1 /* SPDX-License-Identifier: GPL-2.0-or-later */
3 * Definitions for the 'struct sk_buff' memory handlers.
6 * Alan Cox, <gw4pts@gw4pts.ampr.org>
7 * Florian La Roche, <rzsfl@rz.uni-sb.de>
10 #ifndef _LINUX_SKBUFF_H
11 #define _LINUX_SKBUFF_H
13 #include <linux/kernel.h>
14 #include <linux/compiler.h>
15 #include <linux/time.h>
16 #include <linux/bug.h>
17 #include <linux/bvec.h>
18 #include <linux/cache.h>
19 #include <linux/rbtree.h>
20 #include <linux/socket.h>
21 #include <linux/refcount.h>
23 #include <linux/atomic.h>
24 #include <asm/types.h>
25 #include <linux/spinlock.h>
26 #include <net/checksum.h>
27 #include <linux/rcupdate.h>
28 #include <linux/dma-mapping.h>
29 #include <linux/netdev_features.h>
30 #include <net/flow_dissector.h>
31 #include <linux/in6.h>
32 #include <linux/if_packet.h>
33 #include <linux/llist.h>
35 #include <net/page_pool.h>
36 #if IS_ENABLED(CONFIG_NF_CONNTRACK)
37 #include <linux/netfilter/nf_conntrack_common.h>
39 #include <net/net_debug.h>
40 #include <net/dropreason-core.h>
45 * The interface for checksum offload between the stack and networking drivers
48 * IP checksum related features
49 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~
51 * Drivers advertise checksum offload capabilities in the features of a device.
52 * From the stack's point of view these are capabilities offered by the driver.
53 * A driver typically only advertises features that it is capable of offloading
56 * .. flat-table:: Checksum related device features
59 * * - %NETIF_F_HW_CSUM
60 * - The driver (or its device) is able to compute one
61 * IP (one's complement) checksum for any combination
62 * of protocols or protocol layering. The checksum is
63 * computed and set in a packet per the CHECKSUM_PARTIAL
64 * interface (see below).
66 * * - %NETIF_F_IP_CSUM
67 * - Driver (device) is only able to checksum plain
68 * TCP or UDP packets over IPv4. These are specifically
69 * unencapsulated packets of the form IPv4|TCP or
70 * IPv4|UDP where the Protocol field in the IPv4 header
71 * is TCP or UDP. The IPv4 header may contain IP options.
72 * This feature cannot be set in features for a device
73 * with NETIF_F_HW_CSUM also set. This feature is being
74 * DEPRECATED (see below).
76 * * - %NETIF_F_IPV6_CSUM
77 * - Driver (device) is only able to checksum plain
78 * TCP or UDP packets over IPv6. These are specifically
79 * unencapsulated packets of the form IPv6|TCP or
80 * IPv6|UDP where the Next Header field in the IPv6
81 * header is either TCP or UDP. IPv6 extension headers
82 * are not supported with this feature. This feature
83 * cannot be set in features for a device with
84 * NETIF_F_HW_CSUM also set. This feature is being
85 * DEPRECATED (see below).
88 * - Driver (device) performs receive checksum offload.
89 * This flag is only used to disable the RX checksum
90 * feature for a device. The stack will accept receive
91 * checksum indication in packets received on a device
92 * regardless of whether NETIF_F_RXCSUM is set.
94 * Checksumming of received packets by device
95 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
97 * Indication of checksum verification is set in &sk_buff.ip_summed.
98 * Possible values are:
102 * Device did not checksum this packet e.g. due to lack of capabilities.
103 * The packet contains full (though not verified) checksum in packet but
104 * not in skb->csum. Thus, skb->csum is undefined in this case.
106 * - %CHECKSUM_UNNECESSARY
108 * The hardware you're dealing with doesn't calculate the full checksum
109 * (as in %CHECKSUM_COMPLETE), but it does parse headers and verify checksums
110 * for specific protocols. For such packets it will set %CHECKSUM_UNNECESSARY
111 * if their checksums are okay. &sk_buff.csum is still undefined in this case
112 * though. A driver or device must never modify the checksum field in the
113 * packet even if checksum is verified.
115 * %CHECKSUM_UNNECESSARY is applicable to following protocols:
117 * - TCP: IPv6 and IPv4.
118 * - UDP: IPv4 and IPv6. A device may apply CHECKSUM_UNNECESSARY to a
119 * zero UDP checksum for either IPv4 or IPv6, the networking stack
120 * may perform further validation in this case.
121 * - GRE: only if the checksum is present in the header.
122 * - SCTP: indicates the CRC in SCTP header has been validated.
123 * - FCOE: indicates the CRC in FC frame has been validated.
125 * &sk_buff.csum_level indicates the number of consecutive checksums found in
126 * the packet minus one that have been verified as %CHECKSUM_UNNECESSARY.
127 * For instance if a device receives an IPv6->UDP->GRE->IPv4->TCP packet
128 * and a device is able to verify the checksums for UDP (possibly zero),
129 * GRE (checksum flag is set) and TCP, &sk_buff.csum_level would be set to
130 * two. If the device were only able to verify the UDP checksum and not
131 * GRE, either because it doesn't support GRE checksum or because GRE
132 * checksum is bad, skb->csum_level would be set to zero (TCP checksum is
133 * not considered in this case).
135 * - %CHECKSUM_COMPLETE
137 * This is the most generic way. The device supplied checksum of the _whole_
138 * packet as seen by netif_rx() and fills in &sk_buff.csum. This means the
139 * hardware doesn't need to parse L3/L4 headers to implement this.
143 * - Even if device supports only some protocols, but is able to produce
144 * skb->csum, it MUST use CHECKSUM_COMPLETE, not CHECKSUM_UNNECESSARY.
145 * - CHECKSUM_COMPLETE is not applicable to SCTP and FCoE protocols.
147 * - %CHECKSUM_PARTIAL
149 * A checksum is set up to be offloaded to a device as described in the
150 * output description for CHECKSUM_PARTIAL. This may occur on a packet
151 * received directly from another Linux OS, e.g., a virtualized Linux kernel
152 * on the same host, or it may be set in the input path in GRO or remote
153 * checksum offload. For the purposes of checksum verification, the checksum
154 * referred to by skb->csum_start + skb->csum_offset and any preceding
155 * checksums in the packet are considered verified. Any checksums in the
156 * packet that are after the checksum being offloaded are not considered to
159 * Checksumming on transmit for non-GSO
160 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
162 * The stack requests checksum offload in the &sk_buff.ip_summed for a packet.
165 * - %CHECKSUM_PARTIAL
167 * The driver is required to checksum the packet as seen by hard_start_xmit()
168 * from &sk_buff.csum_start up to the end, and to record/write the checksum at
169 * offset &sk_buff.csum_start + &sk_buff.csum_offset.
170 * A driver may verify that the
171 * csum_start and csum_offset values are valid values given the length and
172 * offset of the packet, but it should not attempt to validate that the
173 * checksum refers to a legitimate transport layer checksum -- it is the
174 * purview of the stack to validate that csum_start and csum_offset are set
177 * When the stack requests checksum offload for a packet, the driver MUST
178 * ensure that the checksum is set correctly. A driver can either offload the
179 * checksum calculation to the device, or call skb_checksum_help (in the case
180 * that the device does not support offload for a particular checksum).
182 * %NETIF_F_IP_CSUM and %NETIF_F_IPV6_CSUM are being deprecated in favor of
183 * %NETIF_F_HW_CSUM. New devices should use %NETIF_F_HW_CSUM to indicate
184 * checksum offload capability.
185 * skb_csum_hwoffload_help() can be called to resolve %CHECKSUM_PARTIAL based
186 * on network device checksumming capabilities: if a packet does not match
187 * them, skb_checksum_help() or skb_crc32c_help() (depending on the value of
188 * &sk_buff.csum_not_inet, see :ref:`crc`)
189 * is called to resolve the checksum.
193 * The skb was already checksummed by the protocol, or a checksum is not
196 * - %CHECKSUM_UNNECESSARY
198 * This has the same meaning as CHECKSUM_NONE for checksum offload on
201 * - %CHECKSUM_COMPLETE
203 * Not used in checksum output. If a driver observes a packet with this value
204 * set in skbuff, it should treat the packet as if %CHECKSUM_NONE were set.
208 * Non-IP checksum (CRC) offloads
209 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
214 * * - %NETIF_F_SCTP_CRC
215 * - This feature indicates that a device is capable of
216 * offloading the SCTP CRC in a packet. To perform this offload the stack
217 * will set csum_start and csum_offset accordingly, set ip_summed to
218 * %CHECKSUM_PARTIAL and set csum_not_inet to 1, to provide an indication
219 * in the skbuff that the %CHECKSUM_PARTIAL refers to CRC32c.
220 * A driver that supports both IP checksum offload and SCTP CRC32c offload
221 * must verify which offload is configured for a packet by testing the
222 * value of &sk_buff.csum_not_inet; skb_crc32c_csum_help() is provided to
223 * resolve %CHECKSUM_PARTIAL on skbs where csum_not_inet is set to 1.
225 * * - %NETIF_F_FCOE_CRC
226 * - This feature indicates that a device is capable of offloading the FCOE
227 * CRC in a packet. To perform this offload the stack will set ip_summed
228 * to %CHECKSUM_PARTIAL and set csum_start and csum_offset
229 * accordingly. Note that there is no indication in the skbuff that the
230 * %CHECKSUM_PARTIAL refers to an FCOE checksum, so a driver that supports
231 * both IP checksum offload and FCOE CRC offload must verify which offload
232 * is configured for a packet, presumably by inspecting packet headers.
234 * Checksumming on output with GSO
235 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
237 * In the case of a GSO packet (skb_is_gso() is true), checksum offload
238 * is implied by the SKB_GSO_* flags in gso_type. Most obviously, if the
239 * gso_type is %SKB_GSO_TCPV4 or %SKB_GSO_TCPV6, TCP checksum offload as
240 * part of the GSO operation is implied. If a checksum is being offloaded
241 * with GSO then ip_summed is %CHECKSUM_PARTIAL, and both csum_start and
242 * csum_offset are set to refer to the outermost checksum being offloaded
243 * (two offloaded checksums are possible with UDP encapsulation).
246 /* Don't change this without changing skb_csum_unnecessary! */
247 #define CHECKSUM_NONE 0
248 #define CHECKSUM_UNNECESSARY 1
249 #define CHECKSUM_COMPLETE 2
250 #define CHECKSUM_PARTIAL 3
252 /* Maximum value in skb->csum_level */
253 #define SKB_MAX_CSUM_LEVEL 3
255 #define SKB_DATA_ALIGN(X) ALIGN(X, SMP_CACHE_BYTES)
256 #define SKB_WITH_OVERHEAD(X) \
257 ((X) - SKB_DATA_ALIGN(sizeof(struct skb_shared_info)))
259 /* For X bytes available in skb->head, what is the minimal
260 * allocation needed, knowing struct skb_shared_info needs
263 #define SKB_HEAD_ALIGN(X) (SKB_DATA_ALIGN(X) + \
264 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)))
266 #define SKB_MAX_ORDER(X, ORDER) \
267 SKB_WITH_OVERHEAD((PAGE_SIZE << (ORDER)) - (X))
268 #define SKB_MAX_HEAD(X) (SKB_MAX_ORDER((X), 0))
269 #define SKB_MAX_ALLOC (SKB_MAX_ORDER(0, 2))
271 /* return minimum truesize of one skb containing X bytes of data */
272 #define SKB_TRUESIZE(X) ((X) + \
273 SKB_DATA_ALIGN(sizeof(struct sk_buff)) + \
274 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)))
276 struct ahash_request;
279 struct pipe_inode_info;
287 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
288 struct nf_bridge_info {
290 BRNF_PROTO_UNCHANGED,
297 u8 sabotage_in_done:1;
299 struct net_device *physindev;
301 /* always valid & non-NULL from FORWARD on, for physdev match */
302 struct net_device *physoutdev;
304 /* prerouting: detect dnat in orig/reply direction */
306 struct in6_addr ipv6_daddr;
308 /* after prerouting + nat detected: store original source
309 * mac since neigh resolution overwrites it, only used while
310 * skb is out in neigh layer.
312 char neigh_header[8];
317 #if IS_ENABLED(CONFIG_NET_TC_SKB_EXT)
318 /* Chain in tc_skb_ext will be used to share the tc chain with
319 * ovs recirc_id. It will be set to the current chain by tc
320 * and read by ovs to recirc_id.
332 u8 act_miss:1; /* Set if act_miss_cookie is used */
333 u8 l2_miss:1; /* Set by bridge upon FDB or MDB miss */
337 struct sk_buff_head {
338 /* These two members must be first to match sk_buff. */
339 struct_group_tagged(sk_buff_list, list,
340 struct sk_buff *next;
341 struct sk_buff *prev;
350 #ifndef CONFIG_MAX_SKB_FRAGS
351 # define CONFIG_MAX_SKB_FRAGS 17
354 #define MAX_SKB_FRAGS CONFIG_MAX_SKB_FRAGS
356 extern int sysctl_max_skb_frags;
358 /* Set skb_shinfo(skb)->gso_size to this in case you want skb_segment to
359 * segment using its current segmentation instead.
361 #define GSO_BY_FRAGS 0xFFFF
363 typedef struct bio_vec skb_frag_t;
366 * skb_frag_size() - Returns the size of a skb fragment
367 * @frag: skb fragment
369 static inline unsigned int skb_frag_size(const skb_frag_t *frag)
375 * skb_frag_size_set() - Sets the size of a skb fragment
376 * @frag: skb fragment
377 * @size: size of fragment
379 static inline void skb_frag_size_set(skb_frag_t *frag, unsigned int size)
385 * skb_frag_size_add() - Increments the size of a skb fragment by @delta
386 * @frag: skb fragment
387 * @delta: value to add
389 static inline void skb_frag_size_add(skb_frag_t *frag, int delta)
391 frag->bv_len += delta;
395 * skb_frag_size_sub() - Decrements the size of a skb fragment by @delta
396 * @frag: skb fragment
397 * @delta: value to subtract
399 static inline void skb_frag_size_sub(skb_frag_t *frag, int delta)
401 frag->bv_len -= delta;
405 * skb_frag_must_loop - Test if %p is a high memory page
406 * @p: fragment's page
408 static inline bool skb_frag_must_loop(struct page *p)
410 #if defined(CONFIG_HIGHMEM)
411 if (IS_ENABLED(CONFIG_DEBUG_KMAP_LOCAL_FORCE_MAP) || PageHighMem(p))
418 * skb_frag_foreach_page - loop over pages in a fragment
420 * @f: skb frag to operate on
421 * @f_off: offset from start of f->bv_page
422 * @f_len: length from f_off to loop over
423 * @p: (temp var) current page
424 * @p_off: (temp var) offset from start of current page,
425 * non-zero only on first page.
426 * @p_len: (temp var) length in current page,
427 * < PAGE_SIZE only on first and last page.
428 * @copied: (temp var) length so far, excluding current p_len.
430 * A fragment can hold a compound page, in which case per-page
431 * operations, notably kmap_atomic, must be called for each
434 #define skb_frag_foreach_page(f, f_off, f_len, p, p_off, p_len, copied) \
435 for (p = skb_frag_page(f) + ((f_off) >> PAGE_SHIFT), \
436 p_off = (f_off) & (PAGE_SIZE - 1), \
437 p_len = skb_frag_must_loop(p) ? \
438 min_t(u32, f_len, PAGE_SIZE - p_off) : f_len, \
441 copied += p_len, p++, p_off = 0, \
442 p_len = min_t(u32, f_len - copied, PAGE_SIZE)) \
444 #define HAVE_HW_TIME_STAMP
447 * struct skb_shared_hwtstamps - hardware time stamps
448 * @hwtstamp: hardware time stamp transformed into duration
449 * since arbitrary point in time
450 * @netdev_data: address/cookie of network device driver used as
451 * reference to actual hardware time stamp
453 * Software time stamps generated by ktime_get_real() are stored in
456 * hwtstamps can only be compared against other hwtstamps from
459 * This structure is attached to packets as part of the
460 * &skb_shared_info. Use skb_hwtstamps() to get a pointer.
462 struct skb_shared_hwtstamps {
469 /* Definitions for tx_flags in struct skb_shared_info */
471 /* generate hardware time stamp */
472 SKBTX_HW_TSTAMP = 1 << 0,
474 /* generate software time stamp when queueing packet to NIC */
475 SKBTX_SW_TSTAMP = 1 << 1,
477 /* device driver is going to provide hardware time stamp */
478 SKBTX_IN_PROGRESS = 1 << 2,
480 /* generate hardware time stamp based on cycles if supported */
481 SKBTX_HW_TSTAMP_USE_CYCLES = 1 << 3,
483 /* generate wifi status information (where possible) */
484 SKBTX_WIFI_STATUS = 1 << 4,
486 /* determine hardware time stamp based on time or cycles */
487 SKBTX_HW_TSTAMP_NETDEV = 1 << 5,
489 /* generate software time stamp when entering packet scheduling */
490 SKBTX_SCHED_TSTAMP = 1 << 6,
493 #define SKBTX_ANY_SW_TSTAMP (SKBTX_SW_TSTAMP | \
495 #define SKBTX_ANY_TSTAMP (SKBTX_HW_TSTAMP | \
496 SKBTX_HW_TSTAMP_USE_CYCLES | \
499 /* Definitions for flags in struct skb_shared_info */
501 /* use zcopy routines */
502 SKBFL_ZEROCOPY_ENABLE = BIT(0),
504 /* This indicates at least one fragment might be overwritten
505 * (as in vmsplice(), sendfile() ...)
506 * If we need to compute a TX checksum, we'll need to copy
507 * all frags to avoid possible bad checksum
509 SKBFL_SHARED_FRAG = BIT(1),
511 /* segment contains only zerocopy data and should not be
512 * charged to the kernel memory.
514 SKBFL_PURE_ZEROCOPY = BIT(2),
516 SKBFL_DONT_ORPHAN = BIT(3),
518 /* page references are managed by the ubuf_info, so it's safe to
519 * use frags only up until ubuf_info is released
521 SKBFL_MANAGED_FRAG_REFS = BIT(4),
524 #define SKBFL_ZEROCOPY_FRAG (SKBFL_ZEROCOPY_ENABLE | SKBFL_SHARED_FRAG)
525 #define SKBFL_ALL_ZEROCOPY (SKBFL_ZEROCOPY_FRAG | SKBFL_PURE_ZEROCOPY | \
526 SKBFL_DONT_ORPHAN | SKBFL_MANAGED_FRAG_REFS)
529 * The callback notifies userspace to release buffers when skb DMA is done in
530 * lower device, the skb last reference should be 0 when calling this.
531 * The zerocopy_success argument is true if zero copy transmit occurred,
532 * false on data copy or out of memory error caused by data copy attempt.
533 * The ctx field is used to track device context.
534 * The desc field is used to track userspace buffer index.
537 void (*callback)(struct sk_buff *, struct ubuf_info *,
538 bool zerocopy_success);
543 struct ubuf_info_msgzc {
544 struct ubuf_info ubuf;
560 struct user_struct *user;
565 #define skb_uarg(SKB) ((struct ubuf_info *)(skb_shinfo(SKB)->destructor_arg))
566 #define uarg_to_msgzc(ubuf_ptr) container_of((ubuf_ptr), struct ubuf_info_msgzc, \
569 int mm_account_pinned_pages(struct mmpin *mmp, size_t size);
570 void mm_unaccount_pinned_pages(struct mmpin *mmp);
572 /* This data is invariant across clones and lives at
573 * the end of the header data, ie. at skb->end.
