mm: migrate: check movability of hugepage in unmap_and_move_huge_page()
[platform/adaptation/renesas_rcar/renesas_kernel.git] / include / linux / seqlock.h
1 #ifndef __LINUX_SEQLOCK_H
2 #define __LINUX_SEQLOCK_H
3 /*
4  * Reader/writer consistent mechanism without starving writers. This type of
5  * lock for data where the reader wants a consistent set of information
6  * and is willing to retry if the information changes.  Readers never
7  * block but they may have to retry if a writer is in
8  * progress. Writers do not wait for readers. 
9  *
10  * This is not as cache friendly as brlock. Also, this will not work
11  * for data that contains pointers, because any writer could
12  * invalidate a pointer that a reader was following.
13  *
14  * Expected reader usage:
15  *      do {
16  *          seq = read_seqbegin(&foo);
17  *      ...
18  *      } while (read_seqretry(&foo, seq));
19  *
20  *
21  * On non-SMP the spin locks disappear but the writer still needs
22  * to increment the sequence variables because an interrupt routine could
23  * change the state of the data.
24  *
25  * Based on x86_64 vsyscall gettimeofday 
26  * by Keith Owens and Andrea Arcangeli
27  */
28
29 #include <linux/spinlock.h>
30 #include <linux/preempt.h>
31 #include <asm/processor.h>
32
33 /*
34  * Version using sequence counter only.
35  * This can be used when code has its own mutex protecting the
36  * updating starting before the write_seqcountbeqin() and ending
37  * after the write_seqcount_end().
38  */
39 typedef struct seqcount {
40         unsigned sequence;
41 } seqcount_t;
42
43 #define SEQCNT_ZERO { 0 }
44 #define seqcount_init(x)        do { *(x) = (seqcount_t) SEQCNT_ZERO; } while (0)
45
46 /**
47  * __read_seqcount_begin - begin a seq-read critical section (without barrier)
48  * @s: pointer to seqcount_t
49  * Returns: count to be passed to read_seqcount_retry
50  *
51  * __read_seqcount_begin is like read_seqcount_begin, but has no smp_rmb()
52  * barrier. Callers should ensure that smp_rmb() or equivalent ordering is
53  * provided before actually loading any of the variables that are to be
54  * protected in this critical section.
55  *
56  * Use carefully, only in critical code, and comment how the barrier is
57  * provided.
58  */
59 static inline unsigned __read_seqcount_begin(const seqcount_t *s)
60 {
61         unsigned ret;
62
63 repeat:
64         ret = ACCESS_ONCE(s->sequence);
65         if (unlikely(ret & 1)) {
66                 cpu_relax();
67                 goto repeat;
68         }
69         return ret;
70 }
71
72 /**
73  * read_seqcount_begin - begin a seq-read critical section
74  * @s: pointer to seqcount_t
75  * Returns: count to be passed to read_seqcount_retry
76  *
77  * read_seqcount_begin opens a read critical section of the given seqcount.
78  * Validity of the critical section is tested by checking read_seqcount_retry
79  * function.
80  */
81 static inline unsigned read_seqcount_begin(const seqcount_t *s)
82 {
83         unsigned ret = __read_seqcount_begin(s);
84         smp_rmb();
85         return ret;
86 }
87
88 /**
89  * raw_seqcount_begin - begin a seq-read critical section
90  * @s: pointer to seqcount_t
91  * Returns: count to be passed to read_seqcount_retry
92  *
93  * raw_seqcount_begin opens a read critical section of the given seqcount.
94  * Validity of the critical section is tested by checking read_seqcount_retry
95  * function.
96  *
97  * Unlike read_seqcount_begin(), this function will not wait for the count
98  * to stabilize. If a writer is active when we begin, we will fail the
99  * read_seqcount_retry() instead of stabilizing at the beginning of the
100  * critical section.
101  */
102 static inline unsigned raw_seqcount_begin(const seqcount_t *s)
103 {
104         unsigned ret = ACCESS_ONCE(s->sequence);
105         smp_rmb();
106         return ret & ~1;
107 }
108
109 /**
110  * __read_seqcount_retry - end a seq-read critical section (without barrier)
111  * @s: pointer to seqcount_t
112  * @start: count, from read_seqcount_begin
113  * Returns: 1 if retry is required, else 0
114  *
115  * __read_seqcount_retry is like read_seqcount_retry, but has no smp_rmb()
116  * barrier. Callers should ensure that smp_rmb() or equivalent ordering is
117  * provided before actually loading any of the variables that are to be
118  * protected in this critical section.
119  *
120  * Use carefully, only in critical code, and comment how the barrier is
121  * provided.
