sched/numa: Select a preferred node with the most numa hinting faults
[platform/adaptation/renesas_rcar/renesas_kernel.git] / include / linux / usb.h
1 #ifndef __LINUX_USB_H
2 #define __LINUX_USB_H
3
4 #include <linux/mod_devicetable.h>
5 #include <linux/usb/ch9.h>
6
7 #define USB_MAJOR                       180
8 #define USB_DEVICE_MAJOR                189
9
10
11 #ifdef __KERNEL__
12
13 #include <linux/errno.h>        /* for -ENODEV */
14 #include <linux/delay.h>        /* for mdelay() */
15 #include <linux/interrupt.h>    /* for in_interrupt() */
16 #include <linux/list.h>         /* for struct list_head */
17 #include <linux/kref.h>         /* for struct kref */
18 #include <linux/device.h>       /* for struct device */
19 #include <linux/fs.h>           /* for struct file_operations */
20 #include <linux/completion.h>   /* for struct completion */
21 #include <linux/sched.h>        /* for current && schedule_timeout */
22 #include <linux/mutex.h>        /* for struct mutex */
23 #include <linux/pm_runtime.h>   /* for runtime PM */
24
25 struct usb_device;
26 struct usb_driver;
27 struct wusb_dev;
28
29 /*-------------------------------------------------------------------------*/
30
31 /*
32  * Host-side wrappers for standard USB descriptors ... these are parsed
33  * from the data provided by devices.  Parsing turns them from a flat
34  * sequence of descriptors into a hierarchy:
35  *
36  *  - devices have one (usually) or more configs;
37  *  - configs have one (often) or more interfaces;
38  *  - interfaces have one (usually) or more settings;
39  *  - each interface setting has zero or (usually) more endpoints.
40  *  - a SuperSpeed endpoint has a companion descriptor
41  *
42  * And there might be other descriptors mixed in with those.
43  *
44  * Devices may also have class-specific or vendor-specific descriptors.
45  */
46
47 struct ep_device;
48
49 /**
50  * struct usb_host_endpoint - host-side endpoint descriptor and queue
51  * @desc: descriptor for this endpoint, wMaxPacketSize in native byteorder
52  * @ss_ep_comp: SuperSpeed companion descriptor for this endpoint
53  * @urb_list: urbs queued to this endpoint; maintained by usbcore
54  * @hcpriv: for use by HCD; typically holds hardware dma queue head (QH)
55  *      with one or more transfer descriptors (TDs) per urb
56  * @ep_dev: ep_device for sysfs info
57  * @extra: descriptors following this endpoint in the configuration
58  * @extralen: how many bytes of "extra" are valid
59  * @enabled: URBs may be submitted to this endpoint
60  *
61  * USB requests are always queued to a given endpoint, identified by a
62  * descriptor within an active interface in a given USB configuration.
63  */
64 struct usb_host_endpoint {
65         struct usb_endpoint_descriptor          desc;
66         struct usb_ss_ep_comp_descriptor        ss_ep_comp;
67         struct list_head                urb_list;
68         void                            *hcpriv;
69         struct ep_device                *ep_dev;        /* For sysfs info */
70
71         unsigned char *extra;   /* Extra descriptors */
72         int extralen;
73         int enabled;
74 };
75
76 /* host-side wrapper for one interface setting's parsed descriptors */
77 struct usb_host_interface {
78         struct usb_interface_descriptor desc;
79
80         int extralen;
81         unsigned char *extra;   /* Extra descriptors */
82
83         /* array of desc.bNumEndpoint endpoints associated with this
84          * interface setting.  these will be in no particular order.
85          */
86         struct usb_host_endpoint *endpoint;
87
88         char *string;           /* iInterface string, if present */
89 };
90
91 enum usb_interface_condition {
92         USB_INTERFACE_UNBOUND = 0,
93         USB_INTERFACE_BINDING,
94         USB_INTERFACE_BOUND,
95         USB_INTERFACE_UNBINDING,
96 };
97
98 /**
99  * struct usb_interface - what usb device drivers talk to
100  * @altsetting: array of interface structures, one for each alternate
101  *      setting that may be selected.  Each one includes a set of
102  *      endpoint configurations.  They will be in no particular order.
103  * @cur_altsetting: the current altsetting.
104  * @num_altsetting: number of altsettings defined.
105  * @intf_assoc: interface association descriptor
106  * @minor: the minor number assigned to this interface, if this
107  *      interface is bound to a driver that uses the USB major number.
108  *      If this interface does not use the USB major, this field should
109  *      be unused.  The driver should set this value in the probe()
110  *      function of the driver, after it has been assigned a minor
111  *      number from the USB core by calling usb_register_dev().
112  * @condition: binding state of the interface: not bound, binding
113  *      (in probe()), bound to a driver, or unbinding (in disconnect())
114  * @sysfs_files_created: sysfs attributes exist
115  * @ep_devs_created: endpoint child pseudo-devices exist
116  * @unregistering: flag set when the interface is being unregistered
117  * @needs_remote_wakeup: flag set when the driver requires remote-wakeup
118  *      capability during autosuspend.
119  * @needs_altsetting0: flag set when a set-interface request for altsetting 0
120  *      has been deferred.
121  * @needs_binding: flag set when the driver should be re-probed or unbound
122  *      following a reset or suspend operation it doesn't support.
123  * @dev: driver model's view of this device
124  * @usb_dev: if an interface is bound to the USB major, this will point
125  *      to the sysfs representation for that device.
126  * @pm_usage_cnt: PM usage counter for this interface
127  * @reset_ws: Used for scheduling resets from atomic context.
128  * @reset_running: set to 1 if the interface is currently running a
129  *      queued reset so that usb_cancel_queued_reset() doesn't try to
130  *      remove from the workqueue when running inside the worker
131  *      thread. See __usb_queue_reset_device().
132  * @resetting_device: USB core reset the device, so use alt setting 0 as
133  *      current; needs bandwidth alloc after reset.
134  *
135  * USB device drivers attach to interfaces on a physical device.  Each
136  * interface encapsulates a single high level function, such as feeding
137  * an audio stream to a speaker or reporting a change in a volume control.
138  * Many USB devices only have one interface.  The protocol used to talk to
139  * an interface's endpoints can be defined in a usb "class" specification,
140  * or by a product's vendor.  The (default) control endpoint is part of
141  * every interface, but is never listed among the interface's descriptors.
142  *
143  * The driver that is bound to the interface can use standard driver model
144  * calls such as dev_get_drvdata() on the dev member of this structure.
145  *
146  * Each interface may have alternate settings.  The initial configuration
147  * of a device sets altsetting 0, but the device driver can change
148  * that setting using usb_set_interface().  Alternate settings are often
149  * used to control the use of periodic endpoints, such as by having
150  * different endpoints use different amounts of reserved USB bandwidth.
151  * All standards-conformant USB devices that use isochronous endpoints
152  * will use them in non-default settings.
153  *
154  * The USB specification says that alternate setting numbers must run from
155  * 0 to one less than the total number of alternate settings.  But some
156  * devices manage to mess this up, and the structures aren't necessarily
157  * stored in numerical order anyhow.  Use usb_altnum_to_altsetting() to
158  * look up an alternate setting in the altsetting array based on its number.
159  */
160 struct usb_interface {
161         /* array of alternate settings for this interface,
162          * stored in no particular order */
163         struct usb_host_interface *altsetting;
164
165         struct usb_host_interface *cur_altsetting;      /* the currently
166                                          * active alternate setting */
167         unsigned num_altsetting;        /* number of alternate settings */
168
169         /* If there is an interface association descriptor then it will list
170          * the associated interfaces */
171         struct usb_interface_assoc_descriptor *intf_assoc;
172
173         int minor;                      /* minor number this interface is
174                                          * bound to */
175         enum usb_interface_condition condition;         /* state of binding */
176         unsigned sysfs_files_created:1; /* the sysfs attributes exist */
177         unsigned ep_devs_created:1;     /* endpoint "devices" exist */
178         unsigned unregistering:1;       /* unregistration is in progress */
179         unsigned needs_remote_wakeup:1; /* driver requires remote wakeup */
180         unsigned needs_altsetting0:1;   /* switch to altsetting 0 is pending */
181         unsigned needs_binding:1;       /* needs delayed unbind/rebind */
182         unsigned reset_running:1;
183         unsigned resetting_device:1;    /* true: bandwidth alloc after reset */
184
185         struct device dev;              /* interface specific device info */
186         struct device *usb_dev;
187         atomic_t pm_usage_cnt;          /* usage counter for autosuspend */
188         struct work_struct reset_ws;    /* for resets in atomic context */
189 };
190 #define to_usb_interface(d) container_of(d, struct usb_interface, dev)
191
192 static inline void *usb_get_intfdata(struct usb_interface *intf)
193 {
194         return dev_get_drvdata(&intf->dev);
195 }
196
197 static inline void usb_set_intfdata(struct usb_interface *intf, void *data)
198 {
199         dev_set_drvdata(&intf->dev, data);
200 }
201
202 struct usb_interface *usb_get_intf(struct usb_interface *intf);
203 void usb_put_intf(struct usb_interface *intf);
204
205 /* this maximum is arbitrary */
206 #define USB_MAXINTERFACES       32
207 #define USB_MAXIADS             (USB_MAXINTERFACES/2)
208
209 /**
210  * struct usb_interface_cache - long-term representation of a device interface
211  * @num_altsetting: number of altsettings defined.
212  * @ref: reference counter.
213  * @altsetting: variable-length array of interface structures, one for
214  *      each alternate setting that may be selected.  Each one includes a
215  *      set of endpoint configurations.  They will be in no particular order.
216  *
217  * These structures persist for the lifetime of a usb_device, unlike
218  * struct usb_interface (which persists only as long as its configuration
219  * is installed).  The altsetting arrays can be accessed through these
220  * structures at any time, permitting comparison of configurations and
221  * providing support for the /proc/bus/usb/devices pseudo-file.
222  */
223 struct usb_interface_cache {
224         unsigned num_altsetting;        /* number of alternate settings */
225         struct kref ref;                /* reference counter */
226
227         /* variable-length array of alternate settings for this interface,
228          * stored in no particular order */
229         struct usb_host_interface altsetting[0];
230 };
231 #define ref_to_usb_interface_cache(r) \
232                 container_of(r, struct usb_interface_cache, ref)
233 #define altsetting_to_usb_interface_cache(a) \
234                 container_of(a, struct usb_interface_cache, altsetting[0])
235
236 /**
237  * struct usb_host_config - representation of a device's configuration
238  * @desc: the device's configuration descriptor.