575 struct skb_shared_info {
580 unsigned short gso_size;
581 /* Warning: this field is not always filled in (UFO)! */
582 unsigned short gso_segs;
583 struct sk_buff *frag_list;
584 struct skb_shared_hwtstamps hwtstamps;
585 unsigned int gso_type;
589 * Warning : all fields before dataref are cleared in __alloc_skb()
592 unsigned int xdp_frags_size;
594 /* Intermediate layers must ensure that destructor_arg
595 * remains valid until skb destructor */
596 void * destructor_arg;
598 /* must be last field, see pskb_expand_head() */
599 skb_frag_t frags[MAX_SKB_FRAGS];
603 * DOC: dataref and headerless skbs
605 * Transport layers send out clones of payload skbs they hold for
606 * retransmissions. To allow lower layers of the stack to prepend their headers
607 * we split &skb_shared_info.dataref into two halves.
608 * The lower 16 bits count the overall number of references.
609 * The higher 16 bits indicate how many of the references are payload-only.
610 * skb_header_cloned() checks if skb is allowed to add / write the headers.
612 * The creator of the skb (e.g. TCP) marks its skb as &sk_buff.nohdr
613 * (via __skb_header_release()). Any clone created from marked skb will get
614 * &sk_buff.hdr_len populated with the available headroom.
615 * If there's the only clone in existence it's able to modify the headroom
616 * at will. The sequence of calls inside the transport layer is::
620 * __skb_header_release()
622 * // send the clone down the stack
624 * This is not a very generic construct and it depends on the transport layers
625 * doing the right thing. In practice there's usually only one payload-only skb.
626 * Having multiple payload-only skbs with different lengths of hdr_len is not
627 * possible. The payload-only skbs should never leave their owner.
629 #define SKB_DATAREF_SHIFT 16
630 #define SKB_DATAREF_MASK ((1 << SKB_DATAREF_SHIFT) - 1)
634 SKB_FCLONE_UNAVAILABLE, /* skb has no fclone (from head_cache) */
635 SKB_FCLONE_ORIG, /* orig skb (from fclone_cache) */
636 SKB_FCLONE_CLONE, /* companion fclone skb (from fclone_cache) */
640 SKB_GSO_TCPV4 = 1 << 0,
642 /* This indicates the skb is from an untrusted source. */
643 SKB_GSO_DODGY = 1 << 1,
645 /* This indicates the tcp segment has CWR set. */
646 SKB_GSO_TCP_ECN = 1 << 2,
648 SKB_GSO_TCP_FIXEDID = 1 << 3,
650 SKB_GSO_TCPV6 = 1 << 4,
652 SKB_GSO_FCOE = 1 << 5,
654 SKB_GSO_GRE = 1 << 6,
656 SKB_GSO_GRE_CSUM = 1 << 7,
658 SKB_GSO_IPXIP4 = 1 << 8,
660 SKB_GSO_IPXIP6 = 1 << 9,
662 SKB_GSO_UDP_TUNNEL = 1 << 10,
664 SKB_GSO_UDP_TUNNEL_CSUM = 1 << 11,
666 SKB_GSO_PARTIAL = 1 << 12,
668 SKB_GSO_TUNNEL_REMCSUM = 1 << 13,
670 SKB_GSO_SCTP = 1 << 14,
672 SKB_GSO_ESP = 1 << 15,
674 SKB_GSO_UDP = 1 << 16,
676 SKB_GSO_UDP_L4 = 1 << 17,
678 SKB_GSO_FRAGLIST = 1 << 18,
681 #if BITS_PER_LONG > 32
682 #define NET_SKBUFF_DATA_USES_OFFSET 1
685 #ifdef NET_SKBUFF_DATA_USES_OFFSET
686 typedef unsigned int sk_buff_data_t;
688 typedef unsigned char *sk_buff_data_t;
692 * DOC: Basic sk_buff geometry
694 * struct sk_buff itself is a metadata structure and does not hold any packet
695 * data. All the data is held in associated buffers.
697 * &sk_buff.head points to the main "head" buffer. The head buffer is divided
700 * - data buffer, containing headers and sometimes payload;
701 * this is the part of the skb operated on by the common helpers
702 * such as skb_put() or skb_pull();
703 * - shared info (struct skb_shared_info) which holds an array of pointers
704 * to read-only data in the (page, offset, length) format.
706 * Optionally &skb_shared_info.frag_list may point to another skb.
708 * Basic diagram may look like this::
713 * ,--------------------------- + head
714 * / ,----------------- + data
715 * / / ,----------- + tail
719 * -----------------------------------------------
720 * | headroom | data | tailroom | skb_shared_info |
721 * -----------------------------------------------
725 * + [page frag] ---------
726 * + frag_list --> | sk_buff |
732 * struct sk_buff - socket buffer
733 * @next: Next buffer in list
734 * @prev: Previous buffer in list
735 * @tstamp: Time we arrived/left
736 * @skb_mstamp_ns: (aka @tstamp) earliest departure time; start point
737 * for retransmit timer
738 * @rbnode: RB tree node, alternative to next/prev for netem/tcp
740 * @ll_node: anchor in an llist (eg socket defer_list)
741 * @sk: Socket we are owned by
742 * @ip_defrag_offset: (aka @sk) alternate use of @sk, used in
743 * fragmentation management
744 * @dev: Device we arrived on/are leaving by
745 * @dev_scratch: (aka @dev) alternate use of @dev when @dev would be %NULL
746 * @cb: Control buffer. Free for use by every layer. Put private vars here
747 * @_skb_refdst: destination entry (with norefcount bit)
748 * @sp: the security path, used for xfrm
749 * @len: Length of actual data
750 * @data_len: Data length
751 * @mac_len: Length of link layer header
752 * @hdr_len: writable header length of cloned skb
753 * @csum: Checksum (must include start/offset pair)
754 * @csum_start: Offset from skb->head where checksumming should start
755 * @csum_offset: Offset from csum_start where checksum should be stored
756 * @priority: Packet queueing priority
757 * @ignore_df: allow local fragmentation
758 * @cloned: Head may be cloned (check refcnt to be sure)
759 * @ip_summed: Driver fed us an IP checksum
760 * @nohdr: Payload reference only, must not modify header
761 * @pkt_type: Packet class
762 * @fclone: skbuff clone status
763 * @ipvs_property: skbuff is owned by ipvs
764 * @inner_protocol_type: whether the inner protocol is
765 * ENCAP_TYPE_ETHER or ENCAP_TYPE_IPPROTO
766 * @remcsum_offload: remote checksum offload is enabled
767 * @offload_fwd_mark: Packet was L2-forwarded in hardware
768 * @offload_l3_fwd_mark: Packet was L3-forwarded in hardware
769 * @tc_skip_classify: do not classify packet. set by IFB device
770 * @tc_at_ingress: used within tc_classify to distinguish in/egress
771 * @redirected: packet was redirected by packet classifier
772 * @from_ingress: packet was redirected from the ingress path
773 * @nf_skip_egress: packet shall skip nf egress - see netfilter_netdev.h
774 * @peeked: this packet has been seen already, so stats have been
775 * done for it, don't do them again
776 * @nf_trace: netfilter packet trace flag
777 * @protocol: Packet protocol from driver
778 * @destructor: Destruct function
779 * @tcp_tsorted_anchor: list structure for TCP (tp->tsorted_sent_queue)
780 * @_sk_redir: socket redirection information for skmsg
781 * @_nfct: Associated connection, if any (with nfctinfo bits)
782 * @nf_bridge: Saved data about a bridged frame - see br_netfilter.c
783 * @skb_iif: ifindex of device we arrived on
784 * @tc_index: Traffic control index
785 * @hash: the packet hash
786 * @queue_mapping: Queue mapping for multiqueue devices
787 * @head_frag: skb was allocated from page fragments,
788 * not allocated by kmalloc() or vmalloc().
789 * @pfmemalloc: skbuff was allocated from PFMEMALLOC reserves
790 * @pp_recycle: mark the packet for recycling instead of freeing (implies
791 * page_pool support on driver)
792 * @active_extensions: active extensions (skb_ext_id types)
793 * @ndisc_nodetype: router type (from link layer)
794 * @ooo_okay: allow the mapping of a socket to a queue to be changed
795 * @l4_hash: indicate hash is a canonical 4-tuple hash over transport
797 * @sw_hash: indicates hash was computed in software stack
798 * @wifi_acked_valid: wifi_acked was set
799 * @wifi_acked: whether frame was acked on wifi or not
800 * @no_fcs: Request NIC to treat last 4 bytes as Ethernet FCS
801 * @encapsulation: indicates the inner headers in the skbuff are valid
802 * @encap_hdr_csum: software checksum is needed
803 * @csum_valid: checksum is already valid
804 * @csum_not_inet: use CRC32c to resolve CHECKSUM_PARTIAL
805 * @csum_complete_sw: checksum was completed by software
806 * @csum_level: indicates the number of consecutive checksums found in
807 * the packet minus one that have been verified as
808 * CHECKSUM_UNNECESSARY (max 3)
809 * @dst_pending_confirm: need to confirm neighbour
810 * @decrypted: Decrypted SKB
811 * @slow_gro: state present at GRO time, slower prepare step required
812 * @mono_delivery_time: When set, skb->tstamp has the
813 * delivery_time in mono clock base (i.e. EDT). Otherwise, the
814 * skb->tstamp has the (rcv) timestamp at ingress and
815 * delivery_time at egress.
816 * @napi_id: id of the NAPI struct this skb came from
817 * @sender_cpu: (aka @napi_id) source CPU in XPS
818 * @alloc_cpu: CPU which did the skb allocation.
819 * @secmark: security marking
820 * @mark: Generic packet mark
821 * @reserved_tailroom: (aka @mark) number of bytes of free space available
822 * at the tail of an sk_buff
823 * @vlan_all: vlan fields (proto & tci)
824 * @vlan_proto: vlan encapsulation protocol
825 * @vlan_tci: vlan tag control information
826 * @inner_protocol: Protocol (encapsulation)
827 * @inner_ipproto: (aka @inner_protocol) stores ipproto when
828 * skb->inner_protocol_type == ENCAP_TYPE_IPPROTO;
829 * @inner_transport_header: Inner transport layer header (encapsulation)
830 * @inner_network_header: Network layer header (encapsulation)
831 * @inner_mac_header: Link layer header (encapsulation)
832 * @transport_header: Transport layer header
833 * @network_header: Network layer header
834 * @mac_header: Link layer header
835 * @kcov_handle: KCOV remote handle for remote coverage collection
836 * @tail: Tail pointer
838 * @head: Head of buffer
839 * @data: Data head pointer
840 * @truesize: Buffer size
841 * @users: User count - see {datagram,tcp}.c
842 * @extensions: allocated extensions, valid if active_extensions is nonzero
848 /* These two members must be first to match sk_buff_head. */
849 struct sk_buff *next;
850 struct sk_buff *prev;
853 struct net_device *dev;
854 /* Some protocols might use this space to store information,
855 * while device pointer would be NULL.
856 * UDP receive path is one user.
858 unsigned long dev_scratch;
861 struct rb_node rbnode; /* used in netem, ip4 defrag, and tcp stack */
862 struct list_head list;
863 struct llist_node ll_node;
868 int ip_defrag_offset;
873 u64 skb_mstamp_ns; /* earliest departure time */
876 * This is the control buffer. It is free to use for every
877 * layer. Please put your private variables there. If you
878 * want to keep them across layers you have to do a skb_clone()
879 * first. This is owned by whoever has the skb queued ATM.
881 char cb[48] __aligned(8);
885 unsigned long _skb_refdst;
886 void (*destructor)(struct sk_buff *skb);
888 struct list_head tcp_tsorted_anchor;
889 #ifdef CONFIG_NET_SOCK_MSG
890 unsigned long _sk_redir;
894 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
902 /* Following fields are _not_ copied in __copy_skb_header()
903 * Note that queue_mapping is here mostly to fill a hole.
907 /* if you move cloned around you also must adapt those constants */
908 #ifdef __BIG_ENDIAN_BITFIELD
909 #define CLONED_MASK (1 << 7)
911 #define CLONED_MASK 1
913 #define CLONED_OFFSET offsetof(struct sk_buff, __cloned_offset)
916 __u8 __cloned_offset[0];
924 pp_recycle:1; /* page_pool recycle indicator */
925 #ifdef CONFIG_SKB_EXTENSIONS
926 __u8 active_extensions;
929 /* Fields enclosed in headers group are copied
930 * using a single memcpy() in __copy_skb_header()
932 struct_group(headers,
935 __u8 __pkt_type_offset[0];
937 __u8 pkt_type:3; /* see PKT_TYPE_MAX */
939 __u8 dst_pending_confirm:1;
944 __u8 __mono_tc_offset[0];
946 __u8 mono_delivery_time:1; /* See SKB_MONO_DELIVERY_TIME_MASK */
947 #ifdef CONFIG_NET_CLS_ACT
948 __u8 tc_at_ingress:1; /* See TC_AT_INGRESS_MASK */
949 __u8 tc_skip_classify:1;
951 __u8 remcsum_offload:1;
952 __u8 csum_complete_sw:1;
954 __u8 inner_protocol_type:1;
958 #ifdef CONFIG_WIRELESS
959 __u8 wifi_acked_valid:1;
963 /* Indicates the inner headers are valid in the skbuff. */
964 __u8 encapsulation:1;
965 __u8 encap_hdr_csum:1;
967 #ifdef CONFIG_IPV6_NDISC_NODETYPE
968 __u8 ndisc_nodetype:2;
971 #if IS_ENABLED(CONFIG_IP_VS)
972 __u8 ipvs_property:1;
974 #if IS_ENABLED(CONFIG_NETFILTER_XT_TARGET_TRACE) || IS_ENABLED(CONFIG_NF_TABLES)
977 #ifdef CONFIG_NET_SWITCHDEV
978 __u8 offload_fwd_mark:1;
979 __u8 offload_l3_fwd_mark:1;
982 #ifdef CONFIG_NET_REDIRECT
985 #ifdef CONFIG_NETFILTER_SKIP_EGRESS
986 __u8 nf_skip_egress:1;
988 #ifdef CONFIG_TLS_DEVICE
992 #if IS_ENABLED(CONFIG_IP_SCTP)
993 __u8 csum_not_inet:1;
996 #ifdef CONFIG_NET_SCHED
997 __u16 tc_index; /* traffic control index */
1019 #if defined(CONFIG_NET_RX_BUSY_POLL) || defined(CONFIG_XPS)
1021 unsigned int napi_id;
1022 unsigned int sender_cpu;
1025 #ifdef CONFIG_NETWORK_SECMARK
1031 __u32 reserved_tailroom;
1035 __be16 inner_protocol;
1039 __u16 inner_transport_header;
1040 __u16 inner_network_header;
1041 __u16 inner_mac_header;
1044 __u16 transport_header;
1045 __u16 network_header;
1052 ); /* end headers group */
1054 /* These elements must be at the end, see alloc_skb() for details. */
1055 sk_buff_data_t tail;
1057 unsigned char *head,
1059 unsigned int truesize;
1062 #ifdef CONFIG_SKB_EXTENSIONS
1063 /* only useable after checking ->active_extensions != 0 */
1064 struct skb_ext *extensions;
1068 /* if you move pkt_type around you also must adapt those constants */
1069 #ifdef __BIG_ENDIAN_BITFIELD
1070 #define PKT_TYPE_MAX (7 << 5)
1072 #define PKT_TYPE_MAX 7
1074 #define PKT_TYPE_OFFSET offsetof(struct sk_buff, __pkt_type_offset)
1076 /* if you move tc_at_ingress or mono_delivery_time
1077 * around, you also must adapt these constants.
1079 #ifdef __BIG_ENDIAN_BITFIELD
1080 #define SKB_MONO_DELIVERY_TIME_MASK (1 << 7)
1081 #define TC_AT_INGRESS_MASK (1 << 6)
1083 #define SKB_MONO_DELIVERY_TIME_MASK (1 << 0)
1084 #define TC_AT_INGRESS_MASK (1 << 1)
1086 #define SKB_BF_MONO_TC_OFFSET offsetof(struct sk_buff, __mono_tc_offset)
1090 * Handling routines are only of interest to the kernel
1093 #define SKB_ALLOC_FCLONE 0x01
1094 #define SKB_ALLOC_RX 0x02
1095 #define SKB_ALLOC_NAPI 0x04
1098 * skb_pfmemalloc - Test if the skb was allocated from PFMEMALLOC reserves
1101 static inline bool skb_pfmemalloc(const struct sk_buff *skb)
1103 return unlikely(skb->pfmemalloc);
1107 * skb might have a dst pointer attached, refcounted or not.
1108 * _skb_refdst low order bit is set if refcount was _not_ taken
1110 #define SKB_DST_NOREF 1UL
1111 #define SKB_DST_PTRMASK ~(SKB_DST_NOREF)
1114 * skb_dst - returns skb dst_entry
1117 * Returns skb dst_entry, regardless of reference taken or not.
1119 static inline struct dst_entry *skb_dst(const struct sk_buff *skb)
1121 /* If refdst was not refcounted, check we still are in a
1122 * rcu_read_lock section
1124 WARN_ON((skb->_skb_refdst & SKB_DST_NOREF) &&
1125 !rcu_read_lock_held() &&
1126 !rcu_read_lock_bh_held());
1127 return (struct dst_entry *)(skb->_skb_refdst & SKB_DST_PTRMASK);
1131 * skb_dst_set - sets skb dst
1135 * Sets skb dst, assuming a reference was taken on dst and should
1136 * be released by skb_dst_drop()
1138 static inline void skb_dst_set(struct sk_buff *skb, struct dst_entry *dst)
1140 skb->slow_gro |= !!dst;
1141 skb->_skb_refdst = (unsigned long)dst;
1145 * skb_dst_set_noref - sets skb dst, hopefully, without taking reference
1149 * Sets skb dst, assuming a reference was not taken on dst.
1150 * If dst entry is cached, we do not take reference and dst_release
1151 * will be avoided by refdst_drop. If dst entry is not cached, we take
1152 * reference, so that last dst_release can destroy the dst immediately.
1154 static inline void skb_dst_set_noref(struct sk_buff *skb, struct dst_entry *dst)
1156 WARN_ON(!rcu_read_lock_held() && !rcu_read_lock_bh_held());
1157 skb->slow_gro |= !!dst;
1158 skb->_skb_refdst = (unsigned long)dst | SKB_DST_NOREF;
1162 * skb_dst_is_noref - Test if skb dst isn't refcounted
1165 static inline bool skb_dst_is_noref(const struct sk_buff *skb)
1167 return (skb->_skb_refdst & SKB_DST_NOREF) && skb_dst(skb);
1171 * skb_rtable - Returns the skb &rtable
1174 static inline struct rtable *skb_rtable(const struct sk_buff *skb)
1176 return (struct rtable *)skb_dst(skb);
1179 /* For mangling skb->pkt_type from user space side from applications
1180 * such as nft, tc, etc, we only allow a conservative subset of
1181 * possible pkt_types to be set.
1183 static inline bool skb_pkt_type_ok(u32 ptype)
1185 return ptype <= PACKET_OTHERHOST;
1189 * skb_napi_id - Returns the skb's NAPI id
1192 static inline unsigned int skb_napi_id(const struct sk_buff *skb)
1194 #ifdef CONFIG_NET_RX_BUSY_POLL
1195 return skb->napi_id;
1201 static inline bool skb_wifi_acked_valid(const struct sk_buff *skb)
1203 #ifdef CONFIG_WIRELESS
1204 return skb->wifi_acked_valid;
1211 * skb_unref - decrement the skb's reference count
1214 * Returns true if we can free the skb.
