Convert CONFIG_ENV_IS_IN_SPI_FLASH et al to Kconfig
[platform/kernel/u-boot.git] / include / malloc.h
1 /* SPDX-License-Identifier: GPL-2.0+ */
2 /*
3   This code is based on a version of malloc/free/realloc written by Doug Lea and
4   released to the public domain. Send questions/comments/complaints/performance
5   data to dl@cs.oswego.edu
6
7 * VERSION 2.6.6  Sun Mar  5 19:10:03 2000  Doug Lea  (dl at gee)
8
9    Note: There may be an updated version of this malloc obtainable at
10            http://g.oswego.edu/pub/misc/malloc.c
11          Check before installing!
12
13 * Why use this malloc?
14
15   This is not the fastest, most space-conserving, most portable, or
16   most tunable malloc ever written. However it is among the fastest
17   while also being among the most space-conserving, portable and tunable.
18   Consistent balance across these factors results in a good general-purpose
19   allocator. For a high-level description, see
20      http://g.oswego.edu/dl/html/malloc.html
21
22 * Synopsis of public routines
23
24   (Much fuller descriptions are contained in the program documentation below.)
25
26   malloc(size_t n);
27      Return a pointer to a newly allocated chunk of at least n bytes, or null
28      if no space is available.
29   free(Void_t* p);
30      Release the chunk of memory pointed to by p, or no effect if p is null.
31   realloc(Void_t* p, size_t n);
32      Return a pointer to a chunk of size n that contains the same data
33      as does chunk p up to the minimum of (n, p's size) bytes, or null
34      if no space is available. The returned pointer may or may not be
35      the same as p. If p is null, equivalent to malloc.  Unless the
36      #define REALLOC_ZERO_BYTES_FREES below is set, realloc with a
37      size argument of zero (re)allocates a minimum-sized chunk.
38   memalign(size_t alignment, size_t n);
39      Return a pointer to a newly allocated chunk of n bytes, aligned
40      in accord with the alignment argument, which must be a power of
41      two.
42   valloc(size_t n);
43      Equivalent to memalign(pagesize, n), where pagesize is the page
44      size of the system (or as near to this as can be figured out from
45      all the includes/defines below.)
46   pvalloc(size_t n);
47      Equivalent to valloc(minimum-page-that-holds(n)), that is,
48      round up n to nearest pagesize.
49   calloc(size_t unit, size_t quantity);
50      Returns a pointer to quantity * unit bytes, with all locations
51      set to zero.
52   cfree(Void_t* p);
53      Equivalent to free(p).
54   malloc_trim(size_t pad);
55      Release all but pad bytes of freed top-most memory back
56      to the system. Return 1 if successful, else 0.
57   malloc_usable_size(Void_t* p);
58      Report the number usable allocated bytes associated with allocated
59      chunk p. This may or may not report more bytes than were requested,
60      due to alignment and minimum size constraints.
61   malloc_stats();
62      Prints brief summary statistics on stderr.
63   mallinfo()
64      Returns (by copy) a struct containing various summary statistics.
65   mallopt(int parameter_number, int parameter_value)
66      Changes one of the tunable parameters described below. Returns
67      1 if successful in changing the parameter, else 0.
68
69 * Vital statistics:
70
71   Alignment:                            8-byte
72        8 byte alignment is currently hardwired into the design.  This
73        seems to suffice for all current machines and C compilers.
74
75   Assumed pointer representation:       4 or 8 bytes
76        Code for 8-byte pointers is untested by me but has worked
77        reliably by Wolfram Gloger, who contributed most of the
78        changes supporting this.
79
80   Assumed size_t  representation:       4 or 8 bytes
81        Note that size_t is allowed to be 4 bytes even if pointers are 8.
82
83   Minimum overhead per allocated chunk: 4 or 8 bytes
84        Each malloced chunk has a hidden overhead of 4 bytes holding size
85        and status information.
86
87   Minimum allocated size: 4-byte ptrs:  16 bytes    (including 4 overhead)
88                           8-byte ptrs:  24/32 bytes (including, 4/8 overhead)
89
90        When a chunk is freed, 12 (for 4byte ptrs) or 20 (for 8 byte
91        ptrs but 4 byte size) or 24 (for 8/8) additional bytes are
92        needed; 4 (8) for a trailing size field
93        and 8 (16) bytes for free list pointers. Thus, the minimum
94        allocatable size is 16/24/32 bytes.
95
96        Even a request for zero bytes (i.e., malloc(0)) returns a
97        pointer to something of the minimum allocatable size.
98
99   Maximum allocated size: 4-byte size_t: 2^31 -  8 bytes
100                           8-byte size_t: 2^63 - 16 bytes
101
102        It is assumed that (possibly signed) size_t bit values suffice to
103        represent chunk sizes. `Possibly signed' is due to the fact
104        that `size_t' may be defined on a system as either a signed or
105        an unsigned type. To be conservative, values that would appear
106        as negative numbers are avoided.
