4 #include <uapi/linux/sched.h>
11 #include <asm/param.h> /* for HZ */
13 #include <linux/capability.h>
14 #include <linux/threads.h>
15 #include <linux/kernel.h>
16 #include <linux/types.h>
17 #include <linux/timex.h>
18 #include <linux/jiffies.h>
19 #include <linux/rbtree.h>
20 #include <linux/thread_info.h>
21 #include <linux/cpumask.h>
22 #include <linux/errno.h>
23 #include <linux/nodemask.h>
24 #include <linux/mm_types.h>
25 #include <linux/preempt_mask.h>
28 #include <asm/ptrace.h>
29 #include <asm/cputime.h>
31 #include <linux/smp.h>
32 #include <linux/sem.h>
33 #include <linux/signal.h>
34 #include <linux/compiler.h>
35 #include <linux/completion.h>
36 #include <linux/pid.h>
37 #include <linux/percpu.h>
38 #include <linux/topology.h>
39 #include <linux/proportions.h>
40 #include <linux/seccomp.h>
41 #include <linux/rcupdate.h>
42 #include <linux/rculist.h>
43 #include <linux/rtmutex.h>
45 #include <linux/time.h>
46 #include <linux/param.h>
47 #include <linux/resource.h>
48 #include <linux/timer.h>
49 #include <linux/hrtimer.h>
50 #include <linux/task_io_accounting.h>
51 #include <linux/latencytop.h>
52 #include <linux/cred.h>
53 #include <linux/llist.h>
54 #include <linux/uidgid.h>
55 #include <linux/gfp.h>
57 #include <asm/processor.h>
60 struct futex_pi_state;
61 struct robust_list_head;
64 struct perf_event_context;
68 * List of flags we want to share for kernel threads,
69 * if only because they are not used by them anyway.
71 #define CLONE_KERNEL (CLONE_FS | CLONE_FILES | CLONE_SIGHAND)
74 * These are the constant used to fake the fixed-point load-average
75 * counting. Some notes:
76 * - 11 bit fractions expand to 22 bits by the multiplies: this gives
77 * a load-average precision of 10 bits integer + 11 bits fractional
78 * - if you want to count load-averages more often, you need more
79 * precision, or rounding will get you. With 2-second counting freq,
80 * the EXP_n values would be 1981, 2034 and 2043 if still using only
83 extern unsigned long avenrun[]; /* Load averages */
84 extern void get_avenrun(unsigned long *loads, unsigned long offset, int shift);
86 #define FSHIFT 11 /* nr of bits of precision */
87 #define FIXED_1 (1<<FSHIFT) /* 1.0 as fixed-point */
88 #define LOAD_FREQ (5*HZ+1) /* 5 sec intervals */
89 #define EXP_1 1884 /* 1/exp(5sec/1min) as fixed-point */
90 #define EXP_5 2014 /* 1/exp(5sec/5min) */
91 #define EXP_15 2037 /* 1/exp(5sec/15min) */
93 #define CALC_LOAD(load,exp,n) \
95 load += n*(FIXED_1-exp); \
98 extern unsigned long total_forks;
99 extern int nr_threads;
100 DECLARE_PER_CPU(unsigned long, process_counts);
101 extern int nr_processes(void);
102 extern unsigned long nr_running(void);
103 extern unsigned long nr_iowait(void);
104 extern unsigned long nr_iowait_cpu(int cpu);
105 extern unsigned long this_cpu_load(void);
108 extern void calc_global_load(unsigned long ticks);
109 extern void update_cpu_load_nohz(void);
111 extern unsigned long get_parent_ip(unsigned long addr);
113 extern void dump_cpu_task(int cpu);
118 #ifdef CONFIG_SCHED_DEBUG
119 extern void proc_sched_show_task(struct task_struct *p, struct seq_file *m);
120 extern void proc_sched_set_task(struct task_struct *p);
122 print_cfs_rq(struct seq_file *m, int cpu, struct cfs_rq *cfs_rq);
126 * Task state bitmask. NOTE! These bits are also
127 * encoded in fs/proc/array.c: get_task_state().
