1 /* SPDX-License-Identifier: GPL-2.0 */
4 * V 4 L 2 D R I V E R H E L P E R A P I
6 * Moved from videodev2.h
8 * Some commonly needed functions for drivers (v4l2-common.o module)
13 #include <linux/poll.h>
15 #include <linux/device.h>
16 #include <linux/cdev.h>
17 #include <linux/mutex.h>
18 #include <linux/videodev2.h>
20 #include <media/media-entity.h>
22 #define VIDEO_MAJOR 81
25 * enum vfl_devnode_type - type of V4L2 device node
27 * @VFL_TYPE_VIDEO: for video input/output devices
28 * @VFL_TYPE_VBI: for vertical blank data (i.e. closed captions, teletext)
29 * @VFL_TYPE_RADIO: for radio tuners
30 * @VFL_TYPE_SUBDEV: for V4L2 subdevices
31 * @VFL_TYPE_SDR: for Software Defined Radio tuners
32 * @VFL_TYPE_TOUCH: for touch sensors
33 * @VFL_TYPE_MAX: number of VFL types, must always be last in the enum
35 enum vfl_devnode_type {
42 VFL_TYPE_MAX /* Shall be the last one */
46 * enum vfl_devnode_direction - Identifies if a &struct video_device
47 * corresponds to a receiver, a transmitter or a mem-to-mem device.
49 * @VFL_DIR_RX: device is a receiver.
50 * @VFL_DIR_TX: device is a transmitter.
51 * @VFL_DIR_M2M: device is a memory to memory device.
53 * Note: Ignored if &enum vfl_devnode_type is %VFL_TYPE_SUBDEV.
55 enum vfl_devnode_direction {
61 struct v4l2_ioctl_callbacks;
64 struct v4l2_ctrl_handler;
67 * enum v4l2_video_device_flags - Flags used by &struct video_device
69 * @V4L2_FL_REGISTERED:
70 * indicates that a &struct video_device is registered.
71 * Drivers can clear this flag if they want to block all future
72 * device access. It is cleared by video_unregister_device.
73 * @V4L2_FL_USES_V4L2_FH:
74 * indicates that file->private_data points to &struct v4l2_fh.
75 * This flag is set by the core when v4l2_fh_init() is called.
76 * All new drivers should use it.
77 * @V4L2_FL_QUIRK_INVERTED_CROP:
78 * some old M2M drivers use g/s_crop/cropcap incorrectly: crop and
79 * compose are swapped. If this flag is set, then the selection
80 * targets are swapped in the g/s_crop/cropcap functions in v4l2-ioctl.c.
81 * This allows those drivers to correctly implement the selection API,
82 * but the old crop API will still work as expected in order to preserve
83 * backwards compatibility.
84 * Never set this flag for new drivers.
85 * @V4L2_FL_SUBDEV_RO_DEVNODE:
86 * indicates that the video device node is registered in read-only mode.
87 * The flag only applies to device nodes registered for sub-devices, it is
88 * set by the core when the sub-devices device nodes are registered with
89 * v4l2_device_register_ro_subdev_nodes() and used by the sub-device ioctl
90 * handler to restrict access to some ioctl calls.
92 enum v4l2_video_device_flags {
93 V4L2_FL_REGISTERED = 0,
94 V4L2_FL_USES_V4L2_FH = 1,
95 V4L2_FL_QUIRK_INVERTED_CROP = 2,
96 V4L2_FL_SUBDEV_RO_DEVNODE = 3,
99 /* Priority helper functions */
102 * struct v4l2_prio_state - stores the priority states
104 * @prios: array with elements to store the array priorities
108 * The size of @prios array matches the number of priority types defined
109 * by enum &v4l2_priority.
111 struct v4l2_prio_state {
116 * v4l2_prio_init - initializes a struct v4l2_prio_state
118 * @global: pointer to &struct v4l2_prio_state
120 void v4l2_prio_init(struct v4l2_prio_state *global);
123 * v4l2_prio_change - changes the v4l2 file handler priority
125 * @global: pointer to the &struct v4l2_prio_state of the device node.
