be filled by the rate
405  * control algorithm according to what should be sent. For example,
406  * if this array contains, in the format { <idx>, <count> } the
407  * information
408  *    { 3, 2 }, { 2, 2 }, { 1, 4 }, { -1, 0 }, { -1, 0 }
409  * then this means that the frame should be transmitted
410  * up to twice at rate 3, up to twice at rate 2, and up to four
411  * times at rate 1 if it doesn't get acknowledged. Say it gets
412  * acknowledged by the peer after the fifth attempt, the status
413  * information should then contain
414  *   { 3, 2 }, { 2, 2 }, { 1, 1 }, { -1, 0 } ...
415  * since it was transmitted twice at rate 3, twice at rate 2
416  * and once at rate 1 after which we received an acknowledgement.
417  */
418 struct ieee80211_tx_rate {
419         s8 idx;
420         u8 count;
421         u8 flags;
422 } __packed;
423
424 /**
425  * struct ieee80211_tx_info - skb transmit information
426  *
427  * This structure is placed in skb->cb for three uses:
428  *  (1) mac80211 TX control - mac80211 tells the driver what to do
429  *  (2) driver internal use (if applicable)
430  *  (3) TX status information - driver tells mac80211 what happened
431  *
432  * The TX control's sta pointer is only valid during the ->tx call,
433  * it may be NULL.
434  *
435  * @flags: transmit info flags, defined above
436  * @band: the band to transmit on (use for checking for races)
437  * @antenna_sel_tx: antenna to use, 0 for automatic diversity
438  * @pad: padding, ignore
439  * @control: union for control data
440  * @status: union for status data
441  * @driver_data: array of driver_data pointers
442  * @ampdu_ack_len: number of acked aggregated frames.
443  *      relevant only if IEEE80211_TX_STAT_AMPDU was set.
444  * @ampdu_len: number of aggregated frames.
445  *      relevant only if IEEE80211_TX_STAT_AMPDU was set.
446  * @ack_signal: signal strength of the ACK frame
447  */
448 struct ieee80211_tx_info {
449         /* common information */
450         u32 flags;
451         u8 band;
452
453         u8 antenna_sel_tx;
454
455         /* 2 byte hole */
456         u8 pad[2];
457
458         union {
459                 struct {
460                         union {
461                                 /* rate control */
462                                 struct {
463                                         struct ieee80211_tx_rate rates[
464                                                 IEEE80211_TX_MAX_RATES];
465                                         s8 rts_cts_rate_idx;
466                                 };
467                                 /* only needed before rate control */
468                                 unsigned long jiffies;
469                         };
470                         /* NB: vif can be NULL for injected frames */
471                         struct ieee80211_vif *vif;
472                         struct ieee80211_key_conf *hw_key;
473                         struct ieee80211_sta *sta;
474                 } control;
475                 struct {
476                         struct ieee80211_tx_rate rates[IEEE80211_TX_MAX_RATES];
477                         u8 ampdu_ack_len;
478                         int ack_signal;
479                         u8 ampdu_len;
480                         /* 15 bytes free */
481                 } status;
482                 struct {
483                         struct ieee80211_tx_rate driver_rates[
484                                 IEEE80211_TX_MAX_RATES];
485                         void *rate_driver_data[
486                                 IEEE80211_TX_INFO_RATE_DRIVER_DATA_SIZE / sizeof(void *)];
487                 };
488                 void *driver_data[
489                         IEEE80211_TX_INFO_DRIVER_DATA_SIZE / sizeof(void *)];
490         };
491 };
492
493 static inline struct ieee80211_tx_info *IEEE80211_SKB_CB(struct sk_buff *skb)
494 {
495         return (struct ieee80211_tx_info *)skb->cb;
496 }
497
498 static inline struct ieee80211_rx_status *IEEE80211_SKB_RXCB(struct sk_buff *skb)
499 {
500         return (struct ieee80211_rx_status *)skb->cb;
501 }
502
503 /**
504  * ieee80211_tx_info_clear_status - clear TX status
505  *
506  * @info: The &struct ieee80211_tx_info to be cleared.
507  *
508  * When the driver passes an skb back to mac80211, it must report
509  * a number of things in TX status. This function clears everything
510  * in the TX status but the rate control information (it does clear
511  * the count since you need to fill that in anyway).
512  *
513  * NOTE: You can only use this function if you do NOT use
514  *       info->driver_data! Use info->rate_driver_data
515  *       instead if you need only the less space that allows.
516  */
517 static inline void
518 ieee80211_tx_info_clear_status(struct ieee80211_tx_info *info)
519 {
520         int i;
521
522         BUILD_BUG_ON(offsetof(struct ieee80211_tx_info, status.rates) !=
523                      offsetof(struct ieee80211_tx_info, control.rates));
524         BUILD_BUG_ON(offsetof(struct ieee80211_tx_info, status.rates) !=
525                      offsetof(struct ieee80211_tx_info, driver_rates));
526         BUILD_BUG_ON(offsetof(struct ieee80211_tx_info, status.rates) != 8);
527         /* clear the rate counts */
528         for (i = 0; i < IEEE80211_TX_MAX_RATES; i++)
529                 info->status.rates[i].count = 0;
530
531         BUILD_BUG_ON(
532             offsetof(struct ieee80211_tx_info, status.ampdu_ack_len) != 23);
533         memset(&info->status.ampdu_ack_len, 0,
534                sizeof(struct ieee80211_tx_info) -
535                offsetof(struct ieee80211_tx_info, status.ampdu_ack_len));
536 }
537
538
539 /**
540  * enum mac80211_rx_flags - receive flags
541  *
542  * These flags are used with the @flag member of &struct ieee80211_rx_status.
543  * @RX_FLAG_MMIC_ERROR: Michael MIC error was reported on this frame.
544  *      Use together with %RX_FLAG_MMIC_STRIPPED.
545  * @RX_FLAG_DECRYPTED: This frame was decrypted in hardware.
546  * @RX_FLAG_MMIC_STRIPPED: the Michael MIC is stripped off this frame,
547  *      verification has been done by the hardware.
548  * @RX_FLAG_IV_STRIPPED: The IV/ICV are stripped from this frame.
549  *      If this flag is set, the stack cannot do any replay detection
550  *      hence the driver or hardware will have to do that.
551  * @RX_FLAG_FAILED_FCS_CRC: Set this flag if the FCS check failed on
552  *      the frame.
553  * @RX_FLAG_FAILED_PLCP_CRC: Set this flag if the PCLP check failed on
554  *      the frame.
555  * @RX_FLAG_TSFT: The timestamp passed in the RX status (@mactime field)
556  *      is valid. This is useful in monitor mode and necessary for beacon frames
557  *      to enable IBSS merging.
558  * @RX_FLAG_SHORTPRE: Short preamble was used for this frame
559  * @RX_FLAG_HT: HT MCS was used and rate_idx is MCS index
560  * @RX_FLAG_40MHZ: HT40 (40 MHz) was used
561  * @RX_FLAG_SHORT_GI: Short guard interval was used
562  * @RX_FLAG_INTERNAL_CMTR: set internally after frame was reported
563  *      on cooked monitor to avoid double-reporting it for multiple
564  *      virtual interfaces
565  */
566 enum mac80211_rx_flags {
567         RX_FLAG_MMIC_ERROR      = 1<<0,
568         RX_FLAG_DECRYPTED       = 1<<1,
569         RX_FLAG_MMIC_STRIPPED   = 1<<3,
570         RX_FLAG_IV_STRIPPED     = 1<<4,
571         RX_FLAG_FAILED_FCS_CRC  = 1<<5,
572         RX_FLAG_FAILED_PLCP_CRC = 1<<6,
573         RX_FLAG_TSFT            = 1<<7,
574         RX_FLAG_SHORTPRE        = 1<<8,
575         RX_FLAG_HT              = 1<<9,
576         RX_FLAG_40MHZ           = 1<<10,
577         RX_FLAG_SHORT_GI        = 1<<11,
578         RX_FLAG_INTERNAL_CMTR   = 1<<12,
579 };
580
581 /**
582  * struct ieee80211_rx_status - receive status
583  *
584  * The low-level driver should provide this information (the subset
585  * supported by hardware) to the 802.11 code with each received
586  * frame, in the skb's control buffer (cb).
587  *
588  * @mactime: value in microseconds of the 64-bit Time Synchronization Function
589  *      (TSF) timer when the first data symbol (MPDU) arrived at the hardware.
590  * @band: the active band when this frame was received
591  * @freq: frequency the radio was tuned to when receiving this frame, in MHz
592  * @signal: signal strength when receiving this frame, either in dBm, in dB or
593  *      unspecified depending on the hardware capabilities flags
594  *      @IEEE80211_HW_SIGNAL_*
595  * @antenna: antenna used
596  * @rate_idx: index of data rate into band's supported rates or MCS index if
597  *      HT rates are use (RX_FLAG_HT)
598  * @flag: %RX_FLAG_*
599  */
600 struct ieee80211_rx_status {
601         u64 mactime;
602         enum ieee80211_band band;
603         int freq;
604         int signal;
605         int antenna;
606         int rate_idx;
607         int flag;
608 };
609
610 /**
611  * enum ieee80211_conf_flags - configuration flags
612  *
613  * Flags to define PHY configuration options
614  *
615  * @IEEE80211_CONF_MONITOR: there's a monitor interface present -- use this
616  *      to determine for example whether to calculate timestamps for packets
617  *      or not, do not use instead of filter flags!
618  * @IEEE80211_CONF_PS: Enable 802.11 power save mode (managed mode only).
619  *      This is the power save mode defined by IEEE 802.11-2007 section 11.2,
620  *      meaning that the hardware still wakes up for beacons, is able to
621  *      transmit frames and receive the possible acknowledgment frames.
622  *      Not to be confused with hardware specific wakeup/sleep states,
623  *      driver is responsible for that. See the section "Powersave support"
624  *      for more.
625  * @IEEE80211_CONF_IDLE: The device is running, but idle; if the flag is set
626  *      the driver should be prepared to handle configuration requests but
627  *      may turn the device off as much as possible. Typically, this flag will
628  *      be set when an interface is set UP but not associated or scanning, but
629  *      it can also be unset in that case when monitor interfaces are active.
630  * @IEEE80211_CONF_OFFCHANNEL: The device is currently not on its main
631  *      operating channel.
632  */
633 enum ieee80211_conf_flags {
634         IEEE80211_CONF_MONITOR          = (1<<0),
635         IEEE80211_CONF_PS               = (1<<1),
636         IEEE80211_CONF_IDLE             = (1<<2),
637         IEEE80211_CONF_OFFCHANNEL       = (1<<3),
638 };
639
640
641 /**
642  * enum ieee80211_conf_changed - denotes which configuration changed
643  *
644  * @IEEE80211_CONF_CHANGE_LISTEN_INTERVAL: the listen interval changed
645  * @IEEE80211_CONF_CHANGE_MONITOR: the monitor flag changed
646  * @IEEE80211_CONF_CHANGE_PS: the PS flag or dynamic PS timeout changed
647  * @IEEE80211_CONF_CHANGE_POWER: the TX power changed
648  * @IEEE80211_CONF_CHANGE_CHANNEL: the channel/channel_type changed
649  * @IEEE80211_CONF_CHANGE_RETRY_LIMITS: retry limits changed
650  * @IEEE80211_CONF_CHANGE_IDLE: Idle flag changed
651  * @IEEE80211_CONF_CHANGE_SMPS: Spatial multiplexing powersave mode changed
652  */
653 enum ieee80211_conf_changed {
654         IEEE80211_CONF_CHANGE_SMPS              = BIT(1),
655         IEEE80211_CONF_CHANGE_LISTEN_INTERVAL   = BIT(2),
656         IEEE80211_CONF_CHANGE_MONITOR           = BIT(3),
657         IEEE80211_CONF_CHANGE_PS                = BIT(4),
658         IEEE80211_CONF_CHANGE_POWER             = BIT(5),
659         IEEE80211_CONF_CHANGE_CHANNEL           = BIT(6),
660         IEEE80211_CONF_CHANGE_RETRY_LIMITS      = BIT(7),
661         IEEE80211_CONF_CHANGE_IDLE              = BIT(8),
662 };
663
664 /**
665  * enum ieee80211_smps_mode - spatial multiplexing power save mode
666  *
667  * @IEEE80211_SMPS_AUTOMATIC: automatic
668  * @IEEE80211_SMPS_OFF: off
669  * @IEEE80211_SMPS_STATIC: static
670  * @IEEE80211_SMPS_DYNAMIC: dynamic
671  * @IEEE80211_SMPS_NUM_MODES: internal, don't use
672  */
673 enum ieee80211_smps_mode {
674         IEEE80211_SMPS_AUTOMATIC,
675         IEEE80211_SMPS_OFF,
676         IEEE80211_SMPS_STATIC,
677         IEEE80211_SMPS_DYNAMIC,
678
679         /* keep last */
680         IEEE80211_SMPS_NUM_MODES,
681 };
682
683 /**
684  * struct ieee80211_conf - configuration of the device
685  *
686  * This struct indicates how the driver shall configure the hardware.