129 * We have two separate sets of flags: task->state
130 * is about runnability, while task->exit_state are
131 * about the task exiting. Confusing, but this way
132 * modifying one set can't modify the other one by
135 #define TASK_RUNNING 0
136 #define TASK_INTERRUPTIBLE 1
137 #define TASK_UNINTERRUPTIBLE 2
138 #define __TASK_STOPPED 4
139 #define __TASK_TRACED 8
140 /* in tsk->exit_state */
141 #define EXIT_ZOMBIE 16
143 /* in tsk->state again */
145 #define TASK_WAKEKILL 128
146 #define TASK_WAKING 256
147 #define TASK_PARKED 512
148 #define TASK_STATE_MAX 1024
150 #define TASK_STATE_TO_CHAR_STR "RSDTtZXxKWP"
152 extern char ___assert_task_state[1 - 2*!!(
153 sizeof(TASK_STATE_TO_CHAR_STR)-1 != ilog2(TASK_STATE_MAX)+1)];
155 /* Convenience macros for the sake of set_task_state */
156 #define TASK_KILLABLE (TASK_WAKEKILL | TASK_UNINTERRUPTIBLE)
157 #define TASK_STOPPED (TASK_WAKEKILL | __TASK_STOPPED)
158 #define TASK_TRACED (TASK_WAKEKILL | __TASK_TRACED)
160 /* Convenience macros for the sake of wake_up */
161 #define TASK_NORMAL (TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE)
162 #define TASK_ALL (TASK_NORMAL | __TASK_STOPPED | __TASK_TRACED)
164 /* get_task_state() */
165 #define TASK_REPORT (TASK_RUNNING | TASK_INTERRUPTIBLE | \
166 TASK_UNINTERRUPTIBLE | __TASK_STOPPED | \
169 #define task_is_traced(task) ((task->state & __TASK_TRACED) != 0)
170 #define task_is_stopped(task) ((task->state & __TASK_STOPPED) != 0)
171 #define task_is_dead(task) ((task)->exit_state != 0)
172 #define task_is_stopped_or_traced(task) \
173 ((task->state & (__TASK_STOPPED | __TASK_TRACED)) != 0)
174 #define task_contributes_to_load(task) \
175 ((task->state & TASK_UNINTERRUPTIBLE) != 0 && \
176 (task->flags & PF_FROZEN) == 0)
178 #define __set_task_state(tsk, state_value) \
179 do { (tsk)->state = (state_value); } while (0)
180 #define set_task_state(tsk, state_value) \
181 set_mb((tsk)->state, (state_value))
184 * set_current_state() includes a barrier so that the write of current->state
185 * is correctly serialised wrt the caller's subsequent test of whether to
188 * set_current_state(TASK_UNINTERRUPTIBLE);
189 * if (do_i_need_to_sleep())
192 * If the caller does not need such serialisation then use __set_current_state()
194 #define __set_current_state(state_value) \
195 do { current->state = (state_value); } while (0)
196 #define set_current_state(state_value) \
197 set_mb(current->state, (state_value))
199 /* Task command name length */
200 #define TASK_COMM_LEN 16
202 #include <linux/spinlock.h>
205 * This serializes "schedule()" and also protects
206 * the run-queue from deletions/modifications (but
207 * _adding_ to the beginning of the run-queue has
210 extern rwlock_t tasklist_lock;
211 extern spinlock_t mmlist_lock;
215 #ifdef CONFIG_PROVE_RCU
216 extern int lockdep_tasklist_lock_is_held(void);
217 #endif /* #ifdef CONFIG_PROVE_RCU */
219 extern void sched_init(void);
220 extern void sched_init_smp(void);
221 extern asmlinkage void schedule_tail(struct task_struct *prev);
222 extern void init_idle(struct task_struct *idle, int cpu);
223 extern void init_idle_bootup_task(struct task_struct *idle);
225 extern int runqueue_is_locked(int cpu);
227 #if defined(CONFIG_SMP) && defined(CONFIG_NO_HZ_COMMON)
228 extern void nohz_balance_enter_idle(int cpu);
229 extern void set_cpu_sd_state_idle(void);
230 extern int get_nohz_timer_target(void);
232 static inline void nohz_balance_enter_idle(int cpu) { }
233 static inline void set_cpu_sd_state_idle(void) { }
237 * Only dump TASK_* tasks. (0 for all tasks)
239 extern void show_state_filter(unsigned long state_filter);
241 static inline void show_state(void)
243 show_state_filter(0);
246 extern void show_regs(struct pt_regs *);
249 * TASK is a pointer to the task whose backtrace we want to see (or NULL for current
250 * task), SP is the stack pointer of the first frame that should be shown in the back
251 * trace (or NULL if the entire call-chain of the task should be shown).