126 * @local: pointer to the desired priority, as defined by enum &v4l2_priority
127 * @new: Priority type requested, as defined by enum &v4l2_priority.
130 * This function should be used only by the V4L2 core.
132 int v4l2_prio_change(struct v4l2_prio_state *global, enum v4l2_priority *local,
133 enum v4l2_priority new);
136 * v4l2_prio_open - Implements the priority logic for a file handler open
138 * @global: pointer to the &struct v4l2_prio_state of the device node.
139 * @local: pointer to the desired priority, as defined by enum &v4l2_priority
142 * This function should be used only by the V4L2 core.
144 void v4l2_prio_open(struct v4l2_prio_state *global, enum v4l2_priority *local);
147 * v4l2_prio_close - Implements the priority logic for a file handler close
149 * @global: pointer to the &struct v4l2_prio_state of the device node.
150 * @local: priority to be released, as defined by enum &v4l2_priority
153 * This function should be used only by the V4L2 core.
155 void v4l2_prio_close(struct v4l2_prio_state *global, enum v4l2_priority local);
158 * v4l2_prio_max - Return the maximum priority, as stored at the @global array.
160 * @global: pointer to the &struct v4l2_prio_state of the device node.
163 * This function should be used only by the V4L2 core.
165 enum v4l2_priority v4l2_prio_max(struct v4l2_prio_state *global);
168 * v4l2_prio_check - Implements the priority logic for a file handler close
170 * @global: pointer to the &struct v4l2_prio_state of the device node.
171 * @local: desired priority, as defined by enum &v4l2_priority local
174 * This function should be used only by the V4L2 core.
176 int v4l2_prio_check(struct v4l2_prio_state *global, enum v4l2_priority local);
179 * struct v4l2_file_operations - fs operations used by a V4L2 device
181 * @owner: pointer to struct module
182 * @read: operations needed to implement the read() syscall
183 * @write: operations needed to implement the write() syscall
184 * @poll: operations needed to implement the poll() syscall
185 * @unlocked_ioctl: operations needed to implement the ioctl() syscall
186 * @compat_ioctl32: operations needed to implement the ioctl() syscall for
187 * the special case where the Kernel uses 64 bits instructions, but
188 * the userspace uses 32 bits.
189 * @get_unmapped_area: called by the mmap() syscall, used when %!CONFIG_MMU
190 * @mmap: operations needed to implement the mmap() syscall
191 * @open: operations needed to implement the open() syscall
192 * @release: operations needed to implement the release() syscall
196 * Those operations are used to implemente the fs struct file_operations
197 * at the V4L2 drivers. The V4L2 core overrides the fs ops with some
198 * extra logic needed by the subsystem.
200 struct v4l2_file_operations {
201 struct module *owner;
202 ssize_t (*read) (struct file *, char __user *, size_t, loff_t *);
203 ssize_t (*write) (struct file *, const char __user *, size_t, loff_t *);
204 __poll_t (*poll) (struct file *, struct poll_table_struct *);
205 long (*unlocked_ioctl) (struct file *, unsigned int, unsigned long);
207 long (*compat_ioctl32) (struct file *, unsigned int, unsigned long);
209 unsigned long (*get_unmapped_area) (struct file *, unsigned long,
210 unsigned long, unsigned long, unsigned long);
211 int (*mmap) (struct file *, struct vm_area_struct *);
212 int (*open) (struct file *);
213 int (*release) (struct file *);
217 * Newer version of video_device, handled by videodev2.c
218 * This version moves redundant code from video device code to
223 * struct video_device - Structure used to create and manage the V4L2 device
226 * @entity: &struct media_entity
227 * @intf_devnode: pointer to &struct media_intf_devnode
228 * @pipe: &struct media_pipeline
229 * @fops: pointer to &struct v4l2_file_operations for the video device
230 * @device_caps: device capabilities as used in v4l2_capabilities
231 * @dev: &struct device for the video device
232 * @cdev: character device
233 * @v4l2_dev: pointer to &struct v4l2_device parent
234 * @dev_parent: pointer to &struct device parent
235 * @ctrl_handler: Control handler associated with this device node.