687  *
688  * @flags: configuration flags defined above
689  *
690  * @listen_interval: listen interval in units of beacon interval
691  * @max_sleep_period: the maximum number of beacon intervals to sleep for
692  *      before checking the beacon for a TIM bit (managed mode only); this
693  *      value will be only achievable between DTIM frames, the hardware
694  *      needs to check for the multicast traffic bit in DTIM beacons.
695  *      This variable is valid only when the CONF_PS flag is set.
696  * @ps_dtim_period: The DTIM period of the AP we're connected to, for use
697  *      in power saving. Power saving will not be enabled until a beacon
698  *      has been received and the DTIM period is known.
699  * @dynamic_ps_timeout: The dynamic powersave timeout (in ms), see the
700  *      powersave documentation below. This variable is valid only when
701  *      the CONF_PS flag is set.
702  *
703  * @power_level: requested transmit power (in dBm)
704  *
705  * @channel: the channel to tune to
706  * @channel_type: the channel (HT) type
707  *
708  * @long_frame_max_tx_count: Maximum number of transmissions for a "long" frame
709  *    (a frame not RTS protected), called "dot11LongRetryLimit" in 802.11,
710  *    but actually means the number of transmissions not the number of retries
711  * @short_frame_max_tx_count: Maximum number of transmissions for a "short"
712  *    frame, called "dot11ShortRetryLimit" in 802.11, but actually means the
713  *    number of transmissions not the number of retries
714  *
715  * @smps_mode: spatial multiplexing powersave mode; note that
716  *      %IEEE80211_SMPS_STATIC is used when the device is not
717  *      configured for an HT channel
718  */
719 struct ieee80211_conf {
720         u32 flags;
721         int power_level, dynamic_ps_timeout;
722         int max_sleep_period;
723
724         u16 listen_interval;
725         u8 ps_dtim_period;
726
727         u8 long_frame_max_tx_count, short_frame_max_tx_count;
728
729         struct ieee80211_channel *channel;
730         enum nl80211_channel_type channel_type;
731         enum ieee80211_smps_mode smps_mode;
732 };
733
734 /**
735  * struct ieee80211_channel_switch - holds the channel switch data
736  *
737  * The information provided in this structure is required for channel switch
738  * operation.
739  *
740  * @timestamp: value in microseconds of the 64-bit Time Synchronization
741  *      Function (TSF) timer when the frame containing the channel switch
742  *      announcement was received. This is simply the rx.mactime parameter
743  *      the driver passed into mac80211.
744  * @block_tx: Indicates whether transmission must be blocked before the
745  *      scheduled channel switch, as indicated by the AP.
746  * @channel: the new channel to switch to
747  * @count: the number of TBTT's until the channel switch event
748  */
749 struct ieee80211_channel_switch {
750         u64 timestamp;
751         bool block_tx;
752         struct ieee80211_channel *channel;
753         u8 count;
754 };
755
756 /**
757  * struct ieee80211_vif - per-interface data
758  *
759  * Data in this structure is continually present for driver
760  * use during the life of a virtual interface.
761  *
762  * @type: type of this virtual interface
763  * @bss_conf: BSS configuration for this interface, either our own
764  *      or the BSS we're associated to
765  * @addr: address of this interface
766  * @drv_priv: data area for driver use, will always be aligned to
767  *      sizeof(void *).
768  */
769 struct ieee80211_vif {
770         enum nl80211_iftype type;
771         struct ieee80211_bss_conf bss_conf;
772         u8 addr[ETH_ALEN];
773         /* must be last */
774         u8 drv_priv[0] __attribute__((__aligned__(sizeof(void *))));
775 };
776
777 static inline bool ieee80211_vif_is_mesh(struct ieee80211_vif *vif)
778 {
779 #ifdef CONFIG_MAC80211_MESH
780         return vif->type == NL80211_IFTYPE_MESH_POINT;
781 #endif
782         return false;
783 }
784
785 /**
786  * enum ieee80211_key_alg - key algorithm
787  * @ALG_WEP: WEP40 or WEP104
788  * @ALG_TKIP: TKIP
789  * @ALG_CCMP: CCMP (AES)
790  * @ALG_AES_CMAC: AES-128-CMAC
791  */
792 enum ieee80211_key_alg {
793         ALG_WEP,
794         ALG_TKIP,
795         ALG_CCMP,
796         ALG_AES_CMAC,
797 };
798
799 /**
800  * enum ieee80211_key_flags - key flags
801  *
802  * These flags are used for communication about keys between the driver
803  * and mac80211, with the @flags parameter of &struct ieee80211_key_conf.
804  *
805  * @IEEE80211_KEY_FLAG_WMM_STA: Set by mac80211, this flag indicates
806  *      that the STA this key will be used with could be using QoS.
807  * @IEEE80211_KEY_FLAG_GENERATE_IV: This flag should be set by the
808  *      driver to indicate that it requires IV generation for this
809  *      particular key.
810  * @IEEE80211_KEY_FLAG_GENERATE_MMIC: This flag should be set by
811  *      the driver for a TKIP key if it requires Michael MIC
812  *      generation in software.
813  * @IEEE80211_KEY_FLAG_PAIRWISE: Set by mac80211, this flag indicates
814  *      that the key is pairwise rather then a shared key.
815  * @IEEE80211_KEY_FLAG_SW_MGMT: This flag should be set by the driver for a
816  *      CCMP key if it requires CCMP encryption of management frames (MFP) to
817  *      be done in software.
818  */
819 enum ieee80211_key_flags {
820         IEEE80211_KEY_FLAG_WMM_STA      = 1<<0,
821         IEEE80211_KEY_FLAG_GENERATE_IV  = 1<<1,
822         IEEE80211_KEY_FLAG_GENERATE_MMIC= 1<<2,
823         IEEE80211_KEY_FLAG_PAIRWISE     = 1<<3,
824         IEEE80211_KEY_FLAG_SW_MGMT      = 1<<4,
825 };
826
827 /**
828  * struct ieee80211_key_conf - key information
829  *
830  * This key information is given by mac80211 to the driver by
831  * the set_key() callback in &struct ieee80211_ops.
832  *
833  * @hw_key_idx: To be set by the driver, this is the key index the driver
834  *      wants to be given when a frame is transmitted and needs to be
835  *      encrypted in hardware.
836  * @alg: The key algorithm.
837  * @flags: key flags, see &enum ieee80211_key_flags.
838  * @keyidx: the key index (0-3)
839  * @keylen: key material length
840  * @key: key material. For ALG_TKIP the key is encoded as a 256-bit (32 byte)
841  *      data block:
842  *      - Temporal Encryption Key (128 bits)
843  *      - Temporal Authenticator Tx MIC Key (64 bits)
844  *      - Temporal Authenticator Rx MIC Key (64 bits)
845  * @icv_len: The ICV length for this key type
846  * @iv_len: The IV length for this key type
847  */
848 struct ieee80211_key_conf {
849         enum ieee80211_key_alg alg;
850         u8 icv_len;
851         u8 iv_len;
852         u8 hw_key_idx;
853         u8 flags;
854         s8 keyidx;
855         u8 keylen;
856         u8 key[0];
857 };
858
859 /**
860  * enum set_key_cmd - key command
861  *
862  * Used with the set_key() callback in &struct ieee80211_ops, this
863  * indicates whether a key is being removed or added.
864  *
865  * @SET_KEY: a key is set
866  * @DISABLE_KEY: a key must be disabled
867  */
868 enum set_key_cmd {
869         SET_KEY, DISABLE_KEY,
870 };
871
872 /**
873  * struct ieee80211_sta - station table entry
874  *
875  * A station table entry represents a station we are possibly
876  * communicating with. Since stations are RCU-managed in
877  * mac80211, any ieee80211_sta pointer you get access to must
878  * either be protected by rcu_read_lock() explicitly or implicitly,
879  * or you must take good care to not use such a pointer after a
880  * call to your sta_remove callback that removed it.
881  *
882  * @addr: MAC address
883  * @aid: AID we assigned to the station if we're an AP
884  * @supp_rates: Bitmap of supported rates (per band)
885  * @ht_cap: HT capabilities of this STA; restricted to our own TX capabilities
886  * @drv_priv: data area for driver use, will always be aligned to
887  *      sizeof(void *), size is determined in hw information.
888  */
889 struct ieee80211_sta {
890         u32 supp_rates[IEEE80211_NUM_BANDS];
891         u8 addr[ETH_ALEN];
892         u16 aid;
893         struct ieee80211_sta_ht_cap ht_cap;
894
895         /* must be last */
896         u8 drv_priv[0] __attribute__((__aligned__(sizeof(void *))));
897 };
898
899 /**
900  * enum sta_notify_cmd - sta notify command
901  *
902  * Used with the sta_notify() callback in &struct ieee80211_ops, this
903  * indicates if an associated station made a power state transition.
904  *
905  * @STA_NOTIFY_SLEEP: a station is now sleeping
906  * @STA_NOTIFY_AWAKE: a sleeping station woke up
907  */
908 enum sta_notify_cmd {
909         STA_NOTIFY_SLEEP, STA_NOTIFY_AWAKE,
910 };
911
912 /**
913  * enum ieee80211_tkip_key_type - get tkip key
914  *
915  * Used by drivers which need to get a tkip key for skb. Some drivers need a
916  * phase 1 key, others need a phase 2 key. A single function allows the driver
917  * to get the key, this enum indicates what type of key is required.
918  *
919  * @IEEE80211_TKIP_P1_KEY: the driver needs a phase 1 key
920  * @IEEE80211_TKIP_P2_KEY: the driver needs a phase 2 key
921  */
922 enum ieee80211_tkip_key_type {
923         IEEE80211_TKIP_P1_KEY,
924         IEEE80211_TKIP_P2_KEY,
925 };
926
927 /**
928  * enum ieee80211_hw_flags - hardware flags
929  *
930  * These flags are used to indicate hardware capabilities to
931  * the stack. Generally, flags here should have their meaning
932  * done in a way that the simplest hardware doesn't need setting
933  * any particular flags. There are some exceptions to this rule,
934  * however, so you are advised to review these flags carefully.
935  *
936  * @IEEE80211_HW_HAS_RATE_CONTROL:
937  *      The hardware or firmware includes rate control, and cannot be
938  *      controlled by the stack. As such, no rate control algorithm
939  *      should be instantiated, and the TX rate reported to userspace
940  *      will be taken from the TX status instead of the rate control
941  *      algorithm.
942  *      Note that this requires that the driver implement a number of
943  *      callbacks so it has the correct information, it needs to have
944  *      the @set_rts_threshold callback and must look at the BSS config
945  *      @use_cts_prot for G/N protection, @use_short_slot for slot
946  *      timing in 2.4 GHz and @use_short_preamble for preambles for
947  *      CCK frames.
948  *
949  * @IEEE80211_HW_RX_INCLUDES_FCS:
950  *      Indicates that received frames passed to the stack include
951  *      the FCS at the end.
952  *
953  * @IEEE80211_HW_HOST_BROADCAST_PS_BUFFERING:
954  *      Some wireless LAN chipsets buffer broadcast/multicast frames
955  *      for power saving stations in the hardware/firmware and others
956  *      rely on the host system for such buffering. This option is used
957  *      to configure the IEEE 802.11 upper layer to buffer broadcast and
958  *      multicast frames when there are power saving stations so that
959  *      the driver can fetch them with ieee80211_get_buffered_bc().
960  *
961  * @IEEE80211_HW_2GHZ_SHORT_SLOT_INCAPABLE:
962  *      Hardware is not capable of short slot operation on the 2.4 GHz band.
963  *
964  * @IEEE80211_HW_2GHZ_SHORT_PREAMBLE_INCAPABLE:
965  *      Hardware is not capable of receiving frames with short preamble on
966  *      the 2.4 GHz band.
967  *
968  * @IEEE80211_HW_SIGNAL_UNSPEC:
969  *      Hardware can provide signal values but we don't know its units. We
970  *      expect values between 0 and @max_signal.
971  *      If possible please provide dB or dBm instead.
972  *
973  * @IEEE80211_HW_SIGNAL_DBM:
974  *      Hardware gives signal values in dBm, decibel difference from
975  *      one milliwatt. This is the preferred method since it is standardized
976  *      between different devices. @max_signal does not need to be set.
977  *
978  * @IEEE80211_HW_SPECTRUM_MGMT:
979  *      Hardware supports spectrum management defined in 802.11h
980  *      Measurement, Channel Switch, Quieting, TPC
981  *
982  * @IEEE80211_HW_AMPDU_AGGREGATION:
983  *      Hardware supports 11n A-MPDU aggregation.
984  *
985  * @IEEE80211_HW_SUPPORTS_PS:
986  *      Hardware has power save support (i.e. can go to sleep).
987  *
988  * @IEEE80211_HW_PS_NULLFUNC_STACK:
989  *      Hardware requires nullfunc frame handling in stack, implies
990  *      stack support for dynamic PS.
991  *
992  * @IEEE80211_HW_SUPPORTS_DYNAMIC_PS:
993  *      Hardware has support for dynamic PS.
994  *
995  * @IEEE80211_HW_MFP_CAPABLE:
996  *      Hardware supports management frame protection (MFP, IEEE 802.11w).
997  *
998  * @IEEE80211_HW_BEACON_FILTER:
999  *      Hardware supports dropping of irrelevant beacon frames to
1000  *      avoid waking up cpu.