253 extern void show_stack(struct task_struct *task, unsigned long *sp);
255 void io_schedule(void);
256 long io_schedule_timeout(long timeout);
258 extern void cpu_init (void);
259 extern void trap_init(void);
260 extern void update_process_times(int user);
261 extern void scheduler_tick(void);
263 extern void sched_show_task(struct task_struct *p);
265 #ifdef CONFIG_LOCKUP_DETECTOR
266 extern void touch_softlockup_watchdog(void);
267 extern void touch_softlockup_watchdog_sync(void);
268 extern void touch_all_softlockup_watchdogs(void);
269 extern int proc_dowatchdog_thresh(struct ctl_table *table, int write,
271 size_t *lenp, loff_t *ppos);
272 extern unsigned int softlockup_panic;
273 void lockup_detector_init(void);
275 static inline void touch_softlockup_watchdog(void)
278 static inline void touch_softlockup_watchdog_sync(void)
281 static inline void touch_all_softlockup_watchdogs(void)
284 static inline void lockup_detector_init(void)
289 #ifdef CONFIG_DETECT_HUNG_TASK
290 void reset_hung_task_detector(void);
292 static inline void reset_hung_task_detector(void)
297 /* Attach to any functions which should be ignored in wchan output. */
298 #define __sched __attribute__((__section__(".sched.text")))
300 /* Linker adds these: start and end of __sched functions */
301 extern char __sched_text_start[], __sched_text_end[];
303 /* Is this address in the __sched functions? */
304 extern int in_sched_functions(unsigned long addr);
306 #define MAX_SCHEDULE_TIMEOUT LONG_MAX
307 extern signed long schedule_timeout(signed long timeout);
308 extern signed long schedule_timeout_interruptible(signed long timeout);
309 extern signed long schedule_timeout_killable(signed long timeout);
310 extern signed long schedule_timeout_uninterruptible(signed long timeout);
311 asmlinkage void schedule(void);
312 extern void schedule_preempt_disabled(void);
315 struct user_namespace;
318 extern void arch_pick_mmap_layout(struct mm_struct *mm);
320 arch_get_unmapped_area(struct file *, unsigned long, unsigned long,
321 unsigned long, unsigned long);
323 arch_get_unmapped_area_topdown(struct file *filp, unsigned long addr,
324 unsigned long len, unsigned long pgoff,
325 unsigned long flags);
327 static inline void arch_pick_mmap_layout(struct mm_struct *mm) {}
331 extern void set_dumpable(struct mm_struct *mm, int value);
332 extern int get_dumpable(struct mm_struct *mm);
334 #define SUID_DUMP_DISABLE 0 /* No setuid dumping */
335 #define SUID_DUMP_USER 1 /* Dump as user of process */
336 #define SUID_DUMP_ROOT 2 /* Dump as root */
340 #define MMF_DUMPABLE 0 /* core dump is permitted */
341 #define MMF_DUMP_SECURELY 1 /* core file is readable only by root */
343 #define MMF_DUMPABLE_BITS 2
344 #define MMF_DUMPABLE_MASK ((1 << MMF_DUMPABLE_BITS) - 1)
346 /* coredump filter bits */