239  * @string: pointer to the cached version of the iConfiguration string, if
240  *      present for this configuration.
241  * @intf_assoc: list of any interface association descriptors in this config
242  * @interface: array of pointers to usb_interface structures, one for each
243  *      interface in the configuration.  The number of interfaces is stored
244  *      in desc.bNumInterfaces.  These pointers are valid only while the
245  *      the configuration is active.
246  * @intf_cache: array of pointers to usb_interface_cache structures, one
247  *      for each interface in the configuration.  These structures exist
248  *      for the entire life of the device.
249  * @extra: pointer to buffer containing all extra descriptors associated
250  *      with this configuration (those preceding the first interface
251  *      descriptor).
252  * @extralen: length of the extra descriptors buffer.
253  *
254  * USB devices may have multiple configurations, but only one can be active
255  * at any time.  Each encapsulates a different operational environment;
256  * for example, a dual-speed device would have separate configurations for
257  * full-speed and high-speed operation.  The number of configurations
258  * available is stored in the device descriptor as bNumConfigurations.
259  *
260  * A configuration can contain multiple interfaces.  Each corresponds to
261  * a different function of the USB device, and all are available whenever
262  * the configuration is active.  The USB standard says that interfaces
263  * are supposed to be numbered from 0 to desc.bNumInterfaces-1, but a lot
264  * of devices get this wrong.  In addition, the interface array is not
265  * guaranteed to be sorted in numerical order.  Use usb_ifnum_to_if() to
266  * look up an interface entry based on its number.
267  *
268  * Device drivers should not attempt to activate configurations.  The choice
269  * of which configuration to install is a policy decision based on such
270  * considerations as available power, functionality provided, and the user's
271  * desires (expressed through userspace tools).  However, drivers can call
272  * usb_reset_configuration() to reinitialize the current configuration and
273  * all its interfaces.
274  */
275 struct usb_host_config {
276         struct usb_config_descriptor    desc;
277
278         char *string;           /* iConfiguration string, if present */
279
280         /* List of any Interface Association Descriptors in this
281          * configuration. */
282         struct usb_interface_assoc_descriptor *intf_assoc[USB_MAXIADS];
283
284         /* the interfaces associated with this configuration,
285          * stored in no particular order */
286         struct usb_interface *interface[USB_MAXINTERFACES];
287
288         /* Interface information available even when this is not the
289          * active configuration */
290         struct usb_interface_cache *intf_cache[USB_MAXINTERFACES];
291
292         unsigned char *extra;   /* Extra descriptors */
293         int extralen;
294 };
295
296 /* USB2.0 and USB3.0 device BOS descriptor set */
297 struct usb_host_bos {
298         struct usb_bos_descriptor       *desc;
299
300         /* wireless cap descriptor is handled by wusb */
301         struct usb_ext_cap_descriptor   *ext_cap;
302         struct usb_ss_cap_descriptor    *ss_cap;
303         struct usb_ss_container_id_descriptor   *ss_id;
304 };
305
306 int __usb_get_extra_descriptor(char *buffer, unsigned size,
307         unsigned char type, void **ptr);
308 #define usb_get_extra_descriptor(ifpoint, type, ptr) \
309                                 __usb_get_extra_descriptor((ifpoint)->extra, \
310                                 (ifpoint)->extralen, \
311                                 type, (void **)ptr)
312
313 /* ----------------------------------------------------------------------- */
314
315 /* USB device number allocation bitmap */
316 struct usb_devmap {
317         unsigned long devicemap[128 / (8*sizeof(unsigned long))];
318 };
319
320 /*
321  * Allocated per bus (tree of devices) we have:
322  */
323 struct usb_bus {
324         struct device *controller;      /* host/master side hardware */
325         int busnum;                     /* Bus number (in order of reg) */
326         const char *bus_name;           /* stable id (PCI slot_name etc) */
327         u8 uses_dma;                    /* Does the host controller use DMA? */
328         u8 uses_pio_for_control;        /*
329                                          * Does the host controller use PIO
330                                          * for control transfers?
331                                          */
332         u8 otg_port;                    /* 0, or number of OTG/HNP port */
333         unsigned is_b_host:1;           /* true during some HNP roleswitches */
334         unsigned b_hnp_enable:1;        /* OTG: did A-Host enable HNP? */
335         unsigned no_stop_on_short:1;    /*
336                                          * Quirk: some controllers don't stop
337                                          * the ep queue on a short transfer
338                                          * with the URB_SHORT_NOT_OK flag set.
339                                          */
340         unsigned no_sg_constraint:1;    /* no sg constraint */
341         unsigned sg_tablesize;          /* 0 or largest number of sg list entries */
342
343         int devnum_next;                /* Next open device number in
344                                          * round-robin allocation */
345
346         struct usb_devmap devmap;       /* device address allocation map */
347         struct usb_device *root_hub;    /* Root hub */
348         struct usb_bus *hs_companion;   /* Companion EHCI bus, if any */
349         struct list_head bus_list;      /* list of busses */
350
351         int bandwidth_allocated;        /* on this bus: how much of the time
352                                          * reserved for periodic (intr/iso)
353                                          * requests is used, on average?
354                                          * Units: microseconds/frame.
355                                          * Limits: Full/low speed reserve 90%,
356                                          * while high speed reserves 80%.
357                                          */
358         int bandwidth_int_reqs;         /* number of Interrupt requests */
359         int bandwidth_isoc_reqs;        /* number of Isoc. requests */
360
361         unsigned resuming_ports;        /* bit array: resuming root-hub ports */
362
363 #if defined(CONFIG_USB_MON) || defined(CONFIG_USB_MON_MODULE)
364         struct mon_bus *mon_bus;        /* non-null when associated */
365         int monitored;                  /* non-zero when monitored */
366 #endif
367 };
368
369 /* ----------------------------------------------------------------------- */
370
371 struct usb_tt;
372
373 enum usb_device_removable {
374         USB_DEVICE_REMOVABLE_UNKNOWN = 0,
375         USB_DEVICE_REMOVABLE,
376         USB_DEVICE_FIXED,
377 };
378
379 enum usb_port_connect_type {
380         USB_PORT_CONNECT_TYPE_UNKNOWN = 0,
381         USB_PORT_CONNECT_TYPE_HOT_PLUG,
382         USB_PORT_CONNECT_TYPE_HARD_WIRED,
383         USB_PORT_NOT_USED,
384 };
385
386 /*
387  * USB 2.0 Link Power Management (LPM) parameters.
388  */
389 struct usb2_lpm_parameters {
390         /* Best effort service latency indicate how long the host will drive
391          * resume on an exit from L1.
392          */
393         unsigned int besl;
394
395         /* Timeout value in microseconds for the L1 inactivity (LPM) timer.
396          * When the timer counts to zero, the parent hub will initiate a LPM
397          * transition to L1.
398          */
399         int timeout;
400 };
401
402 /*
403  * USB 3.0 Link Power Management (LPM) parameters.
404  *
405  * PEL and SEL are USB 3.0 Link PM latencies for device-initiated LPM exit.
406  * MEL is the USB 3.0 Link PM latency for host-initiated LPM exit.
407  * All three are stored in nanoseconds.
408  */
409 struct usb3_lpm_parameters {
410         /*
411          * Maximum exit latency (MEL) for the host to send a packet to the
412          * device (either a Ping for isoc endpoints, or a data packet for
413          * interrupt endpoints), the hubs to decode the packet, and for all hubs
414          * in the path to transition the links to U0.
415          */
416         unsigned int mel;
417         /*
418          * Maximum exit latency for a device-initiated LPM transition to bring
419          * all links into U0.  Abbreviated as "PEL" in section 9.4.12 of the USB
420          * 3.0 spec, with no explanation of what "P" stands for.  "Path"?
421          */
422         unsigned int pel;
423
424         /*
425          * The System Exit Latency (SEL) includes PEL, and three other
426          * latencies.  After a device initiates a U0 transition, it will take
427          * some time from when the device sends the ERDY to when it will finally
428          * receive the data packet.  Basically, SEL should be the worse-case
429          * latency from when a device starts initiating a U0 transition to when
430          * it will get data.
431          */
432         unsigned int sel;
433         /*
434          * The idle timeout value that is currently programmed into the parent
435          * hub for this device.  When the timer counts to zero, the parent hub
436          * will initiate an LPM transition to either U1 or U2.
437          */
438         int timeout;
439 };
440
441 /**
442  * struct usb_device - kernel's representation of a USB device
443  * @devnum: device number; address on a USB bus
444  * @devpath: device ID string for use in messages (e.g., /port/...)
445  * @route: tree topology hex string for use with xHCI
446  * @state: device state: configured, not attached, etc.
447  * @speed: device speed: high/full/low (or error)
448  * @tt: Transaction Translator info; used with low/full speed dev, highspeed hub
449  * @ttport: device port on that tt hub
450  * @toggle: one bit for each endpoint, with ([0] = IN, [1] = OUT) endpoints
451  * @parent: our hub, unless we're the root
452  * @bus: bus we're part of
453  * @ep0: endpoint 0 data (default control pipe)
454  * @dev: generic device interface
455  * @descriptor: USB device descriptor
456  * @bos: USB device BOS descriptor set
457  * @config: all of the device's configs
458  * @actconfig: the active configuration
459  * @ep_in: array of IN endpoints
460  * @ep_out: array of OUT endpoints
461  * @rawdescriptors: raw descriptors for each config
462  * @bus_mA: Current available from the bus
463  * @portnum: parent port number (origin 1)
464  * @level: number of USB hub ancestors
465  * @can_submit: URBs may be submitted
466  * @persist_enabled:  USB_PERSIST enabled for this device
467  * @have_langid: whether string_langid is valid
468  * @authorized: policy has said we can use it;
469  *      (user space) policy determines if we authorize this device to be
470  *      used or not. By default, wired USB devices are authorized.
471  *      WUSB devices are not, until we authorize them from user space.
472  *      FIXME -- complete doc
473  * @authenticated: Crypto authentication passed
474  * @wusb: device is Wireless USB
475  * @lpm_capable: device supports LPM
476  * @usb2_hw_lpm_capable: device can perform USB2 hardware LPM
477  * @usb2_hw_lpm_besl_capable: device can perform USB2 hardware BESL LPM
478  * @usb2_hw_lpm_enabled: USB2 hardware LPM enabled
479  * @usb3_lpm_enabled: USB3 hardware LPM enabled
480  * @string_langid: language ID for strings
481  * @product: iProduct string, if present (static)
482  * @manufacturer: iManufacturer string, if present (static)
483  * @serial: iSerialNumber string, if present (static)
484  * @filelist: usbfs files that are open to this device
485  * @maxchild: number of ports if hub
486  * @quirks: quirks of the whole device
487  * @urbnum: number of URBs submitted for the whole device
488  * @active_duration: total time device is not suspended
489  * @connect_time: time device was first connected
490  * @do_remote_wakeup:  remote wakeup should be enabled
491  * @reset_resume: needs reset instead of resume
492  * @port_is_suspended: the upstream port is suspended (L2 or U3)
493  * @wusb_dev: if this is a Wireless USB device, link to the WUSB
494  *      specific data for the device.