107        Requests for sizes with a negative sign bit when the request
108        size is treaded as a long will return null.
109
110   Maximum overhead wastage per allocated chunk: normally 15 bytes
111
112        Alignnment demands, plus the minimum allocatable size restriction
113        make the normal worst-case wastage 15 bytes (i.e., up to 15
114        more bytes will be allocated than were requested in malloc), with
115        two exceptions:
116          1. Because requests for zero bytes allocate non-zero space,
117             the worst case wastage for a request of zero bytes is 24 bytes.
118          2. For requests >= mmap_threshold that are serviced via
119             mmap(), the worst case wastage is 8 bytes plus the remainder
120             from a system page (the minimal mmap unit); typically 4096 bytes.
121
122 * Limitations
123
124     Here are some features that are NOT currently supported
125
126     * No user-definable hooks for callbacks and the like.
127     * No automated mechanism for fully checking that all accesses
128       to malloced memory stay within their bounds.
129     * No support for compaction.
130
131 * Synopsis of compile-time options:
132
133     People have reported using previous versions of this malloc on all
134     versions of Unix, sometimes by tweaking some of the defines
135     below. It has been tested most extensively on Solaris and
136     Linux. It is also reported to work on WIN32 platforms.
137     People have also reported adapting this malloc for use in
138     stand-alone embedded systems.
139
140     The implementation is in straight, hand-tuned ANSI C.  Among other
141     consequences, it uses a lot of macros.  Because of this, to be at
142     all usable, this code should be compiled using an optimizing compiler
143     (for example gcc -O2) that can simplify expressions and control
144     paths.
145
146   __STD_C                  (default: derived from C compiler defines)
147      Nonzero if using ANSI-standard C compiler, a C++ compiler, or
148      a C compiler sufficiently close to ANSI to get away with it.
149   DEBUG                    (default: NOT defined)
150      Define to enable debugging. Adds fairly extensive assertion-based
151      checking to help track down memory errors, but noticeably slows down
152      execution.
153   REALLOC_ZERO_BYTES_FREES (default: NOT defined)
154      Define this if you think that realloc(p, 0) should be equivalent
155      to free(p). Otherwise, since malloc returns a unique pointer for
156      malloc(0), so does realloc(p, 0).
157   HAVE_MEMCPY               (default: defined)
158      Define if you are not otherwise using ANSI STD C, but still
159      have memcpy and memset in your C library and want to use them.
160      Otherwise, simple internal versions are supplied.
161   USE_MEMCPY               (default: 1 if HAVE_MEMCPY is defined, 0 otherwise)
162      Define as 1 if you want the C library versions of memset and
163      memcpy called in realloc and calloc (otherwise macro versions are used).
164      At least on some platforms, the simple macro versions usually
165      outperform libc versions.
166   HAVE_MMAP                 (default: defined as 1)
167      Define to non-zero to optionally make malloc() use mmap() to
168      allocate very large blocks.
169   HAVE_MREMAP                 (default: defined as 0 unless Linux libc set)
170      Define to non-zero to optionally make realloc() use mremap() to
171      reallocate very large blocks.
172   malloc_getpagesize        (default: derived from system #includes)
173      Either a constant or routine call returning the system page size.
174   HAVE_USR_INCLUDE_MALLOC_H (default: NOT defined)
175      Optionally define if you are on a system with a /usr/include/malloc.h
176      that declares struct mallinfo. It is not at all necessary to
177      define this even if you do, but will ensure consistency.
178   INTERNAL_SIZE_T           (default: size_t)
179      Define to a 32-bit type (probably `unsigned int') if you are on a
180      64-bit machine, yet do not want or need to allow malloc requests of
181      greater than 2^31 to be handled. This saves space, especially for
182      very small chunks.
183   INTERNAL_LINUX_C_LIB      (default: NOT defined)
184      Defined only when compiled as part of Linux libc.
185      Also note that there is some odd internal name-mangling via defines
186      (for example, internally, `malloc' is named `mALLOc') needed
187      when compiling in this case. These look funny but don't otherwise
188      affect anything.
189   WIN32                     (default: undefined)
190      Define this on MS win (95, nt) platforms to compile in sbrk emulation.
191   LACKS_UNISTD_H            (default: undefined if not WIN32)
192      Define this if your system does not have a <unistd.h>.
193   LACKS_SYS_PARAM_H         (default: undefined if not WIN32)
194      Define this if your system does not have a <sys/param.h>.
195   MORECORE                  (default: sbrk)
196      The name of the routine to call to obtain more memory from the system.
197   MORECORE_FAILURE          (default: -1)
198      The value returned upon failure of MORECORE.
199   MORECORE_CLEARS           (default 1)
200      true (1) if the routine mapped to MORECORE zeroes out memory (which
201      holds for sbrk).