347 #define MMF_DUMP_ANON_PRIVATE 2
348 #define MMF_DUMP_ANON_SHARED 3
349 #define MMF_DUMP_MAPPED_PRIVATE 4
350 #define MMF_DUMP_MAPPED_SHARED 5
351 #define MMF_DUMP_ELF_HEADERS 6
352 #define MMF_DUMP_HUGETLB_PRIVATE 7
353 #define MMF_DUMP_HUGETLB_SHARED 8
355 #define MMF_DUMP_FILTER_SHIFT MMF_DUMPABLE_BITS
356 #define MMF_DUMP_FILTER_BITS 7
357 #define MMF_DUMP_FILTER_MASK \
358 (((1 << MMF_DUMP_FILTER_BITS) - 1) << MMF_DUMP_FILTER_SHIFT)
359 #define MMF_DUMP_FILTER_DEFAULT \
360 ((1 << MMF_DUMP_ANON_PRIVATE) | (1 << MMF_DUMP_ANON_SHARED) |\
361 (1 << MMF_DUMP_HUGETLB_PRIVATE) | MMF_DUMP_MASK_DEFAULT_ELF)
363 #ifdef CONFIG_CORE_DUMP_DEFAULT_ELF_HEADERS
364 # define MMF_DUMP_MASK_DEFAULT_ELF (1 << MMF_DUMP_ELF_HEADERS)
366 # define MMF_DUMP_MASK_DEFAULT_ELF 0
368 /* leave room for more dump flags */
369 #define MMF_VM_MERGEABLE 16 /* KSM may merge identical pages */
370 #define MMF_VM_HUGEPAGE 17 /* set when VM_HUGEPAGE is set on vma */
371 #define MMF_EXE_FILE_CHANGED 18 /* see prctl_set_mm_exe_file() */
373 #define MMF_HAS_UPROBES 19 /* has uprobes */
374 #define MMF_RECALC_UPROBES 20 /* MMF_HAS_UPROBES can be wrong */
376 #define MMF_INIT_MASK (MMF_DUMPABLE_MASK | MMF_DUMP_FILTER_MASK)
378 struct sighand_struct {
380 struct k_sigaction action[_NSIG];
382 wait_queue_head_t signalfd_wqh;
385 struct pacct_struct {
388 unsigned long ac_mem;
389 cputime_t ac_utime, ac_stime;
390 unsigned long ac_minflt, ac_majflt;
401 * struct cputime - snaphsot of system and user cputime
402 * @utime: time spent in user mode
403 * @stime: time spent in system mode
405 * Gathers a generic snapshot of user and system time.
413 * struct task_cputime - collected CPU time counts
414 * @utime: time spent in user mode, in &cputime_t units
415 * @stime: time spent in kernel mode, in &cputime_t units
416 * @sum_exec_runtime: total time spent on the CPU, in nanoseconds
418 * This is an extension of struct cputime that includes the total runtime
419 * spent by the task from the scheduler point of view.
421 * As a result, this structure groups together three kinds of CPU time
422 * that are tracked for threads and thread groups. Most things considering
423 * CPU time want to group these counts together and treat all three
424 * of them in parallel.
426 struct task_cputime {
429 unsigned long long sum_exec_runtime;
431 /* Alternate field names when used to cache expirations. */
432 #define prof_exp stime
433 #define virt_exp utime
434 #define sched_exp sum_exec_runtime
436 #define INIT_CPUTIME \
437 (struct task_cputime) { \
440 .sum_exec_runtime = 0, \
443 #define PREEMPT_ENABLED (PREEMPT_NEED_RESCHED)
445 #ifdef CONFIG_PREEMPT_COUNT
446 #define PREEMPT_DISABLED (1 + PREEMPT_ENABLED)
448 #define PREEMPT_DISABLED PREEMPT_ENABLED
452 * Disable preemption until the scheduler is running.