1216 static inline bool skb_unref(struct sk_buff *skb)
1220 if (likely(refcount_read(&skb->users) == 1))
1222 else if (likely(!refcount_dec_and_test(&skb->users)))
1229 kfree_skb_reason(struct sk_buff *skb, enum skb_drop_reason reason);
1232 * kfree_skb - free an sk_buff with 'NOT_SPECIFIED' reason
1233 * @skb: buffer to free
1235 static inline void kfree_skb(struct sk_buff *skb)
1237 kfree_skb_reason(skb, SKB_DROP_REASON_NOT_SPECIFIED);
1240 void skb_release_head_state(struct sk_buff *skb);
1241 void kfree_skb_list_reason(struct sk_buff *segs,
1242 enum skb_drop_reason reason);
1243 void skb_dump(const char *level, const struct sk_buff *skb, bool full_pkt);
1244 void skb_tx_error(struct sk_buff *skb);
1246 static inline void kfree_skb_list(struct sk_buff *segs)
1248 kfree_skb_list_reason(segs, SKB_DROP_REASON_NOT_SPECIFIED);
1251 #ifdef CONFIG_TRACEPOINTS
1252 void consume_skb(struct sk_buff *skb);
1254 static inline void consume_skb(struct sk_buff *skb)
1256 return kfree_skb(skb);
1260 void __consume_stateless_skb(struct sk_buff *skb);
1261 void __kfree_skb(struct sk_buff *skb);
1262 extern struct kmem_cache *skbuff_cache;
1264 void kfree_skb_partial(struct sk_buff *skb, bool head_stolen);
1265 bool skb_try_coalesce(struct sk_buff *to, struct sk_buff *from,
1266 bool *fragstolen, int *delta_truesize);
1268 struct sk_buff *__alloc_skb(unsigned int size, gfp_t priority, int flags,
1270 struct sk_buff *__build_skb(void *data, unsigned int frag_size);
1271 struct sk_buff *build_skb(void *data, unsigned int frag_size);
1272 struct sk_buff *build_skb_around(struct sk_buff *skb,
1273 void *data, unsigned int frag_size);
1274 void skb_attempt_defer_free(struct sk_buff *skb);
1276 struct sk_buff *napi_build_skb(void *data, unsigned int frag_size);
1277 struct sk_buff *slab_build_skb(void *data);
1280 * alloc_skb - allocate a network buffer
1281 * @size: size to allocate
1282 * @priority: allocation mask
1284 * This function is a convenient wrapper around __alloc_skb().
1286 static inline struct sk_buff *alloc_skb(unsigned int size,
1289 return __alloc_skb(size, priority, 0, NUMA_NO_NODE);
1292 struct sk_buff *alloc_skb_with_frags(unsigned long header_len,
1293 unsigned long data_len,
1297 struct sk_buff *alloc_skb_for_msg(struct sk_buff *first);
1299 /* Layout of fast clones : [skb1][skb2][fclone_ref] */
1300 struct sk_buff_fclones {
1301 struct sk_buff skb1;
1303 struct sk_buff skb2;
1305 refcount_t fclone_ref;
1309 * skb_fclone_busy - check if fclone is busy
1313 * Returns true if skb is a fast clone, and its clone is not freed.
1314 * Some drivers call skb_orphan() in their ndo_start_xmit(),
1315 * so we also check that this didnt happen.
1317 static inline bool skb_fclone_busy(const struct sock *sk,
1318 const struct sk_buff *skb)
1320 const struct sk_buff_fclones *fclones;
1322 fclones = container_of(skb, struct sk_buff_fclones, skb1);
1324 return skb->fclone == SKB_FCLONE_ORIG &&
1325 refcount_read(&fclones->fclone_ref) > 1 &&
1326 READ_ONCE(fclones->skb2.sk) == sk;
1330 * alloc_skb_fclone - allocate a network buffer from fclone cache
1331 * @size: size to allocate
1332 * @priority: allocation mask
1334 * This function is a convenient wrapper around __alloc_skb().
1336 static inline struct sk_buff *alloc_skb_fclone(unsigned int size,
1339 return __alloc_skb(size, priority, SKB_ALLOC_FCLONE, NUMA_NO_NODE);
1342 struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src);
1343 void skb_headers_offset_update(struct sk_buff *skb, int off);
1344 int skb_copy_ubufs(struct sk_buff *skb, gfp_t gfp_mask);
1345 struct sk_buff *skb_clone(struct sk_buff *skb, gfp_t priority);
1346 void skb_copy_header(struct sk_buff *new, const struct sk_buff *old);
1347 struct sk_buff *skb_copy(const struct sk_buff *skb, gfp_t priority);
1348 struct sk_buff *__pskb_copy_fclone(struct sk_buff *skb, int headroom,
1349 gfp_t gfp_mask, bool fclone);
1350 static inline struct sk_buff *__pskb_copy(struct sk_buff *skb, int headroom,
1353 return __pskb_copy_fclone(skb, headroom, gfp_mask, false);
1356 int pskb_expand_head(struct sk_buff *skb, int nhead, int ntail, gfp_t gfp_mask);
1357 struct sk_buff *skb_realloc_headroom(struct sk_buff *skb,
1358 unsigned int headroom);
1359 struct sk_buff *skb_expand_head(struct sk_buff *skb, unsigned int headroom);
1360 struct sk_buff *skb_copy_expand(const struct sk_buff *skb, int newheadroom,
1361 int newtailroom, gfp_t priority);
1362 int __must_check skb_to_sgvec_nomark(struct sk_buff *skb, struct scatterlist *sg,
1363 int offset, int len);
1364 int __must_check skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg,
1365 int offset, int len);
1366 int skb_cow_data(struct sk_buff *skb, int tailbits, struct sk_buff **trailer);
1367 int __skb_pad(struct sk_buff *skb, int pad, bool free_on_error);
1370 * skb_pad - zero pad the tail of an skb
1371 * @skb: buffer to pad
1372 * @pad: space to pad
1374 * Ensure that a buffer is followed by a padding area that is zero
1375 * filled. Used by network drivers which may DMA or transfer data
1376 * beyond the buffer end onto the wire.
1378 * May return error in out of memory cases. The skb is freed on error.
1380 static inline int skb_pad(struct sk_buff *skb, int pad)
1382 return __skb_pad(skb, pad, true);
1384 #define dev_kfree_skb(a) consume_skb(a)
1386 int skb_append_pagefrags(struct sk_buff *skb, struct page *page,
1387 int offset, size_t size, size_t max_frags);
1389 struct skb_seq_state {
1393 __u32 stepped_offset;
1394 struct sk_buff *root_skb;
1395 struct sk_buff *cur_skb;
1400 void skb_prepare_seq_read(struct sk_buff *skb, unsigned int from,
1401 unsigned int to, struct skb_seq_state *st);
1402 unsigned int skb_seq_read(unsigned int consumed, const u8 **data,
1403 struct skb_seq_state *st);
1404 void skb_abort_seq_read(struct skb_seq_state *st);
1406 unsigned int skb_find_text(struct sk_buff *skb, unsigned int from,
1407 unsigned int to, struct ts_config *config);
1410 * Packet hash types specify the type of hash in skb_set_hash.
1412 * Hash types refer to the protocol layer addresses which are used to
1413 * construct a packet's hash. The hashes are used to differentiate or identify
1414 * flows of the protocol layer for the hash type. Hash types are either
1415 * layer-2 (L2), layer-3 (L3), or layer-4 (L4).
1417 * Properties of hashes:
1419 * 1) Two packets in different flows have different hash values
1420 * 2) Two packets in the same flow should have the same hash value
1422 * A hash at a higher layer is considered to be more specific. A driver should
1423 * set the most specific hash possible.
1425 * A driver cannot indicate a more specific hash than the layer at which a hash
1426 * was computed. For instance an L3 hash cannot be set as an L4 hash.
1428 * A driver may indicate a hash level which is less specific than the
1429 * actual layer the hash was computed on. For instance, a hash computed
1430 * at L4 may be considered an L3 hash. This should only be done if the
1431 * driver can't unambiguously determine that the HW computed the hash at
1432 * the higher layer. Note that the "should" in the second property above
1435 enum pkt_hash_types {
1436 PKT_HASH_TYPE_NONE, /* Undefined type */
1437 PKT_HASH_TYPE_L2, /* Input: src_MAC, dest_MAC */
1438 PKT_HASH_TYPE_L3, /* Input: src_IP, dst_IP */
1439 PKT_HASH_TYPE_L4, /* Input: src_IP, dst_IP, src_port, dst_port */
1442 static inline void skb_clear_hash(struct sk_buff *skb)
1449 static inline void skb_clear_hash_if_not_l4(struct sk_buff *skb)
1452 skb_clear_hash(skb);
1456 __skb_set_hash(struct sk_buff *skb, __u32 hash, bool is_sw, bool is_l4)
1458 skb->l4_hash = is_l4;
1459 skb->sw_hash = is_sw;
1464 skb_set_hash(struct sk_buff *skb, __u32 hash, enum pkt_hash_types type)
1466 /* Used by drivers to set hash from HW */
1467 __skb_set_hash(skb, hash, false, type == PKT_HASH_TYPE_L4);
1471 __skb_set_sw_hash(struct sk_buff *skb, __u32 hash, bool is_l4)
1473 __skb_set_hash(skb, hash, true, is_l4);
1476 void __skb_get_hash(struct sk_buff *skb);
1477 u32 __skb_get_hash_symmetric(const struct sk_buff *skb);
1478 u32 skb_get_poff(const struct sk_buff *skb);
1479 u32 __skb_get_poff(const struct sk_buff *skb, const void *data,
1480 const struct flow_keys_basic *keys, int hlen);
1481 __be32 __skb_flow_get_ports(const struct sk_buff *skb, int thoff, u8 ip_proto,
1482 const void *data, int hlen_proto);
1484 static inline __be32 skb_flow_get_ports(const struct sk_buff *skb,
1485 int thoff, u8 ip_proto)
1487 return __skb_flow_get_ports(skb, thoff, ip_proto, NULL, 0);
1490 void skb_flow_dissector_init(struct flow_dissector *flow_dissector,
1491 const struct flow_dissector_key *key,
1492 unsigned int key_count);
1494 struct bpf_flow_dissector;
1495 u32 bpf_flow_dissect(struct bpf_prog *prog, struct bpf_flow_dissector *ctx,
1496 __be16 proto, int nhoff, int hlen, unsigned int flags);
1498 bool __skb_flow_dissect(const struct net *net,
1499 const struct sk_buff *skb,
1500 struct flow_dissector *flow_dissector,
1501 void *target_container, const void *data,
1502 __be16 proto, int nhoff, int hlen, unsigned int flags);
1504 static inline bool skb_flow_dissect(const struct sk_buff *skb,
1505 struct flow_dissector *flow_dissector,
1506 void *target_container, unsigned int flags)
1508 return __skb_flow_dissect(NULL, skb, flow_dissector,
1509 target_container, NULL, 0, 0, 0, flags);
1512 static inline bool skb_flow_dissect_flow_keys(const struct sk_buff *skb,
1513 struct flow_keys *flow,
1516 memset(flow, 0, sizeof(*flow));
1517 return __skb_flow_dissect(NULL, skb, &flow_keys_dissector,
1518 flow, NULL, 0, 0, 0, flags);
1522 skb_flow_dissect_flow_keys_basic(const struct net *net,
1523 const struct sk_buff *skb,
1524 struct flow_keys_basic *flow,
1525 const void *data, __be16 proto,
1526 int nhoff, int hlen, unsigned int flags)
1528 memset(flow, 0, sizeof(*flow));
1529 return __skb_flow_dissect(net, skb, &flow_keys_basic_dissector, flow,
1530 data, proto, nhoff, hlen, flags);
1533 void skb_flow_dissect_meta(const struct sk_buff *skb,
1534 struct flow_dissector *flow_dissector,
1535 void *target_container);
1537 /* Gets a skb connection tracking info, ctinfo map should be a
1538 * map of mapsize to translate enum ip_conntrack_info states
1542 skb_flow_dissect_ct(const struct sk_buff *skb,
1543 struct flow_dissector *flow_dissector,
1544 void *target_container,
1545 u16 *ctinfo_map, size_t mapsize,
1546 bool post_ct, u16 zone);
1548 skb_flow_dissect_tunnel_info(const struct sk_buff *skb,
1549 struct flow_dissector *flow_dissector,
1550 void *target_container);
1552 void skb_flow_dissect_hash(const struct sk_buff *skb,
1553 struct flow_dissector *flow_dissector,
1554 void *target_container);
1556 static inline __u32 skb_get_hash(struct sk_buff *skb)
1558 if (!skb->l4_hash && !skb->sw_hash)
1559 __skb_get_hash(skb);
1564 static inline __u32 skb_get_hash_flowi6(struct sk_buff *skb, const struct flowi6 *fl6)
1566 if (!skb->l4_hash && !skb->sw_hash) {
1567 struct flow_keys keys;
1568 __u32 hash = __get_hash_from_flowi6(fl6, &keys);
1570 __skb_set_sw_hash(skb, hash, flow_keys_have_l4(&keys));
1576 __u32 skb_get_hash_perturb(const struct sk_buff *skb,
1577 const siphash_key_t *perturb);
1579 static inline __u32 skb_get_hash_raw(const struct sk_buff *skb)
1584 static inline void skb_copy_hash(struct sk_buff *to, const struct sk_buff *from)
1586 to->hash = from->hash;
1587 to->sw_hash = from->sw_hash;
1588 to->l4_hash = from->l4_hash;
1591 static inline int skb_cmp_decrypted(const struct sk_buff *skb1,
1592 const struct sk_buff *skb2)
1594 #ifdef CONFIG_TLS_DEVICE
1595 return skb2->decrypted - skb1->decrypted;
1601 static inline void skb_copy_decrypted(struct sk_buff *to,
1602 const struct sk_buff *from)
1604 #ifdef CONFIG_TLS_DEVICE
1605 to->decrypted = from->decrypted;
1609 #ifdef NET_SKBUFF_DATA_USES_OFFSET
1610 static inline unsigned char *skb_end_pointer(const struct sk_buff *skb)
1612 return skb->head + skb->end;
1615 static inline unsigned int skb_end_offset(const struct sk_buff *skb)
1620 static inline void skb_set_end_offset(struct sk_buff *skb, unsigned int offset)
1625 static inline unsigned char *skb_end_pointer(const struct sk_buff *skb)
1630 static inline unsigned int skb_end_offset(const struct sk_buff *skb)
1632 return skb->end - skb->head;
1635 static inline void skb_set_end_offset(struct sk_buff *skb, unsigned int offset)
1637 skb->end = skb->head + offset;
1641 struct ubuf_info *msg_zerocopy_realloc(struct sock *sk, size_t size,
1642 struct ubuf_info *uarg);
1644 void msg_zerocopy_put_abort(struct ubuf_info *uarg, bool have_uref);
1646 void msg_zerocopy_callback(struct sk_buff *skb, struct ubuf_info *uarg,
1649 int __zerocopy_sg_from_iter(struct msghdr *msg, struct sock *sk,
1650 struct sk_buff *skb, struct iov_iter *from,
1653 static inline int skb_zerocopy_iter_dgram(struct sk_buff *skb,
1654 struct msghdr *msg, int len)
1656 return __zerocopy_sg_from_iter(msg, skb->sk, skb, &msg->msg_iter, len);
1659 int skb_zerocopy_iter_stream(struct sock *sk, struct sk_buff *skb,
1660 struct msghdr *msg, int len,
1661 struct ubuf_info *uarg);
1664 #define skb_shinfo(SKB) ((struct skb_shared_info *)(skb_end_pointer(SKB)))
1666 static inline struct skb_shared_hwtstamps *skb_hwtstamps(struct sk_buff *skb)
1668 return &skb_shinfo(skb)->hwtstamps;
1671 static inline struct ubuf_info *skb_zcopy(struct sk_buff *skb)
1673 bool is_zcopy = skb && skb_shinfo(skb)->flags & SKBFL_ZEROCOPY_ENABLE;
1675 return is_zcopy ? skb_uarg(skb) : NULL;
1678 static inline bool skb_zcopy_pure(const struct sk_buff *skb)
1680 return skb_shinfo(skb)->flags & SKBFL_PURE_ZEROCOPY;
1683 static inline bool skb_zcopy_managed(const struct sk_buff *skb)
1685 return skb_shinfo(skb)->flags & SKBFL_MANAGED_FRAG_REFS;
1688 static inline bool skb_pure_zcopy_same(const struct sk_buff *skb1,
1689 const struct sk_buff *skb2)
1691 return skb_zcopy_pure(skb1) == skb_zcopy_pure(skb2);
1694 static inline void net_zcopy_get(struct ubuf_info *uarg)
1696 refcount_inc(&uarg->refcnt);
1699 static inline void skb_zcopy_init(struct sk_buff *skb, struct ubuf_info *uarg)
1701 skb_shinfo(skb)->destructor_arg = uarg;
1702 skb_shinfo(skb)->flags |= uarg->flags;
1705 static inline void skb_zcopy_set(struct sk_buff *skb, struct ubuf_info *uarg,
1708 if (skb && uarg && !skb_zcopy(skb)) {
1709 if (unlikely(have_ref && *have_ref))
1712 net_zcopy_get(uarg);
1713 skb_zcopy_init(skb, uarg);
1717 static inline void skb_zcopy_set_nouarg(struct sk_buff *skb, void *val)
1719 skb_shinfo(skb)->destructor_arg = (void *)((uintptr_t) val | 0x1UL);
1720 skb_shinfo(skb)->flags |= SKBFL_ZEROCOPY_FRAG;
1723 static inline bool skb_zcopy_is_nouarg(struct sk_buff *skb)
1725 return (uintptr_t) skb_shinfo(skb)->destructor_arg & 0x1UL;
1728 static inline void *skb_zcopy_get_nouarg(struct sk_buff *skb)
1730 return (void *)((uintptr_t) skb_shinfo(skb)->destructor_arg & ~0x1UL);
1733 static inline void net_zcopy_put(struct ubuf_info *uarg)
1736 uarg->callback(NULL, uarg, true);
1739 static inline void net_zcopy_put_abort(struct ubuf_info *uarg, bool have_uref)
1742 if (uarg->callback == msg_zerocopy_callback)
1743 msg_zerocopy_put_abort(uarg, have_uref);
1745 net_zcopy_put(uarg);
1749 /* Release a reference on a zerocopy structure */
1750 static inline void skb_zcopy_clear(struct sk_buff *skb, bool zerocopy_success)
1752 struct ubuf_info *uarg = skb_zcopy(skb);
1755 if (!skb_zcopy_is_nouarg(skb))
1756 uarg->callback(skb, uarg, zerocopy_success);
1758 skb_shinfo(skb)->flags &= ~SKBFL_ALL_ZEROCOPY;
1762 void __skb_zcopy_downgrade_managed(struct sk_buff *skb);
1764 static inline void skb_zcopy_downgrade_managed(struct sk_buff *skb)
1766 if (unlikely(skb_zcopy_managed(skb)))
1767 __skb_zcopy_downgrade_managed(skb);
1770 static inline void skb_mark_not_on_list(struct sk_buff *skb)
1775 static inline void skb_poison_list(struct sk_buff *skb)
1777 #ifdef CONFIG_DEBUG_NET
1778 skb->next = SKB_LIST_POISON_NEXT;
1782 /* Iterate through singly-linked GSO fragments of an skb. */
1783 #define skb_list_walk_safe(first, skb, next_skb) \
1784 for ((skb) = (first), (next_skb) = (skb) ? (skb)->next : NULL; (skb); \
1785 (skb) = (next_skb), (next_skb) = (skb) ? (skb)->next : NULL)
1787 static inline void skb_list_del_init(struct sk_buff *skb)
1789 __list_del_entry(&skb->list);
1790 skb_mark_not_on_list(skb);
1794 * skb_queue_empty - check if a queue is empty
1797 * Returns true if the queue is empty, false otherwise.
1799 static inline int skb_queue_empty(const struct sk_buff_head *list)
1801 return list->next == (const struct sk_buff *) list;
1805 * skb_queue_empty_lockless - check if a queue is empty
1808 * Returns true if the queue is empty, false otherwise.
1809 * This variant can be used in lockless contexts.
1811 static inline bool skb_queue_empty_lockless(const struct sk_buff_head *list)
1813 return READ_ONCE(list->next) == (const struct sk_buff *) list;
1818 * skb_queue_is_last - check if skb is the last entry in the queue
1822 * Returns true if @skb is the last buffer on the list.