1001  *
1002  * @IEEE80211_HW_SUPPORTS_STATIC_SMPS:
1003  *      Hardware supports static spatial multiplexing powersave,
1004  *      ie. can turn off all but one chain even on HT connections
1005  *      that should be using more chains.
1006  *
1007  * @IEEE80211_HW_SUPPORTS_DYNAMIC_SMPS:
1008  *      Hardware supports dynamic spatial multiplexing powersave,
1009  *      ie. can turn off all but one chain and then wake the rest
1010  *      up as required after, for example, rts/cts handshake.
1011  *
1012  * @IEEE80211_HW_SUPPORTS_UAPSD:
1013  *      Hardware supports Unscheduled Automatic Power Save Delivery
1014  *      (U-APSD) in managed mode. The mode is configured with
1015  *      conf_tx() operation.
1016  *
1017  * @IEEE80211_HW_REPORTS_TX_ACK_STATUS:
1018  *      Hardware can provide ack status reports of Tx frames to
1019  *      the stack.
1020  *
1021  * @IEEE80211_HW_CONNECTION_MONITOR:
1022  *      The hardware performs its own connection monitoring, including
1023  *      periodic keep-alives to the AP and probing the AP on beacon loss.
1024  *      When this flag is set, signaling beacon-loss will cause an immediate
1025  *      change to disassociated state.
1026  *
1027  * @IEEE80211_HW_SUPPORTS_CQM_RSSI:
1028  *      Hardware can do connection quality monitoring - i.e. it can monitor
1029  *      connection quality related parameters, such as the RSSI level and
1030  *      provide notifications if configured trigger levels are reached.
1031  *
1032  * @IEEE80211_HW_NEED_DTIM_PERIOD:
1033  *      This device needs to know the DTIM period for the BSS before
1034  *      associating.
1035  */
1036 enum ieee80211_hw_flags {
1037         IEEE80211_HW_HAS_RATE_CONTROL                   = 1<<0,
1038         IEEE80211_HW_RX_INCLUDES_FCS                    = 1<<1,
1039         IEEE80211_HW_HOST_BROADCAST_PS_BUFFERING        = 1<<2,
1040         IEEE80211_HW_2GHZ_SHORT_SLOT_INCAPABLE          = 1<<3,
1041         IEEE80211_HW_2GHZ_SHORT_PREAMBLE_INCAPABLE      = 1<<4,
1042         IEEE80211_HW_SIGNAL_UNSPEC                      = 1<<5,
1043         IEEE80211_HW_SIGNAL_DBM                         = 1<<6,
1044         IEEE80211_HW_NEED_DTIM_PERIOD                   = 1<<7,
1045         IEEE80211_HW_SPECTRUM_MGMT                      = 1<<8,
1046         IEEE80211_HW_AMPDU_AGGREGATION                  = 1<<9,
1047         IEEE80211_HW_SUPPORTS_PS                        = 1<<10,
1048         IEEE80211_HW_PS_NULLFUNC_STACK                  = 1<<11,
1049         IEEE80211_HW_SUPPORTS_DYNAMIC_PS                = 1<<12,
1050         IEEE80211_HW_MFP_CAPABLE                        = 1<<13,
1051         IEEE80211_HW_BEACON_FILTER                      = 1<<14,
1052         IEEE80211_HW_SUPPORTS_STATIC_SMPS               = 1<<15,
1053         IEEE80211_HW_SUPPORTS_DYNAMIC_SMPS              = 1<<16,
1054         IEEE80211_HW_SUPPORTS_UAPSD                     = 1<<17,
1055         IEEE80211_HW_REPORTS_TX_ACK_STATUS              = 1<<18,
1056         IEEE80211_HW_CONNECTION_MONITOR                 = 1<<19,
1057         IEEE80211_HW_SUPPORTS_CQM_RSSI                  = 1<<20,
1058 };
1059
1060 /**
1061  * struct ieee80211_hw - hardware information and state
1062  *
1063  * This structure contains the configuration and hardware
1064  * information for an 802.11 PHY.
1065  *
1066  * @wiphy: This points to the &struct wiphy allocated for this
1067  *      802.11 PHY. You must fill in the @perm_addr and @dev
1068  *      members of this structure using SET_IEEE80211_DEV()
1069  *      and SET_IEEE80211_PERM_ADDR(). Additionally, all supported
1070  *      bands (with channels, bitrates) are registered here.
1071  *
1072  * @conf: &struct ieee80211_conf, device configuration, don't use.
1073  *
1074  * @priv: pointer to private area that was allocated for driver use
1075  *      along with this structure.
1076  *
1077  * @flags: hardware flags, see &enum ieee80211_hw_flags.
1078  *
1079  * @extra_tx_headroom: headroom to reserve in each transmit skb
1080  *      for use by the driver (e.g. for transmit headers.)
1081  *
1082  * @channel_change_time: time (in microseconds) it takes to change channels.
1083  *
1084  * @max_signal: Maximum value for signal (rssi) in RX information, used
1085  *     only when @IEEE80211_HW_SIGNAL_UNSPEC or @IEEE80211_HW_SIGNAL_DB
1086  *
1087  * @max_listen_interval: max listen interval in units of beacon interval
1088  *     that HW supports
1089  *
1090  * @queues: number of available hardware transmit queues for
1091  *      data packets. WMM/QoS requires at least four, these
1092  *      queues need to have configurable access parameters.
1093  *
1094  * @rate_control_algorithm: rate control algorithm for this hardware.
1095  *      If unset (NULL), the default algorithm will be used. Must be
1096  *      set before calling ieee80211_register_hw().
1097  *
1098  * @vif_data_size: size (in bytes) of the drv_priv data area
1099  *      within &struct ieee80211_vif.
1100  * @sta_data_size: size (in bytes) of the drv_priv data area
1101  *      within &struct ieee80211_sta.
1102  *
1103  * @max_rates: maximum number of alternate rate retry stages
1104  * @max_rate_tries: maximum number of tries for each stage
1105  */
1106 struct ieee80211_hw {
1107         struct ieee80211_conf conf;
1108         struct wiphy *wiphy;
1109         const char *rate_control_algorithm;
1110         void *priv;
1111         u32 flags;
1112         unsigned int extra_tx_headroom;
1113         int channel_change_time;
1114         int vif_data_size;
1115         int sta_data_size;
1116         u16 queues;
1117         u16 max_listen_interval;
1118         s8 max_signal;
1119         u8 max_rates;
1120         u8 max_rate_tries;
1121 };
1122
1123 /**
1124  * wiphy_to_ieee80211_hw - return a mac80211 driver hw struct from a wiphy
1125  *
1126  * @wiphy: the &struct wiphy which we want to query
1127  *
1128  * mac80211 drivers can use this to get to their respective
1129  * &struct ieee80211_hw. Drivers wishing to get to their own private
1130  * structure can then access it via hw->priv. Note that mac802111 drivers should
1131  * not use wiphy_priv() to try to get their private driver structure as this
1132  * is already used internally by mac80211.
1133  */
1134 struct ieee80211_hw *wiphy_to_ieee80211_hw(struct wiphy *wiphy);
1135
1136 /**
1137  * SET_IEEE80211_DEV - set device for 802.11 hardware
1138  *
1139  * @hw: the &struct ieee80211_hw to set the device for
1140  * @dev: the &struct device of this 802.11 device
1141  */
1142 static inline void SET_IEEE80211_DEV(struct ieee80211_hw *hw, struct device *dev)
1143 {
1144         set_wiphy_dev(hw->wiphy, dev);
1145 }
1146
1147 /**
1148  * SET_IEEE80211_PERM_ADDR - set the permanent MAC address for 802.11 hardware
1149  *
1150  * @hw: the &struct ieee80211_hw to set the MAC address for
1151  * @addr: the address to set
1152  */
1153 static inline void SET_IEEE80211_PERM_ADDR(struct ieee80211_hw *hw, u8 *addr)
1154 {
1155         memcpy(hw->wiphy->perm_addr, addr, ETH_ALEN);
1156 }
1157
1158 static inline struct ieee80211_rate *
1159 ieee80211_get_tx_rate(const struct ieee80211_hw *hw,
1160                       const struct ieee80211_tx_info *c)
1161 {
1162         if (WARN_ON(c->control.rates[0].idx < 0))
1163                 return NULL;
1164         return &hw->wiphy->bands[c->band]->bitrates[c->control.rates[0].idx];
1165 }
1166
1167 static inline struct ieee80211_rate *
1168 ieee80211_get_rts_cts_rate(const struct ieee80211_hw *hw,
1169                            const struct ieee80211_tx_info *c)
1170 {
1171         if (c->control.rts_cts_rate_idx < 0)
1172                 return NULL;
1173         return &hw->wiphy->bands[c->band]->bitrates[c->control.rts_cts_rate_idx];
1174 }
1175
1176 static inline struct ieee80211_rate *
1177 ieee80211_get_alt_retry_rate(const struct ieee80211_hw *hw,
1178                              const struct ieee80211_tx_info *c, int idx)
1179 {
1180         if (c->control.rates[idx + 1].idx < 0)
1181                 return NULL;
1182         return &hw->wiphy->bands[c->band]->bitrates[c->control.rates[idx + 1].idx];
1183 }
1184
1185 /**
1186  * DOC: Hardware crypto acceleration
1187  *
1188  * mac80211 is capable of taking advantage of many hardware
1189  * acceleration designs for encryption and decryption operations.
1190  *
1191  * The set_key() callback in the &struct ieee80211_ops for a given
1192  * device is called to enable hardware acceleration of encryption and
1193  * decryption. The callback takes a @sta parameter that will be NULL
1194  * for default keys or keys used for transmission only, or point to
1195  * the station information for the peer for individual keys.
1196  * Multiple transmission keys with the same key index may be used when
1197  * VLANs are configured for an access point.
1198  *
1199  * When transmitting, the TX control data will use the @hw_key_idx
1200  * selected by the driver by modifying the &struct ieee80211_key_conf
1201  * pointed to by the @key parameter to the set_key() function.
1202  *
1203  * The set_key() call for the %SET_KEY command should return 0 if
1204  * the key is now in use, -%EOPNOTSUPP or -%ENOSPC if it couldn't be
1205  * added; if you return 0 then hw_key_idx must be assigned to the
1206  * hardware key index, you are free to use the full u8 range.
1207  *
1208  * When the cmd is %DISABLE_KEY then it must succeed.
1209  *
1210  * Note that it is permissible to not decrypt a frame even if a key
1211  * for it has been uploaded to hardware, the stack will not make any
1212  * decision based on whether a key has been uploaded or not but rather
1213  * based on the receive flags.
1214  *
1215  * The &struct ieee80211_key_conf structure pointed to by the @key
1216  * parameter is guaranteed to be valid until another call to set_key()
1217  * removes it, but it can only be used as a cookie to differentiate
1218  * keys.
1219  *
1220  * In TKIP some HW need to be provided a phase 1 key, for RX decryption
1221  * acceleration (i.e. iwlwifi). Those drivers should provide update_tkip_key
1222  * handler.
1223  * The update_tkip_key() call updates the driver with the new phase 1 key.
1224  * This happens everytime the iv16 wraps around (every 65536 packets). The
1225  * set_key() call will happen only once for each key (unless the AP did
1226  * rekeying), it will not include a valid phase 1 key. The valid phase 1 key is
1227  * provided by update_tkip_key only. The trigger that makes mac80211 call this
1228  * handler is software decryption with wrap around of iv16.
1229  */
1230
1231 /**
1232  * DOC: Powersave support
1233  *
1234  * mac80211 has support for various powersave implementations.
1235  *
1236  * First, it can support hardware that handles all powersaving by itself,
1237  * such hardware should simply set the %IEEE80211_HW_SUPPORTS_PS hardware
1238  * flag. In that case, it will be told about the desired powersave mode
1239  * with the %IEEE80211_CONF_PS flag depending on the association status.
1240  * The hardware must take care of sending nullfunc frames when necessary,
1241  * i.e. when entering and leaving powersave mode. The hardware is required
1242  * to look at the AID in beacons and signal to the AP that it woke up when
1243  * it finds traffic directed to it.
1244  *
1245  * %IEEE80211_CONF_PS flag enabled means that the powersave mode defined in
1246  * IEEE 802.11-2007 section 11.2 is enabled. This is not to be confused
1247  * with hardware wakeup and sleep states. Driver is responsible for waking
1248  * up the hardware before issueing commands to the hardware and putting it
1249  * back to sleep at approriate times.
1250  *
1251  * When PS is enabled, hardware needs to wakeup for beacons and receive the
1252  * buffered multicast/broadcast frames after the beacon. Also it must be
1253  * possible to send frames and receive the acknowledment frame.
1254  *
1255  * Other hardware designs cannot send nullfunc frames by themselves and also
1256  * need software support for parsing the TIM bitmap. This is also supported
1257  * by mac80211 by combining the %IEEE80211_HW_SUPPORTS_PS and
1258  * %IEEE80211_HW_PS_NULLFUNC_STACK flags. The hardware is of course still
1259  * required to pass up beacons. The hardware is still required to handle
1260  * waking up for multicast traffic; if it cannot the driver must handle that
1261  * as best as it can, mac80211 is too slow to do that.