453 * Reset by start_kernel()->sched_init()->init_idle().
455 * We include PREEMPT_ACTIVE to avoid cond_resched() from working
456 * before the scheduler is active -- see should_resched().
458 #define INIT_PREEMPT_COUNT (PREEMPT_DISABLED + PREEMPT_ACTIVE)
461 * struct thread_group_cputimer - thread group interval timer counts
462 * @cputime: thread group interval timers.
463 * @running: non-zero when there are timers running and
464 * @cputime receives updates.
465 * @lock: lock for fields in this struct.
467 * This structure contains the version of task_cputime, above, that is
468 * used for thread group CPU timer calculations.
470 struct thread_group_cputimer {
471 struct task_cputime cputime;
476 #include <linux/rwsem.h>
480 * NOTE! "signal_struct" does not have its own
481 * locking, because a shared signal_struct always
482 * implies a shared sighand_struct, so locking
483 * sighand_struct is always a proper superset of
484 * the locking of signal_struct.
486 struct signal_struct {
491 wait_queue_head_t wait_chldexit; /* for wait4() */
493 /* current thread group signal load-balancing target: */
494 struct task_struct *curr_target;
496 /* shared signal handling: */
497 struct sigpending shared_pending;
499 /* thread group exit support */
502 * - notify group_exit_task when ->count is equal to notify_count
503 * - everyone except group_exit_task is stopped during signal delivery
504 * of fatal signals, group_exit_task processes the signal.
507 struct task_struct *group_exit_task;
509 /* thread group stop support, overloads group_exit_code too */
510 int group_stop_count;
511 unsigned int flags; /* see SIGNAL_* flags below */
514 * PR_SET_CHILD_SUBREAPER marks a process, like a service
515 * manager, to re-parent orphan (double-forking) child processes
516 * to this process instead of 'init'. The service manager is
517 * able to receive SIGCHLD signals and is able to investigate
518 * the process until it calls wait(). All children of this
519 * process will inherit a flag if they should look for a
520 * child_subreaper process at exit.
522 unsigned int is_child_subreaper:1;
523 unsigned int has_child_subreaper:1;
525 /* POSIX.1b Interval Timers */
527 struct list_head posix_timers;
529 /* ITIMER_REAL timer for the process */
530 struct hrtimer real_timer;
531 struct pid *leader_pid;
532 ktime_t it_real_incr;
535 * ITIMER_PROF and ITIMER_VIRTUAL timers for the process, we use
536 * CPUCLOCK_PROF and CPUCLOCK_VIRT for indexing array as these
537 * values are defined to 0 and 1 respectively
539 struct cpu_itimer it[2];
542 * Thread group totals for process CPU timers.
543 * See thread_group_cputimer(), et al, for details.
545 struct thread_group_cputimer cputimer;
547 /* Earliest-expiration cache. */
548 struct task_cputime cputime_expires;
550 struct list_head cpu_timers[3];
552 struct pid *tty_old_pgrp;
554 /* boolean value for session group leader */
557 struct tty_struct *tty; /* NULL if no tty */
559 #ifdef CONFIG_SCHED_AUTOGROUP
560 struct autogroup *autogroup;
563 * Cumulative resource counters for dead threads in the group,
564 * and for reaped dead child processes forked by this group.
565 * Live threads maintain their own counters and add to these
566 * in __exit_signal, except for the group leader.