237 * @queue: &struct vb2_queue associated with this device node. May be NULL.
238 * @prio: pointer to &struct v4l2_prio_state with device's Priority state.
239 * If NULL, then v4l2_dev->prio will be used.
240 * @name: video device name
241 * @vfl_type: V4L device type, as defined by &enum vfl_devnode_type
242 * @vfl_dir: V4L receiver, transmitter or m2m
243 * @minor: device node 'minor'. It is set to -1 if the registration failed
244 * @num: number of the video device node
245 * @flags: video device flags. Use bitops to set/clear/test flags.
246 * Contains a set of &enum v4l2_video_device_flags.
247 * @index: attribute to differentiate multiple indices on one physical device
248 * @fh_lock: Lock for all v4l2_fhs
249 * @fh_list: List of &struct v4l2_fh
250 * @dev_debug: Internal device debug flags, not for use by drivers
251 * @tvnorms: Supported tv norms
253 * @release: video device release() callback
254 * @ioctl_ops: pointer to &struct v4l2_ioctl_ops with ioctl callbacks
256 * @valid_ioctls: bitmap with the valid ioctls for this device
257 * @lock: pointer to &struct mutex serialization lock
260 * Only set @dev_parent if that can't be deduced from @v4l2_dev.
263 struct video_device {
264 #if defined(CONFIG_MEDIA_CONTROLLER)
265 struct media_entity entity;
266 struct media_intf_devnode *intf_devnode;
267 struct media_pipeline pipe;
269 const struct v4l2_file_operations *fops;
277 struct v4l2_device *v4l2_dev;
278 struct device *dev_parent;
280 struct v4l2_ctrl_handler *ctrl_handler;
282 struct vb2_queue *queue;
284 struct v4l2_prio_state *prio;
288 enum vfl_devnode_type vfl_type;
289 enum vfl_devnode_direction vfl_dir;
295 /* V4L2 file handles */
297 struct list_head fh_list;
304 void (*release)(struct video_device *vdev);
305 const struct v4l2_ioctl_ops *ioctl_ops;
306 DECLARE_BITMAP(valid_ioctls, BASE_VIDIOC_PRIVATE);
312 * media_entity_to_video_device - Returns a &struct video_device from
313 * the &struct media_entity embedded on it.
315 * @__entity: pointer to &struct media_entity
317 #define media_entity_to_video_device(__entity) \
318 container_of(__entity, struct video_device, entity)
321 * to_video_device - Returns a &struct video_device from the
322 * &struct device embedded on it.
324 * @cd: pointer to &struct device
326 #define to_video_device(cd) container_of(cd, struct video_device, dev)
329 * __video_register_device - register video4linux devices
331 * @vdev: struct video_device to register
332 * @type: type of device to register, as defined by &enum vfl_devnode_type
333 * @nr: which device node number is desired:
334 * (0 == /dev/video0, 1 == /dev/video1, ..., -1 == first free)
335 * @warn_if_nr_in_use: warn if the desired device node number
336 * was already in use and another number was chosen instead.
337 * @owner: module that owns the video device node
339 * The registration code assigns minor numbers and device node numbers
340 * based on the requested type and registers the new device node with
343 * This function assumes that struct video_device was zeroed when it
344 * was allocated and does not contain any stale date.
346 * An error is returned if no free minor or device node number could be
347 * found, or if the registration of the device node failed.
349 * Returns 0 on success.
353 * This function is meant to be used only inside the V4L2 core.
354 * Drivers should use video_register_device() or
355 * video_register_device_no_warn().
357 int __must_check __video_register_device(struct video_device *vdev,
358 enum vfl_devnode_type type,
359 int nr, int warn_if_nr_in_use,
360 struct module *owner);
363 * video_register_device - register video4linux devices
365 * @vdev: struct video_device to register
366 * @type: type of device to register, as defined by &enum vfl_devnode_type
367 * @nr: which device node number is desired:
368 * (0 == /dev/video0, 1 == /dev/video1, ..., -1 == first free)
370 * Internally, it calls __video_register_device(). Please see its
371 * documentation for more details.