1824 static inline bool skb_queue_is_last(const struct sk_buff_head *list,
1825 const struct sk_buff *skb)
1827 return skb->next == (const struct sk_buff *) list;
1831 * skb_queue_is_first - check if skb is the first entry in the queue
1835 * Returns true if @skb is the first buffer on the list.
1837 static inline bool skb_queue_is_first(const struct sk_buff_head *list,
1838 const struct sk_buff *skb)
1840 return skb->prev == (const struct sk_buff *) list;
1844 * skb_queue_next - return the next packet in the queue
1846 * @skb: current buffer
1848 * Return the next packet in @list after @skb. It is only valid to
1849 * call this if skb_queue_is_last() evaluates to false.
1851 static inline struct sk_buff *skb_queue_next(const struct sk_buff_head *list,
1852 const struct sk_buff *skb)
1854 /* This BUG_ON may seem severe, but if we just return then we
1855 * are going to dereference garbage.
1857 BUG_ON(skb_queue_is_last(list, skb));
1862 * skb_queue_prev - return the prev packet in the queue
1864 * @skb: current buffer
1866 * Return the prev packet in @list before @skb. It is only valid to
1867 * call this if skb_queue_is_first() evaluates to false.
1869 static inline struct sk_buff *skb_queue_prev(const struct sk_buff_head *list,
1870 const struct sk_buff *skb)
1872 /* This BUG_ON may seem severe, but if we just return then we
1873 * are going to dereference garbage.
1875 BUG_ON(skb_queue_is_first(list, skb));
1880 * skb_get - reference buffer
1881 * @skb: buffer to reference
1883 * Makes another reference to a socket buffer and returns a pointer
1886 static inline struct sk_buff *skb_get(struct sk_buff *skb)
1888 refcount_inc(&skb->users);
1893 * If users == 1, we are the only owner and can avoid redundant atomic changes.
1897 * skb_cloned - is the buffer a clone
1898 * @skb: buffer to check
1900 * Returns true if the buffer was generated with skb_clone() and is
1901 * one of multiple shared copies of the buffer. Cloned buffers are
1902 * shared data so must not be written to under normal circumstances.
1904 static inline int skb_cloned(const struct sk_buff *skb)
1906 return skb->cloned &&
1907 (atomic_read(&skb_shinfo(skb)->dataref) & SKB_DATAREF_MASK) != 1;
1910 static inline int skb_unclone(struct sk_buff *skb, gfp_t pri)
1912 might_sleep_if(gfpflags_allow_blocking(pri));
1914 if (skb_cloned(skb))
1915 return pskb_expand_head(skb, 0, 0, pri);
1920 /* This variant of skb_unclone() makes sure skb->truesize
1921 * and skb_end_offset() are not changed, whenever a new skb->head is needed.
1923 * Indeed there is no guarantee that ksize(kmalloc(X)) == ksize(kmalloc(X))
1924 * when various debugging features are in place.
1926 int __skb_unclone_keeptruesize(struct sk_buff *skb, gfp_t pri);
1927 static inline int skb_unclone_keeptruesize(struct sk_buff *skb, gfp_t pri)
1929 might_sleep_if(gfpflags_allow_blocking(pri));
1931 if (skb_cloned(skb))
1932 return __skb_unclone_keeptruesize(skb, pri);
1937 * skb_header_cloned - is the header a clone
1938 * @skb: buffer to check
1940 * Returns true if modifying the header part of the buffer requires
1941 * the data to be copied.
1943 static inline int skb_header_cloned(const struct sk_buff *skb)
1950 dataref = atomic_read(&skb_shinfo(skb)->dataref);
1951 dataref = (dataref & SKB_DATAREF_MASK) - (dataref >> SKB_DATAREF_SHIFT);
1952 return dataref != 1;
1955 static inline int skb_header_unclone(struct sk_buff *skb, gfp_t pri)
1957 might_sleep_if(gfpflags_allow_blocking(pri));
1959 if (skb_header_cloned(skb))
1960 return pskb_expand_head(skb, 0, 0, pri);
1966 * __skb_header_release() - allow clones to use the headroom
1967 * @skb: buffer to operate on
1969 * See "DOC: dataref and headerless skbs".
1971 static inline void __skb_header_release(struct sk_buff *skb)
1974 atomic_set(&skb_shinfo(skb)->dataref, 1 + (1 << SKB_DATAREF_SHIFT));
1979 * skb_shared - is the buffer shared
1980 * @skb: buffer to check
1982 * Returns true if more than one person has a reference to this
1985 static inline int skb_shared(const struct sk_buff *skb)
1987 return refcount_read(&skb->users) != 1;
1991 * skb_share_check - check if buffer is shared and if so clone it
1992 * @skb: buffer to check
1993 * @pri: priority for memory allocation
1995 * If the buffer is shared the buffer is cloned and the old copy
1996 * drops a reference. A new clone with a single reference is returned.
1997 * If the buffer is not shared the original buffer is returned. When
1998 * being called from interrupt status or with spinlocks held pri must
2001 * NULL is returned on a memory allocation failure.
2003 static inline struct sk_buff *skb_share_check(struct sk_buff *skb, gfp_t pri)
2005 might_sleep_if(gfpflags_allow_blocking(pri));
2006 if (skb_shared(skb)) {
2007 struct sk_buff *nskb = skb_clone(skb, pri);
2019 * Copy shared buffers into a new sk_buff. We effectively do COW on
2020 * packets to handle cases where we have a local reader and forward
2021 * and a couple of other messy ones. The normal one is tcpdumping
2022 * a packet thats being forwarded.
2026 * skb_unshare - make a copy of a shared buffer
2027 * @skb: buffer to check
2028 * @pri: priority for memory allocation
2030 * If the socket buffer is a clone then this function creates a new
2031 * copy of the data, drops a reference count on the old copy and returns
2032 * the new copy with the reference count at 1. If the buffer is not a clone
2033 * the original buffer is returned. When called with a spinlock held or
2034 * from interrupt state @pri must be %GFP_ATOMIC
2036 * %NULL is returned on a memory allocation failure.
2038 static inline struct sk_buff *skb_unshare(struct sk_buff *skb,
2041 might_sleep_if(gfpflags_allow_blocking(pri));
2042 if (skb_cloned(skb)) {
2043 struct sk_buff *nskb = skb_copy(skb, pri);
2045 /* Free our shared copy */
2056 * skb_peek - peek at the head of an &sk_buff_head
2057 * @list_: list to peek at
2059 * Peek an &sk_buff. Unlike most other operations you _MUST_
2060 * be careful with this one. A peek leaves the buffer on the
2061 * list and someone else may run off with it. You must hold
2062 * the appropriate locks or have a private queue to do this.
2064 * Returns %NULL for an empty list or a pointer to the head element.
2065 * The reference count is not incremented and the reference is therefore
2066 * volatile. Use with caution.
2068 static inline struct sk_buff *skb_peek(const struct sk_buff_head *list_)
2070 struct sk_buff *skb = list_->next;
2072 if (skb == (struct sk_buff *)list_)
2078 * __skb_peek - peek at the head of a non-empty &sk_buff_head
2079 * @list_: list to peek at
2081 * Like skb_peek(), but the caller knows that the list is not empty.
2083 static inline struct sk_buff *__skb_peek(const struct sk_buff_head *list_)
2089 * skb_peek_next - peek skb following the given one from a queue
2090 * @skb: skb to start from
2091 * @list_: list to peek at
2093 * Returns %NULL when the end of the list is met or a pointer to the
2094 * next element. The reference count is not incremented and the
2095 * reference is therefore volatile. Use with caution.
2097 static inline struct sk_buff *skb_peek_next(struct sk_buff *skb,
2098 const struct sk_buff_head *list_)
2100 struct sk_buff *next = skb->next;
2102 if (next == (struct sk_buff *)list_)
2108 * skb_peek_tail - peek at the tail of an &sk_buff_head
2109 * @list_: list to peek at
2111 * Peek an &sk_buff. Unlike most other operations you _MUST_
2112 * be careful with this one. A peek leaves the buffer on the
2113 * list and someone else may run off with it. You must hold
2114 * the appropriate locks or have a private queue to do this.
2116 * Returns %NULL for an empty list or a pointer to the tail element.
2117 * The reference count is not incremented and the reference is therefore
2118 * volatile. Use with caution.
2120 static inline struct sk_buff *skb_peek_tail(const struct sk_buff_head *list_)
2122 struct sk_buff *skb = READ_ONCE(list_->prev);
2124 if (skb == (struct sk_buff *)list_)
2131 * skb_queue_len - get queue length
2132 * @list_: list to measure
2134 * Return the length of an &sk_buff queue.
2136 static inline __u32 skb_queue_len(const struct sk_buff_head *list_)
2142 * skb_queue_len_lockless - get queue length
2143 * @list_: list to measure
2145 * Return the length of an &sk_buff queue.
2146 * This variant can be used in lockless contexts.
2148 static inline __u32 skb_queue_len_lockless(const struct sk_buff_head *list_)
2150 return READ_ONCE(list_->qlen);
2154 * __skb_queue_head_init - initialize non-spinlock portions of sk_buff_head
2155 * @list: queue to initialize
2157 * This initializes only the list and queue length aspects of
2158 * an sk_buff_head object. This allows to initialize the list
2159 * aspects of an sk_buff_head without reinitializing things like
2160 * the spinlock. It can also be used for on-stack sk_buff_head
2161 * objects where the spinlock is known to not be used.
2163 static inline void __skb_queue_head_init(struct sk_buff_head *list)
2165 list->prev = list->next = (struct sk_buff *)list;
2170 * This function creates a split out lock class for each invocation;
2171 * this is needed for now since a whole lot of users of the skb-queue
2172 * infrastructure in drivers have different locking usage (in hardirq)
2173 * than the networking core (in softirq only). In the long run either the
2174 * network layer or drivers should need annotation to consolidate the
2175 * main types of usage into 3 classes.
2177 static inline void skb_queue_head_init(struct sk_buff_head *list)
2179 spin_lock_init(&list->lock);
2180 __skb_queue_head_init(list);
2183 static inline void skb_queue_head_init_class(struct sk_buff_head *list,
2184 struct lock_class_key *class)
2186 skb_queue_head_init(list);
2187 lockdep_set_class(&list->lock, class);
2191 * Insert an sk_buff on a list.
2193 * The "__skb_xxxx()" functions are the non-atomic ones that
2194 * can only be called with interrupts disabled.
2196 static inline void __skb_insert(struct sk_buff *newsk,
2197 struct sk_buff *prev, struct sk_buff *next,
2198 struct sk_buff_head *list)
2200 /* See skb_queue_empty_lockless() and skb_peek_tail()
2201 * for the opposite READ_ONCE()
2203 WRITE_ONCE(newsk->next, next);
2204 WRITE_ONCE(newsk->prev, prev);
2205 WRITE_ONCE(((struct sk_buff_list *)next)->prev, newsk);
2206 WRITE_ONCE(((struct sk_buff_list *)prev)->next, newsk);
2207 WRITE_ONCE(list->qlen, list->qlen + 1);
2210 static inline void __skb_queue_splice(const struct sk_buff_head *list,
2211 struct sk_buff *prev,
2212 struct sk_buff *next)
2214 struct sk_buff *first = list->next;
2215 struct sk_buff *last = list->prev;
2217 WRITE_ONCE(first->prev, prev);
2218 WRITE_ONCE(prev->next, first);
2220 WRITE_ONCE(last->next, next);
2221 WRITE_ONCE(next->prev, last);
2225 * skb_queue_splice - join two skb lists, this is designed for stacks
2226 * @list: the new list to add
2227 * @head: the place to add it in the first list
2229 static inline void skb_queue_splice(const struct sk_buff_head *list,
2230 struct sk_buff_head *head)
2232 if (!skb_queue_empty(list)) {
2233 __skb_queue_splice(list, (struct sk_buff *) head, head->next);
2234 head->qlen += list->qlen;
2239 * skb_queue_splice_init - join two skb lists and reinitialise the emptied list
2240 * @list: the new list to add
2241 * @head: the place to add it in the first list
2243 * The list at @list is reinitialised
2245 static inline void skb_queue_splice_init(struct sk_buff_head *list,
2246 struct sk_buff_head *head)
2248 if (!skb_queue_empty(list)) {
2249 __skb_queue_splice(list, (struct sk_buff *) head, head->next);
2250 head->qlen += list->qlen;
2251 __skb_queue_head_init(list);
2256 * skb_queue_splice_tail - join two skb lists, each list being a queue
2257 * @list: the new list to add
2258 * @head: the place to add it in the first list
2260 static inline void skb_queue_splice_tail(const struct sk_buff_head *list,
2261 struct sk_buff_head *head)
2263 if (!skb_queue_empty(list)) {
2264 __skb_queue_splice(list, head->prev, (struct sk_buff *) head);
2265 head->qlen += list->qlen;
2270 * skb_queue_splice_tail_init - join two skb lists and reinitialise the emptied list
2271 * @list: the new list to add
2272 * @head: the place to add it in the first list
2274 * Each of the lists is a queue.
2275 * The list at @list is reinitialised
2277 static inline void skb_queue_splice_tail_init(struct sk_buff_head *list,
2278 struct sk_buff_head *head)
2280 if (!skb_queue_empty(list)) {
2281 __skb_queue_splice(list, head->prev, (struct sk_buff *) head);
2282 head->qlen += list->qlen;
2283 __skb_queue_head_init(list);
2288 * __skb_queue_after - queue a buffer at the list head
2289 * @list: list to use
2290 * @prev: place after this buffer
2291 * @newsk: buffer to queue
2293 * Queue a buffer int the middle of a list. This function takes no locks
2294 * and you must therefore hold required locks before calling it.
2296 * A buffer cannot be placed on two lists at the same time.
2298 static inline void __skb_queue_after(struct sk_buff_head *list,
2299 struct sk_buff *prev,
2300 struct sk_buff *newsk)
2302 __skb_insert(newsk, prev, ((struct sk_buff_list *)prev)->next, list);
2305 void skb_append(struct sk_buff *old, struct sk_buff *newsk,
2306 struct sk_buff_head *list);
2308 static inline void __skb_queue_before(struct sk_buff_head *list,
2309 struct sk_buff *next,
2310 struct sk_buff *newsk)
2312 __skb_insert(newsk, ((struct sk_buff_list *)next)->prev, next, list);
2316 * __skb_queue_head - queue a buffer at the list head
2317 * @list: list to use
2318 * @newsk: buffer to queue
2320 * Queue a buffer at the start of a list. This function takes no locks
2321 * and you must therefore hold required locks before calling it.
2323 * A buffer cannot be placed on two lists at the same time.
2325 static inline void __skb_queue_head(struct sk_buff_head *list,
2326 struct sk_buff *newsk)
2328 __skb_queue_after(list, (struct sk_buff *)list, newsk);
2330 void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk);
2333 * __skb_queue_tail - queue a buffer at the list tail
2334 * @list: list to use
2335 * @newsk: buffer to queue
2337 * Queue a buffer at the end of a list. This function takes no locks
2338 * and you must therefore hold required locks before calling it.
2340 * A buffer cannot be placed on two lists at the same time.
2342 static inline void __skb_queue_tail(struct sk_buff_head *list,
2343 struct sk_buff *newsk)
2345 __skb_queue_before(list, (struct sk_buff *)list, newsk);
2347 void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk);
2350 * remove sk_buff from list. _Must_ be called atomically, and with
2353 void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list);
2354 static inline void __skb_unlink(struct sk_buff *skb, struct sk_buff_head *list)
2356 struct sk_buff *next, *prev;
2358 WRITE_ONCE(list->qlen, list->qlen - 1);
2361 skb->next = skb->prev = NULL;
2362 WRITE_ONCE(next->prev, prev);
2363 WRITE_ONCE(prev->next, next);
2367 * __skb_dequeue - remove from the head of the queue
2368 * @list: list to dequeue from
2370 * Remove the head of the list. This function does not take any locks
2371 * so must be used with appropriate locks held only. The head item is
2372 * returned or %NULL if the list is empty.
2374 static inline struct sk_buff *__skb_dequeue(struct sk_buff_head *list)
2376 struct sk_buff *skb = skb_peek(list);
2378 __skb_unlink(skb, list);
2381 struct sk_buff *skb_dequeue(struct sk_buff_head *list);
2384 * __skb_dequeue_tail - remove from the tail of the queue
2385 * @list: list to dequeue from
2387 * Remove the tail of the list. This function does not take any locks
2388 * so must be used with appropriate locks held only. The tail item is
2389 * returned or %NULL if the list is empty.
2391 static inline struct sk_buff *__skb_dequeue_tail(struct sk_buff_head *list)
2393 struct sk_buff *skb = skb_peek_tail(list);
2395 __skb_unlink(skb, list);
2398 struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list);
2401 static inline bool skb_is_nonlinear(const struct sk_buff *skb)
2403 return skb->data_len;
2406 static inline unsigned int skb_headlen(const struct sk_buff *skb)
2408 return skb->len - skb->data_len;
2411 static inline unsigned int __skb_pagelen(const struct sk_buff *skb)
2413 unsigned int i, len = 0;
2415 for (i = skb_shinfo(skb)->nr_frags - 1; (int)i >= 0; i--)
2416 len += skb_frag_size(&skb_shinfo(skb)->frags[i]);
2420 static inline unsigned int skb_pagelen(const struct sk_buff *skb)
2422 return skb_headlen(skb) + __skb_pagelen(skb);
2425 static inline void skb_frag_fill_page_desc(skb_frag_t *frag,
2429 frag->bv_page = page;
2430 frag->bv_offset = off;
2431 skb_frag_size_set(frag, size);
2434 static inline void __skb_fill_page_desc_noacc(struct skb_shared_info *shinfo,
2435 int i, struct page *page,
2438 skb_frag_t *frag = &shinfo->frags[i];
2440 skb_frag_fill_page_desc(frag, page, off, size);
2444 * skb_len_add - adds a number to len fields of skb
2445 * @skb: buffer to add len to
2446 * @delta: number of bytes to add
2448 static inline void skb_len_add(struct sk_buff *skb, int delta)
2451 skb->data_len += delta;
2452 skb->truesize += delta;
2456 * __skb_fill_page_desc - initialise a paged fragment in an skb
2457 * @skb: buffer containing fragment to be initialised
2458 * @i: paged fragment index to initialise
2459 * @page: the page to use for this fragment
2460 * @off: the offset to the data with @page
2461 * @size: the length of the data
2463 * Initialises the @i'th fragment of @skb to point to &size bytes at
2464 * offset @off within @page.
2466 * Does not take any additional reference on the fragment.
2468 static inline void __skb_fill_page_desc(struct sk_buff *skb, int i,
2469 struct page *page, int off, int size)
2471 __skb_fill_page_desc_noacc(skb_shinfo(skb), i, page, off, size);
2473 /* Propagate page pfmemalloc to the skb if we can. The problem is
2474 * that not all callers have unique ownership of the page but rely
2475 * on page_is_pfmemalloc doing the right thing(tm).
2477 page = compound_head(page);
2478 if (page_is_pfmemalloc(page))
2479 skb->pfmemalloc = true;
2483 * skb_fill_page_desc - initialise a paged fragment in an skb
2484 * @skb: buffer containing fragment to be initialised
2485 * @i: paged fragment index to initialise
2486 * @page: the page to use for this fragment
2487 * @off: the offset to the data with @page
2488 * @size: the length of the data
2490 * As per __skb_fill_page_desc() -- initialises the @i'th fragment of
2491 * @skb to point to @size bytes at offset @off within @page. In
2492 * addition updates @skb such that @i is the last fragment.
2494 * Does not take any additional reference on the fragment.
2496 static inline void skb_fill_page_desc(struct sk_buff *skb, int i,
2497 struct page *page, int off, int size)
2499 __skb_fill_page_desc(skb, i, page, off, size);
2500 skb_shinfo(skb)->nr_frags = i + 1;
2504 * skb_fill_page_desc_noacc - initialise a paged fragment in an skb
2505 * @skb: buffer containing fragment to be initialised
2506 * @i: paged fragment index to initialise
2507 * @page: the page to use for this fragment
2508 * @off: the offset to the data with @page
2509 * @size: the length of the data
2511 * Variant of skb_fill_page_desc() which does not deal with
2512 * pfmemalloc, if page is not owned by us.