495  * @slot_id: Slot ID assigned by xHCI
496  * @removable: Device can be physically removed from this port
497  * @l1_params: best effor service latency for USB2 L1 LPM state, and L1 timeout.
498  * @u1_params: exit latencies for USB3 U1 LPM state, and hub-initiated timeout.
499  * @u2_params: exit latencies for USB3 U2 LPM state, and hub-initiated timeout.
500  * @lpm_disable_count: Ref count used by usb_disable_lpm() and usb_enable_lpm()
501  *      to keep track of the number of functions that require USB 3.0 Link Power
502  *      Management to be disabled for this usb_device.  This count should only
503  *      be manipulated by those functions, with the bandwidth_mutex is held.
504  *
505  * Notes:
506  * Usbcore drivers should not set usbdev->state directly.  Instead use
507  * usb_set_device_state().
508  */
509 struct usb_device {
510         int             devnum;
511         char            devpath[16];
512         u32             route;
513         enum usb_device_state   state;
514         enum usb_device_speed   speed;
515
516         struct usb_tt   *tt;
517         int             ttport;
518
519         unsigned int toggle[2];
520
521         struct usb_device *parent;
522         struct usb_bus *bus;
523         struct usb_host_endpoint ep0;
524
525         struct device dev;
526
527         struct usb_device_descriptor descriptor;
528         struct usb_host_bos *bos;
529         struct usb_host_config *config;
530
531         struct usb_host_config *actconfig;
532         struct usb_host_endpoint *ep_in[16];
533         struct usb_host_endpoint *ep_out[16];
534
535         char **rawdescriptors;
536
537         unsigned short bus_mA;
538         u8 portnum;
539         u8 level;
540
541         unsigned can_submit:1;
542         unsigned persist_enabled:1;
543         unsigned have_langid:1;
544         unsigned authorized:1;
545         unsigned authenticated:1;
546         unsigned wusb:1;
547         unsigned lpm_capable:1;
548         unsigned usb2_hw_lpm_capable:1;
549         unsigned usb2_hw_lpm_besl_capable:1;
550         unsigned usb2_hw_lpm_enabled:1;
551         unsigned usb3_lpm_enabled:1;
552         int string_langid;
553
554         /* static strings from the device */
555         char *product;
556         char *manufacturer;
557         char *serial;
558
559         struct list_head filelist;
560
561         int maxchild;
562
563         u32 quirks;
564         atomic_t urbnum;
565
566         unsigned long active_duration;
567
568 #ifdef CONFIG_PM
569         unsigned long connect_time;
570
571         unsigned do_remote_wakeup:1;
572         unsigned reset_resume:1;
573         unsigned port_is_suspended:1;
574 #endif
575         struct wusb_dev *wusb_dev;
576         int slot_id;
577         enum usb_device_removable removable;
578         struct usb2_lpm_parameters l1_params;
579         struct usb3_lpm_parameters u1_params;
580         struct usb3_lpm_parameters u2_params;
581         unsigned lpm_disable_count;
582 };
583 #define to_usb_device(d) container_of(d, struct usb_device, dev)
584
585 static inline struct usb_device *interface_to_usbdev(struct usb_interface *intf)
586 {
587         return to_usb_device(intf->dev.parent);
588 }
589
590 extern struct usb_device *usb_get_dev(struct usb_device *dev);
591 extern void usb_put_dev(struct usb_device *dev);
592 extern struct usb_device *usb_hub_find_child(struct usb_device *hdev,
593         int port1);
594
595 /**
596  * usb_hub_for_each_child - iterate over all child devices on the hub
597  * @hdev:  USB device belonging to the usb hub
598  * @port1: portnum associated with child device
599  * @child: child device pointer
600  */
601 #define usb_hub_for_each_child(hdev, port1, child) \
602         for (port1 = 1, child = usb_hub_find_child(hdev, port1); \
603                         port1 <= hdev->maxchild; \
604                         child = usb_hub_find_child(hdev, ++port1)) \
605                 if (!child) continue; else
606
607 /* USB device locking */
608 #define usb_lock_device(udev)           device_lock(&(udev)->dev)
609 #define usb_unlock_device(udev)         device_unlock(&(udev)->dev)
610 #define usb_trylock_device(udev)        device_trylock(&(udev)->dev)
611 extern int usb_lock_device_for_reset(struct usb_device *udev,
612                                      const struct usb_interface *iface);
613
614 /* USB port reset for device reinitialization */
615 extern int usb_reset_device(struct usb_device *dev);
616 extern void usb_queue_reset_device(struct usb_interface *dev);
617
618 #ifdef CONFIG_ACPI
619 extern int usb_acpi_set_power_state(struct usb_device *hdev, int index,
620         bool enable);
621 extern bool usb_acpi_power_manageable(struct usb_device *hdev, int index);
622 #else
623 static inline int usb_acpi_set_power_state(struct usb_device *hdev, int index,
624         bool enable) { return 0; }
625 static inline bool usb_acpi_power_manageable(struct usb_device *hdev, int index)
626         { return true; }
627 #endif
628
629 /* USB autosuspend and autoresume */
630 #ifdef CONFIG_PM_RUNTIME
631 extern void usb_enable_autosuspend(struct usb_device *udev);
632 extern void usb_disable_autosuspend(struct usb_device *udev);
633
634 extern int usb_autopm_get_interface(struct usb_interface *intf);
635 extern void usb_autopm_put_interface(struct usb_interface *intf);
636 extern int usb_autopm_get_interface_async(struct usb_interface *intf);
637 extern void usb_autopm_put_interface_async(struct usb_interface *intf);
638 extern void usb_autopm_get_interface_no_resume(struct usb_interface *intf);
639 extern void usb_autopm_put_interface_no_suspend(struct usb_interface *intf);
640
641 static inline void usb_mark_last_busy(struct usb_device *udev)
642 {
643         pm_runtime_mark_last_busy(&udev->dev);
644 }
645
646 #else
647
648 static inline int usb_enable_autosuspend(struct usb_device *udev)
649 { return 0; }
650 static inline int usb_disable_autosuspend(struct usb_device *udev)
651 { return 0; }
652
653 static inline int usb_autopm_get_interface(struct usb_interface *intf)
654 { return 0; }
655 static inline int usb_autopm_get_interface_async(struct usb_interface *intf)
656 { return 0; }
657
658 static inline void usb_autopm_put_interface(struct usb_interface *intf)
659 { }
660 static inline void usb_autopm_put_interface_async(struct usb_interface *intf)
661 { }
662 static inline void usb_autopm_get_interface_no_resume(
663                 struct usb_interface *intf)
664 { }
665 static inline void usb_autopm_put_interface_no_suspend(
666                 struct usb_interface *intf)
667 { }
668 static inline void usb_mark_last_busy(struct usb_device *udev)
669 { }
670 #endif
671
672 extern int usb_disable_lpm(struct usb_device *udev);
673 extern void usb_enable_lpm(struct usb_device *udev);
674 /* Same as above, but these functions lock/unlock the bandwidth_mutex. */
675 extern int usb_unlocked_disable_lpm(struct usb_device *udev);
676 extern void usb_unlocked_enable_lpm(struct usb_device *udev);
677
678 extern int usb_disable_ltm(struct usb_device *udev);
679 extern void usb_enable_ltm(struct usb_device *udev);
680
681 static inline bool usb_device_supports_ltm(struct usb_device *udev)
682 {
683         if (udev->speed != USB_SPEED_SUPER || !udev->bos || !udev->bos->ss_cap)
684                 return false;
685         return udev->bos->ss_cap->bmAttributes & USB_LTM_SUPPORT;
686 }
687
688 static inline bool usb_device_no_sg_constraint(struct usb_device *udev)
689 {
690         return udev && udev->bus && udev->bus->no_sg_constraint;
691 }
692
693
694 /*-------------------------------------------------------------------------*/
695
696 /* for drivers using iso endpoints */
697 extern int usb_get_current_frame_number(struct usb_device *usb_dev);
698
699 /* Sets up a group of bulk endpoints to support multiple stream IDs. */
700 extern int usb_alloc_streams(struct usb_interface *interface,
701                 struct usb_host_endpoint **eps, unsigned int num_eps,
702                 unsigned int num_streams, gfp_t mem_flags);
703
704 /* Reverts a group of bulk endpoints back to not using stream IDs. */
705 extern void usb_free_streams(struct usb_interface *interface,
706                 struct usb_host_endpoint **eps, unsigned int num_eps,
707                 gfp_t mem_flags);
708
709 /* used these for multi-interface device registration */
710 extern int usb_driver_claim_interface(struct usb_driver *driver,
711                         struct usb_interface *iface, void *priv);
712
713 /**
714  * usb_interface_claimed - returns true iff an interface is claimed
715  * @iface: the interface being checked
716  *
717  * Return: %true (nonzero) iff the interface is claimed, else %false
718  * (zero).
719  *
720  * Note:
721  * Callers must own the driver model's usb bus readlock.  So driver
722  * probe() entries don't need extra locking, but other call contexts
723  * may need to explicitly claim that lock.
724  *
725  */
726 static inline int usb_interface_claimed(struct usb_interface *iface)
727 {
728         return (iface->dev.driver != NULL);
729 }
730
731 extern void usb_driver_release_interface(struct usb_driver *driver,
732                         struct usb_interface *iface);
733 const struct usb_device_id *usb_match_id(struct usb_interface *interface,
734                                          const struct usb_device_id *id);
735 extern int usb_match_one_id(struct usb_interface *interface,
736                             const struct usb_device_id *id);
737
738 extern int usb_for_each_dev(void *data, int (*fn)(struct usb_device *, void *));
739 extern struct usb_interface *usb_find_interface(struct usb_driver *drv,
740                 int minor);
741 extern struct usb_interface *usb_ifnum_to_if(const struct usb_device *dev,
742                 unsigned ifnum);
743 extern struct usb_host_interface *usb_altnum_to_altsetting(
744                 const struct usb_interface *intf, unsigned int altnum);
745 extern struct usb_host_interface *usb_find_alt_setting(
746                 struct usb_host_config *config,
747                 unsigned int iface_num,
748                 unsigned int alt_num);
749
750
751 /**
752  * usb_make_path - returns stable device path in the usb tree
753  * @dev: the device whose path is being constructed
754  * @buf: where to put the string
755  * @size: how big is "buf"?