202   DEFAULT_TRIM_THRESHOLD
203   DEFAULT_TOP_PAD
204   DEFAULT_MMAP_THRESHOLD
205   DEFAULT_MMAP_MAX
206      Default values of tunable parameters (described in detail below)
207      controlling interaction with host system routines (sbrk, mmap, etc).
208      These values may also be changed dynamically via mallopt(). The
209      preset defaults are those that give best performance for typical
210      programs/systems.
211   USE_DL_PREFIX             (default: undefined)
212      Prefix all public routines with the string 'dl'.  Useful to
213      quickly avoid procedure declaration conflicts and linker symbol
214      conflicts with existing memory allocation routines.
215
216
217 */
218
219 \f
220 #ifndef __MALLOC_H__
221 #define __MALLOC_H__
222
223 /* Preliminaries */
224
225 #ifndef __STD_C
226 #ifdef __STDC__
227 #define __STD_C     1
228 #else
229 #if __cplusplus
230 #define __STD_C     1
231 #else
232 #define __STD_C     0
233 #endif /*__cplusplus*/
234 #endif /*__STDC__*/
235 #endif /*__STD_C*/
236
237 #ifndef Void_t
238 #if (__STD_C || defined(WIN32))
239 #define Void_t      void
240 #else
241 #define Void_t      char
242 #endif
243 #endif /*Void_t*/
244
245 #if __STD_C
246 #include <linux/stddef.h>       /* for size_t */
247 #else
248 #include <sys/types.h>
249 #endif  /* __STD_C */
250
251 #ifdef __cplusplus
252 extern "C" {
253 #endif
254
255 #if 0   /* not for U-Boot */
256 #include <stdio.h>      /* needed for malloc_stats */
257 #endif
258
259
260 /*
261   Compile-time options
262 */
263
264
265 /*
266     Debugging:
267
268     Because freed chunks may be overwritten with link fields, this
269     malloc will often die when freed memory is overwritten by user
270     programs.  This can be very effective (albeit in an annoying way)
271     in helping track down dangling pointers.
272
273     If you compile with -DDEBUG, a number of assertion checks are
274     enabled that will catch more memory errors. You probably won't be
275     able to make much sense of the actual assertion errors, but they
276     should help you locate incorrectly overwritten memory.  The
277     checking is fairly extensive, and will slow down execution
278     noticeably. Calling malloc_stats or mallinfo with DEBUG set will
279     attempt to check every non-mmapped allocated and free chunk in the
280     course of computing the summmaries. (By nature, mmapped regions
281     cannot be checked very much automatically.)
282
283     Setting DEBUG may also be helpful if you are trying to modify
284     this code. The assertions in the check routines spell out in more
285     detail the assumptions and invariants underlying the algorithms.
286
287 */
288
289 /*
290   INTERNAL_SIZE_T is the word-size used for internal bookkeeping
291   of chunk sizes. On a 64-bit machine, you can reduce malloc
292   overhead by defining INTERNAL_SIZE_T to be a 32 bit `unsigned int'
293   at the expense of not being able to handle requests greater than
294   2^31. This limitation is hardly ever a concern; you are encouraged
295   to set this. However, the default version is the same as size_t.
296 */
297
298 #ifndef INTERNAL_SIZE_T
299 #define INTERNAL_SIZE_T size_t
300 #endif
301
302 /*
303   REALLOC_ZERO_BYTES_FREES should be set if a call to
304   realloc with zero bytes should be the same as a call to free.
305   Some people think it should. Otherwise, since this malloc
306   returns a unique pointer for malloc(0), so does realloc(p, 0).
307 */
308
309
310 /*   #define REALLOC_ZERO_BYTES_FREES */
311
312
313 /*
314   WIN32 causes an emulation of sbrk to be compiled in
315   mmap-based options are not currently supported in WIN32.
316 */
317
318 /* #define WIN32 */
319 #ifdef WIN32
320 #define MORECORE wsbrk
321 #define HAVE_MMAP 0
322
323 #define LACKS_UNISTD_H
324 #define LACKS_SYS_PARAM_H
325
326 /*
327   Include 'windows.h' to get the necessary declarations for the
328   Microsoft Visual C++ data structures and routines used in the 'sbrk'
329   emulation.
330
331   Define WIN32_LEAN_AND_MEAN so that only the essential Microsoft
332   Visual C++ header files are included.
333 */
334 #define WIN32_LEAN_AND_MEAN
335 #include <windows.h>
336 #endif
337
338
339 /*
340   HAVE_MEMCPY should be defined if you are not otherwise using
341   ANSI STD C, but still have memcpy and memset in your C library
342   and want to use them in calloc and realloc. Otherwise simple
343   macro versions are defined here.
344
345   USE_MEMCPY should be defined as 1 if you actually want to
346   have memset and memcpy called. People report that the macro
347   versions are often enough faster than libc versions on many
348   systems that it is better to use them.