1262  *
1263  * Dynamic powersave is an extension to normal powersave in which the
1264  * hardware stays awake for a user-specified period of time after sending a
1265  * frame so that reply frames need not be buffered and therefore delayed to
1266  * the next wakeup. It's compromise of getting good enough latency when
1267  * there's data traffic and still saving significantly power in idle
1268  * periods.
1269  *
1270  * Dynamic powersave is supported by simply mac80211 enabling and disabling
1271  * PS based on traffic. Driver needs to only set %IEEE80211_HW_SUPPORTS_PS
1272  * flag and mac80211 will handle everything automatically. Additionally,
1273  * hardware having support for the dynamic PS feature may set the
1274  * %IEEE80211_HW_SUPPORTS_DYNAMIC_PS flag to indicate that it can support
1275  * dynamic PS mode itself. The driver needs to look at the
1276  * @dynamic_ps_timeout hardware configuration value and use it that value
1277  * whenever %IEEE80211_CONF_PS is set. In this case mac80211 will disable
1278  * dynamic PS feature in stack and will just keep %IEEE80211_CONF_PS
1279  * enabled whenever user has enabled powersave.
1280  *
1281  * Some hardware need to toggle a single shared antenna between WLAN and
1282  * Bluetooth to facilitate co-existence. These types of hardware set
1283  * limitations on the use of host controlled dynamic powersave whenever there
1284  * is simultaneous WLAN and Bluetooth traffic. For these types of hardware, the
1285  * driver may request temporarily going into full power save, in order to
1286  * enable toggling the antenna between BT and WLAN. If the driver requests
1287  * disabling dynamic powersave, the @dynamic_ps_timeout value will be
1288  * temporarily set to zero until the driver re-enables dynamic powersave.
1289  *
1290  * Driver informs U-APSD client support by enabling
1291  * %IEEE80211_HW_SUPPORTS_UAPSD flag. The mode is configured through the
1292  * uapsd paramater in conf_tx() operation. Hardware needs to send the QoS
1293  * Nullfunc frames and stay awake until the service period has ended. To
1294  * utilize U-APSD, dynamic powersave is disabled for voip AC and all frames
1295  * from that AC are transmitted with powersave enabled.
1296  *
1297  * Note: U-APSD client mode is not yet supported with
1298  * %IEEE80211_HW_PS_NULLFUNC_STACK.
1299  */
1300
1301 /**
1302  * DOC: Beacon filter support
1303  *
1304  * Some hardware have beacon filter support to reduce host cpu wakeups
1305  * which will reduce system power consumption. It usuallly works so that
1306  * the firmware creates a checksum of the beacon but omits all constantly
1307  * changing elements (TSF, TIM etc). Whenever the checksum changes the
1308  * beacon is forwarded to the host, otherwise it will be just dropped. That
1309  * way the host will only receive beacons where some relevant information
1310  * (for example ERP protection or WMM settings) have changed.
1311  *
1312  * Beacon filter support is advertised with the %IEEE80211_HW_BEACON_FILTER
1313  * hardware capability. The driver needs to enable beacon filter support
1314  * whenever power save is enabled, that is %IEEE80211_CONF_PS is set. When
1315  * power save is enabled, the stack will not check for beacon loss and the
1316  * driver needs to notify about loss of beacons with ieee80211_beacon_loss().
1317  *
1318  * The time (or number of beacons missed) until the firmware notifies the
1319  * driver of a beacon loss event (which in turn causes the driver to call
1320  * ieee80211_beacon_loss()) should be configurable and will be controlled
1321  * by mac80211 and the roaming algorithm in the future.
1322  *
1323  * Since there may be constantly changing information elements that nothing
1324  * in the software stack cares about, we will, in the future, have mac80211
1325  * tell the driver which information elements are interesting in the sense
1326  * that we want to see changes in them. This will include
1327  *  - a list of information element IDs
1328  *  - a list of OUIs for the vendor information element
1329  *
1330  * Ideally, the hardware would filter out any beacons without changes in the
1331  * requested elements, but if it cannot support that it may, at the expense
1332  * of some efficiency, filter out only a subset. For example, if the device
1333  * doesn't support checking for OUIs it should pass up all changes in all
1334  * vendor information elements.
1335  *
1336  * Note that change, for the sake of simplification, also includes information
1337  * elements appearing or disappearing from the beacon.
1338  *
1339  * Some hardware supports an "ignore list" instead, just make sure nothing
1340  * that was requested is on the ignore list, and include commonly changing
1341  * information element IDs in the ignore list, for example 11 (BSS load) and
1342  * the various vendor-assigned IEs with unknown contents (128, 129, 133-136,
1343  * 149, 150, 155, 156, 173, 176, 178, 179, 219); for forward compatibility
1344  * it could also include some currently unused IDs.
1345  *
1346  *
1347  * In addition to these capabilities, hardware should support notifying the
1348  * host of changes in the beacon RSSI. This is relevant to implement roaming
1349  * when no traffic is flowing (when traffic is flowing we see the RSSI of
1350  * the received data packets). This can consist in notifying the host when
1351  * the RSSI changes significantly or when it drops below or rises above
1352  * configurable thresholds. In the future these thresholds will also be
1353  * configured by mac80211 (which gets them from userspace) to implement
1354  * them as the roaming algorithm requires.
1355  *
1356  * If the hardware cannot implement this, the driver should ask it to
1357  * periodically pass beacon frames to the host so that software can do the
1358  * signal strength threshold checking.
1359  */
1360
1361 /**
1362  * DOC: Spatial multiplexing power save
1363  *
1364  * SMPS (Spatial multiplexing power save) is a mechanism to conserve
1365  * power in an 802.11n implementation. For details on the mechanism
1366  * and rationale, please refer to 802.11 (as amended by 802.11n-2009)
1367  * "11.2.3 SM power save".
1368  *
1369  * The mac80211 implementation is capable of sending action frames
1370  * to update the AP about the station's SMPS mode, and will instruct
1371  * the driver to enter the specific mode. It will also announce the
1372  * requested SMPS mode during the association handshake. Hardware
1373  * support for this feature is required, and can be indicated by
1374  * hardware flags.
1375  *
1376  * The default mode will be "automatic", which nl80211/cfg80211
1377  * defines to be dynamic SMPS in (regular) powersave, and SMPS
1378  * turned off otherwise.
1379  *
1380  * To support this feature, the driver must set the appropriate
1381  * hardware support flags, and handle the SMPS flag to the config()
1382  * operation. It will then with this mechanism be instructed to
1383  * enter the requested SMPS mode while associated to an HT AP.
1384  */
1385
1386 /**
1387  * DOC: Frame filtering
1388  *
1389  * mac80211 requires to see many management frames for proper
1390  * operation, and users may want to see many more frames when
1391  * in monitor mode. However, for best CPU usage and power consumption,
1392  * having as few frames as possible percolate through the stack is
1393  * desirable. Hence, the hardware should filter as much as possible.
1394  *
1395  * To achieve this, mac80211 uses filter flags (see below) to tell
1396  * the driver's configure_filter() function which frames should be
1397  * passed to mac80211 and which should be filtered out.
1398  *
1399  * Before configure_filter() is invoked, the prepare_multicast()
1400  * callback is invoked with the parameters @mc_count and @mc_list
1401  * for the combined multicast address list of all virtual interfaces.
1402  * It's use is optional, and it returns a u64 that is passed to
1403  * configure_filter(). Additionally, configure_filter() has the
1404  * arguments @changed_flags telling which flags were changed and
1405  * @total_flags with the new flag states.
1406  *
1407  * If your device has no multicast address filters your driver will
1408  * need to check both the %FIF_ALLMULTI flag and the @mc_count
1409  * parameter to see whether multicast frames should be accepted
1410  * or dropped.
1411  *
1412  * All unsupported flags in @total_flags must be cleared.
1413  * Hardware does not support a flag if it is incapable of _passing_
1414  * the frame to the stack. Otherwise the driver must ignore
1415  * the flag, but not clear it.
1416  * You must _only_ clear the flag (announce no support for the
1417  * flag to mac80211) if you are not able to pass the packet type
1418  * to the stack (so the hardware always filters it).
1419  * So for example, you should clear @FIF_CONTROL, if your hardware
1420  * always filters control frames. If your hardware always passes
1421  * control frames to the kernel and is incapable of filtering them,
1422  * you do _not_ clear the @FIF_CONTROL flag.
1423  * This rule applies to all other FIF flags as well.
1424  */
1425
1426 /**
1427  * enum ieee80211_filter_flags - hardware filter flags
1428  *
1429  * These flags determine what the filter in hardware should be
1430  * programmed to let through and what should not be passed to the
1431  * stack. It is always safe to pass more frames than requested,
1432  * but this has negative impact on power consumption.
1433  *
1434  * @FIF_PROMISC_IN_BSS: promiscuous mode within your BSS,
1435  *      think of the BSS as your network segment and then this corresponds
1436  *      to the regular ethernet device promiscuous mode.
1437  *
1438  * @FIF_ALLMULTI: pass all multicast frames, this is used if requested
1439  *      by the user or if the hardware is not capable of filtering by
1440  *      multicast address.
1441  *
1442  * @FIF_FCSFAIL: pass frames with failed FCS (but you need to set the
1443  *      %RX_FLAG_FAILED_FCS_CRC for them)
1444  *
1445  * @FIF_PLCPFAIL: pass frames with failed PLCP CRC (but you need to set
1446  *      the %RX_FLAG_FAILED_PLCP_CRC for them
1447  *
1448  * @FIF_BCN_PRBRESP_PROMISC: This flag is set during scanning to indicate
1449  *      to the hardware that it should not filter beacons or probe responses
1450  *      by BSSID. Filtering them can greatly reduce the amount of processing
1451  *      mac80211 needs to do and the amount of CPU wakeups, so you should
1452  *      honour this flag if possible.
1453  *
1454  * @FIF_CONTROL: pass control frames (except for PS Poll), if PROMISC_IN_BSS
1455  *  is not set then only those addressed to this station.
1456  *
1457  * @FIF_OTHER_BSS: pass frames destined to other BSSes
1458  *
1459  * @FIF_PSPOLL: pass PS Poll frames, if PROMISC_IN_BSS  is not set then only
1460  *  those addressed to this station.
1461  */
1462 enum ieee80211_filter_flags {
1463         FIF_PROMISC_IN_BSS      = 1<<0,
1464         FIF_ALLMULTI            = 1<<1,
1465         FIF_FCSFAIL             = 1<<2,
1466         FIF_PLCPFAIL            = 1<<3,
1467         FIF_BCN_PRBRESP_PROMISC = 1<<4,
1468         FIF_CONTROL             = 1<<5,
1469         FIF_OTHER_BSS           = 1<<6,
1470         FIF_PSPOLL              = 1<<7,
1471 };
1472
1473 /**
1474  * enum ieee80211_ampdu_mlme_action - A-MPDU actions
1475  *
1476  * These flags are used with the ampdu_action() callback in
1477  * &struct ieee80211_ops to indicate which action is needed.
1478  *
1479  * Note that drivers MUST be able to deal with a TX aggregation
1480  * session being stopped even before they OK'ed starting it by
1481  * calling ieee80211_start_tx_ba_cb_irqsafe, because the peer
1482  * might receive the addBA frame and send a delBA right away!
1483  *
1484  * @IEEE80211_AMPDU_RX_START: start Rx aggregation
1485  * @IEEE80211_AMPDU_RX_STOP: stop Rx aggregation
1486  * @IEEE80211_AMPDU_TX_START: start Tx aggregation
1487  * @IEEE80211_AMPDU_TX_STOP: stop Tx aggregation
1488  * @IEEE80211_AMPDU_TX_OPERATIONAL: TX aggregation has become operational
1489  */
1490 enum ieee80211_ampdu_mlme_action {
1491         IEEE80211_AMPDU_RX_START,
1492         IEEE80211_AMPDU_RX_STOP,
1493         IEEE80211_AMPDU_TX_START,
1494         IEEE80211_AMPDU_TX_STOP,
1495         IEEE80211_AMPDU_TX_OPERATIONAL,
1496 };
1497
1498 /**
1499  * struct ieee80211_ops - callbacks from mac80211 to the driver
1500  *
1501  * This structure contains various callbacks that the driver may
1502  * handle or, in some cases, must handle, for example to configure
1503  * the hardware to a new channel or to transmit a frame.
1504  *
1505  * @tx: Handler that 802.11 module calls for each transmitted frame.
1506  *      skb contains the buffer starting from the IEEE 802.11 header.
1507  *      The low-level driver should send the frame out based on
1508  *      configuration in the TX control data. This handler should,
1509  *      preferably, never fail and stop queues appropriately, more
1510  *      importantly, however, it must never fail for A-MPDU-queues.
1511  *      This function should return NETDEV_TX_OK except in very
1512  *      limited cases.
1513  *      Must be implemented and atomic.
1514  *
1515  * @start: Called before the first netdevice attached to the hardware
1516  *      is enabled. This should turn on the hardware and must turn on
1517  *      frame reception (for possibly enabled monitor interfaces.)
1518  *      Returns negative error codes, these may be seen in userspace,
1519  *      or zero.
1520  *      When the device is started it should not have a MAC address
1521  *      to avoid acknowledging frames before a non-monitor device
1522  *      is added.
1523  *      Must be implemented and can sleep.