756  *
757  * Return: Length of the string (> 0) or negative if size was too small.
758  *
759  * Note:
760  * This identifier is intended to be "stable", reflecting physical paths in
761  * hardware such as physical bus addresses for host controllers or ports on
762  * USB hubs.  That makes it stay the same until systems are physically
763  * reconfigured, by re-cabling a tree of USB devices or by moving USB host
764  * controllers.  Adding and removing devices, including virtual root hubs
765  * in host controller driver modules, does not change these path identifiers;
766  * neither does rebooting or re-enumerating.  These are more useful identifiers
767  * than changeable ("unstable") ones like bus numbers or device addresses.
768  *
769  * With a partial exception for devices connected to USB 2.0 root hubs, these
770  * identifiers are also predictable.  So long as the device tree isn't changed,
771  * plugging any USB device into a given hub port always gives it the same path.
772  * Because of the use of "companion" controllers, devices connected to ports on
773  * USB 2.0 root hubs (EHCI host controllers) will get one path ID if they are
774  * high speed, and a different one if they are full or low speed.
775  */
776 static inline int usb_make_path(struct usb_device *dev, char *buf, size_t size)
777 {
778         int actual;
779         actual = snprintf(buf, size, "usb-%s-%s", dev->bus->bus_name,
780                           dev->devpath);
781         return (actual >= (int)size) ? -1 : actual;
782 }
783
784 /*-------------------------------------------------------------------------*/
785
786 #define USB_DEVICE_ID_MATCH_DEVICE \
787                 (USB_DEVICE_ID_MATCH_VENDOR | USB_DEVICE_ID_MATCH_PRODUCT)
788 #define USB_DEVICE_ID_MATCH_DEV_RANGE \
789                 (USB_DEVICE_ID_MATCH_DEV_LO | USB_DEVICE_ID_MATCH_DEV_HI)
790 #define USB_DEVICE_ID_MATCH_DEVICE_AND_VERSION \
791                 (USB_DEVICE_ID_MATCH_DEVICE | USB_DEVICE_ID_MATCH_DEV_RANGE)
792 #define USB_DEVICE_ID_MATCH_DEV_INFO \
793                 (USB_DEVICE_ID_MATCH_DEV_CLASS | \
794                 USB_DEVICE_ID_MATCH_DEV_SUBCLASS | \
795                 USB_DEVICE_ID_MATCH_DEV_PROTOCOL)
796 #define USB_DEVICE_ID_MATCH_INT_INFO \
797                 (USB_DEVICE_ID_MATCH_INT_CLASS | \
798                 USB_DEVICE_ID_MATCH_INT_SUBCLASS | \
799                 USB_DEVICE_ID_MATCH_INT_PROTOCOL)
800
801 /**
802  * USB_DEVICE - macro used to describe a specific usb device
803  * @vend: the 16 bit USB Vendor ID
804  * @prod: the 16 bit USB Product ID
805  *
806  * This macro is used to create a struct usb_device_id that matches a
807  * specific device.
808  */
809 #define USB_DEVICE(vend, prod) \
810         .match_flags = USB_DEVICE_ID_MATCH_DEVICE, \
811         .idVendor = (vend), \
812         .idProduct = (prod)
813 /**
814  * USB_DEVICE_VER - describe a specific usb device with a version range
815  * @vend: the 16 bit USB Vendor ID
816  * @prod: the 16 bit USB Product ID
817  * @lo: the bcdDevice_lo value
818  * @hi: the bcdDevice_hi value
819  *
820  * This macro is used to create a struct usb_device_id that matches a
821  * specific device, with a version range.
822  */
823 #define USB_DEVICE_VER(vend, prod, lo, hi) \
824         .match_flags = USB_DEVICE_ID_MATCH_DEVICE_AND_VERSION, \
825         .idVendor = (vend), \
826         .idProduct = (prod), \
827         .bcdDevice_lo = (lo), \
828         .bcdDevice_hi = (hi)
829
830 /**
831  * USB_DEVICE_INTERFACE_CLASS - describe a usb device with a specific interface class
832  * @vend: the 16 bit USB Vendor ID
833  * @prod: the 16 bit USB Product ID
834  * @cl: bInterfaceClass value
835  *
836  * This macro is used to create a struct usb_device_id that matches a
837  * specific interface class of devices.
838  */
839 #define USB_DEVICE_INTERFACE_CLASS(vend, prod, cl) \
840         .match_flags = USB_DEVICE_ID_MATCH_DEVICE | \
841                        USB_DEVICE_ID_MATCH_INT_CLASS, \
842         .idVendor = (vend), \
843         .idProduct = (prod), \
844         .bInterfaceClass = (cl)
845
846 /**
847  * USB_DEVICE_INTERFACE_PROTOCOL - describe a usb device with a specific interface protocol
848  * @vend: the 16 bit USB Vendor ID
849  * @prod: the 16 bit USB Product ID
850  * @pr: bInterfaceProtocol value
851  *
852  * This macro is used to create a struct usb_device_id that matches a
853  * specific interface protocol of devices.
854  */
855 #define USB_DEVICE_INTERFACE_PROTOCOL(vend, prod, pr) \
856         .match_flags = USB_DEVICE_ID_MATCH_DEVICE | \
857                        USB_DEVICE_ID_MATCH_INT_PROTOCOL, \
858         .idVendor = (vend), \
859         .idProduct = (prod), \
860         .bInterfaceProtocol = (pr)
861
862 /**
863  * USB_DEVICE_INTERFACE_NUMBER - describe a usb device with a specific interface number
864  * @vend: the 16 bit USB Vendor ID
865  * @prod: the 16 bit USB Product ID
866  * @num: bInterfaceNumber value
867  *
868  * This macro is used to create a struct usb_device_id that matches a
869  * specific interface number of devices.
870  */
871 #define USB_DEVICE_INTERFACE_NUMBER(vend, prod, num) \
872         .match_flags = USB_DEVICE_ID_MATCH_DEVICE | \
873                        USB_DEVICE_ID_MATCH_INT_NUMBER, \
874         .idVendor = (vend), \
875         .idProduct = (prod), \
876         .bInterfaceNumber = (num)
877
878 /**
879  * USB_DEVICE_INFO - macro used to describe a class of usb devices
880  * @cl: bDeviceClass value
881  * @sc: bDeviceSubClass value
882  * @pr: bDeviceProtocol value
883  *
884  * This macro is used to create a struct usb_device_id that matches a
885  * specific class of devices.
886  */
887 #define USB_DEVICE_INFO(cl, sc, pr) \
888         .match_flags = USB_DEVICE_ID_MATCH_DEV_INFO, \
889         .bDeviceClass = (cl), \
890         .bDeviceSubClass = (sc), \
891         .bDeviceProtocol = (pr)
892
893 /**
894  * USB_INTERFACE_INFO - macro used to describe a class of usb interfaces
895  * @cl: bInterfaceClass value
896  * @sc: bInterfaceSubClass value
897  * @pr: bInterfaceProtocol value
898  *
899  * This macro is used to create a struct usb_device_id that matches a
900  * specific class of interfaces.
901  */
902 #define USB_INTERFACE_INFO(cl, sc, pr) \
903         .match_flags = USB_DEVICE_ID_MATCH_INT_INFO, \
904         .bInterfaceClass = (cl), \
905         .bInterfaceSubClass = (sc), \
906         .bInterfaceProtocol = (pr)
907
908 /**
909  * USB_DEVICE_AND_INTERFACE_INFO - describe a specific usb device with a class of usb interfaces
910  * @vend: the 16 bit USB Vendor ID
911  * @prod: the 16 bit USB Product ID
912  * @cl: bInterfaceClass value
913  * @sc: bInterfaceSubClass value
914  * @pr: bInterfaceProtocol value
915  *
916  * This macro is used to create a struct usb_device_id that matches a
917  * specific device with a specific class of interfaces.
918  *
919  * This is especially useful when explicitly matching devices that have
920  * vendor specific bDeviceClass values, but standards-compliant interfaces.
921  */
922 #define USB_DEVICE_AND_INTERFACE_INFO(vend, prod, cl, sc, pr) \
923         .match_flags = USB_DEVICE_ID_MATCH_INT_INFO \
924                 | USB_DEVICE_ID_MATCH_DEVICE, \
925         .idVendor = (vend), \
926         .idProduct = (prod), \
927         .bInterfaceClass = (cl), \
928         .bInterfaceSubClass = (sc), \
929         .bInterfaceProtocol = (pr)
930
931 /**
932  * USB_VENDOR_AND_INTERFACE_INFO - describe a specific usb vendor with a class of usb interfaces
933  * @vend: the 16 bit USB Vendor ID
934  * @cl: bInterfaceClass value
935  * @sc: bInterfaceSubClass value
936  * @pr: bInterfaceProtocol value
937  *
938  * This macro is used to create a struct usb_device_id that matches a
939  * specific vendor with a specific class of interfaces.
940  *
941  * This is especially useful when explicitly matching devices that have
942  * vendor specific bDeviceClass values, but standards-compliant interfaces.
943  */
944 #define USB_VENDOR_AND_INTERFACE_INFO(vend, cl, sc, pr) \
945         .match_flags = USB_DEVICE_ID_MATCH_INT_INFO \
946                 | USB_DEVICE_ID_MATCH_VENDOR, \
947         .idVendor = (vend), \
948         .bInterfaceClass = (cl), \
949         .bInterfaceSubClass = (sc), \
950         .bInterfaceProtocol = (pr)
951
952 /* ----------------------------------------------------------------------- */
953
954 /* Stuff for dynamic usb ids */
955 struct usb_dynids {
956         spinlock_t lock;
957         struct list_head list;
958 };
959
960 struct usb_dynid {
961         struct list_head node;
962         struct usb_device_id id;
963 };
964
965 extern ssize_t usb_store_new_id(struct usb_dynids *dynids,
966                                 struct device_driver *driver,
967                                 const char *buf, size_t count);
968
969 extern ssize_t usb_show_dynids(struct usb_dynids *dynids, char *buf);
970
971 /**
972  * struct usbdrv_wrap - wrapper for driver-model structure
973  * @driver: The driver-model core driver structure.
974  * @for_devices: Non-zero for device drivers, 0 for interface drivers.