349
350 */
351
352 #define HAVE_MEMCPY
353
354 #ifndef USE_MEMCPY
355 #ifdef HAVE_MEMCPY
356 #define USE_MEMCPY 1
357 #else
358 #define USE_MEMCPY 0
359 #endif
360 #endif
361
362 #if (__STD_C || defined(HAVE_MEMCPY))
363
364 #if __STD_C
365 /* U-Boot defines memset() and memcpy in /include/linux/string.h
366 void* memset(void*, int, size_t);
367 void* memcpy(void*, const void*, size_t);
368 */
369 #include <linux/string.h>
370 #else
371 #ifdef WIN32
372 /* On Win32 platforms, 'memset()' and 'memcpy()' are already declared in */
373 /* 'windows.h' */
374 #else
375 Void_t* memset();
376 Void_t* memcpy();
377 #endif
378 #endif
379 #endif
380
381 #if USE_MEMCPY
382
383 /* The following macros are only invoked with (2n+1)-multiples of
384    INTERNAL_SIZE_T units, with a positive integer n. This is exploited
385    for fast inline execution when n is small. */
386
387 #define MALLOC_ZERO(charp, nbytes)                                            \
388 do {                                                                          \
389   INTERNAL_SIZE_T mzsz = (nbytes);                                            \
390   if(mzsz <= 9*sizeof(mzsz)) {                                                \
391     INTERNAL_SIZE_T* mz = (INTERNAL_SIZE_T*) (charp);                         \
392     if(mzsz >= 5*sizeof(mzsz)) {     *mz++ = 0;                               \
393                                      *mz++ = 0;                               \
394       if(mzsz >= 7*sizeof(mzsz)) {   *mz++ = 0;                               \
395                                      *mz++ = 0;                               \
396         if(mzsz >= 9*sizeof(mzsz)) { *mz++ = 0;                               \
397                                      *mz++ = 0; }}}                           \
398                                      *mz++ = 0;                               \
399                                      *mz++ = 0;                               \
400                                      *mz   = 0;                               \
401   } else memset((charp), 0, mzsz);                                            \
402 } while(0)
403
404 #define MALLOC_COPY(dest,src,nbytes)                                          \
405 do {                                                                          \
406   INTERNAL_SIZE_T mcsz = (nbytes);                                            \
407   if(mcsz <= 9*sizeof(mcsz)) {                                                \
408     INTERNAL_SIZE_T* mcsrc = (INTERNAL_SIZE_T*) (src);                        \
409     INTERNAL_SIZE_T* mcdst = (INTERNAL_SIZE_T*) (dest);                       \
410     if(mcsz >= 5*sizeof(mcsz)) {     *mcdst++ = *mcsrc++;                     \
411                                      *mcdst++ = *mcsrc++;                     \
412       if(mcsz >= 7*sizeof(mcsz)) {   *mcdst++ = *mcsrc++;                     \
413                                      *mcdst++ = *mcsrc++;                     \
414         if(mcsz >= 9*sizeof(mcsz)) { *mcdst++ = *mcsrc++;                     \
415                                      *mcdst++ = *mcsrc++; }}}                 \
416                                      *mcdst++ = *mcsrc++;                     \
417                                      *mcdst++ = *mcsrc++;                     \
418                                      *mcdst   = *mcsrc  ;                     \
419   } else memcpy(dest, src, mcsz);                                             \
420 } while(0)
421
422 #else /* !USE_MEMCPY */
423
424 /* Use Duff's device for good zeroing/copying performance. */
425
426 #define MALLOC_ZERO(charp, nbytes)                                            \
427 do {                                                                          \
428   INTERNAL_SIZE_T* mzp = (INTERNAL_SIZE_T*)(charp);                           \
429   long mctmp = (nbytes)/sizeof(INTERNAL_SIZE_T), mcn;                         \
430   if (mctmp < 8) mcn = 0; else { mcn = (mctmp-1)/8; mctmp %= 8; }             \
431   switch (mctmp) {                                                            \
432     case 0: for(;;) { *mzp++ = 0;                                             \
433     case 7:           *mzp++ = 0;                                             \
434     case 6:           *mzp++ = 0;                                             \
435     case 5:           *mzp++ = 0;                                             \
436     case 4:           *mzp++ = 0;                                             \
437     case 3:           *mzp++ = 0;                                             \
438     case 2:           *mzp++ = 0;                                             \
439     case 1:           *mzp++ = 0; if(mcn <= 0) break; mcn--; }                \
440   }                                                                           \
441 } while(0)
442
443 #define MALLOC_COPY(dest,src,nbytes)                                          \
444 do {                                                                          \
445   INTERNAL_SIZE_T* mcsrc = (INTERNAL_SIZE_T*) src;                            \
446   INTERNAL_SIZE_T* mcdst = (INTERNAL_SIZE_T*) dest;                           \
447   long mctmp = (nbytes)/sizeof(INTERNAL_SIZE_T), mcn;                         \
448   if (mctmp < 8) mcn = 0; else { mcn = (mctmp-1)/8; mctmp %= 8; }             \
449   switch (mctmp) {                                                            \
450     case 0: for(;;) { *mcdst++ = *mcsrc++;                                    \
451     case 7:           *mcdst++ = *mcsrc++;                                    \
452     case 6:           *mcdst++ = *mcsrc++;                                    \
453     case 5:           *mcdst++ = *mcsrc++;                                    \
454     case 4:           *mcdst++ = *mcsrc++;                                    \
455     case 3:           *mcdst++ = *mcsrc++;                                    \
456     case 2:           *mcdst++ = *mcsrc++;                                    \
457     case 1:           *mcdst++ = *mcsrc++; if(mcn <= 0) break; mcn--; }       \
458   }                                                                           \
459 } while(0)
460
461 #endif
462
463
464 /*
465   Define HAVE_MMAP to optionally make malloc() use mmap() to
466   allocate very large blocks.  These will be returned to the
467   operating system immediately after a free().