1524  *
1525  * @stop: Called after last netdevice attached to the hardware
1526  *      is disabled. This should turn off the hardware (at least
1527  *      it must turn off frame reception.)
1528  *      May be called right after add_interface if that rejects
1529  *      an interface. If you added any work onto the mac80211 workqueue
1530  *      you should ensure to cancel it on this callback.
1531  *      Must be implemented and can sleep.
1532  *
1533  * @add_interface: Called when a netdevice attached to the hardware is
1534  *      enabled. Because it is not called for monitor mode devices, @start
1535  *      and @stop must be implemented.
1536  *      The driver should perform any initialization it needs before
1537  *      the device can be enabled. The initial configuration for the
1538  *      interface is given in the conf parameter.
1539  *      The callback may refuse to add an interface by returning a
1540  *      negative error code (which will be seen in userspace.)
1541  *      Must be implemented and can sleep.
1542  *
1543  * @remove_interface: Notifies a driver that an interface is going down.
1544  *      The @stop callback is called after this if it is the last interface
1545  *      and no monitor interfaces are present.
1546  *      When all interfaces are removed, the MAC address in the hardware
1547  *      must be cleared so the device no longer acknowledges packets,
1548  *      the mac_addr member of the conf structure is, however, set to the
1549  *      MAC address of the device going away.
1550  *      Hence, this callback must be implemented. It can sleep.
1551  *
1552  * @config: Handler for configuration requests. IEEE 802.11 code calls this
1553  *      function to change hardware configuration, e.g., channel.
1554  *      This function should never fail but returns a negative error code
1555  *      if it does. The callback can sleep.
1556  *
1557  * @bss_info_changed: Handler for configuration requests related to BSS
1558  *      parameters that may vary during BSS's lifespan, and may affect low
1559  *      level driver (e.g. assoc/disassoc status, erp parameters).
1560  *      This function should not be used if no BSS has been set, unless
1561  *      for association indication. The @changed parameter indicates which
1562  *      of the bss parameters has changed when a call is made. The callback
1563  *      can sleep.
1564  *
1565  * @prepare_multicast: Prepare for multicast filter configuration.
1566  *      This callback is optional, and its return value is passed
1567  *      to configure_filter(). This callback must be atomic.
1568  *
1569  * @configure_filter: Configure the device's RX filter.
1570  *      See the section "Frame filtering" for more information.
1571  *      This callback must be implemented and can sleep.
1572  *
1573  * @set_tim: Set TIM bit. mac80211 calls this function when a TIM bit
1574  *      must be set or cleared for a given STA. Must be atomic.
1575  *
1576  * @set_key: See the section "Hardware crypto acceleration"
1577  *      This callback is only called between add_interface and
1578  *      remove_interface calls, i.e. while the given virtual interface
1579  *      is enabled.
1580  *      Returns a negative error code if the key can't be added.
1581  *      The callback can sleep.
1582  *
1583  * @update_tkip_key: See the section "Hardware crypto acceleration"
1584  *      This callback will be called in the context of Rx. Called for drivers
1585  *      which set IEEE80211_KEY_FLAG_TKIP_REQ_RX_P1_KEY.
1586  *      The callback must be atomic.
1587  *
1588  * @hw_scan: Ask the hardware to service the scan request, no need to start
1589  *      the scan state machine in stack. The scan must honour the channel
1590  *      configuration done by the regulatory agent in the wiphy's
1591  *      registered bands. The hardware (or the driver) needs to make sure
1592  *      that power save is disabled.
1593  *      The @req ie/ie_len members are rewritten by mac80211 to contain the
1594  *      entire IEs after the SSID, so that drivers need not look at these
1595  *      at all but just send them after the SSID -- mac80211 includes the
1596  *      (extended) supported rates and HT information (where applicable).
1597  *      When the scan finishes, ieee80211_scan_completed() must be called;
1598  *      note that it also must be called when the scan cannot finish due to
1599  *      any error unless this callback returned a negative error code.
1600  *      The callback can sleep.
1601  *
1602  * @sw_scan_start: Notifier function that is called just before a software scan
1603  *      is started. Can be NULL, if the driver doesn't need this notification.
1604  *      The callback can sleep.
1605  *
1606  * @sw_scan_complete: Notifier function that is called just after a
1607  *      software scan finished. Can be NULL, if the driver doesn't need
1608  *      this notification.
1609  *      The callback can sleep.
1610  *
1611  * @get_stats: Return low-level statistics.
1612  *      Returns zero if statistics are available.
1613  *      The callback can sleep.
1614  *
1615  * @get_tkip_seq: If your device implements TKIP encryption in hardware this
1616  *      callback should be provided to read the TKIP transmit IVs (both IV32
1617  *      and IV16) for the given key from hardware.
1618  *      The callback must be atomic.
1619  *
1620  * @set_rts_threshold: Configuration of RTS threshold (if device needs it)
1621  *      The callback can sleep.
1622  *
1623  * @sta_add: Notifies low level driver about addition of an associated station,
1624  *      AP, IBSS/WDS/mesh peer etc. This callback can sleep.
1625  *
1626  * @sta_remove: Notifies low level driver about removal of an associated
1627  *      station, AP, IBSS/WDS/mesh peer etc. This callback can sleep.
1628  *
1629  * @sta_notify: Notifies low level driver about power state transition of an
1630  *      associated station, AP,  IBSS/WDS/mesh peer etc. Must be atomic.
1631  *
1632  * @conf_tx: Configure TX queue parameters (EDCF (aifs, cw_min, cw_max),
1633  *      bursting) for a hardware TX queue.
1634  *      Returns a negative error code on failure.
1635  *      The callback can sleep.
1636  *
1637  * @get_tsf: Get the current TSF timer value from firmware/hardware. Currently,
1638  *      this is only used for IBSS mode BSSID merging and debugging. Is not a
1639  *      required function.
1640  *      The callback can sleep.
1641  *
1642  * @set_tsf: Set the TSF timer to the specified value in the firmware/hardware.
1643  *      Currently, this is only used for IBSS mode debugging. Is not a
1644  *      required function.
1645  *      The callback can sleep.
1646  *
1647  * @reset_tsf: Reset the TSF timer and allow firmware/hardware to synchronize
1648  *      with other STAs in the IBSS. This is only used in IBSS mode. This
1649  *      function is optional if the firmware/hardware takes full care of
1650  *      TSF synchronization.
1651  *      The callback can sleep.
1652  *
1653  * @tx_last_beacon: Determine whether the last IBSS beacon was sent by us.
1654  *      This is needed only for IBSS mode and the result of this function is
1655  *      used to determine whether to reply to Probe Requests.
1656  *      Returns non-zero if this device sent the last beacon.
1657  *      The callback can sleep.
1658  *
1659  * @ampdu_action: Perform a certain A-MPDU action
1660  *      The RA/TID combination determines the destination and TID we want
1661  *      the ampdu action to be performed for. The action is defined through
1662  *      ieee80211_ampdu_mlme_action. Starting sequence number (@ssn)
1663  *      is the first frame we expect to perform the action on. Notice
1664  *      that TX/RX_STOP can pass NULL for this parameter.
1665  *      Returns a negative error code on failure.
1666  *      The callback can sleep.
1667  *
1668  * @get_survey: Return per-channel survey information
1669  *
1670  * @rfkill_poll: Poll rfkill hardware state. If you need this, you also
1671  *      need to set wiphy->rfkill_poll to %true before registration,
1672  *      and need to call wiphy_rfkill_set_hw_state() in the callback.
1673  *      The callback can sleep.
1674  *
1675  * @set_coverage_class: Set slot time for given coverage class as specified
1676  *      in IEEE 802.11-2007 section 17.3.8.6 and modify ACK timeout
1677  *      accordingly. This callback is not required and may sleep.
1678  *
1679  * @testmode_cmd: Implement a cfg80211 test mode command.
1680  *      The callback can sleep.
1681  *
1682  * @flush: Flush all pending frames from the hardware queue, making sure
1683  *      that the hardware queues are empty. If the parameter @drop is set
1684  *      to %true, pending frames may be dropped. The callback can sleep.
1685  *
1686  * @channel_switch: Drivers that need (or want) to offload the channel
1687  *      switch operation for CSAs received from the AP may implement this
1688  *      callback. They must then call ieee80211_chswitch_done() to indicate
1689  *      completion of the channel switch.
1690  */
1691 struct ieee80211_ops {
1692         int (*tx)(struct ieee80211_hw *hw, struct sk_buff *skb);
1693         int (*start)(struct ieee80211_hw *hw);
1694         void (*stop)(struct ieee80211_hw *hw);
1695         int (*add_interface)(struct ieee80211_hw *hw,
1696                              struct ieee80211_vif *vif);
1697         void (*remove_interface)(struct ieee80211_hw *hw,
1698                                  struct ieee80211_vif *vif);
1699         int (*config)(struct ieee80211_hw *hw, u32 changed);
1700         void (*bss_info_changed)(struct ieee80211_hw *hw,
1701                                  struct ieee80211_vif *vif,
1702                                  struct ieee80211_bss_conf *info,
1703                                  u32 changed);
1704         u64 (*prepare_multicast)(struct ieee80211_hw *hw,
1705                                  struct netdev_hw_addr_list *mc_list);
1706         void (*configure_filter)(struct ieee80211_hw *hw,
1707                                  unsigned int changed_flags,
1708                                  unsigned int *total_flags,
1709                                  u64 multicast);
1710         int (*set_tim)(struct ieee80211_hw *hw, struct ieee80211_sta *sta,
1711                        bool set);
1712         int (*set_key)(struct ieee80211_hw *hw, enum set_key_cmd cmd,
1713                        struct ieee80211_vif *vif, struct ieee80211_sta *sta,
1714                        struct ieee80211_key_conf *key);
1715         void (*update_tkip_key)(struct ieee80211_hw *hw,
1716                                 struct ieee80211_vif *vif,
1717                                 struct ieee80211_key_conf *conf,
1718                                 struct ieee80211_sta *sta,
1719                                 u32 iv32, u16 *phase1key);
1720         int (*hw_scan)(struct ieee80211_hw *hw, struct ieee80211_vif *vif,
1721                        struct cfg80211_scan_request *req);
1722         void (*sw_scan_start)(struct ieee80211_hw *hw);
1723         void (*sw_scan_complete)(struct ieee80211_hw *hw);
1724         int (*get_stats)(struct ieee80211_hw *hw,
1725                          struct ieee80211_low_level_stats *stats);
1726         void (*get_tkip_seq)(struct ieee80211_hw *hw, u8 hw_key_idx,
1727                              u32 *iv32, u16 *iv16);
1728         int (*set_rts_threshold)(struct ieee80211_hw *hw, u32 value);
1729         int (*sta_add)(struct ieee80211_hw *hw, struct ieee80211_vif *vif,
1730                        struct ieee80211_sta *sta);
1731         int (*sta_remove)(struct ieee80211_hw *hw, struct ieee80211_vif *vif,
1732                           struct ieee80211_sta *sta);
1733         void (*sta_notify)(struct ieee80211_hw *hw, struct ieee80211_vif *vif,
1734                         enum sta_notify_cmd, struct ieee80211_sta *sta);
1735         int (*conf_tx)(struct ieee80211_hw *hw, u16 queue,
1736                        const struct ieee80211_tx_queue_params *params);
1737         u64 (*get_tsf)(struct ieee80211_hw *hw);
1738         void (*set_tsf)(struct ieee80211_hw *hw, u64 tsf);
1739         void (*reset_tsf)(struct ieee80211_hw *hw);
1740         int (*tx_last_beacon)(struct ieee80211_hw *hw);
1741         int (*ampdu_action)(struct ieee80211_hw *hw,
1742                             struct ieee80211_vif *vif,
1743                             enum ieee80211_ampdu_mlme_action action,
1744                             struct ieee80211_sta *sta, u16 tid, u16 *ssn);
1745         int (*get_survey)(struct ieee80211_hw *hw, int idx,
1746                 struct survey_info *survey);
1747         void (*rfkill_poll)(struct ieee80211_hw *hw);
1748         void (*set_coverage_class)(struct ieee80211_hw *hw, u8 coverage_class);
1749 #ifdef CONFIG_NL80211_TESTMODE
1750         int (*testmode_cmd)(struct ieee80211_hw *hw, void *data, int len);
1751 #endif
1752         void (*flush)(struct ieee80211_hw *hw, bool drop);
1753         void (*channel_switch)(struct ieee80211_hw *hw,
1754                                struct ieee80211_channel_switch *ch_switch);
1755 };
1756
1757 /**
1758  * ieee80211_alloc_hw -  Allocate a new hardware device
1759  *
1760  * This must be called once for each hardware device. The returned pointer
1761  * must be used to refer to this device when calling other functions.
1762  * mac80211 allocates a private data area for the driver pointed to by
1763  * @priv in &struct ieee80211_hw, the size of this area is given as
1764  * @priv_data_len.
1765  *
1766  * @priv_data_len: length of private data
1767  * @ops: callbacks for this device
1768  */
1769 struct ieee80211_hw *ieee80211_alloc_hw(size_t priv_data_len,
1770                                         const struct ieee80211_ops *ops);
1771
1772 /**
1773  * ieee80211_register_hw - Register hardware device
1774  *
1775  * You must call this function before any other functions in
1776  * mac80211. Note that before a hardware can be registered, you
1777  * need to fill the contained wiphy's information.