975  */
976 struct usbdrv_wrap {
977         struct device_driver driver;
978         int for_devices;
979 };
980
981 /**
982  * struct usb_driver - identifies USB interface driver to usbcore
983  * @name: The driver name should be unique among USB drivers,
984  *      and should normally be the same as the module name.
985  * @probe: Called to see if the driver is willing to manage a particular
986  *      interface on a device.  If it is, probe returns zero and uses
987  *      usb_set_intfdata() to associate driver-specific data with the
988  *      interface.  It may also use usb_set_interface() to specify the
989  *      appropriate altsetting.  If unwilling to manage the interface,
990  *      return -ENODEV, if genuine IO errors occurred, an appropriate
991  *      negative errno value.
992  * @disconnect: Called when the interface is no longer accessible, usually
993  *      because its device has been (or is being) disconnected or the
994  *      driver module is being unloaded.
995  * @unlocked_ioctl: Used for drivers that want to talk to userspace through
996  *      the "usbfs" filesystem.  This lets devices provide ways to
997  *      expose information to user space regardless of where they
998  *      do (or don't) show up otherwise in the filesystem.
999  * @suspend: Called when the device is going to be suspended by the
1000  *      system either from system sleep or runtime suspend context. The
1001  *      return value will be ignored in system sleep context, so do NOT
1002  *      try to continue using the device if suspend fails in this case.
1003  *      Instead, let the resume or reset-resume routine recover from
1004  *      the failure.
1005  * @resume: Called when the device is being resumed by the system.
1006  * @reset_resume: Called when the suspended device has been reset instead
1007  *      of being resumed.
1008  * @pre_reset: Called by usb_reset_device() when the device is about to be
1009  *      reset.  This routine must not return until the driver has no active
1010  *      URBs for the device, and no more URBs may be submitted until the
1011  *      post_reset method is called.
1012  * @post_reset: Called by usb_reset_device() after the device
1013  *      has been reset
1014  * @id_table: USB drivers use ID table to support hotplugging.
1015  *      Export this with MODULE_DEVICE_TABLE(usb,...).  This must be set
1016  *      or your driver's probe function will never get called.
1017  * @dynids: used internally to hold the list of dynamically added device
1018  *      ids for this driver.
1019  * @drvwrap: Driver-model core structure wrapper.
1020  * @no_dynamic_id: if set to 1, the USB core will not allow dynamic ids to be
1021  *      added to this driver by preventing the sysfs file from being created.
1022  * @supports_autosuspend: if set to 0, the USB core will not allow autosuspend
1023  *      for interfaces bound to this driver.
1024  * @soft_unbind: if set to 1, the USB core will not kill URBs and disable
1025  *      endpoints before calling the driver's disconnect method.
1026  * @disable_hub_initiated_lpm: if set to 0, the USB core will not allow hubs
1027  *      to initiate lower power link state transitions when an idle timeout
1028  *      occurs.  Device-initiated USB 3.0 link PM will still be allowed.
1029  *
1030  * USB interface drivers must provide a name, probe() and disconnect()
1031  * methods, and an id_table.  Other driver fields are optional.
1032  *
1033  * The id_table is used in hotplugging.  It holds a set of descriptors,
1034  * and specialized data may be associated with each entry.  That table
1035  * is used by both user and kernel mode hotplugging support.
1036  *
1037  * The probe() and disconnect() methods are called in a context where
1038  * they can sleep, but they should avoid abusing the privilege.  Most
1039  * work to connect to a device should be done when the device is opened,
1040  * and undone at the last close.  The disconnect code needs to address
1041  * concurrency issues with respect to open() and close() methods, as
1042  * well as forcing all pending I/O requests to complete (by unlinking
1043  * them as necessary, and blocking until the unlinks complete).
1044  */
1045 struct usb_driver {
1046         const char *name;
1047
1048         int (*probe) (struct usb_interface *intf,
1049                       const struct usb_device_id *id);
1050
1051         void (*disconnect) (struct usb_interface *intf);
1052
1053         int (*unlocked_ioctl) (struct usb_interface *intf, unsigned int code,
1054                         void *buf);
1055
1056         int (*suspend) (struct usb_interface *intf, pm_message_t message);
1057         int (*resume) (struct usb_interface *intf);
1058         int (*reset_resume)(struct usb_interface *intf);
1059
1060         int (*pre_reset)(struct usb_interface *intf);
1061         int (*post_reset)(struct usb_interface *intf);
1062
1063         const struct usb_device_id *id_table;
1064
1065         struct usb_dynids dynids;
1066         struct usbdrv_wrap drvwrap;
1067         unsigned int no_dynamic_id:1;
1068         unsigned int supports_autosuspend:1;
1069         unsigned int disable_hub_initiated_lpm:1;
1070         unsigned int soft_unbind:1;
1071 };
1072 #define to_usb_driver(d) container_of(d, struct usb_driver, drvwrap.driver)
1073
1074 /**
1075  * struct usb_device_driver - identifies USB device driver to usbcore
1076  * @name: The driver name should be unique among USB drivers,
1077  *      and should normally be the same as the module name.
1078  * @probe: Called to see if the driver is willing to manage a particular
1079  *      device.  If it is, probe returns zero and uses dev_set_drvdata()
1080  *      to associate driver-specific data with the device.  If unwilling
1081  *      to manage the device, return a negative errno value.
1082  * @disconnect: Called when the device is no longer accessible, usually
1083  *      because it has been (or is being) disconnected or the driver's
1084  *      module is being unloaded.
1085  * @suspend: Called when the device is going to be suspended by the system.
1086  * @resume: Called when the device is being resumed by the system.
1087  * @drvwrap: Driver-model core structure wrapper.
1088  * @supports_autosuspend: if set to 0, the USB core will not allow autosuspend
1089  *      for devices bound to this driver.
1090  *
1091  * USB drivers must provide all the fields listed above except drvwrap.
1092  */
1093 struct usb_device_driver {
1094         const char *name;
1095
1096         int (*probe) (struct usb_device *udev);
1097         void (*disconnect) (struct usb_device *udev);
1098
1099         int (*suspend) (struct usb_device *udev, pm_message_t message);
1100         int (*resume) (struct usb_device *udev, pm_message_t message);
1101         struct usbdrv_wrap drvwrap;
1102         unsigned int supports_autosuspend:1;
1103 };
1104 #define to_usb_device_driver(d) container_of(d, struct usb_device_driver, \
1105                 drvwrap.driver)
1106
1107 extern struct bus_type usb_bus_type;
1108
1109 /**
1110  * struct usb_class_driver - identifies a USB driver that wants to use the USB major number
1111  * @name: the usb class device name for this driver.  Will show up in sysfs.
1112  * @devnode: Callback to provide a naming hint for a possible
1113  *      device node to create.
1114  * @fops: pointer to the struct file_operations of this driver.
1115  * @minor_base: the start of the minor range for this driver.
1116  *
1117  * This structure is used for the usb_register_dev() and
1118  * usb_unregister_dev() functions, to consolidate a number of the
1119  * parameters used for them.
1120  */
1121 struct usb_class_driver {
1122         char *name;
1123         char *(*devnode)(struct device *dev, umode_t *mode);
1124         const struct file_operations *fops;
1125         int minor_base;
1126 };
1127
1128 /*
1129  * use these in module_init()/module_exit()
1130  * and don't forget MODULE_DEVICE_TABLE(usb, ...)
1131  */
1132 extern int usb_register_driver(struct usb_driver *, struct module *,
1133                                const char *);
1134
1135 /* use a define to avoid include chaining to get THIS_MODULE & friends */
1136 #define usb_register(driver) \
1137         usb_register_driver(driver, THIS_MODULE, KBUILD_MODNAME)
1138
1139 extern void usb_deregister(struct usb_driver *);
1140
1141 /**
1142  * module_usb_driver() - Helper macro for registering a USB driver
1143  * @__usb_driver: usb_driver struct
1144  *
1145  * Helper macro for USB drivers which do not do anything special in module
1146  * init/exit. This eliminates a lot of boilerplate. Each module may only
1147  * use this macro once, and calling it replaces module_init() and module_exit()
1148  */
1149 #define module_usb_driver(__usb_driver) \
1150         module_driver(__usb_driver, usb_register, \
1151                        usb_deregister)
1152
1153 extern int usb_register_device_driver(struct usb_device_driver *,
1154                         struct module *);
1155 extern void usb_deregister_device_driver(struct usb_device_driver *);
1156
1157 extern int usb_register_dev(struct usb_interface *intf,
1158                             struct usb_class_driver *class_driver);
1159 extern void usb_deregister_dev(struct usb_interface *intf,
1160                                struct usb_class_driver *class_driver);
1161
1162 extern int usb_disabled(void);
1163
1164 /* ----------------------------------------------------------------------- */
1165
1166 /*
1167  * URB support, for asynchronous request completions
1168  */
1169
1170 /*
1171  * urb->transfer_flags:
1172  *
1173  * Note: URB_DIR_IN/OUT is automatically set in usb_submit_urb().
1174  */
1175 #define URB_SHORT_NOT_OK        0x0001  /* report short reads as errors */
1176 #define URB_ISO_ASAP            0x0002  /* iso-only; use the first unexpired
1177                                          * slot in the schedule */
1178 #define URB_NO_TRANSFER_DMA_MAP 0x0004  /* urb->transfer_dma valid on submit */
1179 #define URB_NO_FSBR             0x0020  /* UHCI-specific */
1180 #define URB_ZERO_PACKET         0x0040  /* Finish bulk OUT with short packet */
1181 #define URB_NO_INTERRUPT        0x0080  /* HINT: no non-error interrupt
1182                                          * needed */
1183 #define URB_FREE_BUFFER         0x0100  /* Free transfer buffer with the URB */
1184
1185 /* The following flags are used internally by usbcore and HCDs */
1186 #define URB_DIR_IN              0x0200  /* Transfer from device to host */
1187 #define URB_DIR_OUT             0
1188 #define URB_DIR_MASK            URB_DIR_IN
1189
1190 #define URB_DMA_MAP_SINGLE      0x00010000      /* Non-scatter-gather mapping */
1191 #define URB_DMA_MAP_PAGE        0x00020000      /* HCD-unsupported S-G */
1192 #define URB_DMA_MAP_SG          0x00040000      /* HCD-supported S-G */
1193 #define URB_MAP_LOCAL           0x00080000      /* HCD-local-memory mapping */
1194 #define URB_SETUP_MAP_SINGLE    0x00100000      /* Setup packet DMA mapped */
1195 #define URB_SETUP_MAP_LOCAL     0x00200000      /* HCD-local setup packet */
1196 #define URB_DMA_SG_COMBINED     0x00400000      /* S-G entries were combined */
1197 #define URB_ALIGNED_TEMP_BUFFER 0x00800000      /* Temp buffer was alloc'd */
1198
1199 struct usb_iso_packet_descriptor {
1200         unsigned int offset;
1201         unsigned int length;            /* expected length */
1202         unsigned int actual_length;
1203         int status;
1204 };
1205
1206 struct urb;
1207
1208 struct usb_anchor {
1209         struct list_head urb_list;
1210         wait_queue_head_t wait;
1211         spinlock_t lock;
1212         unsigned int poisoned:1;
1213 };
1214
1215 static inline void init_usb_anchor(struct usb_anchor *anchor)
1216 {
1217         INIT_LIST_HEAD(&anchor->urb_list);
1218         init_waitqueue_head(&anchor->wait);
1219         spin_lock_init(&anchor->lock);
1220 }
1221
1222 typedef void (*usb_complete_t)(struct urb *);
1223
1224 /**
1225  * struct urb - USB Request Block
1226  * @urb_list: For use by current owner of the URB.