568 cputime_t utime, stime, cutime, cstime;
571 #ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
572 struct cputime prev_cputime;
574 unsigned long nvcsw, nivcsw, cnvcsw, cnivcsw;
575 unsigned long min_flt, maj_flt, cmin_flt, cmaj_flt;
576 unsigned long inblock, oublock, cinblock, coublock;
577 unsigned long maxrss, cmaxrss;
578 struct task_io_accounting ioac;
581 * Cumulative ns of schedule CPU time fo dead threads in the
582 * group, not including a zombie group leader, (This only differs
583 * from jiffies_to_ns(utime + stime) if sched_clock uses something
584 * other than jiffies.)
586 unsigned long long sum_sched_runtime;
589 * We don't bother to synchronize most readers of this at all,
590 * because there is no reader checking a limit that actually needs
591 * to get both rlim_cur and rlim_max atomically, and either one
592 * alone is a single word that can safely be read normally.
593 * getrlimit/setrlimit use task_lock(current->group_leader) to
594 * protect this instead of the siglock, because they really
595 * have no need to disable irqs.
597 struct rlimit rlim[RLIM_NLIMITS];
599 #ifdef CONFIG_BSD_PROCESS_ACCT
600 struct pacct_struct pacct; /* per-process accounting information */
602 #ifdef CONFIG_TASKSTATS
603 struct taskstats *stats;
607 unsigned audit_tty_log_passwd;
608 struct tty_audit_buf *tty_audit_buf;
610 #ifdef CONFIG_CGROUPS
612 * group_rwsem prevents new tasks from entering the threadgroup and
613 * member tasks from exiting,a more specifically, setting of
614 * PF_EXITING. fork and exit paths are protected with this rwsem
615 * using threadgroup_change_begin/end(). Users which require
616 * threadgroup to remain stable should use threadgroup_[un]lock()
617 * which also takes care of exec path. Currently, cgroup is the
620 struct rw_semaphore group_rwsem;
623 oom_flags_t oom_flags;
624 short oom_score_adj; /* OOM kill score adjustment */
625 short oom_score_adj_min; /* OOM kill score adjustment min value.
626 * Only settable by CAP_SYS_RESOURCE. */
628 struct mutex cred_guard_mutex; /* guard against foreign influences on
629 * credential calculations
630 * (notably. ptrace) */
634 * Bits in flags field of signal_struct.
636 #define SIGNAL_STOP_STOPPED 0x00000001 /* job control stop in effect */
637 #define SIGNAL_STOP_CONTINUED 0x00000002 /* SIGCONT since WCONTINUED reap */
638 #define SIGNAL_GROUP_EXIT 0x00000004 /* group exit in progress */
639 #define SIGNAL_GROUP_COREDUMP 0x00000008 /* coredump in progress */
641 * Pending notifications to parent.
643 #define SIGNAL_CLD_STOPPED 0x00000010
644 #define SIGNAL_CLD_CONTINUED 0x00000020
645 #define SIGNAL_CLD_MASK (SIGNAL_CLD_STOPPED|SIGNAL_CLD_CONTINUED)
647 #define SIGNAL_UNKILLABLE 0x00000040 /* for init: ignore fatal signals */
649 /* If true, all threads except ->group_exit_task have pending SIGKILL */
650 static inline int signal_group_exit(const struct signal_struct *sig)
652 return (sig->flags & SIGNAL_GROUP_EXIT) ||
653 (sig->group_exit_task != NULL);
657 * Some day this will be a full-fledged user tracking system..