468 */
469
470 /***
471 #ifndef HAVE_MMAP
472 #define HAVE_MMAP 1
473 #endif
474 ***/
475 #undef  HAVE_MMAP       /* Not available for U-Boot */
476
477 /*
478   Define HAVE_MREMAP to make realloc() use mremap() to re-allocate
479   large blocks.  This is currently only possible on Linux with
480   kernel versions newer than 1.3.77.
481 */
482
483 /***
484 #ifndef HAVE_MREMAP
485 #ifdef INTERNAL_LINUX_C_LIB
486 #define HAVE_MREMAP 1
487 #else
488 #define HAVE_MREMAP 0
489 #endif
490 #endif
491 ***/
492 #undef  HAVE_MREMAP     /* Not available for U-Boot */
493
494 #ifdef HAVE_MMAP
495
496 #include <unistd.h>
497 #include <fcntl.h>
498 #include <sys/mman.h>
499
500 #if !defined(MAP_ANONYMOUS) && defined(MAP_ANON)
501 #define MAP_ANONYMOUS MAP_ANON
502 #endif
503
504 #endif /* HAVE_MMAP */
505
506 /*
507   Access to system page size. To the extent possible, this malloc
508   manages memory from the system in page-size units.
509
510   The following mechanics for getpagesize were adapted from
511   bsd/gnu getpagesize.h
512 */
513
514 #define LACKS_UNISTD_H  /* Shortcut for U-Boot */
515 #define malloc_getpagesize      4096
516
517 #ifndef LACKS_UNISTD_H
518 #  include <unistd.h>
519 #endif
520
521 #ifndef malloc_getpagesize
522 #  ifdef _SC_PAGESIZE         /* some SVR4 systems omit an underscore */
523 #    ifndef _SC_PAGE_SIZE
524 #      define _SC_PAGE_SIZE _SC_PAGESIZE
525 #    endif
526 #  endif
527 #  ifdef _SC_PAGE_SIZE
528 #    define malloc_getpagesize sysconf(_SC_PAGE_SIZE)
529 #  else
530 #    if defined(BSD) || defined(DGUX) || defined(HAVE_GETPAGESIZE)
531        extern size_t getpagesize();
532 #      define malloc_getpagesize getpagesize()
533 #    else
534 #      ifdef WIN32
535 #        define malloc_getpagesize (4096) /* TBD: Use 'GetSystemInfo' instead */
536 #      else
537 #        ifndef LACKS_SYS_PARAM_H
538 #          include <sys/param.h>
539 #        endif
540 #        ifdef EXEC_PAGESIZE
541 #          define malloc_getpagesize EXEC_PAGESIZE
542 #        else
543 #          ifdef NBPG
544 #            ifndef CLSIZE
545 #              define malloc_getpagesize NBPG
546 #            else
547 #              define malloc_getpagesize (NBPG * CLSIZE)
548 #            endif
549 #          else
550 #            ifdef NBPC
551 #              define malloc_getpagesize NBPC
552 #            else
553 #              ifdef PAGESIZE
554 #                define malloc_getpagesize PAGESIZE
555 #              else
556 #                define malloc_getpagesize (4096) /* just guess */
557 #              endif
558 #            endif
559 #          endif
560 #        endif
561 #      endif
562 #    endif
563 #  endif
564 #endif
565
566
567 /*
568
569   This version of malloc supports the standard SVID/XPG mallinfo
570   routine that returns a struct containing the same kind of
571   information you can get from malloc_stats. It should work on
572   any SVID/XPG compliant system that has a /usr/include/malloc.h
573   defining struct mallinfo. (If you'd like to install such a thing
574   yourself, cut out the preliminary declarations as described above
575   and below and save them in a malloc.h file. But there's no
576   compelling reason to bother to do this.)
577
578   The main declaration needed is the mallinfo struct that is returned
579   (by-copy) by mallinfo().  The SVID/XPG malloinfo struct contains a
580   bunch of fields, most of which are not even meaningful in this
581   version of malloc. Some of these fields are are instead filled by
582   mallinfo() with other numbers that might possibly be of interest.