2514 static inline void skb_fill_page_desc_noacc(struct sk_buff *skb, int i,
2515 struct page *page, int off,
2518 struct skb_shared_info *shinfo = skb_shinfo(skb);
2520 __skb_fill_page_desc_noacc(shinfo, i, page, off, size);
2521 shinfo->nr_frags = i + 1;
2524 void skb_add_rx_frag(struct sk_buff *skb, int i, struct page *page, int off,
2525 int size, unsigned int truesize);
2527 void skb_coalesce_rx_frag(struct sk_buff *skb, int i, int size,
2528 unsigned int truesize);
2530 #define SKB_LINEAR_ASSERT(skb) BUG_ON(skb_is_nonlinear(skb))
2532 #ifdef NET_SKBUFF_DATA_USES_OFFSET
2533 static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb)
2535 return skb->head + skb->tail;
2538 static inline void skb_reset_tail_pointer(struct sk_buff *skb)
2540 skb->tail = skb->data - skb->head;
2543 static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset)
2545 skb_reset_tail_pointer(skb);
2546 skb->tail += offset;
2549 #else /* NET_SKBUFF_DATA_USES_OFFSET */
2550 static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb)
2555 static inline void skb_reset_tail_pointer(struct sk_buff *skb)
2557 skb->tail = skb->data;
2560 static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset)
2562 skb->tail = skb->data + offset;
2565 #endif /* NET_SKBUFF_DATA_USES_OFFSET */
2567 static inline void skb_assert_len(struct sk_buff *skb)
2569 #ifdef CONFIG_DEBUG_NET
2570 if (WARN_ONCE(!skb->len, "%s\n", __func__))
2571 DO_ONCE_LITE(skb_dump, KERN_ERR, skb, false);
2572 #endif /* CONFIG_DEBUG_NET */
2576 * Add data to an sk_buff
2578 void *pskb_put(struct sk_buff *skb, struct sk_buff *tail, int len);
2579 void *skb_put(struct sk_buff *skb, unsigned int len);
2580 static inline void *__skb_put(struct sk_buff *skb, unsigned int len)
2582 void *tmp = skb_tail_pointer(skb);
2583 SKB_LINEAR_ASSERT(skb);
2589 static inline void *__skb_put_zero(struct sk_buff *skb, unsigned int len)
2591 void *tmp = __skb_put(skb, len);
2593 memset(tmp, 0, len);
2597 static inline void *__skb_put_data(struct sk_buff *skb, const void *data,
2600 void *tmp = __skb_put(skb, len);
2602 memcpy(tmp, data, len);
2606 static inline void __skb_put_u8(struct sk_buff *skb, u8 val)
2608 *(u8 *)__skb_put(skb, 1) = val;
2611 static inline void *skb_put_zero(struct sk_buff *skb, unsigned int len)
2613 void *tmp = skb_put(skb, len);
2615 memset(tmp, 0, len);
2620 static inline void *skb_put_data(struct sk_buff *skb, const void *data,
2623 void *tmp = skb_put(skb, len);
2625 memcpy(tmp, data, len);
2630 static inline void skb_put_u8(struct sk_buff *skb, u8 val)
2632 *(u8 *)skb_put(skb, 1) = val;
2635 void *skb_push(struct sk_buff *skb, unsigned int len);
2636 static inline void *__skb_push(struct sk_buff *skb, unsigned int len)
2643 void *skb_pull(struct sk_buff *skb, unsigned int len);
2644 static inline void *__skb_pull(struct sk_buff *skb, unsigned int len)
2647 if (unlikely(skb->len < skb->data_len)) {
2648 #if defined(CONFIG_DEBUG_NET)
2650 pr_err("__skb_pull(len=%u)\n", len);
2651 skb_dump(KERN_ERR, skb, false);
2655 return skb->data += len;
2658 static inline void *skb_pull_inline(struct sk_buff *skb, unsigned int len)
2660 return unlikely(len > skb->len) ? NULL : __skb_pull(skb, len);
2663 void *skb_pull_data(struct sk_buff *skb, size_t len);
2665 void *__pskb_pull_tail(struct sk_buff *skb, int delta);
2667 static inline enum skb_drop_reason
2668 pskb_may_pull_reason(struct sk_buff *skb, unsigned int len)
2670 if (likely(len <= skb_headlen(skb)))
2671 return SKB_NOT_DROPPED_YET;
2673 if (unlikely(len > skb->len))
2674 return SKB_DROP_REASON_PKT_TOO_SMALL;
2676 if (unlikely(!__pskb_pull_tail(skb, len - skb_headlen(skb))))
2677 return SKB_DROP_REASON_NOMEM;
2679 return SKB_NOT_DROPPED_YET;
2682 static inline bool pskb_may_pull(struct sk_buff *skb, unsigned int len)
2684 return pskb_may_pull_reason(skb, len) == SKB_NOT_DROPPED_YET;
2687 static inline void *pskb_pull(struct sk_buff *skb, unsigned int len)
2689 if (!pskb_may_pull(skb, len))
2693 return skb->data += len;
2696 void skb_condense(struct sk_buff *skb);
2699 * skb_headroom - bytes at buffer head
2700 * @skb: buffer to check
2702 * Return the number of bytes of free space at the head of an &sk_buff.
2704 static inline unsigned int skb_headroom(const struct sk_buff *skb)
2706 return skb->data - skb->head;
2710 * skb_tailroom - bytes at buffer end
2711 * @skb: buffer to check
2713 * Return the number of bytes of free space at the tail of an sk_buff
2715 static inline int skb_tailroom(const struct sk_buff *skb)
2717 return skb_is_nonlinear(skb) ? 0 : skb->end - skb->tail;
2721 * skb_availroom - bytes at buffer end
2722 * @skb: buffer to check
2724 * Return the number of bytes of free space at the tail of an sk_buff
2725 * allocated by sk_stream_alloc()
2727 static inline int skb_availroom(const struct sk_buff *skb)
2729 if (skb_is_nonlinear(skb))
2732 return skb->end - skb->tail - skb->reserved_tailroom;
2736 * skb_reserve - adjust headroom
2737 * @skb: buffer to alter
2738 * @len: bytes to move
2740 * Increase the headroom of an empty &sk_buff by reducing the tail
2741 * room. This is only allowed for an empty buffer.
2743 static inline void skb_reserve(struct sk_buff *skb, int len)
2750 * skb_tailroom_reserve - adjust reserved_tailroom
2751 * @skb: buffer to alter
2752 * @mtu: maximum amount of headlen permitted
2753 * @needed_tailroom: minimum amount of reserved_tailroom
2755 * Set reserved_tailroom so that headlen can be as large as possible but
2756 * not larger than mtu and tailroom cannot be smaller than
2758 * The required headroom should already have been reserved before using
2761 static inline void skb_tailroom_reserve(struct sk_buff *skb, unsigned int mtu,
2762 unsigned int needed_tailroom)
2764 SKB_LINEAR_ASSERT(skb);
2765 if (mtu < skb_tailroom(skb) - needed_tailroom)
2766 /* use at most mtu */
2767 skb->reserved_tailroom = skb_tailroom(skb) - mtu;
2769 /* use up to all available space */
2770 skb->reserved_tailroom = needed_tailroom;
2773 #define ENCAP_TYPE_ETHER 0
2774 #define ENCAP_TYPE_IPPROTO 1
2776 static inline void skb_set_inner_protocol(struct sk_buff *skb,
2779 skb->inner_protocol = protocol;
2780 skb->inner_protocol_type = ENCAP_TYPE_ETHER;
2783 static inline void skb_set_inner_ipproto(struct sk_buff *skb,
2786 skb->inner_ipproto = ipproto;
2787 skb->inner_protocol_type = ENCAP_TYPE_IPPROTO;
2790 static inline void skb_reset_inner_headers(struct sk_buff *skb)
2792 skb->inner_mac_header = skb->mac_header;
2793 skb->inner_network_header = skb->network_header;
2794 skb->inner_transport_header = skb->transport_header;
2797 static inline void skb_reset_mac_len(struct sk_buff *skb)
2799 skb->mac_len = skb->network_header - skb->mac_header;
2802 static inline unsigned char *skb_inner_transport_header(const struct sk_buff
2805 return skb->head + skb->inner_transport_header;
2808 static inline int skb_inner_transport_offset(const struct sk_buff *skb)
2810 return skb_inner_transport_header(skb) - skb->data;
2813 static inline void skb_reset_inner_transport_header(struct sk_buff *skb)
2815 skb->inner_transport_header = skb->data - skb->head;
2818 static inline void skb_set_inner_transport_header(struct sk_buff *skb,
2821 skb_reset_inner_transport_header(skb);
2822 skb->inner_transport_header += offset;
2825 static inline unsigned char *skb_inner_network_header(const struct sk_buff *skb)
2827 return skb->head + skb->inner_network_header;
2830 static inline void skb_reset_inner_network_header(struct sk_buff *skb)
2832 skb->inner_network_header = skb->data - skb->head;
2835 static inline void skb_set_inner_network_header(struct sk_buff *skb,
2838 skb_reset_inner_network_header(skb);
2839 skb->inner_network_header += offset;
2842 static inline unsigned char *skb_inner_mac_header(const struct sk_buff *skb)
2844 return skb->head + skb->inner_mac_header;
2847 static inline void skb_reset_inner_mac_header(struct sk_buff *skb)
2849 skb->inner_mac_header = skb->data - skb->head;
2852 static inline void skb_set_inner_mac_header(struct sk_buff *skb,
2855 skb_reset_inner_mac_header(skb);
2856 skb->inner_mac_header += offset;
2858 static inline bool skb_transport_header_was_set(const struct sk_buff *skb)
2860 return skb->transport_header != (typeof(skb->transport_header))~0U;
2863 static inline unsigned char *skb_transport_header(const struct sk_buff *skb)
2865 DEBUG_NET_WARN_ON_ONCE(!skb_transport_header_was_set(skb));
2866 return skb->head + skb->transport_header;
2869 static inline void skb_reset_transport_header(struct sk_buff *skb)
2871 skb->transport_header = skb->data - skb->head;
2874 static inline void skb_set_transport_header(struct sk_buff *skb,
2877 skb_reset_transport_header(skb);
2878 skb->transport_header += offset;
2881 static inline unsigned char *skb_network_header(const struct sk_buff *skb)
2883 return skb->head + skb->network_header;
2886 static inline void skb_reset_network_header(struct sk_buff *skb)
2888 skb->network_header = skb->data - skb->head;
2891 static inline void skb_set_network_header(struct sk_buff *skb, const int offset)
2893 skb_reset_network_header(skb);
2894 skb->network_header += offset;
2897 static inline int skb_mac_header_was_set(const struct sk_buff *skb)
2899 return skb->mac_header != (typeof(skb->mac_header))~0U;
2902 static inline unsigned char *skb_mac_header(const struct sk_buff *skb)
2904 DEBUG_NET_WARN_ON_ONCE(!skb_mac_header_was_set(skb));
2905 return skb->head + skb->mac_header;
2908 static inline int skb_mac_offset(const struct sk_buff *skb)
2910 return skb_mac_header(skb) - skb->data;
2913 static inline u32 skb_mac_header_len(const struct sk_buff *skb)
2915 DEBUG_NET_WARN_ON_ONCE(!skb_mac_header_was_set(skb));
2916 return skb->network_header - skb->mac_header;
2919 static inline void skb_unset_mac_header(struct sk_buff *skb)
2921 skb->mac_header = (typeof(skb->mac_header))~0U;
2924 static inline void skb_reset_mac_header(struct sk_buff *skb)
2926 skb->mac_header = skb->data - skb->head;
2929 static inline void skb_set_mac_header(struct sk_buff *skb, const int offset)
2931 skb_reset_mac_header(skb);
2932 skb->mac_header += offset;
2935 static inline void skb_pop_mac_header(struct sk_buff *skb)
2937 skb->mac_header = skb->network_header;
2940 static inline void skb_probe_transport_header(struct sk_buff *skb)
2942 struct flow_keys_basic keys;
2944 if (skb_transport_header_was_set(skb))
2947 if (skb_flow_dissect_flow_keys_basic(NULL, skb, &keys,
2949 skb_set_transport_header(skb, keys.control.thoff);
2952 static inline void skb_mac_header_rebuild(struct sk_buff *skb)
2954 if (skb_mac_header_was_set(skb)) {
2955 const unsigned char *old_mac = skb_mac_header(skb);
2957 skb_set_mac_header(skb, -skb->mac_len);
2958 memmove(skb_mac_header(skb), old_mac, skb->mac_len);
2962 static inline int skb_checksum_start_offset(const struct sk_buff *skb)
2964 return skb->csum_start - skb_headroom(skb);
2967 static inline unsigned char *skb_checksum_start(const struct sk_buff *skb)
2969 return skb->head + skb->csum_start;
2972 static inline int skb_transport_offset(const struct sk_buff *skb)
2974 return skb_transport_header(skb) - skb->data;
2977 static inline u32 skb_network_header_len(const struct sk_buff *skb)
2979 return skb->transport_header - skb->network_header;
2982 static inline u32 skb_inner_network_header_len(const struct sk_buff *skb)
2984 return skb->inner_transport_header - skb->inner_network_header;
2987 static inline int skb_network_offset(const struct sk_buff *skb)
2989 return skb_network_header(skb) - skb->data;
2992 static inline int skb_inner_network_offset(const struct sk_buff *skb)
2994 return skb_inner_network_header(skb) - skb->data;
2997 static inline int pskb_network_may_pull(struct sk_buff *skb, unsigned int len)
2999 return pskb_may_pull(skb, skb_network_offset(skb) + len);
3003 * CPUs often take a performance hit when accessing unaligned memory
3004 * locations. The actual performance hit varies, it can be small if the
3005 * hardware handles it or large if we have to take an exception and fix it
3008 * Since an ethernet header is 14 bytes network drivers often end up with
3009 * the IP header at an unaligned offset. The IP header can be aligned by
3010 * shifting the start of the packet by 2 bytes. Drivers should do this
3013 * skb_reserve(skb, NET_IP_ALIGN);
3015 * The downside to this alignment of the IP header is that the DMA is now
3016 * unaligned. On some architectures the cost of an unaligned DMA is high
3017 * and this cost outweighs the gains made by aligning the IP header.
3019 * Since this trade off varies between architectures, we allow NET_IP_ALIGN
3022 #ifndef NET_IP_ALIGN
3023 #define NET_IP_ALIGN 2
3027 * The networking layer reserves some headroom in skb data (via
3028 * dev_alloc_skb). This is used to avoid having to reallocate skb data when
3029 * the header has to grow. In the default case, if the header has to grow
3030 * 32 bytes or less we avoid the reallocation.
3032 * Unfortunately this headroom changes the DMA alignment of the resulting
3033 * network packet. As for NET_IP_ALIGN, this unaligned DMA is expensive
3034 * on some architectures. An architecture can override this value,
3035 * perhaps setting it to a cacheline in size (since that will maintain
3036 * cacheline alignment of the DMA). It must be a power of 2.
3038 * Various parts of the networking layer expect at least 32 bytes of
3039 * headroom, you should not reduce this.
3041 * Using max(32, L1_CACHE_BYTES) makes sense (especially with RPS)
3042 * to reduce average number of cache lines per packet.
3043 * get_rps_cpu() for example only access one 64 bytes aligned block :
3044 * NET_IP_ALIGN(2) + ethernet_header(14) + IP_header(20/40) + ports(8)
3047 #define NET_SKB_PAD max(32, L1_CACHE_BYTES)
3050 int ___pskb_trim(struct sk_buff *skb, unsigned int len);
3052 static inline void __skb_set_length(struct sk_buff *skb, unsigned int len)
3054 if (WARN_ON(skb_is_nonlinear(skb)))
3057 skb_set_tail_pointer(skb, len);
3060 static inline void __skb_trim(struct sk_buff *skb, unsigned int len)
3062 __skb_set_length(skb, len);
3065 void skb_trim(struct sk_buff *skb, unsigned int len);
3067 static inline int __pskb_trim(struct sk_buff *skb, unsigned int len)
3070 return ___pskb_trim(skb, len);
3071 __skb_trim(skb, len);
3075 static inline int pskb_trim(struct sk_buff *skb, unsigned int len)
3077 return (len < skb->len) ? __pskb_trim(skb, len) : 0;
3081 * pskb_trim_unique - remove end from a paged unique (not cloned) buffer
3082 * @skb: buffer to alter
3085 * This is identical to pskb_trim except that the caller knows that
3086 * the skb is not cloned so we should never get an error due to out-
3089 static inline void pskb_trim_unique(struct sk_buff *skb, unsigned int len)
3091 int err = pskb_trim(skb, len);
3095 static inline int __skb_grow(struct sk_buff *skb, unsigned int len)
3097 unsigned int diff = len - skb->len;
3099 if (skb_tailroom(skb) < diff) {
3100 int ret = pskb_expand_head(skb, 0, diff - skb_tailroom(skb),
3105 __skb_set_length(skb, len);
3110 * skb_orphan - orphan a buffer
3111 * @skb: buffer to orphan
3113 * If a buffer currently has an owner then we call the owner's
3114 * destructor function and make the @skb unowned. The buffer continues
3115 * to exist but is no longer charged to its former owner.
3117 static inline void skb_orphan(struct sk_buff *skb)
3119 if (skb->destructor) {
3120 skb->destructor(skb);
3121 skb->destructor = NULL;
3129 * skb_orphan_frags - orphan the frags contained in a buffer
3130 * @skb: buffer to orphan frags from
3131 * @gfp_mask: allocation mask for replacement pages
3133 * For each frag in the SKB which needs a destructor (i.e. has an
3134 * owner) create a copy of that frag and release the original
3135 * page by calling the destructor.
3137 static inline int skb_orphan_frags(struct sk_buff *skb, gfp_t gfp_mask)
3139 if (likely(!skb_zcopy(skb)))
3141 if (skb_shinfo(skb)->flags & SKBFL_DONT_ORPHAN)
3143 return skb_copy_ubufs(skb, gfp_mask);
3146 /* Frags must be orphaned, even if refcounted, if skb might loop to rx path */
3147 static inline int skb_orphan_frags_rx(struct sk_buff *skb, gfp_t gfp_mask)
3149 if (likely(!skb_zcopy(skb)))
3151 return skb_copy_ubufs(skb, gfp_mask);
3155 * __skb_queue_purge - empty a list
3156 * @list: list to empty
3158 * Delete all buffers on an &sk_buff list. Each buffer is removed from
3159 * the list and one reference dropped. This function does not take the
3160 * list lock and the caller must hold the relevant locks to use it.
3162 static inline void __skb_queue_purge(struct sk_buff_head *list)
3164 struct sk_buff *skb;
3165 while ((skb = __skb_dequeue(list)) != NULL)
3168 void skb_queue_purge(struct sk_buff_head *list);
3170 unsigned int skb_rbtree_purge(struct rb_root *root);
3172 void *__netdev_alloc_frag_align(unsigned int fragsz, unsigned int align_mask);
3175 * netdev_alloc_frag - allocate a page fragment
3176 * @fragsz: fragment size
3178 * Allocates a frag from a page for receive buffer.
3179 * Uses GFP_ATOMIC allocations.
3181 static inline void *netdev_alloc_frag(unsigned int fragsz)
3183 return __netdev_alloc_frag_align(fragsz, ~0u);
3186 static inline void *netdev_alloc_frag_align(unsigned int fragsz,
3189 WARN_ON_ONCE(!is_power_of_2(align));
3190 return __netdev_alloc_frag_align(fragsz, -align);
3193 struct sk_buff *__netdev_alloc_skb(struct net_device *dev, unsigned int length,
3197 * netdev_alloc_skb - allocate an skbuff for rx on a specific device
3198 * @dev: network device to receive on
3199 * @length: length to allocate
3201 * Allocate a new &sk_buff and assign it a usage count of one. The
3202 * buffer has unspecified headroom built in. Users should allocate
3203 * the headroom they think they need without accounting for the
3204 * built in space. The built in space is used for optimisations.