122  */
123 static inline int __read_seqcount_retry(const seqcount_t *s, unsigned start)
124 {
125         return unlikely(s->sequence != start);
126 }
127
128 /**
129  * read_seqcount_retry - end a seq-read critical section
130  * @s: pointer to seqcount_t
131  * @start: count, from read_seqcount_begin
132  * Returns: 1 if retry is required, else 0
133  *
134  * read_seqcount_retry closes a read critical section of the given seqcount.
135  * If the critical section was invalid, it must be ignored (and typically
136  * retried).
137  */
138 static inline int read_seqcount_retry(const seqcount_t *s, unsigned start)
139 {
140         smp_rmb();
141         return __read_seqcount_retry(s, start);
142 }
143
144
145 /*
146  * Sequence counter only version assumes that callers are using their
147  * own mutexing.
148  */
149 static inline void write_seqcount_begin(seqcount_t *s)
150 {
151         s->sequence++;
152         smp_wmb();
153 }
154
155 static inline void write_seqcount_end(seqcount_t *s)
156 {
157         smp_wmb();
158         s->sequence++;
159 }
160
161 /**
162  * write_seqcount_barrier - invalidate in-progress read-side seq operations
163  * @s: pointer to seqcount_t
164  *
165  * After write_seqcount_barrier, no read-side seq operations will complete
166  * successfully and see data older than this.
167  */
168 static inline void write_seqcount_barrier(seqcount_t *s)
169 {
170         smp_wmb();
171         s->sequence+=2;
172 }
173
174 typedef struct {
175         struct seqcount seqcount;
176         spinlock_t lock;
177 } seqlock_t;
178
179 /*
180  * These macros triggered gcc-3.x compile-time problems.  We think these are
181  * OK now.  Be cautious.
182  */
183 #define __SEQLOCK_UNLOCKED(lockname)                    \
184         {                                               \
185                 .seqcount = SEQCNT_ZERO,                \
186                 .lock = __SPIN_LOCK_UNLOCKED(lockname)  \
187         }
188
189 #define seqlock_init(x)                                 \
190         do {                                            \
191                 seqcount_init(&(x)->seqcount);          \
192                 spin_lock_init(&(x)->lock);             \
193         } while (0)
194
195 #define DEFINE_SEQLOCK(x) \
196                 seqlock_t x = __SEQLOCK_UNLOCKED(x)
197
198 /*
199  * Read side functions for starting and finalizing a read side section.
200  */
201 static inline unsigned read_seqbegin(const seqlock_t *sl)
202 {
203         return read_seqcount_begin(&sl->seqcount);
204 }
205
206 static inline unsigned read_seqretry(const seqlock_t *sl, unsigned start)
207 {
208         return read_seqcount_retry(&sl->seqcount, start);
209 }
210
211 /*
212  * Lock out other writers and update the count.
213  * Acts like a normal spin_lock/unlock.
214  * Don't need preempt_disable() because that is in the spin_lock already.
215  */
216 static inline void write_seqlock(seqlock_t *sl)
217 {
218         spin_lock(&sl->lock);
219         write_seqcount_begin(&sl->seqcount);
220 }
221
222 static inline void write_sequnlock(seqlock_t *sl)
223 {
224         write_seqcount_end(&sl->seqcount);
225         spin_unlock(&sl->lock);
226 }
227
228 static inline void write_seqlock_bh(seqlock_t *sl)
229 {
230         spin_lock_bh(&sl->lock);
231         write_seqcount_begin(&sl->seqcount);
232 }
233
234 static inline void write_sequnlock_bh(seqlock_t *sl)
235 {
236         write_seqcount_end(&sl->seqcount);
237         spin_unlock_bh(&sl->lock);
238 }
239
240 static inline void write_seqlock_irq(seqlock_t *sl)
241 {
242         spin_lock_irq(&sl->lock);
243         write_seqcount_begin(&sl->seqcount);
244 }
245
246 static inline void write_sequnlock_irq(seqlock_t *sl)
247 {
248         write_seqcount_end(&sl->seqcount);
249         spin_unlock_irq(&sl->lock);
250 }
251
252 static inline unsigned long __write_seqlock_irqsave(seqlock_t *sl)
253 {
254         unsigned long flags;
255
256         spin_lock_irqsave(&sl->lock, flags);
257         write_seqcount_begin(&sl->seqcount);
258         return flags;
259 }
260
261 #define write_seqlock_irqsave(lock, flags)                              \
262         do { flags = __write_seqlock_irqsave(lock); } while (0)
263
264 static inline void
265 write_sequnlock_irqrestore(seqlock_t *sl, unsigned long flags)
266 {
267         write_seqcount_end(&sl->seqcount);
268         spin_unlock_irqrestore(&sl->lock, flags);
269 }
270
271 #endif /* __LINUX_SEQLOCK_H */