583
584   HAVE_USR_INCLUDE_MALLOC_H should be set if you have a
585   /usr/include/malloc.h file that includes a declaration of struct
586   mallinfo.  If so, it is included; else an SVID2/XPG2 compliant
587   version is declared below.  These must be precisely the same for
588   mallinfo() to work.
589
590 */
591
592 /* #define HAVE_USR_INCLUDE_MALLOC_H */
593
594 #ifdef HAVE_USR_INCLUDE_MALLOC_H
595 #include "/usr/include/malloc.h"
596 #else
597
598 /* SVID2/XPG mallinfo structure */
599
600 struct mallinfo {
601   int arena;    /* total space allocated from system */
602   int ordblks;  /* number of non-inuse chunks */
603   int smblks;   /* unused -- always zero */
604   int hblks;    /* number of mmapped regions */
605   int hblkhd;   /* total space in mmapped regions */
606   int usmblks;  /* unused -- always zero */
607   int fsmblks;  /* unused -- always zero */
608   int uordblks; /* total allocated space */
609   int fordblks; /* total non-inuse space */
610   int keepcost; /* top-most, releasable (via malloc_trim) space */
611 };
612
613 /* SVID2/XPG mallopt options */
614
615 #define M_MXFAST  1    /* UNUSED in this malloc */
616 #define M_NLBLKS  2    /* UNUSED in this malloc */
617 #define M_GRAIN   3    /* UNUSED in this malloc */
618 #define M_KEEP    4    /* UNUSED in this malloc */
619
620 #endif
621
622 /* mallopt options that actually do something */
623
624 #define M_TRIM_THRESHOLD    -1
625 #define M_TOP_PAD           -2
626 #define M_MMAP_THRESHOLD    -3
627 #define M_MMAP_MAX          -4
628
629
630 #ifndef DEFAULT_TRIM_THRESHOLD
631 #define DEFAULT_TRIM_THRESHOLD (128 * 1024)
632 #endif
633
634 /*
635     M_TRIM_THRESHOLD is the maximum amount of unused top-most memory
636       to keep before releasing via malloc_trim in free().
637
638       Automatic trimming is mainly useful in long-lived programs.
639       Because trimming via sbrk can be slow on some systems, and can
640       sometimes be wasteful (in cases where programs immediately
641       afterward allocate more large chunks) the value should be high
642       enough so that your overall system performance would improve by
643       releasing.
644
645       The trim threshold and the mmap control parameters (see below)
646       can be traded off with one another. Trimming and mmapping are
647       two different ways of releasing unused memory back to the
648       system. Between these two, it is often possible to keep
649       system-level demands of a long-lived program down to a bare
650       minimum. For example, in one test suite of sessions measuring
651       the XF86 X server on Linux, using a trim threshold of 128K and a
652       mmap threshold of 192K led to near-minimal long term resource
653       consumption.
654
655       If you are using this malloc in a long-lived program, it should
656       pay to experiment with these values.  As a rough guide, you
657       might set to a value close to the average size of a process
658       (program) running on your system.  Releasing this much memory
659       would allow such a process to run in memory.  Generally, it's
660       worth it to tune for trimming rather tham memory mapping when a
661       program undergoes phases where several large chunks are
662       allocated and released in ways that can reuse each other's
663       storage, perhaps mixed with phases where there are no such
664       chunks at all.  And in well-behaved long-lived programs,
665       controlling release of large blocks via trimming versus mapping
666       is usually faster.
667
668       However, in most programs, these parameters serve mainly as
669       protection against the system-level effects of carrying around
670       massive amounts of unneeded memory. Since frequent calls to
671       sbrk, mmap, and munmap otherwise degrade performance, the default
672       parameters are set to relatively high values that serve only as
673       safeguards.
674
675       The default trim value is high enough to cause trimming only in
676       fairly extreme (by current memory consumption standards) cases.
677       It must be greater than page size to have any useful effect.  To
678       disable trimming completely, you can set to (unsigned long)(-1);
679
680
681 */
682
683
684 #ifndef DEFAULT_TOP_PAD
685 #define DEFAULT_TOP_PAD        (0)
686 #endif
687
688 /*
689     M_TOP_PAD is the amount of extra `padding' space to allocate or
690       retain whenever sbrk is called. It is used in two ways internally:
691
692       * When sbrk is called to extend the top of the arena to satisfy
693         a new malloc request, this much padding is added to the sbrk
694         request.
695
696       * When malloc_trim is called automatically from free(),
697         it is used as the `pad' argument.
698
699       In both cases, the actual amount of padding is rounded
700       so that the end of the arena is always a system page boundary.
701
702       The main reason for using padding is to avoid calling sbrk so
703       often. Having even a small pad greatly reduces the likelihood
704       that nearly every malloc request during program start-up (or
705       after trimming) will invoke sbrk, which needlessly wastes
706       time.