1778  *
1779  * @hw: the device to register as returned by ieee80211_alloc_hw()
1780  */
1781 int ieee80211_register_hw(struct ieee80211_hw *hw);
1782
1783 #ifdef CONFIG_MAC80211_LEDS
1784 extern char *__ieee80211_get_tx_led_name(struct ieee80211_hw *hw);
1785 extern char *__ieee80211_get_rx_led_name(struct ieee80211_hw *hw);
1786 extern char *__ieee80211_get_assoc_led_name(struct ieee80211_hw *hw);
1787 extern char *__ieee80211_get_radio_led_name(struct ieee80211_hw *hw);
1788 #endif
1789 /**
1790  * ieee80211_get_tx_led_name - get name of TX LED
1791  *
1792  * mac80211 creates a transmit LED trigger for each wireless hardware
1793  * that can be used to drive LEDs if your driver registers a LED device.
1794  * This function returns the name (or %NULL if not configured for LEDs)
1795  * of the trigger so you can automatically link the LED device.
1796  *
1797  * @hw: the hardware to get the LED trigger name for
1798  */
1799 static inline char *ieee80211_get_tx_led_name(struct ieee80211_hw *hw)
1800 {
1801 #ifdef CONFIG_MAC80211_LEDS
1802         return __ieee80211_get_tx_led_name(hw);
1803 #else
1804         return NULL;
1805 #endif
1806 }
1807
1808 /**
1809  * ieee80211_get_rx_led_name - get name of RX LED
1810  *
1811  * mac80211 creates a receive LED trigger for each wireless hardware
1812  * that can be used to drive LEDs if your driver registers a LED device.
1813  * This function returns the name (or %NULL if not configured for LEDs)
1814  * of the trigger so you can automatically link the LED device.
1815  *
1816  * @hw: the hardware to get the LED trigger name for
1817  */
1818 static inline char *ieee80211_get_rx_led_name(struct ieee80211_hw *hw)
1819 {
1820 #ifdef CONFIG_MAC80211_LEDS
1821         return __ieee80211_get_rx_led_name(hw);
1822 #else
1823         return NULL;
1824 #endif
1825 }
1826
1827 /**
1828  * ieee80211_get_assoc_led_name - get name of association LED
1829  *
1830  * mac80211 creates a association LED trigger for each wireless hardware
1831  * that can be used to drive LEDs if your driver registers a LED device.
1832  * This function returns the name (or %NULL if not configured for LEDs)
1833  * of the trigger so you can automatically link the LED device.
1834  *
1835  * @hw: the hardware to get the LED trigger name for
1836  */
1837 static inline char *ieee80211_get_assoc_led_name(struct ieee80211_hw *hw)
1838 {
1839 #ifdef CONFIG_MAC80211_LEDS
1840         return __ieee80211_get_assoc_led_name(hw);
1841 #else
1842         return NULL;
1843 #endif
1844 }
1845
1846 /**
1847  * ieee80211_get_radio_led_name - get name of radio LED
1848  *
1849  * mac80211 creates a radio change LED trigger for each wireless hardware
1850  * that can be used to drive LEDs if your driver registers a LED device.
1851  * This function returns the name (or %NULL if not configured for LEDs)
1852  * of the trigger so you can automatically link the LED device.
1853  *
1854  * @hw: the hardware to get the LED trigger name for
1855  */
1856 static inline char *ieee80211_get_radio_led_name(struct ieee80211_hw *hw)
1857 {
1858 #ifdef CONFIG_MAC80211_LEDS
1859         return __ieee80211_get_radio_led_name(hw);
1860 #else
1861         return NULL;
1862 #endif
1863 }
1864
1865 /**
1866  * ieee80211_unregister_hw - Unregister a hardware device
1867  *
1868  * This function instructs mac80211 to free allocated resources
1869  * and unregister netdevices from the networking subsystem.
1870  *
1871  * @hw: the hardware to unregister
1872  */
1873 void ieee80211_unregister_hw(struct ieee80211_hw *hw);
1874
1875 /**
1876  * ieee80211_free_hw - free hardware descriptor
1877  *
1878  * This function frees everything that was allocated, including the
1879  * private data for the driver. You must call ieee80211_unregister_hw()
1880  * before calling this function.
1881  *
1882  * @hw: the hardware to free
1883  */
1884 void ieee80211_free_hw(struct ieee80211_hw *hw);
1885
1886 /**
1887  * ieee80211_restart_hw - restart hardware completely
1888  *
1889  * Call this function when the hardware was restarted for some reason
1890  * (hardware error, ...) and the driver is unable to restore its state
1891  * by itself. mac80211 assumes that at this point the driver/hardware
1892  * is completely uninitialised and stopped, it starts the process by
1893  * calling the ->start() operation. The driver will need to reset all
1894  * internal state that it has prior to calling this function.
1895  *
1896  * @hw: the hardware to restart
1897  */
1898 void ieee80211_restart_hw(struct ieee80211_hw *hw);
1899
1900 /**
1901  * ieee80211_rx - receive frame
1902  *
1903  * Use this function to hand received frames to mac80211. The receive
1904  * buffer in @skb must start with an IEEE 802.11 header. In case of a
1905  * paged @skb is used, the driver is recommended to put the ieee80211
1906  * header of the frame on the linear part of the @skb to avoid memory
1907  * allocation and/or memcpy by the stack.
1908  *
1909  * This function may not be called in IRQ context. Calls to this function
1910  * for a single hardware must be synchronized against each other. Calls to
1911  * this function, ieee80211_rx_ni() and ieee80211_rx_irqsafe() may not be
1912  * mixed for a single hardware.
1913  *
1914  * In process context use instead ieee80211_rx_ni().
1915  *
1916  * @hw: the hardware this frame came in on
1917  * @skb: the buffer to receive, owned by mac80211 after this call
1918  */
1919 void ieee80211_rx(struct ieee80211_hw *hw, struct sk_buff *skb);
1920
1921 /**
1922  * ieee80211_rx_irqsafe - receive frame
1923  *
1924  * Like ieee80211_rx() but can be called in IRQ context
1925  * (internally defers to a tasklet.)
1926  *
1927  * Calls to this function, ieee80211_rx() or ieee80211_rx_ni() may not
1928  * be mixed for a single hardware.
1929  *
1930  * @hw: the hardware this frame came in on
1931  * @skb: the buffer to receive, owned by mac80211 after this call
1932  */
1933 void ieee80211_rx_irqsafe(struct ieee80211_hw *hw, struct sk_buff *skb);
1934
1935 /**
1936  * ieee80211_rx_ni - receive frame (in process context)
1937  *
1938  * Like ieee80211_rx() but can be called in process context
1939  * (internally disables bottom halves).
1940  *
1941  * Calls to this function, ieee80211_rx() and ieee80211_rx_irqsafe() may
1942  * not be mixed for a single hardware.
1943  *
1944  * @hw: the hardware this frame came in on
1945  * @skb: the buffer to receive, owned by mac80211 after this call
1946  */
1947 static inline void ieee80211_rx_ni(struct ieee80211_hw *hw,
1948                                    struct sk_buff *skb)
1949 {
1950         local_bh_disable();
1951         ieee80211_rx(hw, skb);
1952         local_bh_enable();
1953 }
1954
1955 /*
1956  * The TX headroom reserved by mac80211 for its own tx_status functions.
1957  * This is enough for the radiotap header.
1958  */
1959 #define IEEE80211_TX_STATUS_HEADROOM    13
1960
1961 /**
1962  * ieee80211_tx_status - transmit status callback
1963  *
1964  * Call this function for all transmitted frames after they have been
1965  * transmitted. It is permissible to not call this function for
1966  * multicast frames but this can affect statistics.
1967  *
1968  * This function may not be called in IRQ context. Calls to this function
1969  * for a single hardware must be synchronized against each other. Calls
1970  * to this function and ieee80211_tx_status_irqsafe() may not be mixed
1971  * for a single hardware.
1972  *
1973  * @hw: the hardware the frame was transmitted by
1974  * @skb: the frame that was transmitted, owned by mac80211 after this call
1975  */
1976 void ieee80211_tx_status(struct ieee80211_hw *hw,
1977                          struct sk_buff *skb);
1978
1979 /**
1980  * ieee80211_tx_status_irqsafe - IRQ-safe transmit status callback
1981  *
1982  * Like ieee80211_tx_status() but can be called in IRQ context
1983  * (internally defers to a tasklet.)
1984  *
1985  * Calls to this function and ieee80211_tx_status() may not be mixed for a
1986  * single hardware.
1987  *
1988  * @hw: the hardware the frame was transmitted by
1989  * @skb: the frame that was transmitted, owned by mac80211 after this call
1990  */
1991 void ieee80211_tx_status_irqsafe(struct ieee80211_hw *hw,
1992                                  struct sk_buff *skb);
1993
1994 /**
1995  * ieee80211_beacon_get_tim - beacon generation function
1996  * @hw: pointer obtained from ieee80211_alloc_hw().
1997  * @vif: &struct ieee80211_vif pointer from the add_interface callback.
1998  * @tim_offset: pointer to variable that will receive the TIM IE offset.
1999  *      Set to 0 if invalid (in non-AP modes).
2000  * @tim_length: pointer to variable that will receive the TIM IE length,
2001  *      (including the ID and length bytes!).
2002  *      Set to 0 if invalid (in non-AP modes).
2003  *
2004  * If the driver implements beaconing modes, it must use this function to
2005  * obtain the beacon frame/template.
2006  *
2007  * If the beacon frames are generated by the host system (i.e., not in
2008  * hardware/firmware), the driver uses this function to get each beacon
2009  * frame from mac80211 -- it is responsible for calling this function
2010  * before the beacon is needed (e.g. based on hardware interrupt).
2011  *
2012  * If the beacon frames are generated by the device, then the driver
2013  * must use the returned beacon as the template and change the TIM IE
2014  * according to the current DTIM parameters/TIM bitmap.
2015  *
2016  * The driver is responsible for freeing the returned skb.
2017  */
2018 struct sk_buff *ieee80211_beacon_get_tim(struct ieee80211_hw *hw,
2019                                          struct ieee80211_vif *vif,
2020                                          u16 *tim_offset, u16 *tim_length);
2021
2022 /**
2023  * ieee80211_beacon_get - beacon generation function
2024  * @hw: pointer obtained from ieee80211_alloc_hw().
2025  * @vif: &struct ieee80211_vif pointer from the add_interface callback.
2026  *
2027  * See ieee80211_beacon_get_tim().
2028  */
2029 static inline struct sk_buff *ieee80211_beacon_get(struct ieee80211_hw *hw,
2030                                                    struct ieee80211_vif *vif)
2031 {
2032         return ieee80211_beacon_get_tim(hw, vif, NULL, NULL);
2033 }
2034
2035 /**
2036  * ieee80211_pspoll_get - retrieve a PS Poll template
2037  * @hw: pointer obtained from ieee80211_alloc_hw().
2038  * @vif: &struct ieee80211_vif pointer from the add_interface callback.
2039  *
2040  * Creates a PS Poll a template which can, for example, uploaded to
2041  * hardware. The template must be updated after association so that correct
2042  * AID, BSSID and MAC address is used.
2043  *
2044  * Note: Caller (or hardware) is responsible for setting the
2045  * &IEEE80211_FCTL_PM bit.
2046  */
2047 struct sk_buff *ieee80211_pspoll_get(struct ieee80211_hw *hw,
2048                                      struct ieee80211_vif *vif);
2049
2050 /**
2051  * ieee80211_nullfunc_get - retrieve a nullfunc template
2052  * @hw: pointer obtained from ieee80211_alloc_hw().
2053  * @vif: &struct ieee80211_vif pointer from the add_interface callback.
2054  *
2055  * Creates a Nullfunc template which can, for example, uploaded to
2056  * hardware. The template must be updated after association so that correct
2057  * BSSID and address is used.
2058  *
2059  * Note: Caller (or hardware) is responsible for setting the
2060  * &IEEE80211_FCTL_PM bit as well as Duration and Sequence Control fields.
2061  */
2062 struct sk_buff *ieee80211_nullfunc_get(struct ieee80211_hw *hw,
2063                                        struct ieee80211_vif *vif);
2064
2065 /**
2066  * ieee80211_probereq_get - retrieve a Probe Request template
2067  * @hw: pointer obtained from ieee80211_alloc_hw().
2068  * @vif: &struct ieee80211_vif pointer from the add_interface callback.
2069  * @ssid: SSID buffer
2070  * @ssid_len: length of SSID
2071  * @ie: buffer containing all IEs except SSID for the template
2072  * @ie_len: length of the IE buffer
2073  *
2074  * Creates a Probe Request template which can, for example, be uploaded to
2075  * hardware.
2076  */
2077 struct sk_buff *ieee80211_probereq_get(struct ieee80211_hw *hw,
2078                                        struct ieee80211_vif *vif,
2079                                        const u8 *ssid, size_t ssid_len,
2080                                        const u8 *ie, size_t ie_len);
2081
2082 /**
2083  * ieee80211_rts_get - RTS frame generation function
2084  * @hw: pointer obtained from ieee80211_alloc_hw().
2085  * @vif: &struct ieee80211_vif pointer from the add_interface callback.
2086  * @frame: pointer to the frame that is going to be protected by the RTS.