1227  * @anchor_list: membership in the list of an anchor
1228  * @anchor: to anchor URBs to a common mooring
1229  * @ep: Points to the endpoint's data structure.  Will eventually
1230  *      replace @pipe.
1231  * @pipe: Holds endpoint number, direction, type, and more.
1232  *      Create these values with the eight macros available;
1233  *      usb_{snd,rcv}TYPEpipe(dev,endpoint), where the TYPE is "ctrl"
1234  *      (control), "bulk", "int" (interrupt), or "iso" (isochronous).
1235  *      For example usb_sndbulkpipe() or usb_rcvintpipe().  Endpoint
1236  *      numbers range from zero to fifteen.  Note that "in" endpoint two
1237  *      is a different endpoint (and pipe) from "out" endpoint two.
1238  *      The current configuration controls the existence, type, and
1239  *      maximum packet size of any given endpoint.
1240  * @stream_id: the endpoint's stream ID for bulk streams
1241  * @dev: Identifies the USB device to perform the request.
1242  * @status: This is read in non-iso completion functions to get the
1243  *      status of the particular request.  ISO requests only use it
1244  *      to tell whether the URB was unlinked; detailed status for
1245  *      each frame is in the fields of the iso_frame-desc.
1246  * @transfer_flags: A variety of flags may be used to affect how URB
1247  *      submission, unlinking, or operation are handled.  Different
1248  *      kinds of URB can use different flags.
1249  * @transfer_buffer:  This identifies the buffer to (or from) which the I/O
1250  *      request will be performed unless URB_NO_TRANSFER_DMA_MAP is set
1251  *      (however, do not leave garbage in transfer_buffer even then).
1252  *      This buffer must be suitable for DMA; allocate it with
1253  *      kmalloc() or equivalent.  For transfers to "in" endpoints, contents
1254  *      of this buffer will be modified.  This buffer is used for the data
1255  *      stage of control transfers.
1256  * @transfer_dma: When transfer_flags includes URB_NO_TRANSFER_DMA_MAP,
1257  *      the device driver is saying that it provided this DMA address,
1258  *      which the host controller driver should use in preference to the
1259  *      transfer_buffer.
1260  * @sg: scatter gather buffer list, the buffer size of each element in
1261  *      the list (except the last) must be divisible by the endpoint's
1262  *      max packet size if no_sg_constraint isn't set in 'struct usb_bus'
1263  * @num_mapped_sgs: (internal) number of mapped sg entries
1264  * @num_sgs: number of entries in the sg list
1265  * @transfer_buffer_length: How big is transfer_buffer.  The transfer may
1266  *      be broken up into chunks according to the current maximum packet
1267  *      size for the endpoint, which is a function of the configuration
1268  *      and is encoded in the pipe.  When the length is zero, neither
1269  *      transfer_buffer nor transfer_dma is used.
1270  * @actual_length: This is read in non-iso completion functions, and
1271  *      it tells how many bytes (out of transfer_buffer_length) were
1272  *      transferred.  It will normally be the same as requested, unless
1273  *      either an error was reported or a short read was performed.
1274  *      The URB_SHORT_NOT_OK transfer flag may be used to make such
1275  *      short reads be reported as errors.
1276  * @setup_packet: Only used for control transfers, this points to eight bytes
1277  *      of setup data.  Control transfers always start by sending this data
1278  *      to the device.  Then transfer_buffer is read or written, if needed.
1279  * @setup_dma: DMA pointer for the setup packet.  The caller must not use
1280  *      this field; setup_packet must point to a valid buffer.
1281  * @start_frame: Returns the initial frame for isochronous transfers.
1282  * @number_of_packets: Lists the number of ISO transfer buffers.
1283  * @interval: Specifies the polling interval for interrupt or isochronous
1284  *      transfers.  The units are frames (milliseconds) for full and low
1285  *      speed devices, and microframes (1/8 millisecond) for highspeed
1286  *      and SuperSpeed devices.
1287  * @error_count: Returns the number of ISO transfers that reported errors.
1288  * @context: For use in completion functions.  This normally points to
1289  *      request-specific driver context.
1290  * @complete: Completion handler. This URB is passed as the parameter to the
1291  *      completion function.  The completion function may then do what
1292  *      it likes with the URB, including resubmitting or freeing it.
1293  * @iso_frame_desc: Used to provide arrays of ISO transfer buffers and to
1294  *      collect the transfer status for each buffer.
1295  *
1296  * This structure identifies USB transfer requests.  URBs must be allocated by
1297  * calling usb_alloc_urb() and freed with a call to usb_free_urb().
1298  * Initialization may be done using various usb_fill_*_urb() functions.  URBs
1299  * are submitted using usb_submit_urb(), and pending requests may be canceled
1300  * using usb_unlink_urb() or usb_kill_urb().
1301  *
1302  * Data Transfer Buffers:
1303  *
1304  * Normally drivers provide I/O buffers allocated with kmalloc() or otherwise
1305  * taken from the general page pool.  That is provided by transfer_buffer
1306  * (control requests also use setup_packet), and host controller drivers
1307  * perform a dma mapping (and unmapping) for each buffer transferred.  Those
1308  * mapping operations can be expensive on some platforms (perhaps using a dma
1309  * bounce buffer or talking to an IOMMU),
1310  * although they're cheap on commodity x86 and ppc hardware.
1311  *
1312  * Alternatively, drivers may pass the URB_NO_TRANSFER_DMA_MAP transfer flag,
1313  * which tells the host controller driver that no such mapping is needed for
1314  * the transfer_buffer since
1315  * the device driver is DMA-aware.  For example, a device driver might
1316  * allocate a DMA buffer with usb_alloc_coherent() or call usb_buffer_map().
1317  * When this transfer flag is provided, host controller drivers will
1318  * attempt to use the dma address found in the transfer_dma
1319  * field rather than determining a dma address themselves.
1320  *
1321  * Note that transfer_buffer must still be set if the controller
1322  * does not support DMA (as indicated by bus.uses_dma) and when talking
1323  * to root hub. If you have to trasfer between highmem zone and the device
1324  * on such controller, create a bounce buffer or bail out with an error.
1325  * If transfer_buffer cannot be set (is in highmem) and the controller is DMA
1326  * capable, assign NULL to it, so that usbmon knows not to use the value.
1327  * The setup_packet must always be set, so it cannot be located in highmem.
1328  *
1329  * Initialization:
1330  *
1331  * All URBs submitted must initialize the dev, pipe, transfer_flags (may be
1332  * zero), and complete fields.  All URBs must also initialize
1333  * transfer_buffer and transfer_buffer_length.  They may provide the
1334  * URB_SHORT_NOT_OK transfer flag, indicating that short reads are
1335  * to be treated as errors; that flag is invalid for write requests.
1336  *
1337  * Bulk URBs may
1338  * use the URB_ZERO_PACKET transfer flag, indicating that bulk OUT transfers
1339  * should always terminate with a short packet, even if it means adding an
1340  * extra zero length packet.
1341  *
1342  * Control URBs must provide a valid pointer in the setup_packet field.
1343  * Unlike the transfer_buffer, the setup_packet may not be mapped for DMA
1344  * beforehand.
1345  *
1346  * Interrupt URBs must provide an interval, saying how often (in milliseconds
1347  * or, for highspeed devices, 125 microsecond units)
1348  * to poll for transfers.  After the URB has been submitted, the interval
1349  * field reflects how the transfer was actually scheduled.
1350  * The polling interval may be more frequent than requested.
1351  * For example, some controllers have a maximum interval of 32 milliseconds,
1352  * while others support intervals of up to 1024 milliseconds.
1353  * Isochronous URBs also have transfer intervals.  (Note that for isochronous
1354  * endpoints, as well as high speed interrupt endpoints, the encoding of
1355  * the transfer interval in the endpoint descriptor is logarithmic.
1356  * Device drivers must convert that value to linear units themselves.)
1357  *
1358  * If an isochronous endpoint queue isn't already running, the host
1359  * controller will schedule a new URB to start as soon as bandwidth
1360  * utilization allows.  If the queue is running then a new URB will be
1361  * scheduled to start in the first transfer slot following the end of the
1362  * preceding URB, if that slot has not already expired.  If the slot has
1363  * expired (which can happen when IRQ delivery is delayed for a long time),
1364  * the scheduling behavior depends on the URB_ISO_ASAP flag.  If the flag
1365  * is clear then the URB will be scheduled to start in the expired slot,
1366  * implying that some of its packets will not be transferred; if the flag
1367  * is set then the URB will be scheduled in the first unexpired slot,
1368  * breaking the queue's synchronization.  Upon URB completion, the
1369  * start_frame field will be set to the (micro)frame number in which the
1370  * transfer was scheduled.  Ranges for frame counter values are HC-specific
1371  * and can go from as low as 256 to as high as 65536 frames.
1372  *
1373  * Isochronous URBs have a different data transfer model, in part because
1374  * the quality of service is only "best effort".  Callers provide specially
1375  * allocated URBs, with number_of_packets worth of iso_frame_desc structures
1376  * at the end.  Each such packet is an individual ISO transfer.  Isochronous
1377  * URBs are normally queued, submitted by drivers to arrange that
1378  * transfers are at least double buffered, and then explicitly resubmitted
1379  * in completion handlers, so
1380  * that data (such as audio or video) streams at as constant a rate as the
1381  * host controller scheduler can support.
1382  *
1383  * Completion Callbacks:
1384  *
1385  * The completion callback is made in_interrupt(), and one of the first
1386  * things that a completion handler should do is check the status field.