707
708       Automatic rounding-up to page-size units is normally sufficient
709       to avoid measurable overhead, so the default is 0.  However, in
710       systems where sbrk is relatively slow, it can pay to increase
711       this value, at the expense of carrying around more memory than
712       the program needs.
713
714 */
715
716
717 #ifndef DEFAULT_MMAP_THRESHOLD
718 #define DEFAULT_MMAP_THRESHOLD (128 * 1024)
719 #endif
720
721 /*
722
723     M_MMAP_THRESHOLD is the request size threshold for using mmap()
724       to service a request. Requests of at least this size that cannot
725       be allocated using already-existing space will be serviced via mmap.
726       (If enough normal freed space already exists it is used instead.)
727
728       Using mmap segregates relatively large chunks of memory so that
729       they can be individually obtained and released from the host
730       system. A request serviced through mmap is never reused by any
731       other request (at least not directly; the system may just so
732       happen to remap successive requests to the same locations).
733
734       Segregating space in this way has the benefit that mmapped space
735       can ALWAYS be individually released back to the system, which
736       helps keep the system level memory demands of a long-lived
737       program low. Mapped memory can never become `locked' between
738       other chunks, as can happen with normally allocated chunks, which
739       menas that even trimming via malloc_trim would not release them.
740
741       However, it has the disadvantages that:
742
743          1. The space cannot be reclaimed, consolidated, and then
744             used to service later requests, as happens with normal chunks.
745          2. It can lead to more wastage because of mmap page alignment
746             requirements
747          3. It causes malloc performance to be more dependent on host
748             system memory management support routines which may vary in
749             implementation quality and may impose arbitrary
750             limitations. Generally, servicing a request via normal
751             malloc steps is faster than going through a system's mmap.
752
753       All together, these considerations should lead you to use mmap
754       only for relatively large requests.
755
756
757 */
758
759
760 #ifndef DEFAULT_MMAP_MAX
761 #ifdef HAVE_MMAP
762 #define DEFAULT_MMAP_MAX       (64)
763 #else
764 #define DEFAULT_MMAP_MAX       (0)
765 #endif
766 #endif
767
768 /*
769     M_MMAP_MAX is the maximum number of requests to simultaneously
770       service using mmap. This parameter exists because:
771
772          1. Some systems have a limited number of internal tables for
773             use by mmap.
774          2. In most systems, overreliance on mmap can degrade overall
775             performance.
776          3. If a program allocates many large regions, it is probably
777             better off using normal sbrk-based allocation routines that
778             can reclaim and reallocate normal heap memory. Using a
779             small value allows transition into this mode after the
780             first few allocations.
781
782       Setting to 0 disables all use of mmap.  If HAVE_MMAP is not set,
783       the default value is 0, and attempts to set it to non-zero values
784       in mallopt will fail.
785 */
786
787
788 /*
789     USE_DL_PREFIX will prefix all public routines with the string 'dl'.
790       Useful to quickly avoid procedure declaration conflicts and linker
791       symbol conflicts with existing memory allocation routines.
792
793 */
794
795 /*
796  * Rename the U-Boot alloc functions so that sandbox can still use the system
797  * ones
798  */
799 #ifdef CONFIG_SANDBOX
800 #define USE_DL_PREFIX
801 #endif
802
803 /*
804
805   Special defines for linux libc
806
807   Except when compiled using these special defines for Linux libc
808   using weak aliases, this malloc is NOT designed to work in
809   multithreaded applications.  No semaphores or other concurrency
810   control are provided to ensure that multiple malloc or free calls
811   don't run at the same time, which could be disasterous. A single
812   semaphore could be used across malloc, realloc, and free (which is
813   essentially the effect of the linux weak alias approach). It would
814   be hard to obtain finer granularity.