2087  * @frame_len: the frame length (in octets).
2088  * @frame_txctl: &struct ieee80211_tx_info of the frame.
2089  * @rts: The buffer where to store the RTS frame.
2090  *
2091  * If the RTS frames are generated by the host system (i.e., not in
2092  * hardware/firmware), the low-level driver uses this function to receive
2093  * the next RTS frame from the 802.11 code. The low-level is responsible
2094  * for calling this function before and RTS frame is needed.
2095  */
2096 void ieee80211_rts_get(struct ieee80211_hw *hw, struct ieee80211_vif *vif,
2097                        const void *frame, size_t frame_len,
2098                        const struct ieee80211_tx_info *frame_txctl,
2099                        struct ieee80211_rts *rts);
2100
2101 /**
2102  * ieee80211_rts_duration - Get the duration field for an RTS frame
2103  * @hw: pointer obtained from ieee80211_alloc_hw().
2104  * @vif: &struct ieee80211_vif pointer from the add_interface callback.
2105  * @frame_len: the length of the frame that is going to be protected by the RTS.
2106  * @frame_txctl: &struct ieee80211_tx_info of the frame.
2107  *
2108  * If the RTS is generated in firmware, but the host system must provide
2109  * the duration field, the low-level driver uses this function to receive
2110  * the duration field value in little-endian byteorder.
2111  */
2112 __le16 ieee80211_rts_duration(struct ieee80211_hw *hw,
2113                               struct ieee80211_vif *vif, size_t frame_len,
2114                               const struct ieee80211_tx_info *frame_txctl);
2115
2116 /**
2117  * ieee80211_ctstoself_get - CTS-to-self frame generation function
2118  * @hw: pointer obtained from ieee80211_alloc_hw().
2119  * @vif: &struct ieee80211_vif pointer from the add_interface callback.
2120  * @frame: pointer to the frame that is going to be protected by the CTS-to-self.
2121  * @frame_len: the frame length (in octets).
2122  * @frame_txctl: &struct ieee80211_tx_info of the frame.
2123  * @cts: The buffer where to store the CTS-to-self frame.
2124  *
2125  * If the CTS-to-self frames are generated by the host system (i.e., not in
2126  * hardware/firmware), the low-level driver uses this function to receive
2127  * the next CTS-to-self frame from the 802.11 code. The low-level is responsible
2128  * for calling this function before and CTS-to-self frame is needed.
2129  */
2130 void ieee80211_ctstoself_get(struct ieee80211_hw *hw,
2131                              struct ieee80211_vif *vif,
2132                              const void *frame, size_t frame_len,
2133                              const struct ieee80211_tx_info *frame_txctl,
2134                              struct ieee80211_cts *cts);
2135
2136 /**
2137  * ieee80211_ctstoself_duration - Get the duration field for a CTS-to-self frame
2138  * @hw: pointer obtained from ieee80211_alloc_hw().
2139  * @vif: &struct ieee80211_vif pointer from the add_interface callback.
2140  * @frame_len: the length of the frame that is going to be protected by the CTS-to-self.
2141  * @frame_txctl: &struct ieee80211_tx_info of the frame.
2142  *
2143  * If the CTS-to-self is generated in firmware, but the host system must provide
2144  * the duration field, the low-level driver uses this function to receive
2145  * the duration field value in little-endian byteorder.
2146  */
2147 __le16 ieee80211_ctstoself_duration(struct ieee80211_hw *hw,
2148                                     struct ieee80211_vif *vif,
2149                                     size_t frame_len,
2150                                     const struct ieee80211_tx_info *frame_txctl);
2151
2152 /**
2153  * ieee80211_generic_frame_duration - Calculate the duration field for a frame
2154  * @hw: pointer obtained from ieee80211_alloc_hw().
2155  * @vif: &struct ieee80211_vif pointer from the add_interface callback.
2156  * @frame_len: the length of the frame.
2157  * @rate: the rate at which the frame is going to be transmitted.
2158  *
2159  * Calculate the duration field of some generic frame, given its
2160  * length and transmission rate (in 100kbps).
2161  */
2162 __le16 ieee80211_generic_frame_duration(struct ieee80211_hw *hw,
2163                                         struct ieee80211_vif *vif,
2164                                         size_t frame_len,
2165                                         struct ieee80211_rate *rate);
2166
2167 /**
2168  * ieee80211_get_buffered_bc - accessing buffered broadcast and multicast frames
2169  * @hw: pointer as obtained from ieee80211_alloc_hw().
2170  * @vif: &struct ieee80211_vif pointer from the add_interface callback.
2171  *
2172  * Function for accessing buffered broadcast and multicast frames. If
2173  * hardware/firmware does not implement buffering of broadcast/multicast
2174  * frames when power saving is used, 802.11 code buffers them in the host
2175  * memory. The low-level driver uses this function to fetch next buffered
2176  * frame. In most cases, this is used when generating beacon frame. This
2177  * function returns a pointer to the next buffered skb or NULL if no more
2178  * buffered frames are available.
2179  *
2180  * Note: buffered frames are returned only after DTIM beacon frame was
2181  * generated with ieee80211_beacon_get() and the low-level driver must thus
2182  * call ieee80211_beacon_get() first. ieee80211_get_buffered_bc() returns
2183  * NULL if the previous generated beacon was not DTIM, so the low-level driver
2184  * does not need to check for DTIM beacons separately and should be able to
2185  * use common code for all beacons.
2186  */
2187 struct sk_buff *
2188 ieee80211_get_buffered_bc(struct ieee80211_hw *hw, struct ieee80211_vif *vif);
2189
2190 /**
2191  * ieee80211_get_tkip_key - get a TKIP rc4 for skb
2192  *
2193  * This function computes a TKIP rc4 key for an skb. It computes
2194  * a phase 1 key if needed (iv16 wraps around). This function is to
2195  * be used by drivers which can do HW encryption but need to compute
2196  * to phase 1/2 key in SW.
2197  *
2198  * @keyconf: the parameter passed with the set key
2199  * @skb: the skb for which the key is needed
2200  * @type: TBD
2201  * @key: a buffer to which the key will be written
2202  */
2203 void ieee80211_get_tkip_key(struct ieee80211_key_conf *keyconf,
2204                                 struct sk_buff *skb,
2205                                 enum ieee80211_tkip_key_type type, u8 *key);
2206 /**
2207  * ieee80211_wake_queue - wake specific queue
2208  * @hw: pointer as obtained from ieee80211_alloc_hw().
2209  * @queue: queue number (counted from zero).
2210  *
2211  * Drivers should use this function instead of netif_wake_queue.
2212  */
2213 void ieee80211_wake_queue(struct ieee80211_hw *hw, int queue);
2214
2215 /**
2216  * ieee80211_stop_queue - stop specific queue
2217  * @hw: pointer as obtained from ieee80211_alloc_hw().
2218  * @queue: queue number (counted from zero).
2219  *
2220  * Drivers should use this function instead of netif_stop_queue.
2221  */
2222 void ieee80211_stop_queue(struct ieee80211_hw *hw, int queue);
2223
2224 /**
2225  * ieee80211_queue_stopped - test status of the queue
2226  * @hw: pointer as obtained from ieee80211_alloc_hw().
2227  * @queue: queue number (counted from zero).
2228  *
2229  * Drivers should use this function instead of netif_stop_queue.
2230  */
2231
2232 int ieee80211_queue_stopped(struct ieee80211_hw *hw, int queue);
2233
2234 /**
2235  * ieee80211_stop_queues - stop all queues
2236  * @hw: pointer as obtained from ieee80211_alloc_hw().
2237  *
2238  * Drivers should use this function instead of netif_stop_queue.
2239  */
2240 void ieee80211_stop_queues(struct ieee80211_hw *hw);
2241
2242 /**
2243  * ieee80211_wake_queues - wake all queues
2244  * @hw: pointer as obtained from ieee80211_alloc_hw().
2245  *
2246  * Drivers should use this function instead of netif_wake_queue.
2247  */
2248 void ieee80211_wake_queues(struct ieee80211_hw *hw);
2249
2250 /**
2251  * ieee80211_scan_completed - completed hardware scan
2252  *
2253  * When hardware scan offload is used (i.e. the hw_scan() callback is
2254  * assigned) this function needs to be called by the driver to notify
2255  * mac80211 that the scan finished.
2256  *
2257  * @hw: the hardware that finished the scan
2258  * @aborted: set to true if scan was aborted
2259  */
2260 void ieee80211_scan_completed(struct ieee80211_hw *hw, bool aborted);
2261
2262 /**
2263  * ieee80211_iterate_active_interfaces - iterate active interfaces
2264  *
2265  * This function iterates over the interfaces associated with a given
2266  * hardware that are currently active and calls the callback for them.
2267  * This function allows the iterator function to sleep, when the iterator
2268  * function is atomic @ieee80211_iterate_active_interfaces_atomic can
2269  * be used.
2270  *
2271  * @hw: the hardware struct of which the interfaces should be iterated over
2272  * @iterator: the iterator function to call
2273  * @data: first argument of the iterator function
2274  */
2275 void ieee80211_iterate_active_interfaces(struct ieee80211_hw *hw,
2276                                          void (*iterator)(void *data, u8 *mac,
2277                                                 struct ieee80211_vif *vif),
2278                                          void *data);
2279
2280 /**
2281  * ieee80211_iterate_active_interfaces_atomic - iterate active interfaces
2282  *
2283  * This function iterates over the interfaces associated with a given
2284  * hardware that are currently active and calls the callback for them.
2285  * This function requires the iterator callback function to be atomic,
2286  * if that is not desired, use @ieee80211_iterate_active_interfaces instead.
2287  *
2288  * @hw: the hardware struct of which the interfaces should be iterated over
2289  * @iterator: the iterator function to call, cannot sleep
2290  * @data: first argument of the iterator function
2291  */
2292 void ieee80211_iterate_active_interfaces_atomic(struct ieee80211_hw *hw,
2293                                                 void (*iterator)(void *data,
2294                                                     u8 *mac,
2295                                                     struct ieee80211_vif *vif),
2296                                                 void *data);
2297
2298 /**
2299  * ieee80211_queue_work - add work onto the mac80211 workqueue
2300  *
2301  * Drivers and mac80211 use this to add work onto the mac80211 workqueue.
2302  * This helper ensures drivers are not queueing work when they should not be.
2303  *
2304  * @hw: the hardware struct for the interface we are adding work for
2305  * @work: the work we want to add onto the mac80211 workqueue
2306  */
2307 void ieee80211_queue_work(struct ieee80211_hw *hw, struct work_struct *work);
2308
2309 /**
2310  * ieee80211_queue_delayed_work - add work onto the mac80211 workqueue
2311  *
2312  * Drivers and mac80211 use this to queue delayed work onto the mac80211
2313  * workqueue.
2314  *
2315  * @hw: the hardware struct for the interface we are adding work for
2316  * @dwork: delayable work to queue onto the mac80211 workqueue
2317  * @delay: number of jiffies to wait before queueing
2318  */
2319 void ieee80211_queue_delayed_work(struct ieee80211_hw *hw,
2320                                   struct delayed_work *dwork,
2321                                   unsigned long delay);
2322
2323 /**
2324  * ieee80211_start_tx_ba_session - Start a tx Block Ack session.
2325  * @sta: the station for which to start a BA session
2326  * @tid: the TID to BA on.
2327  *
2328  * Return: success if addBA request was sent, failure otherwise
2329  *
2330  * Although mac80211/low level driver/user space application can estimate
2331  * the need to start aggregation on a certain RA/TID, the session level
2332  * will be managed by the mac80211.
2333  */
2334 int ieee80211_start_tx_ba_session(struct ieee80211_sta *sta, u16 tid);
2335
2336 /**
2337  * ieee80211_start_tx_ba_cb_irqsafe - low level driver ready to aggregate.
2338  * @vif: &struct ieee80211_vif pointer from the add_interface callback
2339  * @ra: receiver address of the BA session recipient.
2340  * @tid: the TID to BA on.
2341  *
2342  * This function must be called by low level driver once it has
2343  * finished with preparations for the BA session. It can be called
2344  * from any context.
2345  */
2346 void ieee80211_start_tx_ba_cb_irqsafe(struct ieee80211_vif *vif, const u8 *ra,
2347                                       u16 tid);
2348
2349 /**
2350  * ieee80211_stop_tx_ba_session - Stop a Block Ack session.
2351  * @sta: the station whose BA session to stop
2352  * @tid: the TID to stop BA.
2353  *
2354  * Return: negative error if the TID is invalid, or no aggregation active
2355  *
2356  * Although mac80211/low level driver/user space application can estimate
2357  * the need to stop aggregation on a certain RA/TID, the session level
2358  * will be managed by the mac80211.
2359  */
2360 int ieee80211_stop_tx_ba_session(struct ieee80211_sta *sta, u16 tid);
2361
2362 /**
2363  * ieee80211_stop_tx_ba_cb_irqsafe - low level driver ready to stop aggregate.
2364  * @vif: &struct ieee80211_vif pointer from the add_interface callback
2365  * @ra: receiver address of the BA session recipient.
2366  * @tid: the desired TID to BA on.
2367  *
2368  * This function must be called by low level driver once it has
2369  * finished with preparations for the BA session tear down. It
2370  * can be called from any context.