1387  * The status field is provided for all URBs.  It is used to report
1388  * unlinked URBs, and status for all non-ISO transfers.  It should not
1389  * be examined before the URB is returned to the completion handler.
1390  *
1391  * The context field is normally used to link URBs back to the relevant
1392  * driver or request state.
1393  *
1394  * When the completion callback is invoked for non-isochronous URBs, the
1395  * actual_length field tells how many bytes were transferred.  This field
1396  * is updated even when the URB terminated with an error or was unlinked.
1397  *
1398  * ISO transfer status is reported in the status and actual_length fields
1399  * of the iso_frame_desc array, and the number of errors is reported in
1400  * error_count.  Completion callbacks for ISO transfers will normally
1401  * (re)submit URBs to ensure a constant transfer rate.
1402  *
1403  * Note that even fields marked "public" should not be touched by the driver
1404  * when the urb is owned by the hcd, that is, since the call to
1405  * usb_submit_urb() till the entry into the completion routine.
1406  */
1407 struct urb {
1408         /* private: usb core and host controller only fields in the urb */
1409         struct kref kref;               /* reference count of the URB */
1410         void *hcpriv;                   /* private data for host controller */
1411         atomic_t use_count;             /* concurrent submissions counter */
1412         atomic_t reject;                /* submissions will fail */
1413         int unlinked;                   /* unlink error code */
1414
1415         /* public: documented fields in the urb that can be used by drivers */
1416         struct list_head urb_list;      /* list head for use by the urb's
1417                                          * current owner */
1418         struct list_head anchor_list;   /* the URB may be anchored */
1419         struct usb_anchor *anchor;
1420         struct usb_device *dev;         /* (in) pointer to associated device */
1421         struct usb_host_endpoint *ep;   /* (internal) pointer to endpoint */
1422         unsigned int pipe;              /* (in) pipe information */
1423         unsigned int stream_id;         /* (in) stream ID */
1424         int status;                     /* (return) non-ISO status */
1425         unsigned int transfer_flags;    /* (in) URB_SHORT_NOT_OK | ...*/
1426         void *transfer_buffer;          /* (in) associated data buffer */
1427         dma_addr_t transfer_dma;        /* (in) dma addr for transfer_buffer */
1428         struct scatterlist *sg;         /* (in) scatter gather buffer list */
1429         int num_mapped_sgs;             /* (internal) mapped sg entries */
1430         int num_sgs;                    /* (in) number of entries in the sg list */
1431         u32 transfer_buffer_length;     /* (in) data buffer length */
1432         u32 actual_length;              /* (return) actual transfer length */
1433         unsigned char *setup_packet;    /* (in) setup packet (control only) */
1434         dma_addr_t setup_dma;           /* (in) dma addr for setup_packet */
1435         int start_frame;                /* (modify) start frame (ISO) */
1436         int number_of_packets;          /* (in) number of ISO packets */
1437         int interval;                   /* (modify) transfer interval
1438                                          * (INT/ISO) */
1439         int error_count;                /* (return) number of ISO errors */
1440         void *context;                  /* (in) context for completion */
1441         usb_complete_t complete;        /* (in) completion routine */
1442         struct usb_iso_packet_descriptor iso_frame_desc[0];
1443                                         /* (in) ISO ONLY */
1444 };
1445
1446 /* ----------------------------------------------------------------------- */
1447
1448 /**
1449  * usb_fill_control_urb - initializes a control urb
1450  * @urb: pointer to the urb to initialize.
1451  * @dev: pointer to the struct usb_device for this urb.
1452  * @pipe: the endpoint pipe
1453  * @setup_packet: pointer to the setup_packet buffer
1454  * @transfer_buffer: pointer to the transfer buffer
1455  * @buffer_length: length of the transfer buffer
1456  * @complete_fn: pointer to the usb_complete_t function
1457  * @context: what to set the urb context to.
1458  *
1459  * Initializes a control urb with the proper information needed to submit
1460  * it to a device.
1461  */
1462 static inline void usb_fill_control_urb(struct urb *urb,
1463                                         struct usb_device *dev,
1464                                         unsigned int pipe,
1465                                         unsigned char *setup_packet,
1466                                         void *transfer_buffer,
1467                                         int buffer_length,
1468                                         usb_complete_t complete_fn,
1469                                         void *context)
1470 {
1471         urb->dev = dev;
1472         urb->pipe = pipe;
1473         urb->setup_packet = setup_packet;
1474         urb->transfer_buffer = transfer_buffer;
1475         urb->transfer_buffer_length = buffer_length;
1476         urb->complete = complete_fn;
1477         urb->context = context;
1478 }
1479
1480 /**
1481  * usb_fill_bulk_urb - macro to help initialize a bulk urb
1482  * @urb: pointer to the urb to initialize.
1483  * @dev: pointer to the struct usb_device for this urb.
1484  * @pipe: the endpoint pipe
1485  * @transfer_buffer: pointer to the transfer buffer
1486  * @buffer_length: length of the transfer buffer
1487  * @complete_fn: pointer to the usb_complete_t function
1488  * @context: what to set the urb context to.
1489  *
1490  * Initializes a bulk urb with the proper information needed to submit it
1491  * to a device.
1492  */
1493 static inline void usb_fill_bulk_urb(struct urb *urb,
1494                                      struct usb_device *dev,
1495                                      unsigned int pipe,
1496                                      void *transfer_buffer,
1497                                      int buffer_length,
1498                                      usb_complete_t complete_fn,
1499                                      void *context)
1500 {
1501         urb->dev = dev;
1502         urb->pipe = pipe;
1503         urb->transfer_buffer = transfer_buffer;
1504         urb->transfer_buffer_length = buffer_length;
1505         urb->complete = complete_fn;
1506         urb->context = context;
1507 }
1508
1509 /**
1510  * usb_fill_int_urb - macro to help initialize a interrupt urb
1511  * @urb: pointer to the urb to initialize.
1512  * @dev: pointer to the struct usb_device for this urb.
1513  * @pipe: the endpoint pipe
1514  * @transfer_buffer: pointer to the transfer buffer
1515  * @buffer_length: length of the transfer buffer
1516  * @complete_fn: pointer to the usb_complete_t function
1517  * @context: what to set the urb context to.
1518  * @interval: what to set the urb interval to, encoded like
1519  *      the endpoint descriptor's bInterval value.
1520  *
1521  * Initializes a interrupt urb with the proper information needed to submit
1522  * it to a device.
1523  *
1524  * Note that High Speed and SuperSpeed interrupt endpoints use a logarithmic
1525  * encoding of the endpoint interval, and express polling intervals in
1526  * microframes (eight per millisecond) rather than in frames (one per
1527  * millisecond).
1528  *
1529  * Wireless USB also uses the logarithmic encoding, but specifies it in units of
1530  * 128us instead of 125us.  For Wireless USB devices, the interval is passed
1531  * through to the host controller, rather than being translated into microframe
1532  * units.
1533  */
1534 static inline void usb_fill_int_urb(struct urb *urb,
1535                                     struct usb_device *dev,
1536                                     unsigned int pipe,
1537                                     void *transfer_buffer,
1538                                     int buffer_length,
1539                                     usb_complete_t complete_fn,
1540                                     void *context,
1541                                     int interval)
1542 {
1543         urb->dev = dev;
1544         urb->pipe = pipe;
1545         urb->transfer_buffer = transfer_buffer;
1546         urb->transfer_buffer_length = buffer_length;
1547         urb->complete = complete_fn;
1548         urb->context = context;
1549
1550         if (dev->speed == USB_SPEED_HIGH || dev->speed == USB_SPEED_SUPER) {
1551                 /* make sure interval is within allowed range */
1552                 interval = clamp(interval, 1, 16);
1553
1554                 urb->interval = 1 << (interval - 1);
1555         } else {
1556                 urb->interval = interval;
1557         }
1558
1559         urb->start_frame = -1;
1560 }
1561
1562 extern void usb_init_urb(struct urb *urb);
1563 extern struct urb *usb_alloc_urb(int iso_packets, gfp_t mem_flags);
1564 extern void usb_free_urb(struct urb *urb);
1565 #define usb_put_urb usb_free_urb
1566 extern struct urb *usb_get_urb(struct urb *urb);
1567 extern int usb_submit_urb(struct urb *urb, gfp_t mem_flags);
1568 extern int usb_unlink_urb(struct urb *urb);
1569 extern void usb_kill_urb(struct urb *urb);
1570 extern void usb_poison_urb(struct urb *urb);
1571 extern void usb_unpoison_urb(struct urb *urb);
1572 extern void usb_block_urb(struct urb *urb);
1573 extern void usb_kill_anchored_urbs(struct usb_anchor *anchor);
1574 extern void usb_poison_anchored_urbs(struct usb_anchor *anchor);
1575 extern void usb_unpoison_anchored_urbs(struct usb_anchor *anchor);
1576 extern void usb_unlink_anchored_urbs(struct usb_anchor *anchor);
1577 extern void usb_anchor_urb(struct urb *urb, struct usb_anchor *anchor);
1578 extern void usb_unanchor_urb(struct urb *urb);
1579 extern int usb_wait_anchor_empty_timeout(struct usb_anchor *anchor,
1580                                          unsigned int timeout);
1581 extern struct urb *usb_get_from_anchor(struct usb_anchor *anchor);
1582 extern void usb_scuttle_anchored_urbs(struct usb_anchor *anchor);
1583 extern int usb_anchor_empty(struct usb_anchor *anchor);
1584
1585 #define usb_unblock_urb usb_unpoison_urb
1586
1587 /**
1588  * usb_urb_dir_in - check if an URB describes an IN transfer
1589  * @urb: URB to be checked
1590  *
1591  * Return: 1 if @urb describes an IN transfer (device-to-host),
1592  * otherwise 0.
1593  */
1594 static inline int usb_urb_dir_in(struct urb *urb)
1595 {
1596         return (urb->transfer_flags & URB_DIR_MASK) == URB_DIR_IN;
1597 }
1598
1599 /**
1600  * usb_urb_dir_out - check if an URB describes an OUT transfer
1601  * @urb: URB to be checked
1602  *
1603  * Return: 1 if @urb describes an OUT transfer (host-to-device),
1604  * otherwise 0.