3206 * %NULL is returned if there is no free memory. Although this function
3207 * allocates memory it can be called from an interrupt.
3209 static inline struct sk_buff *netdev_alloc_skb(struct net_device *dev,
3210 unsigned int length)
3212 return __netdev_alloc_skb(dev, length, GFP_ATOMIC);
3215 /* legacy helper around __netdev_alloc_skb() */
3216 static inline struct sk_buff *__dev_alloc_skb(unsigned int length,
3219 return __netdev_alloc_skb(NULL, length, gfp_mask);
3222 /* legacy helper around netdev_alloc_skb() */
3223 static inline struct sk_buff *dev_alloc_skb(unsigned int length)
3225 return netdev_alloc_skb(NULL, length);
3229 static inline struct sk_buff *__netdev_alloc_skb_ip_align(struct net_device *dev,
3230 unsigned int length, gfp_t gfp)
3232 struct sk_buff *skb = __netdev_alloc_skb(dev, length + NET_IP_ALIGN, gfp);
3234 if (NET_IP_ALIGN && skb)
3235 skb_reserve(skb, NET_IP_ALIGN);
3239 static inline struct sk_buff *netdev_alloc_skb_ip_align(struct net_device *dev,
3240 unsigned int length)
3242 return __netdev_alloc_skb_ip_align(dev, length, GFP_ATOMIC);
3245 static inline void skb_free_frag(void *addr)
3247 page_frag_free(addr);
3250 void *__napi_alloc_frag_align(unsigned int fragsz, unsigned int align_mask);
3252 static inline void *napi_alloc_frag(unsigned int fragsz)
3254 return __napi_alloc_frag_align(fragsz, ~0u);
3257 static inline void *napi_alloc_frag_align(unsigned int fragsz,
3260 WARN_ON_ONCE(!is_power_of_2(align));
3261 return __napi_alloc_frag_align(fragsz, -align);
3264 struct sk_buff *__napi_alloc_skb(struct napi_struct *napi,
3265 unsigned int length, gfp_t gfp_mask);
3266 static inline struct sk_buff *napi_alloc_skb(struct napi_struct *napi,
3267 unsigned int length)
3269 return __napi_alloc_skb(napi, length, GFP_ATOMIC);
3271 void napi_consume_skb(struct sk_buff *skb, int budget);
3273 void napi_skb_free_stolen_head(struct sk_buff *skb);
3274 void __napi_kfree_skb(struct sk_buff *skb, enum skb_drop_reason reason);
3277 * __dev_alloc_pages - allocate page for network Rx
3278 * @gfp_mask: allocation priority. Set __GFP_NOMEMALLOC if not for network Rx
3279 * @order: size of the allocation
3281 * Allocate a new page.
3283 * %NULL is returned if there is no free memory.
3285 static inline struct page *__dev_alloc_pages(gfp_t gfp_mask,
3288 /* This piece of code contains several assumptions.
3289 * 1. This is for device Rx, therefor a cold page is preferred.
3290 * 2. The expectation is the user wants a compound page.
3291 * 3. If requesting a order 0 page it will not be compound
3292 * due to the check to see if order has a value in prep_new_page
3293 * 4. __GFP_MEMALLOC is ignored if __GFP_NOMEMALLOC is set due to
3294 * code in gfp_to_alloc_flags that should be enforcing this.
3296 gfp_mask |= __GFP_COMP | __GFP_MEMALLOC;
3298 return alloc_pages_node(NUMA_NO_NODE, gfp_mask, order);
3301 static inline struct page *dev_alloc_pages(unsigned int order)
3303 return __dev_alloc_pages(GFP_ATOMIC | __GFP_NOWARN, order);
3307 * __dev_alloc_page - allocate a page for network Rx
3308 * @gfp_mask: allocation priority. Set __GFP_NOMEMALLOC if not for network Rx
3310 * Allocate a new page.
3312 * %NULL is returned if there is no free memory.
3314 static inline struct page *__dev_alloc_page(gfp_t gfp_mask)
3316 return __dev_alloc_pages(gfp_mask, 0);
3319 static inline struct page *dev_alloc_page(void)
3321 return dev_alloc_pages(0);
3325 * dev_page_is_reusable - check whether a page can be reused for network Rx
3326 * @page: the page to test
3328 * A page shouldn't be considered for reusing/recycling if it was allocated
3329 * under memory pressure or at a distant memory node.
3331 * Returns false if this page should be returned to page allocator, true
3334 static inline bool dev_page_is_reusable(const struct page *page)
3336 return likely(page_to_nid(page) == numa_mem_id() &&
3337 !page_is_pfmemalloc(page));
3341 * skb_propagate_pfmemalloc - Propagate pfmemalloc if skb is allocated after RX page
3342 * @page: The page that was allocated from skb_alloc_page
3343 * @skb: The skb that may need pfmemalloc set
3345 static inline void skb_propagate_pfmemalloc(const struct page *page,
3346 struct sk_buff *skb)
3348 if (page_is_pfmemalloc(page))
3349 skb->pfmemalloc = true;
3353 * skb_frag_off() - Returns the offset of a skb fragment
3354 * @frag: the paged fragment
3356 static inline unsigned int skb_frag_off(const skb_frag_t *frag)
3358 return frag->bv_offset;
3362 * skb_frag_off_add() - Increments the offset of a skb fragment by @delta
3363 * @frag: skb fragment
3364 * @delta: value to add
3366 static inline void skb_frag_off_add(skb_frag_t *frag, int delta)
3368 frag->bv_offset += delta;
3372 * skb_frag_off_set() - Sets the offset of a skb fragment
3373 * @frag: skb fragment
3374 * @offset: offset of fragment
3376 static inline void skb_frag_off_set(skb_frag_t *frag, unsigned int offset)
3378 frag->bv_offset = offset;
3382 * skb_frag_off_copy() - Sets the offset of a skb fragment from another fragment
3383 * @fragto: skb fragment where offset is set
3384 * @fragfrom: skb fragment offset is copied from
3386 static inline void skb_frag_off_copy(skb_frag_t *fragto,
3387 const skb_frag_t *fragfrom)
3389 fragto->bv_offset = fragfrom->bv_offset;
3393 * skb_frag_page - retrieve the page referred to by a paged fragment
3394 * @frag: the paged fragment
3396 * Returns the &struct page associated with @frag.
3398 static inline struct page *skb_frag_page(const skb_frag_t *frag)
3400 return frag->bv_page;
3404 * __skb_frag_ref - take an addition reference on a paged fragment.
3405 * @frag: the paged fragment
3407 * Takes an additional reference on the paged fragment @frag.
3409 static inline void __skb_frag_ref(skb_frag_t *frag)
3411 get_page(skb_frag_page(frag));
3415 * skb_frag_ref - take an addition reference on a paged fragment of an skb.
3417 * @f: the fragment offset.
3419 * Takes an additional reference on the @f'th paged fragment of @skb.
3421 static inline void skb_frag_ref(struct sk_buff *skb, int f)
3423 __skb_frag_ref(&skb_shinfo(skb)->frags[f]);
3427 napi_frag_unref(skb_frag_t *frag, bool recycle, bool napi_safe)
3429 struct page *page = skb_frag_page(frag);
3431 #ifdef CONFIG_PAGE_POOL
3432 if (recycle && page_pool_return_skb_page(page, napi_safe))
3439 * __skb_frag_unref - release a reference on a paged fragment.
3440 * @frag: the paged fragment
3441 * @recycle: recycle the page if allocated via page_pool
3443 * Releases a reference on the paged fragment @frag
3444 * or recycles the page via the page_pool API.
3446 static inline void __skb_frag_unref(skb_frag_t *frag, bool recycle)
3448 napi_frag_unref(frag, recycle, false);
3452 * skb_frag_unref - release a reference on a paged fragment of an skb.
3454 * @f: the fragment offset
3456 * Releases a reference on the @f'th paged fragment of @skb.
3458 static inline void skb_frag_unref(struct sk_buff *skb, int f)
3460 struct skb_shared_info *shinfo = skb_shinfo(skb);
3462 if (!skb_zcopy_managed(skb))
3463 __skb_frag_unref(&shinfo->frags[f], skb->pp_recycle);
3467 * skb_frag_address - gets the address of the data contained in a paged fragment
3468 * @frag: the paged fragment buffer
3470 * Returns the address of the data within @frag. The page must already
3473 static inline void *skb_frag_address(const skb_frag_t *frag)
3475 return page_address(skb_frag_page(frag)) + skb_frag_off(frag);
3479 * skb_frag_address_safe - gets the address of the data contained in a paged fragment
3480 * @frag: the paged fragment buffer
3482 * Returns the address of the data within @frag. Checks that the page
3483 * is mapped and returns %NULL otherwise.
3485 static inline void *skb_frag_address_safe(const skb_frag_t *frag)
3487 void *ptr = page_address(skb_frag_page(frag));
3491 return ptr + skb_frag_off(frag);
3495 * skb_frag_page_copy() - sets the page in a fragment from another fragment
3496 * @fragto: skb fragment where page is set
3497 * @fragfrom: skb fragment page is copied from
3499 static inline void skb_frag_page_copy(skb_frag_t *fragto,
3500 const skb_frag_t *fragfrom)
3502 fragto->bv_page = fragfrom->bv_page;
3505 bool skb_page_frag_refill(unsigned int sz, struct page_frag *pfrag, gfp_t prio);
3508 * skb_frag_dma_map - maps a paged fragment via the DMA API
3509 * @dev: the device to map the fragment to
3510 * @frag: the paged fragment to map
3511 * @offset: the offset within the fragment (starting at the
3512 * fragment's own offset)
3513 * @size: the number of bytes to map
3514 * @dir: the direction of the mapping (``PCI_DMA_*``)
3516 * Maps the page associated with @frag to @device.
3518 static inline dma_addr_t skb_frag_dma_map(struct device *dev,
3519 const skb_frag_t *frag,
3520 size_t offset, size_t size,
3521 enum dma_data_direction dir)
3523 return dma_map_page(dev, skb_frag_page(frag),
3524 skb_frag_off(frag) + offset, size, dir);
3527 static inline struct sk_buff *pskb_copy(struct sk_buff *skb,
3530 return __pskb_copy(skb, skb_headroom(skb), gfp_mask);
3534 static inline struct sk_buff *pskb_copy_for_clone(struct sk_buff *skb,
3537 return __pskb_copy_fclone(skb, skb_headroom(skb), gfp_mask, true);
3542 * skb_clone_writable - is the header of a clone writable
3543 * @skb: buffer to check
3544 * @len: length up to which to write
3546 * Returns true if modifying the header part of the cloned buffer
3547 * does not requires the data to be copied.
3549 static inline int skb_clone_writable(const struct sk_buff *skb, unsigned int len)
3551 return !skb_header_cloned(skb) &&
3552 skb_headroom(skb) + len <= skb->hdr_len;
3555 static inline int skb_try_make_writable(struct sk_buff *skb,
3556 unsigned int write_len)
3558 return skb_cloned(skb) && !skb_clone_writable(skb, write_len) &&
3559 pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
3562 static inline int __skb_cow(struct sk_buff *skb, unsigned int headroom,
3567 if (headroom > skb_headroom(skb))
3568 delta = headroom - skb_headroom(skb);
3570 if (delta || cloned)
3571 return pskb_expand_head(skb, ALIGN(delta, NET_SKB_PAD), 0,
3577 * skb_cow - copy header of skb when it is required
3578 * @skb: buffer to cow
3579 * @headroom: needed headroom
3581 * If the skb passed lacks sufficient headroom or its data part
3582 * is shared, data is reallocated. If reallocation fails, an error
3583 * is returned and original skb is not changed.
3585 * The result is skb with writable area skb->head...skb->tail
3586 * and at least @headroom of space at head.
3588 static inline int skb_cow(struct sk_buff *skb, unsigned int headroom)
3590 return __skb_cow(skb, headroom, skb_cloned(skb));
3594 * skb_cow_head - skb_cow but only making the head writable
3595 * @skb: buffer to cow
3596 * @headroom: needed headroom
3598 * This function is identical to skb_cow except that we replace the
3599 * skb_cloned check by skb_header_cloned. It should be used when
3600 * you only need to push on some header and do not need to modify
3603 static inline int skb_cow_head(struct sk_buff *skb, unsigned int headroom)
3605 return __skb_cow(skb, headroom, skb_header_cloned(skb));
3609 * skb_padto - pad an skbuff up to a minimal size
3610 * @skb: buffer to pad
3611 * @len: minimal length
3613 * Pads up a buffer to ensure the trailing bytes exist and are
3614 * blanked. If the buffer already contains sufficient data it
3615 * is untouched. Otherwise it is extended. Returns zero on
3616 * success. The skb is freed on error.
3618 static inline int skb_padto(struct sk_buff *skb, unsigned int len)
3620 unsigned int size = skb->len;
3621 if (likely(size >= len))
3623 return skb_pad(skb, len - size);
3627 * __skb_put_padto - increase size and pad an skbuff up to a minimal size
3628 * @skb: buffer to pad
3629 * @len: minimal length
3630 * @free_on_error: free buffer on error
3632 * Pads up a buffer to ensure the trailing bytes exist and are
3633 * blanked. If the buffer already contains sufficient data it
3634 * is untouched. Otherwise it is extended. Returns zero on
3635 * success. The skb is freed on error if @free_on_error is true.
3637 static inline int __must_check __skb_put_padto(struct sk_buff *skb,
3641 unsigned int size = skb->len;
3643 if (unlikely(size < len)) {
3645 if (__skb_pad(skb, len, free_on_error))
3647 __skb_put(skb, len);
3653 * skb_put_padto - increase size and pad an skbuff up to a minimal size
3654 * @skb: buffer to pad
3655 * @len: minimal length
3657 * Pads up a buffer to ensure the trailing bytes exist and are
3658 * blanked. If the buffer already contains sufficient data it
3659 * is untouched. Otherwise it is extended. Returns zero on
3660 * success. The skb is freed on error.
3662 static inline int __must_check skb_put_padto(struct sk_buff *skb, unsigned int len)
3664 return __skb_put_padto(skb, len, true);
3667 static inline int skb_add_data(struct sk_buff *skb,
3668 struct iov_iter *from, int copy)
3670 const int off = skb->len;
3672 if (skb->ip_summed == CHECKSUM_NONE) {
3674 if (csum_and_copy_from_iter_full(skb_put(skb, copy), copy,
3676 skb->csum = csum_block_add(skb->csum, csum, off);
3679 } else if (copy_from_iter_full(skb_put(skb, copy), copy, from))
3682 __skb_trim(skb, off);
3686 static inline bool skb_can_coalesce(struct sk_buff *skb, int i,
3687 const struct page *page, int off)
3692 const skb_frag_t *frag = &skb_shinfo(skb)->frags[i - 1];
3694 return page == skb_frag_page(frag) &&
3695 off == skb_frag_off(frag) + skb_frag_size(frag);
3700 static inline int __skb_linearize(struct sk_buff *skb)
3702 return __pskb_pull_tail(skb, skb->data_len) ? 0 : -ENOMEM;
3706 * skb_linearize - convert paged skb to linear one
3707 * @skb: buffer to linarize
3709 * If there is no free memory -ENOMEM is returned, otherwise zero
3710 * is returned and the old skb data released.
3712 static inline int skb_linearize(struct sk_buff *skb)
3714 return skb_is_nonlinear(skb) ? __skb_linearize(skb) : 0;
3718 * skb_has_shared_frag - can any frag be overwritten
3719 * @skb: buffer to test
3721 * Return true if the skb has at least one frag that might be modified
3722 * by an external entity (as in vmsplice()/sendfile())
3724 static inline bool skb_has_shared_frag(const struct sk_buff *skb)
3726 return skb_is_nonlinear(skb) &&
3727 skb_shinfo(skb)->flags & SKBFL_SHARED_FRAG;
3731 * skb_linearize_cow - make sure skb is linear and writable
3732 * @skb: buffer to process
3734 * If there is no free memory -ENOMEM is returned, otherwise zero
3735 * is returned and the old skb data released.
3737 static inline int skb_linearize_cow(struct sk_buff *skb)
3739 return skb_is_nonlinear(skb) || skb_cloned(skb) ?
3740 __skb_linearize(skb) : 0;
3743 static __always_inline void
3744 __skb_postpull_rcsum(struct sk_buff *skb, const void *start, unsigned int len,
3747 if (skb->ip_summed == CHECKSUM_COMPLETE)
3748 skb->csum = csum_block_sub(skb->csum,
3749 csum_partial(start, len, 0), off);
3750 else if (skb->ip_summed == CHECKSUM_PARTIAL &&
3751 skb_checksum_start_offset(skb) < 0)
3752 skb->ip_summed = CHECKSUM_NONE;
3756 * skb_postpull_rcsum - update checksum for received skb after pull
3757 * @skb: buffer to update
3758 * @start: start of data before pull
3759 * @len: length of data pulled
3761 * After doing a pull on a received packet, you need to call this to
3762 * update the CHECKSUM_COMPLETE checksum, or set ip_summed to
3763 * CHECKSUM_NONE so that it can be recomputed from scratch.
3765 static inline void skb_postpull_rcsum(struct sk_buff *skb,
3766 const void *start, unsigned int len)
3768 if (skb->ip_summed == CHECKSUM_COMPLETE)
3769 skb->csum = wsum_negate(csum_partial(start, len,
3770 wsum_negate(skb->csum)));
3771 else if (skb->ip_summed == CHECKSUM_PARTIAL &&
3772 skb_checksum_start_offset(skb) < 0)
3773 skb->ip_summed = CHECKSUM_NONE;
3776 static __always_inline void
3777 __skb_postpush_rcsum(struct sk_buff *skb, const void *start, unsigned int len,
3780 if (skb->ip_summed == CHECKSUM_COMPLETE)
3781 skb->csum = csum_block_add(skb->csum,
3782 csum_partial(start, len, 0), off);
3786 * skb_postpush_rcsum - update checksum for received skb after push
3787 * @skb: buffer to update
3788 * @start: start of data after push
3789 * @len: length of data pushed
3791 * After doing a push on a received packet, you need to call this to
3792 * update the CHECKSUM_COMPLETE checksum.
3794 static inline void skb_postpush_rcsum(struct sk_buff *skb,
3795 const void *start, unsigned int len)
3797 __skb_postpush_rcsum(skb, start, len, 0);
3800 void *skb_pull_rcsum(struct sk_buff *skb, unsigned int len);
3803 * skb_push_rcsum - push skb and update receive checksum
3804 * @skb: buffer to update
3805 * @len: length of data pulled
3807 * This function performs an skb_push on the packet and updates
3808 * the CHECKSUM_COMPLETE checksum. It should be used on
3809 * receive path processing instead of skb_push unless you know
3810 * that the checksum difference is zero (e.g., a valid IP header)
3811 * or you are setting ip_summed to CHECKSUM_NONE.
3813 static inline void *skb_push_rcsum(struct sk_buff *skb, unsigned int len)
3816 skb_postpush_rcsum(skb, skb->data, len);
3820 int pskb_trim_rcsum_slow(struct sk_buff *skb, unsigned int len);
3822 * pskb_trim_rcsum - trim received skb and update checksum
3823 * @skb: buffer to trim
3826 * This is exactly the same as pskb_trim except that it ensures the
3827 * checksum of received packets are still valid after the operation.
3828 * It can change skb pointers.