815
816 */
817
818
819 #ifdef INTERNAL_LINUX_C_LIB
820
821 #if __STD_C
822
823 Void_t * __default_morecore_init (ptrdiff_t);
824 Void_t *(*__morecore)(ptrdiff_t) = __default_morecore_init;
825
826 #else
827
828 Void_t * __default_morecore_init ();
829 Void_t *(*__morecore)() = __default_morecore_init;
830
831 #endif
832
833 #define MORECORE (*__morecore)
834 #define MORECORE_FAILURE 0
835 #define MORECORE_CLEARS 1
836
837 #else /* INTERNAL_LINUX_C_LIB */
838
839 #if __STD_C
840 extern Void_t*     sbrk(ptrdiff_t);
841 #else
842 extern Void_t*     sbrk();
843 #endif
844
845 #ifndef MORECORE
846 #define MORECORE sbrk
847 #endif
848
849 #ifndef MORECORE_FAILURE
850 #define MORECORE_FAILURE -1
851 #endif
852
853 #ifndef MORECORE_CLEARS
854 #define MORECORE_CLEARS 1
855 #endif
856
857 #endif /* INTERNAL_LINUX_C_LIB */
858
859 #if defined(INTERNAL_LINUX_C_LIB) && defined(__ELF__)
860
861 #define cALLOc          __libc_calloc
862 #define fREe            __libc_free
863 #define mALLOc          __libc_malloc
864 #define mEMALIGn        __libc_memalign
865 #define rEALLOc         __libc_realloc
866 #define vALLOc          __libc_valloc
867 #define pvALLOc         __libc_pvalloc
868 #define mALLINFo        __libc_mallinfo
869 #define mALLOPt         __libc_mallopt
870
871 #pragma weak calloc = __libc_calloc
872 #pragma weak free = __libc_free
873 #pragma weak cfree = __libc_free
874 #pragma weak malloc = __libc_malloc
875 #pragma weak memalign = __libc_memalign
876 #pragma weak realloc = __libc_realloc
877 #pragma weak valloc = __libc_valloc
878 #pragma weak pvalloc = __libc_pvalloc
879 #pragma weak mallinfo = __libc_mallinfo
880 #pragma weak mallopt = __libc_mallopt
881
882 #else
883
884 void malloc_simple_info(void);
885
886 #if CONFIG_IS_ENABLED(SYS_MALLOC_SIMPLE)
887 #define malloc malloc_simple
888 #define realloc realloc_simple
889 #define memalign memalign_simple
890 static inline void free(void *ptr) {}
891 void *calloc(size_t nmemb, size_t size);
892 void *realloc_simple(void *ptr, size_t size);
893 #else
894
895 # ifdef USE_DL_PREFIX
896 # define cALLOc         dlcalloc
897 # define fREe           dlfree
898 # define mALLOc         dlmalloc
899 # define mEMALIGn       dlmemalign
900 # define rEALLOc                dlrealloc
901 # define vALLOc         dlvalloc
902 # define pvALLOc                dlpvalloc
903 # define mALLINFo       dlmallinfo
904 # define mALLOPt                dlmallopt
905
906 /* Ensure that U-Boot actually uses these too */
907 #define calloc dlcalloc
908 #define free(ptr) dlfree(ptr)
909 #define malloc(x) dlmalloc(x)
910 #define memalign dlmemalign
911 #define realloc dlrealloc
912 #define valloc dlvalloc
913 #define pvalloc dlpvalloc
914 #define mallinfo() dlmallinfo()
915 #define mallopt dlmallopt
916 #define malloc_trim dlmalloc_trim
917 #define malloc_usable_size dlmalloc_usable_size
918 #define malloc_stats dlmalloc_stats
919
920 # else /* USE_DL_PREFIX */
921 # define cALLOc         calloc
922 # define fREe           free
923 # define mALLOc         malloc
924 # define mEMALIGn       memalign
925 # define rEALLOc                realloc
926 # define vALLOc         valloc
927 # define pvALLOc                pvalloc
928 # define mALLINFo       mallinfo
929 # define mALLOPt                mallopt
930 # endif /* USE_DL_PREFIX */
931
932 #endif
933
934 /* Set up pre-relocation malloc() ready for use */
935 int initf_malloc(void);
936
937 /* Public routines */
938
939 /* Simple versions which can be used when space is tight */
940 void *malloc_simple(size_t size);
941 void *memalign_simple(size_t alignment, size_t bytes);
942
943 #pragma GCC visibility push(hidden)
944 # if __STD_C
945
946 Void_t* mALLOc(size_t);
947 void    fREe(Void_t*);
948 Void_t* rEALLOc(Void_t*, size_t);
949 Void_t* mEMALIGn(size_t, size_t);
950 Void_t* vALLOc(size_t);
951 Void_t* pvALLOc(size_t);
952 Void_t* cALLOc(size_t, size_t);
953 void    cfree(Void_t*);
954 int     malloc_trim(size_t);
955 size_t  malloc_usable_size(Void_t*);
956 void    malloc_stats(void);
957 int     mALLOPt(int, int);
958 struct mallinfo mALLINFo(void);
959 # else
960 Void_t* mALLOc();
961 void    fREe();
962 Void_t* rEALLOc();
963 Void_t* mEMALIGn();
964 Void_t* vALLOc();
965 Void_t* pvALLOc();
966 Void_t* cALLOc();
967 void    cfree();
968 int     malloc_trim();
969 size_t  malloc_usable_size();
970 void    malloc_stats();
971 int     mALLOPt();
972 struct mallinfo mALLINFo();
973 # endif
974 #endif
975 #pragma GCC visibility pop
976
977 /*
978  * Begin and End of memory area for malloc(), and current "brk"
979  */
980 extern ulong mem_malloc_start;
981 extern ulong mem_malloc_end;
982 extern ulong mem_malloc_brk;
983
984 void mem_malloc_init(ulong start, ulong size);
985
986 #ifdef __cplusplus
987 };  /* end of extern "C" */
988 #endif
989
990 #endif /* __MALLOC_H__ */