374 * if video_register_device fails, the release() callback of
375 * &struct video_device structure is *not* called, so the caller
376 * is responsible for freeing any data. Usually that means that
377 * you video_device_release() should be called on failure.
379 static inline int __must_check video_register_device(struct video_device *vdev,
380 enum vfl_devnode_type type,
383 return __video_register_device(vdev, type, nr, 1, vdev->fops->owner);
387 * video_register_device_no_warn - register video4linux devices
389 * @vdev: struct video_device to register
390 * @type: type of device to register, as defined by &enum vfl_devnode_type
391 * @nr: which device node number is desired:
392 * (0 == /dev/video0, 1 == /dev/video1, ..., -1 == first free)
394 * This function is identical to video_register_device() except that no
395 * warning is issued if the desired device node number was already in use.
397 * Internally, it calls __video_register_device(). Please see its
398 * documentation for more details.
401 * if video_register_device fails, the release() callback of
402 * &struct video_device structure is *not* called, so the caller
403 * is responsible for freeing any data. Usually that means that
404 * you video_device_release() should be called on failure.
406 static inline int __must_check
407 video_register_device_no_warn(struct video_device *vdev,
408 enum vfl_devnode_type type, int nr)
410 return __video_register_device(vdev, type, nr, 0, vdev->fops->owner);
414 * video_unregister_device - Unregister video devices.
416 * @vdev: &struct video_device to register
418 * Does nothing if vdev == NULL or if video_is_registered() returns false.
420 void video_unregister_device(struct video_device *vdev);
423 * video_device_alloc - helper function to alloc &struct video_device
425 * Returns NULL if %-ENOMEM or a &struct video_device on success.
427 struct video_device * __must_check video_device_alloc(void);
430 * video_device_release - helper function to release &struct video_device
432 * @vdev: pointer to &struct video_device
434 * Can also be used for video_device->release\(\).
436 void video_device_release(struct video_device *vdev);
439 * video_device_release_empty - helper function to implement the
440 * video_device->release\(\) callback.
442 * @vdev: pointer to &struct video_device
444 * This release function does nothing.
446 * It should be used when the video_device is a static global struct.
449 * Having a static video_device is a dubious construction at best.
451 void video_device_release_empty(struct video_device *vdev);
454 * v4l2_disable_ioctl- mark that a given command isn't implemented.
455 * shouldn't use core locking
457 * @vdev: pointer to &struct video_device
458 * @cmd: ioctl command
460 * This function allows drivers to provide just one v4l2_ioctl_ops struct, but
461 * disable ioctls based on the specific card that is actually found.
465 * This must be called before video_register_device.
466 * See also the comments for determine_valid_ioctls().
468 static inline void v4l2_disable_ioctl(struct video_device *vdev,
471 if (_IOC_NR(cmd) < BASE_VIDIOC_PRIVATE)
472 set_bit(_IOC_NR(cmd), vdev->valid_ioctls);
476 * video_get_drvdata - gets private data from &struct video_device.
478 * @vdev: pointer to &struct video_device
480 * returns a pointer to the private data
482 static inline void *video_get_drvdata(struct video_device *vdev)
484 return dev_get_drvdata(&vdev->dev);
488 * video_set_drvdata - sets private data from &struct video_device.
490 * @vdev: pointer to &struct video_device
491 * @data: private data pointer
493 static inline void video_set_drvdata(struct video_device *vdev, void *data)
495 dev_set_drvdata(&vdev->dev, data);
499 * video_devdata - gets &struct video_device from struct file.
501 * @file: pointer to struct file
503 struct video_device *video_devdata(struct file *file);
506 * video_drvdata - gets private data from &struct video_device using the
509 * @file: pointer to struct file
511 * This is function combines both video_get_drvdata() and video_devdata()
512 * as this is used very often.