3831 static inline int pskb_trim_rcsum(struct sk_buff *skb, unsigned int len)
3833 if (likely(len >= skb->len))
3835 return pskb_trim_rcsum_slow(skb, len);
3838 static inline int __skb_trim_rcsum(struct sk_buff *skb, unsigned int len)
3840 if (skb->ip_summed == CHECKSUM_COMPLETE)
3841 skb->ip_summed = CHECKSUM_NONE;
3842 __skb_trim(skb, len);
3846 static inline int __skb_grow_rcsum(struct sk_buff *skb, unsigned int len)
3848 if (skb->ip_summed == CHECKSUM_COMPLETE)
3849 skb->ip_summed = CHECKSUM_NONE;
3850 return __skb_grow(skb, len);
3853 #define rb_to_skb(rb) rb_entry_safe(rb, struct sk_buff, rbnode)
3854 #define skb_rb_first(root) rb_to_skb(rb_first(root))
3855 #define skb_rb_last(root) rb_to_skb(rb_last(root))
3856 #define skb_rb_next(skb) rb_to_skb(rb_next(&(skb)->rbnode))
3857 #define skb_rb_prev(skb) rb_to_skb(rb_prev(&(skb)->rbnode))
3859 #define skb_queue_walk(queue, skb) \
3860 for (skb = (queue)->next; \
3861 skb != (struct sk_buff *)(queue); \
3864 #define skb_queue_walk_safe(queue, skb, tmp) \
3865 for (skb = (queue)->next, tmp = skb->next; \
3866 skb != (struct sk_buff *)(queue); \
3867 skb = tmp, tmp = skb->next)
3869 #define skb_queue_walk_from(queue, skb) \
3870 for (; skb != (struct sk_buff *)(queue); \
3873 #define skb_rbtree_walk(skb, root) \
3874 for (skb = skb_rb_first(root); skb != NULL; \
3875 skb = skb_rb_next(skb))
3877 #define skb_rbtree_walk_from(skb) \
3878 for (; skb != NULL; \
3879 skb = skb_rb_next(skb))
3881 #define skb_rbtree_walk_from_safe(skb, tmp) \
3882 for (; tmp = skb ? skb_rb_next(skb) : NULL, (skb != NULL); \
3885 #define skb_queue_walk_from_safe(queue, skb, tmp) \
3886 for (tmp = skb->next; \
3887 skb != (struct sk_buff *)(queue); \
3888 skb = tmp, tmp = skb->next)
3890 #define skb_queue_reverse_walk(queue, skb) \
3891 for (skb = (queue)->prev; \
3892 skb != (struct sk_buff *)(queue); \
3895 #define skb_queue_reverse_walk_safe(queue, skb, tmp) \
3896 for (skb = (queue)->prev, tmp = skb->prev; \
3897 skb != (struct sk_buff *)(queue); \
3898 skb = tmp, tmp = skb->prev)
3900 #define skb_queue_reverse_walk_from_safe(queue, skb, tmp) \
3901 for (tmp = skb->prev; \
3902 skb != (struct sk_buff *)(queue); \
3903 skb = tmp, tmp = skb->prev)
3905 static inline bool skb_has_frag_list(const struct sk_buff *skb)
3907 return skb_shinfo(skb)->frag_list != NULL;
3910 static inline void skb_frag_list_init(struct sk_buff *skb)
3912 skb_shinfo(skb)->frag_list = NULL;
3915 #define skb_walk_frags(skb, iter) \
3916 for (iter = skb_shinfo(skb)->frag_list; iter; iter = iter->next)
3919 int __skb_wait_for_more_packets(struct sock *sk, struct sk_buff_head *queue,
3920 int *err, long *timeo_p,
3921 const struct sk_buff *skb);
3922 struct sk_buff *__skb_try_recv_from_queue(struct sock *sk,
3923 struct sk_buff_head *queue,
3926 struct sk_buff **last);
3927 struct sk_buff *__skb_try_recv_datagram(struct sock *sk,
3928 struct sk_buff_head *queue,
3929 unsigned int flags, int *off, int *err,
3930 struct sk_buff **last);
3931 struct sk_buff *__skb_recv_datagram(struct sock *sk,
3932 struct sk_buff_head *sk_queue,
3933 unsigned int flags, int *off, int *err);
3934 struct sk_buff *skb_recv_datagram(struct sock *sk, unsigned int flags, int *err);
3935 __poll_t datagram_poll(struct file *file, struct socket *sock,
3936 struct poll_table_struct *wait);
3937 int skb_copy_datagram_iter(const struct sk_buff *from, int offset,
3938 struct iov_iter *to, int size);
3939 static inline int skb_copy_datagram_msg(const struct sk_buff *from, int offset,
3940 struct msghdr *msg, int size)
3942 return skb_copy_datagram_iter(from, offset, &msg->msg_iter, size);
3944 int skb_copy_and_csum_datagram_msg(struct sk_buff *skb, int hlen,
3945 struct msghdr *msg);
3946 int skb_copy_and_hash_datagram_iter(const struct sk_buff *skb, int offset,
3947 struct iov_iter *to, int len,
3948 struct ahash_request *hash);
3949 int skb_copy_datagram_from_iter(struct sk_buff *skb, int offset,
3950 struct iov_iter *from, int len);
3951 int zerocopy_sg_from_iter(struct sk_buff *skb, struct iov_iter *frm);
3952 void skb_free_datagram(struct sock *sk, struct sk_buff *skb);
3953 void __skb_free_datagram_locked(struct sock *sk, struct sk_buff *skb, int len);
3954 static inline void skb_free_datagram_locked(struct sock *sk,
3955 struct sk_buff *skb)
3957 __skb_free_datagram_locked(sk, skb, 0);
3959 int skb_kill_datagram(struct sock *sk, struct sk_buff *skb, unsigned int flags);
3960 int skb_copy_bits(const struct sk_buff *skb, int offset, void *to, int len);
3961 int skb_store_bits(struct sk_buff *skb, int offset, const void *from, int len);
3962 __wsum skb_copy_and_csum_bits(const struct sk_buff *skb, int offset, u8 *to,
3964 int skb_splice_bits(struct sk_buff *skb, struct sock *sk, unsigned int offset,
3965 struct pipe_inode_info *pipe, unsigned int len,
3966 unsigned int flags);
3967 int skb_send_sock_locked(struct sock *sk, struct sk_buff *skb, int offset,
3969 int skb_send_sock(struct sock *sk, struct sk_buff *skb, int offset, int len);
3970 void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to);
3971 unsigned int skb_zerocopy_headlen(const struct sk_buff *from);
3972 int skb_zerocopy(struct sk_buff *to, struct sk_buff *from,
3974 void skb_split(struct sk_buff *skb, struct sk_buff *skb1, const u32 len);
3975 int skb_shift(struct sk_buff *tgt, struct sk_buff *skb, int shiftlen);
3976 void skb_scrub_packet(struct sk_buff *skb, bool xnet);
3977 struct sk_buff *skb_segment(struct sk_buff *skb, netdev_features_t features);
3978 struct sk_buff *skb_segment_list(struct sk_buff *skb, netdev_features_t features,
3979 unsigned int offset);
3980 struct sk_buff *skb_vlan_untag(struct sk_buff *skb);
3981 int skb_ensure_writable(struct sk_buff *skb, unsigned int write_len);
3982 int __skb_vlan_pop(struct sk_buff *skb, u16 *vlan_tci);
3983 int skb_vlan_pop(struct sk_buff *skb);
3984 int skb_vlan_push(struct sk_buff *skb, __be16 vlan_proto, u16 vlan_tci);
3985 int skb_eth_pop(struct sk_buff *skb);
3986 int skb_eth_push(struct sk_buff *skb, const unsigned char *dst,
3987 const unsigned char *src);
3988 int skb_mpls_push(struct sk_buff *skb, __be32 mpls_lse, __be16 mpls_proto,
3989 int mac_len, bool ethernet);
3990 int skb_mpls_pop(struct sk_buff *skb, __be16 next_proto, int mac_len,
3992 int skb_mpls_update_lse(struct sk_buff *skb, __be32 mpls_lse);
3993 int skb_mpls_dec_ttl(struct sk_buff *skb);
3994 struct sk_buff *pskb_extract(struct sk_buff *skb, int off, int to_copy,
3997 static inline int memcpy_from_msg(void *data, struct msghdr *msg, int len)
3999 return copy_from_iter_full(data, len, &msg->msg_iter) ? 0 : -EFAULT;
4002 static inline int memcpy_to_msg(struct msghdr *msg, void *data, int len)
4004 return copy_to_iter(data, len, &msg->msg_iter) == len ? 0 : -EFAULT;
4007 struct skb_checksum_ops {
4008 __wsum (*update)(const void *mem, int len, __wsum wsum);
4009 __wsum (*combine)(__wsum csum, __wsum csum2, int offset, int len);
4012 extern const struct skb_checksum_ops *crc32c_csum_stub __read_mostly;
4014 __wsum __skb_checksum(const struct sk_buff *skb, int offset, int len,
4015 __wsum csum, const struct skb_checksum_ops *ops);
4016 __wsum skb_checksum(const struct sk_buff *skb, int offset, int len,
4019 static inline void * __must_check
4020 __skb_header_pointer(const struct sk_buff *skb, int offset, int len,
4021 const void *data, int hlen, void *buffer)
4023 if (likely(hlen - offset >= len))
4024 return (void *)data + offset;
4026 if (!skb || !buffer || unlikely(skb_copy_bits(skb, offset, buffer, len) < 0))
4032 static inline void * __must_check
4033 skb_header_pointer(const struct sk_buff *skb, int offset, int len, void *buffer)
4035 return __skb_header_pointer(skb, offset, len, skb->data,
4036 skb_headlen(skb), buffer);
4040 * skb_needs_linearize - check if we need to linearize a given skb
4041 * depending on the given device features.
4042 * @skb: socket buffer to check
4043 * @features: net device features
4045 * Returns true if either:
4046 * 1. skb has frag_list and the device doesn't support FRAGLIST, or
4047 * 2. skb is fragmented and the device does not support SG.
4049 static inline bool skb_needs_linearize(struct sk_buff *skb,
4050 netdev_features_t features)
4052 return skb_is_nonlinear(skb) &&
4053 ((skb_has_frag_list(skb) && !(features & NETIF_F_FRAGLIST)) ||
4054 (skb_shinfo(skb)->nr_frags && !(features & NETIF_F_SG)));
4057 static inline void skb_copy_from_linear_data(const struct sk_buff *skb,
4059 const unsigned int len)
4061 memcpy(to, skb->data, len);
4064 static inline void skb_copy_from_linear_data_offset(const struct sk_buff *skb,
4065 const int offset, void *to,
4066 const unsigned int len)
4068 memcpy(to, skb->data + offset, len);
4071 static inline void skb_copy_to_linear_data(struct sk_buff *skb,
4073 const unsigned int len)
4075 memcpy(skb->data, from, len);
4078 static inline void skb_copy_to_linear_data_offset(struct sk_buff *skb,
4081 const unsigned int len)
4083 memcpy(skb->data + offset, from, len);
4086 void skb_init(void);
4088 static inline ktime_t skb_get_ktime(const struct sk_buff *skb)
4094 * skb_get_timestamp - get timestamp from a skb
4095 * @skb: skb to get stamp from
4096 * @stamp: pointer to struct __kernel_old_timeval to store stamp in
4098 * Timestamps are stored in the skb as offsets to a base timestamp.
4099 * This function converts the offset back to a struct timeval and stores
4102 static inline void skb_get_timestamp(const struct sk_buff *skb,
4103 struct __kernel_old_timeval *stamp)
4105 *stamp = ns_to_kernel_old_timeval(skb->tstamp);
4108 static inline void skb_get_new_timestamp(const struct sk_buff *skb,
4109 struct __kernel_sock_timeval *stamp)
4111 struct timespec64 ts = ktime_to_timespec64(skb->tstamp);
4113 stamp->tv_sec = ts.tv_sec;
4114 stamp->tv_usec = ts.tv_nsec / 1000;
4117 static inline void skb_get_timestampns(const struct sk_buff *skb,
4118 struct __kernel_old_timespec *stamp)
4120 struct timespec64 ts = ktime_to_timespec64(skb->tstamp);
4122 stamp->tv_sec = ts.tv_sec;
4123 stamp->tv_nsec = ts.tv_nsec;
4126 static inline void skb_get_new_timestampns(const struct sk_buff *skb,
4127 struct __kernel_timespec *stamp)
4129 struct timespec64 ts = ktime_to_timespec64(skb->tstamp);
4131 stamp->tv_sec = ts.tv_sec;
4132 stamp->tv_nsec = ts.tv_nsec;
4135 static inline void __net_timestamp(struct sk_buff *skb)
4137 skb->tstamp = ktime_get_real();
4138 skb->mono_delivery_time = 0;
4141 static inline ktime_t net_timedelta(ktime_t t)
4143 return ktime_sub(ktime_get_real(), t);
4146 static inline void skb_set_delivery_time(struct sk_buff *skb, ktime_t kt,
4150 skb->mono_delivery_time = kt && mono;
4153 DECLARE_STATIC_KEY_FALSE(netstamp_needed_key);
4155 /* It is used in the ingress path to clear the delivery_time.
4156 * If needed, set the skb->tstamp to the (rcv) timestamp.
4158 static inline void skb_clear_delivery_time(struct sk_buff *skb)
4160 if (skb->mono_delivery_time) {
4161 skb->mono_delivery_time = 0;
4162 if (static_branch_unlikely(&netstamp_needed_key))
4163 skb->tstamp = ktime_get_real();
4169 static inline void skb_clear_tstamp(struct sk_buff *skb)
4171 if (skb->mono_delivery_time)
4177 static inline ktime_t skb_tstamp(const struct sk_buff *skb)
4179 if (skb->mono_delivery_time)
4185 static inline ktime_t skb_tstamp_cond(const struct sk_buff *skb, bool cond)
4187 if (!skb->mono_delivery_time && skb->tstamp)
4190 if (static_branch_unlikely(&netstamp_needed_key) || cond)
4191 return ktime_get_real();
4196 static inline u8 skb_metadata_len(const struct sk_buff *skb)
4198 return skb_shinfo(skb)->meta_len;
4201 static inline void *skb_metadata_end(const struct sk_buff *skb)
4203 return skb_mac_header(skb);
4206 static inline bool __skb_metadata_differs(const struct sk_buff *skb_a,
4207 const struct sk_buff *skb_b,
4210 const void *a = skb_metadata_end(skb_a);
4211 const void *b = skb_metadata_end(skb_b);
4212 /* Using more efficient varaiant than plain call to memcmp(). */
4213 #if defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS) && BITS_PER_LONG == 64
4217 #define __it(x, op) (x -= sizeof(u##op))
4218 #define __it_diff(a, b, op) (*(u##op *)__it(a, op)) ^ (*(u##op *)__it(b, op))
4219 case 32: diffs |= __it_diff(a, b, 64);
4221 case 24: diffs |= __it_diff(a, b, 64);
4223 case 16: diffs |= __it_diff(a, b, 64);
4225 case 8: diffs |= __it_diff(a, b, 64);
4227 case 28: diffs |= __it_diff(a, b, 64);
4229 case 20: diffs |= __it_diff(a, b, 64);
4231 case 12: diffs |= __it_diff(a, b, 64);
4233 case 4: diffs |= __it_diff(a, b, 32);
4238 return memcmp(a - meta_len, b - meta_len, meta_len);
4242 static inline bool skb_metadata_differs(const struct sk_buff *skb_a,
4243 const struct sk_buff *skb_b)
4245 u8 len_a = skb_metadata_len(skb_a);
4246 u8 len_b = skb_metadata_len(skb_b);
4248 if (!(len_a | len_b))
4251 return len_a != len_b ?
4252 true : __skb_metadata_differs(skb_a, skb_b, len_a);
4255 static inline void skb_metadata_set(struct sk_buff *skb, u8 meta_len)
4257 skb_shinfo(skb)->meta_len = meta_len;
4260 static inline void skb_metadata_clear(struct sk_buff *skb)
4262 skb_metadata_set(skb, 0);
4265 struct sk_buff *skb_clone_sk(struct sk_buff *skb);
4267 #ifdef CONFIG_NETWORK_PHY_TIMESTAMPING
4269 void skb_clone_tx_timestamp(struct sk_buff *skb);
4270 bool skb_defer_rx_timestamp(struct sk_buff *skb);
4272 #else /* CONFIG_NETWORK_PHY_TIMESTAMPING */
4274 static inline void skb_clone_tx_timestamp(struct sk_buff *skb)
4278 static inline bool skb_defer_rx_timestamp(struct sk_buff *skb)
4283 #endif /* !CONFIG_NETWORK_PHY_TIMESTAMPING */
4286 * skb_complete_tx_timestamp() - deliver cloned skb with tx timestamps
4288 * PHY drivers may accept clones of transmitted packets for
4289 * timestamping via their phy_driver.txtstamp method. These drivers
4290 * must call this function to return the skb back to the stack with a
4293 * @skb: clone of the original outgoing packet
4294 * @hwtstamps: hardware time stamps
4297 void skb_complete_tx_timestamp(struct sk_buff *skb,
4298 struct skb_shared_hwtstamps *hwtstamps);
4300 void __skb_tstamp_tx(struct sk_buff *orig_skb, const struct sk_buff *ack_skb,
4301 struct skb_shared_hwtstamps *hwtstamps,
4302 struct sock *sk, int tstype);
4305 * skb_tstamp_tx - queue clone of skb with send time stamps
4306 * @orig_skb: the original outgoing packet
4307 * @hwtstamps: hardware time stamps, may be NULL if not available
4309 * If the skb has a socket associated, then this function clones the
4310 * skb (thus sharing the actual data and optional structures), stores
4311 * the optional hardware time stamping information (if non NULL) or
4312 * generates a software time stamp (otherwise), then queues the clone
4313 * to the error queue of the socket. Errors are silently ignored.
4315 void skb_tstamp_tx(struct sk_buff *orig_skb,
4316 struct skb_shared_hwtstamps *hwtstamps);
4319 * skb_tx_timestamp() - Driver hook for transmit timestamping
4321 * Ethernet MAC Drivers should call this function in their hard_xmit()
4322 * function immediately before giving the sk_buff to the MAC hardware.
4324 * Specifically, one should make absolutely sure that this function is
4325 * called before TX completion of this packet can trigger. Otherwise
4326 * the packet could potentially already be freed.
4328 * @skb: A socket buffer.
4330 static inline void skb_tx_timestamp(struct sk_buff *skb)
4332 skb_clone_tx_timestamp(skb);
4333 if (skb_shinfo(skb)->tx_flags & SKBTX_SW_TSTAMP)
4334 skb_tstamp_tx(skb, NULL);
4338 * skb_complete_wifi_ack - deliver skb with wifi status
4340 * @skb: the original outgoing packet
4341 * @acked: ack status
4344 void skb_complete_wifi_ack(struct sk_buff *skb, bool acked);
4346 __sum16 __skb_checksum_complete_head(struct sk_buff *skb, int len);
4347 __sum16 __skb_checksum_complete(struct sk_buff *skb);
4349 static inline int skb_csum_unnecessary(const struct sk_buff *skb)
4351 return ((skb->ip_summed == CHECKSUM_UNNECESSARY) ||
4353 (skb->ip_summed == CHECKSUM_PARTIAL &&
4354 skb_checksum_start_offset(skb) >= 0));
4358 * skb_checksum_complete - Calculate checksum of an entire packet
4359 * @skb: packet to process
4361 * This function calculates the checksum over the entire packet plus
4362 * the value of skb->csum. The latter can be used to supply the
4363 * checksum of a pseudo header as used by TCP/UDP. It returns the
4366 * For protocols that contain complete checksums such as ICMP/TCP/UDP,
4367 * this function can be used to verify that checksum on received
4368 * packets. In that case the function should return zero if the
4369 * checksum is correct. In particular, this function will return zero
4370 * if skb->ip_summed is CHECKSUM_UNNECESSARY which indicates that the
4371 * hardware has already verified the correctness of the checksum.
4373 static inline __sum16 skb_checksum_complete(struct sk_buff *skb)
4375 return skb_csum_unnecessary(skb) ?