1605  */
1606 static inline int usb_urb_dir_out(struct urb *urb)
1607 {
1608         return (urb->transfer_flags & URB_DIR_MASK) == URB_DIR_OUT;
1609 }
1610
1611 void *usb_alloc_coherent(struct usb_device *dev, size_t size,
1612         gfp_t mem_flags, dma_addr_t *dma);
1613 void usb_free_coherent(struct usb_device *dev, size_t size,
1614         void *addr, dma_addr_t dma);
1615
1616 #if 0
1617 struct urb *usb_buffer_map(struct urb *urb);
1618 void usb_buffer_dmasync(struct urb *urb);
1619 void usb_buffer_unmap(struct urb *urb);
1620 #endif
1621
1622 struct scatterlist;
1623 int usb_buffer_map_sg(const struct usb_device *dev, int is_in,
1624                       struct scatterlist *sg, int nents);
1625 #if 0
1626 void usb_buffer_dmasync_sg(const struct usb_device *dev, int is_in,
1627                            struct scatterlist *sg, int n_hw_ents);
1628 #endif
1629 void usb_buffer_unmap_sg(const struct usb_device *dev, int is_in,
1630                          struct scatterlist *sg, int n_hw_ents);
1631
1632 /*-------------------------------------------------------------------*
1633  *                         SYNCHRONOUS CALL SUPPORT                  *
1634  *-------------------------------------------------------------------*/
1635
1636 extern int usb_control_msg(struct usb_device *dev, unsigned int pipe,
1637         __u8 request, __u8 requesttype, __u16 value, __u16 index,
1638         void *data, __u16 size, int timeout);
1639 extern int usb_interrupt_msg(struct usb_device *usb_dev, unsigned int pipe,
1640         void *data, int len, int *actual_length, int timeout);
1641 extern int usb_bulk_msg(struct usb_device *usb_dev, unsigned int pipe,
1642         void *data, int len, int *actual_length,
1643         int timeout);
1644
1645 /* wrappers around usb_control_msg() for the most common standard requests */
1646 extern int usb_get_descriptor(struct usb_device *dev, unsigned char desctype,
1647         unsigned char descindex, void *buf, int size);
1648 extern int usb_get_status(struct usb_device *dev,
1649         int type, int target, void *data);
1650 extern int usb_string(struct usb_device *dev, int index,
1651         char *buf, size_t size);
1652
1653 /* wrappers that also update important state inside usbcore */
1654 extern int usb_clear_halt(struct usb_device *dev, int pipe);
1655 extern int usb_reset_configuration(struct usb_device *dev);
1656 extern int usb_set_interface(struct usb_device *dev, int ifnum, int alternate);
1657 extern void usb_reset_endpoint(struct usb_device *dev, unsigned int epaddr);
1658
1659 /* this request isn't really synchronous, but it belongs with the others */
1660 extern int usb_driver_set_configuration(struct usb_device *udev, int config);
1661
1662 /*
1663  * timeouts, in milliseconds, used for sending/receiving control messages
1664  * they typically complete within a few frames (msec) after they're issued
1665  * USB identifies 5 second timeouts, maybe more in a few cases, and a few
1666  * slow devices (like some MGE Ellipse UPSes) actually push that limit.
1667  */
1668 #define USB_CTRL_GET_TIMEOUT    5000
1669 #define USB_CTRL_SET_TIMEOUT    5000
1670
1671
1672 /**
1673  * struct usb_sg_request - support for scatter/gather I/O
1674  * @status: zero indicates success, else negative errno
1675  * @bytes: counts bytes transferred.
1676  *
1677  * These requests are initialized using usb_sg_init(), and then are used
1678  * as request handles passed to usb_sg_wait() or usb_sg_cancel().  Most
1679  * members of the request object aren't for driver access.
1680  *
1681  * The status and bytecount values are valid only after usb_sg_wait()
1682  * returns.  If the status is zero, then the bytecount matches the total
1683  * from the request.
1684  *
1685  * After an error completion, drivers may need to clear a halt condition
1686  * on the endpoint.
1687  */
1688 struct usb_sg_request {
1689         int                     status;
1690         size_t                  bytes;
1691
1692         /* private:
1693          * members below are private to usbcore,
1694          * and are not provided for driver access!
1695          */
1696         spinlock_t              lock;
1697
1698         struct usb_device       *dev;
1699         int                     pipe;
1700
1701         int                     entries;
1702         struct urb              **urbs;
1703
1704         int                     count;
1705         struct completion       complete;
1706 };
1707
1708 int usb_sg_init(
1709         struct usb_sg_request   *io,
1710         struct usb_device       *dev,
1711         unsigned                pipe,
1712         unsigned                period,
1713         struct scatterlist      *sg,
1714         int                     nents,
1715         size_t                  length,
1716         gfp_t                   mem_flags
1717 );
1718 void usb_sg_cancel(struct usb_sg_request *io);
1719 void usb_sg_wait(struct usb_sg_request *io);
1720
1721
1722 /* ----------------------------------------------------------------------- */
1723
1724 /*
1725  * For various legacy reasons, Linux has a small cookie that's paired with
1726  * a struct usb_device to identify an endpoint queue.  Queue characteristics
1727  * are defined by the endpoint's descriptor.  This cookie is called a "pipe",
1728  * an unsigned int encoded as:
1729  *
1730  *  - direction:        bit 7           (0 = Host-to-Device [Out],
1731  *                                       1 = Device-to-Host [In] ...
1732  *                                      like endpoint bEndpointAddress)
1733  *  - device address:   bits 8-14       ... bit positions known to uhci-hcd
1734  *  - endpoint:         bits 15-18      ... bit positions known to uhci-hcd
1735  *  - pipe type:        bits 30-31      (00 = isochronous, 01 = interrupt,
1736  *                                       10 = control, 11 = bulk)
1737  *
1738  * Given the device address and endpoint descriptor, pipes are redundant.
1739  */
1740
1741 /* NOTE:  these are not the standard USB_ENDPOINT_XFER_* values!! */
1742 /* (yet ... they're the values used by usbfs) */
1743 #define PIPE_ISOCHRONOUS                0
1744 #define PIPE_INTERRUPT                  1
1745 #define PIPE_CONTROL                    2
1746 #define PIPE_BULK                       3
1747
1748 #define usb_pipein(pipe)        ((pipe) & USB_DIR_IN)
1749 #define usb_pipeout(pipe)       (!usb_pipein(pipe))
1750
1751 #define usb_pipedevice(pipe)    (((pipe) >> 8) & 0x7f)
1752 #define usb_pipeendpoint(pipe)  (((pipe) >> 15) & 0xf)
1753
1754 #define usb_pipetype(pipe)      (((pipe) >> 30) & 3)
1755 #define usb_pipeisoc(pipe)      (usb_pipetype((pipe)) == PIPE_ISOCHRONOUS)
1756 #define usb_pipeint(pipe)       (usb_pipetype((pipe)) == PIPE_INTERRUPT)
1757 #define usb_pipecontrol(pipe)   (usb_pipetype((pipe)) == PIPE_CONTROL)
1758 #define usb_pipebulk(pipe)      (usb_pipetype((pipe)) == PIPE_BULK)
1759
1760 static inline unsigned int __create_pipe(struct usb_device *dev,
1761                 unsigned int endpoint)
1762 {
1763         return (dev->devnum << 8) | (endpoint << 15);
1764 }
1765
1766 /* Create various pipes... */
1767 #define usb_sndctrlpipe(dev, endpoint)  \
1768         ((PIPE_CONTROL << 30) | __create_pipe(dev, endpoint))
1769 #define usb_rcvctrlpipe(dev, endpoint)  \
1770         ((PIPE_CONTROL << 30) | __create_pipe(dev, endpoint) | USB_DIR_IN)
1771 #define usb_sndisocpipe(dev, endpoint)  \
1772         ((PIPE_ISOCHRONOUS << 30) | __create_pipe(dev, endpoint))
1773 #define usb_rcvisocpipe(dev, endpoint)  \
1774         ((PIPE_ISOCHRONOUS << 30) | __create_pipe(dev, endpoint) | USB_DIR_IN)
1775 #define usb_sndbulkpipe(dev, endpoint)  \
1776         ((PIPE_BULK << 30) | __create_pipe(dev, endpoint))
1777 #define usb_rcvbulkpipe(dev, endpoint)  \
1778         ((PIPE_BULK << 30) | __create_pipe(dev, endpoint) | USB_DIR_IN)
1779 #define usb_sndintpipe(dev, endpoint)   \
1780         ((PIPE_INTERRUPT << 30) | __create_pipe(dev, endpoint))
1781 #define usb_rcvintpipe(dev, endpoint)   \
1782         ((PIPE_INTERRUPT << 30) | __create_pipe(dev, endpoint) | USB_DIR_IN)
1783
1784 static inline struct usb_host_endpoint *
1785 usb_pipe_endpoint(struct usb_device *dev, unsigned int pipe)
1786 {
1787         struct usb_host_endpoint **eps;
1788         eps = usb_pipein(pipe) ? dev->ep_in : dev->ep_out;
1789         return eps[usb_pipeendpoint(pipe)];
1790 }
1791
1792 /*-------------------------------------------------------------------------*/
1793
1794 static inline __u16
1795 usb_maxpacket(struct usb_device *udev, int pipe, int is_out)
1796 {
1797         struct usb_host_endpoint        *ep;
1798         unsigned                        epnum = usb_pipeendpoint(pipe);
1799
1800         if (is_out) {
1801                 WARN_ON(usb_pipein(pipe));
1802                 ep = udev->ep_out[epnum];
1803         } else {
1804                 WARN_ON(usb_pipeout(pipe));
1805                 ep = udev->ep_in[epnum];
1806         }
1807         if (!ep)
1808                 return 0;
1809
1810         /* NOTE:  only 0x07ff bits are for packet size... */
1811         return usb_endpoint_maxp(&ep->desc);
1812 }
1813
1814 /* ----------------------------------------------------------------------- */
1815
1816 /* translate USB error codes to codes user space understands */
1817 static inline int usb_translate_errors(int error_code)
1818 {
1819         switch (error_code) {
1820         case 0:
1821         case -ENOMEM:
1822         case -ENODEV:
1823         case -EOPNOTSUPP:
1824                 return error_code;
1825         default:
1826                 return -EIO;
1827         }
1828 }
1829
1830 /* Events from the usb core */
1831 #define USB_DEVICE_ADD          0x0001
1832 #define USB_DEVICE_REMOVE       0x0002
1833 #define USB_BUS_ADD             0x0003
1834 #define USB_BUS_REMOVE          0x0004
1835 extern void usb_register_notify(struct notifier_block *nb);
1836 extern void usb_unregister_notify(struct notifier_block *nb);
1837
1838 /* debugfs stuff */
1839 extern struct dentry *usb_debug_root;
1840
1841 #endif  /* __KERNEL__ */
1842
1843 #endif