514 static inline void *video_drvdata(struct file *file)
516 return video_get_drvdata(video_devdata(file));
520 * video_device_node_name - returns the video device name
522 * @vdev: pointer to &struct video_device
524 * Returns the device name string
526 static inline const char *video_device_node_name(struct video_device *vdev)
528 return dev_name(&vdev->dev);
532 * video_is_registered - returns true if the &struct video_device is registered.
535 * @vdev: pointer to &struct video_device
537 static inline int video_is_registered(struct video_device *vdev)
539 return test_bit(V4L2_FL_REGISTERED, &vdev->flags);
542 #if defined(CONFIG_MEDIA_CONTROLLER)
545 * video_device_pipeline_start - Mark a pipeline as streaming
546 * @vdev: Starting video device
547 * @pipe: Media pipeline to be assigned to all entities in the pipeline.
549 * Mark all entities connected to a given video device through enabled links,
550 * either directly or indirectly, as streaming. The given pipeline object is
551 * assigned to every pad in the pipeline and stored in the media_pad pipe
554 * Calls to this function can be nested, in which case the same number of
555 * video_device_pipeline_stop() calls will be required to stop streaming. The
556 * pipeline pointer must be identical for all nested calls to
557 * video_device_pipeline_start().
559 * The video device must contain a single pad.
561 * This is a convenience wrapper around media_pipeline_start().
563 __must_check int video_device_pipeline_start(struct video_device *vdev,
564 struct media_pipeline *pipe);
567 * __video_device_pipeline_start - Mark a pipeline as streaming
568 * @vdev: Starting video device
569 * @pipe: Media pipeline to be assigned to all entities in the pipeline.
571 * ..note:: This is the non-locking version of video_device_pipeline_start()
573 * The video device must contain a single pad.
575 * This is a convenience wrapper around __media_pipeline_start().
577 __must_check int __video_device_pipeline_start(struct video_device *vdev,
578 struct media_pipeline *pipe);
581 * video_device_pipeline_stop - Mark a pipeline as not streaming
582 * @vdev: Starting video device
584 * Mark all entities connected to a given video device through enabled links,
585 * either directly or indirectly, as not streaming. The media_pad pipe field
588 * If multiple calls to media_pipeline_start() have been made, the same
589 * number of calls to this function are required to mark the pipeline as not
592 * The video device must contain a single pad.
594 * This is a convenience wrapper around media_pipeline_stop().
596 void video_device_pipeline_stop(struct video_device *vdev);
599 * __video_device_pipeline_stop - Mark a pipeline as not streaming
600 * @vdev: Starting video device
602 * .. note:: This is the non-locking version of media_pipeline_stop()
604 * The video device must contain a single pad.
606 * This is a convenience wrapper around __media_pipeline_stop().
608 void __video_device_pipeline_stop(struct video_device *vdev);
611 * video_device_pipeline_alloc_start - Mark a pipeline as streaming
612 * @vdev: Starting video device
614 * video_device_pipeline_alloc_start() is similar to video_device_pipeline_start()
615 * but instead of working on a given pipeline the function will use an
616 * existing pipeline if the video device is already part of a pipeline, or
617 * allocate a new pipeline.
619 * Calls to video_device_pipeline_alloc_start() must be matched with
620 * video_device_pipeline_stop().
622 __must_check int video_device_pipeline_alloc_start(struct video_device *vdev);
625 * video_device_pipeline - Get the media pipeline a video device is part of
626 * @vdev: The video device
628 * This function returns the media pipeline that a video device has been
629 * associated with when constructing the pipeline with
630 * video_device_pipeline_start(). The pointer remains valid until
631 * video_device_pipeline_stop() is called.
633 * Return: The media_pipeline the video device is part of, or NULL if the video
634 * device is not part of any pipeline.
636 * The video device must contain a single pad.
638 * This is a convenience wrapper around media_entity_pipeline().
640 struct media_pipeline *video_device_pipeline(struct video_device *vdev);
642 #endif /* CONFIG_MEDIA_CONTROLLER */
644 #endif /* _V4L2_DEV_H */