2371  */
2372 void ieee80211_stop_tx_ba_cb_irqsafe(struct ieee80211_vif *vif, const u8 *ra,
2373                                      u16 tid);
2374
2375 /**
2376  * ieee80211_find_sta - find a station
2377  *
2378  * @vif: virtual interface to look for station on
2379  * @addr: station's address
2380  *
2381  * This function must be called under RCU lock and the
2382  * resulting pointer is only valid under RCU lock as well.
2383  */
2384 struct ieee80211_sta *ieee80211_find_sta(struct ieee80211_vif *vif,
2385                                          const u8 *addr);
2386
2387 /**
2388  * ieee80211_find_sta_by_hw - find a station on hardware
2389  *
2390  * @hw: pointer as obtained from ieee80211_alloc_hw()
2391  * @addr: station's address
2392  *
2393  * This function must be called under RCU lock and the
2394  * resulting pointer is only valid under RCU lock as well.
2395  *
2396  * NOTE: This function should not be used! When mac80211 is converted
2397  *       internally to properly keep track of stations on multiple
2398  *       virtual interfaces, it will not always know which station to
2399  *       return here since a single address might be used by multiple
2400  *       logical stations (e.g. consider a station connecting to another
2401  *       BSSID on the same AP hardware without disconnecting first).
2402  *
2403  * DO NOT USE THIS FUNCTION.
2404  */
2405 struct ieee80211_sta *ieee80211_find_sta_by_hw(struct ieee80211_hw *hw,
2406                                                const u8 *addr);
2407
2408 /**
2409  * ieee80211_sta_block_awake - block station from waking up
2410  * @hw: the hardware
2411  * @pubsta: the station
2412  * @block: whether to block or unblock
2413  *
2414  * Some devices require that all frames that are on the queues
2415  * for a specific station that went to sleep are flushed before
2416  * a poll response or frames after the station woke up can be
2417  * delivered to that it. Note that such frames must be rejected
2418  * by the driver as filtered, with the appropriate status flag.
2419  *
2420  * This function allows implementing this mode in a race-free
2421  * manner.
2422  *
2423  * To do this, a driver must keep track of the number of frames
2424  * still enqueued for a specific station. If this number is not
2425  * zero when the station goes to sleep, the driver must call
2426  * this function to force mac80211 to consider the station to
2427  * be asleep regardless of the station's actual state. Once the
2428  * number of outstanding frames reaches zero, the driver must
2429  * call this function again to unblock the station. That will
2430  * cause mac80211 to be able to send ps-poll responses, and if
2431  * the station queried in the meantime then frames will also
2432  * be sent out as a result of this. Additionally, the driver
2433  * will be notified that the station woke up some time after
2434  * it is unblocked, regardless of whether the station actually
2435  * woke up while blocked or not.
2436  */
2437 void ieee80211_sta_block_awake(struct ieee80211_hw *hw,
2438                                struct ieee80211_sta *pubsta, bool block);
2439
2440 /**
2441  * ieee80211_beacon_loss - inform hardware does not receive beacons
2442  *
2443  * @vif: &struct ieee80211_vif pointer from the add_interface callback.
2444  *
2445  * When beacon filtering is enabled with %IEEE80211_HW_BEACON_FILTERING and
2446  * %IEEE80211_CONF_PS is set, the driver needs to inform whenever the
2447  * hardware is not receiving beacons with this function.
2448  */
2449 void ieee80211_beacon_loss(struct ieee80211_vif *vif);
2450
2451 /**
2452  * ieee80211_connection_loss - inform hardware has lost connection to the AP
2453  *
2454  * @vif: &struct ieee80211_vif pointer from the add_interface callback.
2455  *
2456  * When beacon filtering is enabled with %IEEE80211_HW_BEACON_FILTERING, and
2457  * %IEEE80211_CONF_PS and %IEEE80211_HW_CONNECTION_MONITOR are set, the driver
2458  * needs to inform if the connection to the AP has been lost.
2459  *
2460  * This function will cause immediate change to disassociated state,
2461  * without connection recovery attempts.
2462  */
2463 void ieee80211_connection_loss(struct ieee80211_vif *vif);
2464
2465 /**
2466  * ieee80211_disable_dyn_ps - force mac80211 to temporarily disable dynamic psm
2467  *
2468  * @vif: &struct ieee80211_vif pointer from the add_interface callback.
2469  *
2470  * Some hardware require full power save to manage simultaneous BT traffic
2471  * on the WLAN frequency. Full PSM is required periodically, whenever there are
2472  * burst of BT traffic. The hardware gets information of BT traffic via
2473  * hardware co-existence lines, and consequentially requests mac80211 to
2474  * (temporarily) enter full psm.
2475  * This function will only temporarily disable dynamic PS, not enable PSM if
2476  * it was not already enabled.
2477  * The driver must make sure to re-enable dynamic PS using
2478  * ieee80211_enable_dyn_ps() if the driver has disabled it.
2479  *
2480  */
2481 void ieee80211_disable_dyn_ps(struct ieee80211_vif *vif);
2482
2483 /**
2484  * ieee80211_enable_dyn_ps - restore dynamic psm after being disabled
2485  *
2486  * @vif: &struct ieee80211_vif pointer from the add_interface callback.
2487  *
2488  * This function restores dynamic PS after being temporarily disabled via
2489  * ieee80211_disable_dyn_ps(). Each ieee80211_disable_dyn_ps() call must
2490  * be coupled with an eventual call to this function.
2491  *
2492  */
2493 void ieee80211_enable_dyn_ps(struct ieee80211_vif *vif);
2494
2495 /**
2496  * ieee80211_cqm_rssi_notify - inform a configured connection quality monitoring
2497  *      rssi threshold triggered
2498  *
2499  * @vif: &struct ieee80211_vif pointer from the add_interface callback.
2500  * @rssi_event: the RSSI trigger event type
2501  * @gfp: context flags
2502  *
2503  * When the %IEEE80211_HW_SUPPORTS_CQM_RSSI is set, and a connection quality
2504  * monitoring is configured with an rssi threshold, the driver will inform
2505  * whenever the rssi level reaches the threshold.
2506  */
2507 void ieee80211_cqm_rssi_notify(struct ieee80211_vif *vif,
2508                                enum nl80211_cqm_rssi_threshold_event rssi_event,
2509                                gfp_t gfp);
2510
2511 /**
2512  * ieee80211_chswitch_done - Complete channel switch process
2513  * @vif: &struct ieee80211_vif pointer from the add_interface callback.
2514  * @success: make the channel switch successful or not
2515  *
2516  * Complete the channel switch post-process: set the new operational channel
2517  * and wake up the suspended queues.
2518  */
2519 void ieee80211_chswitch_done(struct ieee80211_vif *vif, bool success);
2520
2521 /* Rate control API */
2522
2523 /**
2524  * enum rate_control_changed - flags to indicate which parameter changed
2525  *
2526  * @IEEE80211_RC_HT_CHANGED: The HT parameters of the operating channel have
2527  *      changed, rate control algorithm can update its internal state if needed.
2528  */
2529 enum rate_control_changed {
2530         IEEE80211_RC_HT_CHANGED = BIT(0)
2531 };
2532
2533 /**
2534  * struct ieee80211_tx_rate_control - rate control information for/from RC algo
2535  *
2536  * @hw: The hardware the algorithm is invoked for.
2537  * @sband: The band this frame is being transmitted on.
2538  * @bss_conf: the current BSS configuration
2539  * @reported_rate: The rate control algorithm can fill this in to indicate
2540  *      which rate should be reported to userspace as the current rate and
2541  *      used for rate calculations in the mesh network.
2542  * @rts: whether RTS will be used for this frame because it is longer than the
2543  *      RTS threshold
2544  * @short_preamble: whether mac80211 will request short-preamble transmission
2545  *      if the selected rate supports it
2546  * @max_rate_idx: user-requested maximum rate (not MCS for now)
2547  *      (deprecated; this will be removed once drivers get updated to use
2548  *      rate_idx_mask)
2549  * @rate_idx_mask: user-requested rate mask (not MCS for now)
2550  * @skb: the skb that will be transmitted, the control information in it needs
2551  *      to be filled in
2552  * @ap: whether this frame is sent out in AP mode
2553  */
2554 struct ieee80211_tx_rate_control {
2555         struct ieee80211_hw *hw;
2556         struct ieee80211_supported_band *sband;
2557         struct ieee80211_bss_conf *bss_conf;
2558         struct sk_buff *skb;
2559         struct ieee80211_tx_rate reported_rate;
2560         bool rts, short_preamble;
2561         u8 max_rate_idx;
2562         u32 rate_idx_mask;
2563         bool ap;
2564 };
2565
2566 struct rate_control_ops {
2567         struct module *module;
2568         const char *name;
2569         void *(*alloc)(struct ieee80211_hw *hw, struct dentry *debugfsdir);
2570         void (*free)(void *priv);
2571
2572         void *(*alloc_sta)(void *priv, struct ieee80211_sta *sta, gfp_t gfp);
2573         void (*rate_init)(void *priv, struct ieee80211_supported_band *sband,
2574                           struct ieee80211_sta *sta, void *priv_sta);
2575         void (*rate_update)(void *priv, struct ieee80211_supported_band *sband,
2576                             struct ieee80211_sta *sta,
2577                             void *priv_sta, u32 changed,
2578                             enum nl80211_channel_type oper_chan_type);
2579         void (*free_sta)(void *priv, struct ieee80211_sta *sta,
2580                          void *priv_sta);
2581
2582         void (*tx_status)(void *priv, struct ieee80211_supported_band *sband,
2583                           struct ieee80211_sta *sta, void *priv_sta,
2584                           struct sk_buff *skb);
2585         void (*get_rate)(void *priv, struct ieee80211_sta *sta, void *priv_sta,
2586                          struct ieee80211_tx_rate_control *txrc);
2587
2588         void (*add_sta_debugfs)(void *priv, void *priv_sta,
2589                                 struct dentry *dir);
2590         void (*remove_sta_debugfs)(void *priv, void *priv_sta);
2591 };
2592
2593 static inline int rate_supported(struct ieee80211_sta *sta,
2594                                  enum ieee80211_band band,
2595                                  int index)
2596 {
2597         return (sta == NULL || sta->supp_rates[band] & BIT(index));
2598 }
2599
2600 /**
2601  * rate_control_send_low - helper for drivers for management/no-ack frames
2602  *
2603  * Rate control algorithms that agree to use the lowest rate to
2604  * send management frames and NO_ACK data with the respective hw
2605  * retries should use this in the beginning of their mac80211 get_rate
2606  * callback. If true is returned the rate control can simply return.
2607  * If false is returned we guarantee that sta and sta and priv_sta is
2608  * not null.
2609  *
2610  * Rate control algorithms wishing to do more intelligent selection of
2611  * rate for multicast/broadcast frames may choose to not use this.
2612  *
2613  * @sta: &struct ieee80211_sta pointer to the target destination. Note
2614  *      that this may be null.
2615  * @priv_sta: private rate control structure. This may be null.
2616  * @txrc: rate control information we sholud populate for mac80211.
2617  */
2618 bool rate_control_send_low(struct ieee80211_sta *sta,
2619                            void *priv_sta,
2620                            struct ieee80211_tx_rate_control *txrc);
2621
2622
2623 static inline s8
2624 rate_lowest_index(struct ieee80211_supported_band *sband,
2625                   struct ieee80211_sta *sta)
2626 {
2627         int i;
2628
2629         for (i = 0; i < sband->n_bitrates; i++)
2630                 if (rate_supported(sta, sband->band, i))
2631                         return i;
2632
2633         /* warn when we cannot find a rate. */
2634         WARN_ON(1);
2635
2636         return 0;
2637 }
2638
2639 static inline
2640 bool rate_usable_index_exists(struct ieee80211_supported_band *sband,
2641                               struct ieee80211_sta *sta)
2642 {
2643         unsigned int i;
2644
2645         for (i = 0; i < sband->n_bitrates; i++)
2646                 if (rate_supported(sta, sband->band, i))
2647                         return true;
2648         return false;
2649 }
2650
2651 int ieee80211_rate_control_register(struct rate_control_ops *ops);
2652 void ieee80211_rate_control_unregister(struct rate_control_ops *ops);
2653
2654 static inline bool
2655 conf_is_ht20(struct ieee80211_conf *conf)
2656 {
2657         return conf->channel_type == NL80211_CHAN_HT20;
2658 }
2659
2660 static inline bool
2661 conf_is_ht40_minus(struct ieee80211_conf *conf)
2662 {
2663         return conf->channel_type == NL80211_CHAN_HT40MINUS;
2664 }
2665
2666 static inline bool
2667 conf_is_ht40_plus(struct ieee80211_conf *conf)
2668 {
2669         return conf->channel_type == NL80211_CHAN_HT40PLUS;
2670 }
2671
2672 static inline bool
2673 conf_is_ht40(struct ieee80211_conf *conf)
2674 {
2675         return conf_is_ht40_minus(conf) || conf_is_ht40_plus(conf);
2676 }
2677
2678 static inline bool
2679 conf_is_ht(struct ieee80211_conf *conf)
2680 {
2681         return conf->channel_type != NL80211_CHAN_NO_HT;
2682 }
2683
2684 #endif /* MAC80211_H */