4376 0 : __skb_checksum_complete(skb);
4379 static inline void __skb_decr_checksum_unnecessary(struct sk_buff *skb)
4381 if (skb->ip_summed == CHECKSUM_UNNECESSARY) {
4382 if (skb->csum_level == 0)
4383 skb->ip_summed = CHECKSUM_NONE;
4389 static inline void __skb_incr_checksum_unnecessary(struct sk_buff *skb)
4391 if (skb->ip_summed == CHECKSUM_UNNECESSARY) {
4392 if (skb->csum_level < SKB_MAX_CSUM_LEVEL)
4394 } else if (skb->ip_summed == CHECKSUM_NONE) {
4395 skb->ip_summed = CHECKSUM_UNNECESSARY;
4396 skb->csum_level = 0;
4400 static inline void __skb_reset_checksum_unnecessary(struct sk_buff *skb)
4402 if (skb->ip_summed == CHECKSUM_UNNECESSARY) {
4403 skb->ip_summed = CHECKSUM_NONE;
4404 skb->csum_level = 0;
4408 /* Check if we need to perform checksum complete validation.
4410 * Returns true if checksum complete is needed, false otherwise
4411 * (either checksum is unnecessary or zero checksum is allowed).
4413 static inline bool __skb_checksum_validate_needed(struct sk_buff *skb,
4417 if (skb_csum_unnecessary(skb) || (zero_okay && !check)) {
4418 skb->csum_valid = 1;
4419 __skb_decr_checksum_unnecessary(skb);
4426 /* For small packets <= CHECKSUM_BREAK perform checksum complete directly
4429 #define CHECKSUM_BREAK 76
4431 /* Unset checksum-complete
4433 * Unset checksum complete can be done when packet is being modified
4434 * (uncompressed for instance) and checksum-complete value is
4437 static inline void skb_checksum_complete_unset(struct sk_buff *skb)
4439 if (skb->ip_summed == CHECKSUM_COMPLETE)
4440 skb->ip_summed = CHECKSUM_NONE;
4443 /* Validate (init) checksum based on checksum complete.
4446 * 0: checksum is validated or try to in skb_checksum_complete. In the latter
4447 * case the ip_summed will not be CHECKSUM_UNNECESSARY and the pseudo
4448 * checksum is stored in skb->csum for use in __skb_checksum_complete
4449 * non-zero: value of invalid checksum
4452 static inline __sum16 __skb_checksum_validate_complete(struct sk_buff *skb,
4456 if (skb->ip_summed == CHECKSUM_COMPLETE) {
4457 if (!csum_fold(csum_add(psum, skb->csum))) {
4458 skb->csum_valid = 1;
4465 if (complete || skb->len <= CHECKSUM_BREAK) {
4468 csum = __skb_checksum_complete(skb);
4469 skb->csum_valid = !csum;
4476 static inline __wsum null_compute_pseudo(struct sk_buff *skb, int proto)
4481 /* Perform checksum validate (init). Note that this is a macro since we only
4482 * want to calculate the pseudo header which is an input function if necessary.
4483 * First we try to validate without any computation (checksum unnecessary) and
4484 * then calculate based on checksum complete calling the function to compute
4488 * 0: checksum is validated or try to in skb_checksum_complete
4489 * non-zero: value of invalid checksum
4491 #define __skb_checksum_validate(skb, proto, complete, \
4492 zero_okay, check, compute_pseudo) \
4494 __sum16 __ret = 0; \
4495 skb->csum_valid = 0; \
4496 if (__skb_checksum_validate_needed(skb, zero_okay, check)) \
4497 __ret = __skb_checksum_validate_complete(skb, \
4498 complete, compute_pseudo(skb, proto)); \
4502 #define skb_checksum_init(skb, proto, compute_pseudo) \
4503 __skb_checksum_validate(skb, proto, false, false, 0, compute_pseudo)
4505 #define skb_checksum_init_zero_check(skb, proto, check, compute_pseudo) \
4506 __skb_checksum_validate(skb, proto, false, true, check, compute_pseudo)
4508 #define skb_checksum_validate(skb, proto, compute_pseudo) \
4509 __skb_checksum_validate(skb, proto, true, false, 0, compute_pseudo)
4511 #define skb_checksum_validate_zero_check(skb, proto, check, \
4513 __skb_checksum_validate(skb, proto, true, true, check, compute_pseudo)
4515 #define skb_checksum_simple_validate(skb) \
4516 __skb_checksum_validate(skb, 0, true, false, 0, null_compute_pseudo)
4518 static inline bool __skb_checksum_convert_check(struct sk_buff *skb)
4520 return (skb->ip_summed == CHECKSUM_NONE && skb->csum_valid);
4523 static inline void __skb_checksum_convert(struct sk_buff *skb, __wsum pseudo)
4525 skb->csum = ~pseudo;
4526 skb->ip_summed = CHECKSUM_COMPLETE;
4529 #define skb_checksum_try_convert(skb, proto, compute_pseudo) \
4531 if (__skb_checksum_convert_check(skb)) \
4532 __skb_checksum_convert(skb, compute_pseudo(skb, proto)); \
4535 static inline void skb_remcsum_adjust_partial(struct sk_buff *skb, void *ptr,
4536 u16 start, u16 offset)
4538 skb->ip_summed = CHECKSUM_PARTIAL;
4539 skb->csum_start = ((unsigned char *)ptr + start) - skb->head;
4540 skb->csum_offset = offset - start;
4543 /* Update skbuf and packet to reflect the remote checksum offload operation.
4544 * When called, ptr indicates the starting point for skb->csum when
4545 * ip_summed is CHECKSUM_COMPLETE. If we need create checksum complete
4546 * here, skb_postpull_rcsum is done so skb->csum start is ptr.
4548 static inline void skb_remcsum_process(struct sk_buff *skb, void *ptr,
4549 int start, int offset, bool nopartial)
4554 skb_remcsum_adjust_partial(skb, ptr, start, offset);
4558 if (unlikely(skb->ip_summed != CHECKSUM_COMPLETE)) {
4559 __skb_checksum_complete(skb);
4560 skb_postpull_rcsum(skb, skb->data, ptr - (void *)skb->data);
4563 delta = remcsum_adjust(ptr, skb->csum, start, offset);
4565 /* Adjust skb->csum since we changed the packet */
4566 skb->csum = csum_add(skb->csum, delta);
4569 static inline struct nf_conntrack *skb_nfct(const struct sk_buff *skb)
4571 #if IS_ENABLED(CONFIG_NF_CONNTRACK)
4572 return (void *)(skb->_nfct & NFCT_PTRMASK);
4578 static inline unsigned long skb_get_nfct(const struct sk_buff *skb)
4580 #if IS_ENABLED(CONFIG_NF_CONNTRACK)
4587 static inline void skb_set_nfct(struct sk_buff *skb, unsigned long nfct)
4589 #if IS_ENABLED(CONFIG_NF_CONNTRACK)
4590 skb->slow_gro |= !!nfct;
4595 #ifdef CONFIG_SKB_EXTENSIONS
4597 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
4603 #if IS_ENABLED(CONFIG_NET_TC_SKB_EXT)
4606 #if IS_ENABLED(CONFIG_MPTCP)
4609 #if IS_ENABLED(CONFIG_MCTP_FLOWS)
4612 SKB_EXT_NUM, /* must be last */
4616 * struct skb_ext - sk_buff extensions
4617 * @refcnt: 1 on allocation, deallocated on 0
4618 * @offset: offset to add to @data to obtain extension address
4619 * @chunks: size currently allocated, stored in SKB_EXT_ALIGN_SHIFT units
4620 * @data: start of extension data, variable sized
4622 * Note: offsets/lengths are stored in chunks of 8 bytes, this allows
4623 * to use 'u8' types while allowing up to 2kb worth of extension data.
4627 u8 offset[SKB_EXT_NUM]; /* in chunks of 8 bytes */
4628 u8 chunks; /* same */
4629 char data[] __aligned(8);
4632 struct skb_ext *__skb_ext_alloc(gfp_t flags);
4633 void *__skb_ext_set(struct sk_buff *skb, enum skb_ext_id id,
4634 struct skb_ext *ext);
4635 void *skb_ext_add(struct sk_buff *skb, enum skb_ext_id id);
4636 void __skb_ext_del(struct sk_buff *skb, enum skb_ext_id id);
4637 void __skb_ext_put(struct skb_ext *ext);
4639 static inline void skb_ext_put(struct sk_buff *skb)
4641 if (skb->active_extensions)
4642 __skb_ext_put(skb->extensions);
4645 static inline void __skb_ext_copy(struct sk_buff *dst,
4646 const struct sk_buff *src)
4648 dst->active_extensions = src->active_extensions;
4650 if (src->active_extensions) {
4651 struct skb_ext *ext = src->extensions;
4653 refcount_inc(&ext->refcnt);
4654 dst->extensions = ext;
4658 static inline void skb_ext_copy(struct sk_buff *dst, const struct sk_buff *src)
4661 __skb_ext_copy(dst, src);
4664 static inline bool __skb_ext_exist(const struct skb_ext *ext, enum skb_ext_id i)
4666 return !!ext->offset[i];
4669 static inline bool skb_ext_exist(const struct sk_buff *skb, enum skb_ext_id id)
4671 return skb->active_extensions & (1 << id);
4674 static inline void skb_ext_del(struct sk_buff *skb, enum skb_ext_id id)
4676 if (skb_ext_exist(skb, id))
4677 __skb_ext_del(skb, id);
4680 static inline void *skb_ext_find(const struct sk_buff *skb, enum skb_ext_id id)
4682 if (skb_ext_exist(skb, id)) {
4683 struct skb_ext *ext = skb->extensions;
4685 return (void *)ext + (ext->offset[id] << 3);
4691 static inline void skb_ext_reset(struct sk_buff *skb)
4693 if (unlikely(skb->active_extensions)) {
4694 __skb_ext_put(skb->extensions);
4695 skb->active_extensions = 0;
4699 static inline bool skb_has_extensions(struct sk_buff *skb)
4701 return unlikely(skb->active_extensions);
4704 static inline void skb_ext_put(struct sk_buff *skb) {}
4705 static inline void skb_ext_reset(struct sk_buff *skb) {}
4706 static inline void skb_ext_del(struct sk_buff *skb, int unused) {}
4707 static inline void __skb_ext_copy(struct sk_buff *d, const struct sk_buff *s) {}
4708 static inline void skb_ext_copy(struct sk_buff *dst, const struct sk_buff *s) {}
4709 static inline bool skb_has_extensions(struct sk_buff *skb) { return false; }
4710 #endif /* CONFIG_SKB_EXTENSIONS */
4712 static inline void nf_reset_ct(struct sk_buff *skb)
4714 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
4715 nf_conntrack_put(skb_nfct(skb));
4720 static inline void nf_reset_trace(struct sk_buff *skb)
4722 #if IS_ENABLED(CONFIG_NETFILTER_XT_TARGET_TRACE) || IS_ENABLED(CONFIG_NF_TABLES)
4727 static inline void ipvs_reset(struct sk_buff *skb)
4729 #if IS_ENABLED(CONFIG_IP_VS)
4730 skb->ipvs_property = 0;
4734 /* Note: This doesn't put any conntrack info in dst. */
4735 static inline void __nf_copy(struct sk_buff *dst, const struct sk_buff *src,
4738 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
4739 dst->_nfct = src->_nfct;
4740 nf_conntrack_get(skb_nfct(src));
4742 #if IS_ENABLED(CONFIG_NETFILTER_XT_TARGET_TRACE) || IS_ENABLED(CONFIG_NF_TABLES)
4744 dst->nf_trace = src->nf_trace;
4748 static inline void nf_copy(struct sk_buff *dst, const struct sk_buff *src)
4750 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
4751 nf_conntrack_put(skb_nfct(dst));
4753 dst->slow_gro = src->slow_gro;
4754 __nf_copy(dst, src, true);
4757 #ifdef CONFIG_NETWORK_SECMARK
4758 static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from)
4760 to->secmark = from->secmark;
4763 static inline void skb_init_secmark(struct sk_buff *skb)
4768 static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from)
4771 static inline void skb_init_secmark(struct sk_buff *skb)
4775 static inline int secpath_exists(const struct sk_buff *skb)
4778 return skb_ext_exist(skb, SKB_EXT_SEC_PATH);
4784 static inline bool skb_irq_freeable(const struct sk_buff *skb)
4786 return !skb->destructor &&
4787 !secpath_exists(skb) &&
4789 !skb->_skb_refdst &&
4790 !skb_has_frag_list(skb);
4793 static inline void skb_set_queue_mapping(struct sk_buff *skb, u16 queue_mapping)
4795 skb->queue_mapping = queue_mapping;
4798 static inline u16 skb_get_queue_mapping(const struct sk_buff *skb)
4800 return skb->queue_mapping;
4803 static inline void skb_copy_queue_mapping(struct sk_buff *to, const struct sk_buff *from)
4805 to->queue_mapping = from->queue_mapping;
4808 static inline void skb_record_rx_queue(struct sk_buff *skb, u16 rx_queue)
4810 skb->queue_mapping = rx_queue + 1;
4813 static inline u16 skb_get_rx_queue(const struct sk_buff *skb)
4815 return skb->queue_mapping - 1;
4818 static inline bool skb_rx_queue_recorded(const struct sk_buff *skb)
4820 return skb->queue_mapping != 0;
4823 static inline void skb_set_dst_pending_confirm(struct sk_buff *skb, u32 val)
4825 skb->dst_pending_confirm = val;
4828 static inline bool skb_get_dst_pending_confirm(const struct sk_buff *skb)
4830 return skb->dst_pending_confirm != 0;
4833 static inline struct sec_path *skb_sec_path(const struct sk_buff *skb)
4836 return skb_ext_find(skb, SKB_EXT_SEC_PATH);
4842 static inline bool skb_is_gso(const struct sk_buff *skb)
4844 return skb_shinfo(skb)->gso_size;
4847 /* Note: Should be called only if skb_is_gso(skb) is true */
4848 static inline bool skb_is_gso_v6(const struct sk_buff *skb)
4850 return skb_shinfo(skb)->gso_type & SKB_GSO_TCPV6;
4853 /* Note: Should be called only if skb_is_gso(skb) is true */
4854 static inline bool skb_is_gso_sctp(const struct sk_buff *skb)
4856 return skb_shinfo(skb)->gso_type & SKB_GSO_SCTP;
4859 /* Note: Should be called only if skb_is_gso(skb) is true */
4860 static inline bool skb_is_gso_tcp(const struct sk_buff *skb)
4862 return skb_shinfo(skb)->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6);
4865 static inline void skb_gso_reset(struct sk_buff *skb)
4867 skb_shinfo(skb)->gso_size = 0;
4868 skb_shinfo(skb)->gso_segs = 0;
4869 skb_shinfo(skb)->gso_type = 0;
4872 static inline void skb_increase_gso_size(struct skb_shared_info *shinfo,
4875 if (WARN_ON_ONCE(shinfo->gso_size == GSO_BY_FRAGS))
4877 shinfo->gso_size += increment;
4880 static inline void skb_decrease_gso_size(struct skb_shared_info *shinfo,
4883 if (WARN_ON_ONCE(shinfo->gso_size == GSO_BY_FRAGS))
4885 shinfo->gso_size -= decrement;
4888 void __skb_warn_lro_forwarding(const struct sk_buff *skb);
4890 static inline bool skb_warn_if_lro(const struct sk_buff *skb)
4892 /* LRO sets gso_size but not gso_type, whereas if GSO is really
4893 * wanted then gso_type will be set. */
4894 const struct skb_shared_info *shinfo = skb_shinfo(skb);
4896 if (skb_is_nonlinear(skb) && shinfo->gso_size != 0 &&
4897 unlikely(shinfo->gso_type == 0)) {
4898 __skb_warn_lro_forwarding(skb);
4904 static inline void skb_forward_csum(struct sk_buff *skb)
4906 /* Unfortunately we don't support this one. Any brave souls? */
4907 if (skb->ip_summed == CHECKSUM_COMPLETE)
4908 skb->ip_summed = CHECKSUM_NONE;
4912 * skb_checksum_none_assert - make sure skb ip_summed is CHECKSUM_NONE
4913 * @skb: skb to check
4915 * fresh skbs have their ip_summed set to CHECKSUM_NONE.
4916 * Instead of forcing ip_summed to CHECKSUM_NONE, we can
4917 * use this helper, to document places where we make this assertion.
4919 static inline void skb_checksum_none_assert(const struct sk_buff *skb)
4921 DEBUG_NET_WARN_ON_ONCE(skb->ip_summed != CHECKSUM_NONE);
4924 bool skb_partial_csum_set(struct sk_buff *skb, u16 start, u16 off);
4926 int skb_checksum_setup(struct sk_buff *skb, bool recalculate);
4927 struct sk_buff *skb_checksum_trimmed(struct sk_buff *skb,
4928 unsigned int transport_len,
4929 __sum16(*skb_chkf)(struct sk_buff *skb));
4932 * skb_head_is_locked - Determine if the skb->head is locked down
4933 * @skb: skb to check
4935 * The head on skbs build around a head frag can be removed if they are
4936 * not cloned. This function returns true if the skb head is locked down
4937 * due to either being allocated via kmalloc, or by being a clone with
4938 * multiple references to the head.
4940 static inline bool skb_head_is_locked(const struct sk_buff *skb)
4942 return !skb->head_frag || skb_cloned(skb);
4945 /* Local Checksum Offload.
4946 * Compute outer checksum based on the assumption that the
4947 * inner checksum will be offloaded later.
4948 * See Documentation/networking/checksum-offloads.rst for
4949 * explanation of how this works.
4950 * Fill in outer checksum adjustment (e.g. with sum of outer
4951 * pseudo-header) before calling.
4952 * Also ensure that inner checksum is in linear data area.
4954 static inline __wsum lco_csum(struct sk_buff *skb)
4956 unsigned char *csum_start = skb_checksum_start(skb);
4957 unsigned char *l4_hdr = skb_transport_header(skb);
4960 /* Start with complement of inner checksum adjustment */
4961 partial = ~csum_unfold(*(__force __sum16 *)(csum_start +
4964 /* Add in checksum of our headers (incl. outer checksum
4965 * adjustment filled in by caller) and return result.
4967 return csum_partial(l4_hdr, csum_start - l4_hdr, partial);
4970 static inline bool skb_is_redirected(const struct sk_buff *skb)
4972 return skb->redirected;
4975 static inline void skb_set_redirected(struct sk_buff *skb, bool from_ingress)
4977 skb->redirected = 1;
4978 #ifdef CONFIG_NET_REDIRECT
4979 skb->from_ingress = from_ingress;
4980 if (skb->from_ingress)
4981 skb_clear_tstamp(skb);
4985 static inline void skb_reset_redirect(struct sk_buff *skb)
4987 skb->redirected = 0;
4990 static inline void skb_set_redirected_noclear(struct sk_buff *skb,
4993 skb->redirected = 1;
4994 #ifdef CONFIG_NET_REDIRECT
4995 skb->from_ingress = from_ingress;
4999 static inline bool skb_csum_is_sctp(struct sk_buff *skb)
5001 #if IS_ENABLED(CONFIG_IP_SCTP)
5002 return skb->csum_not_inet;
5008 static inline void skb_reset_csum_not_inet(struct sk_buff *skb)
5010 skb->ip_summed = CHECKSUM_NONE;
5011 #if IS_ENABLED(CONFIG_IP_SCTP)
5012 skb->csum_not_inet = 0;
5016 static inline void skb_set_kcov_handle(struct sk_buff *skb,
5017 const u64 kcov_handle)
5020 skb->kcov_handle = kcov_handle;
5024 static inline u64 skb_get_kcov_handle(struct sk_buff *skb)
5027 return skb->kcov_handle;
5033 static inline void skb_mark_for_recycle(struct sk_buff *skb)
5035 #ifdef CONFIG_PAGE_POOL
5036 skb->pp_recycle = 1;
5040 ssize_t skb_splice_from_iter(struct sk_buff *skb, struct iov_iter *iter,
5041 ssize_t maxsize, gfp_t gfp);
5043 #endif /* __KERNEL__ */
5044 #endif /* _LINUX_SKBUFF_H */