660 atomic_t __count; /* reference count */
661 atomic_t processes; /* How many processes does this user have? */
662 atomic_t files; /* How many open files does this user have? */
663 atomic_t sigpending; /* How many pending signals does this user have? */
664 #ifdef CONFIG_INOTIFY_USER
665 atomic_t inotify_watches; /* How many inotify watches does this user have? */
666 atomic_t inotify_devs; /* How many inotify devs does this user have opened? */
668 #ifdef CONFIG_FANOTIFY
669 atomic_t fanotify_listeners;
672 atomic_long_t epoll_watches; /* The number of file descriptors currently watched */
674 #ifdef CONFIG_POSIX_MQUEUE
675 /* protected by mq_lock */
676 unsigned long mq_bytes; /* How many bytes can be allocated to mqueue? */
678 unsigned long locked_shm; /* How many pages of mlocked shm ? */
681 struct key *uid_keyring; /* UID specific keyring */
682 struct key *session_keyring; /* UID's default session keyring */
685 /* Hash table maintenance information */
686 struct hlist_node uidhash_node;
689 #ifdef CONFIG_PERF_EVENTS
690 atomic_long_t locked_vm;
694 extern int uids_sysfs_init(void);
696 extern struct user_struct *find_user(kuid_t);
698 extern struct user_struct root_user;
699 #define INIT_USER (&root_user)
702 struct backing_dev_info;
703 struct reclaim_state;
705 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
707 /* cumulative counters */
708 unsigned long pcount; /* # of times run on this cpu */
709 unsigned long long run_delay; /* time spent waiting on a runqueue */
712 unsigned long long last_arrival,/* when we last ran on a cpu */
713 last_queued; /* when we were last queued to run */
715 #endif /* defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT) */
717 #ifdef CONFIG_TASK_DELAY_ACCT
718 struct task_delay_info {
720 unsigned int flags; /* Private per-task flags */
722 /* For each stat XXX, add following, aligned appropriately
724 * struct timespec XXX_start, XXX_end;
728 * Atomicity of updates to XXX_delay, XXX_count protected by
729 * single lock above (split into XXX_lock if contention is an issue).
733 * XXX_count is incremented on every XXX operation, the delay
734 * associated with the operation is added to XXX_delay.
735 * XXX_delay contains the accumulated delay time in nanoseconds.
737 struct timespec blkio_start, blkio_end; /* Shared by blkio, swapin */
738 u64 blkio_delay; /* wait for sync block io completion */
739 u64 swapin_delay; /* wait for swapin block io completion */
740 u32 blkio_count; /* total count of the number of sync block */
741 /* io operations performed */
742 u32 swapin_count; /* total count of the number of swapin block */
743 /* io operations performed */
745 struct timespec freepages_start, freepages_end;
746 u64 freepages_delay; /* wait for memory reclaim */
747 u32 freepages_count; /* total count of memory reclaim */
749 #endif /* CONFIG_TASK_DELAY_ACCT */
751 static inline int sched_info_on(void)
753 #ifdef CONFIG_SCHEDSTATS
755 #elif defined(CONFIG_TASK_DELAY_ACCT)
756 extern int delayacct_on;
771 * Increase resolution of cpu_power calculations
773 #define SCHED_POWER_SHIFT 10
774 #define SCHED_POWER_SCALE (1L << SCHED_POWER_SHIFT)
777 * sched-domains (multiprocessor balancing) declarations:
780 #define SD_LOAD_BALANCE 0x0001 /* Do load balancing on this domain. */
781 #define SD_BALANCE_NEWIDLE 0x0002 /* Balance when about to become idle */
782 #define SD_BALANCE_EXEC 0x0004 /* Balance on exec */
783 #define SD_BALANCE_FORK 0x0008 /* Balance on fork, clone */
784 #define SD_BALANCE_WAKE 0x0010 /* Balance on wakeup */
785 #define SD_WAKE_AFFINE 0x0020 /* Wake task to waking CPU */
786 #define SD_SHARE_CPUPOWER 0x0080 /* Domain members share cpu power */
787 #define SD_SHARE_PKG_RESOURCES 0x0200 /* Domain members share cpu pkg resources */
788 #define SD_SERIALIZE 0x0400 /* Only a single load balancing instance */
789 #define SD_ASYM_PACKING 0x0800 /* Place busy groups earlier in the domain */
790 #define SD_PREFER_SIBLING 0x1000 /* Prefer to place tasks in a sibling domain */
791 #define SD_OVERLAP 0x2000 /* sched_domains of this level overlap */
792 #define SD_NUMA 0x4000 /* cross-node balancing */
794 extern int __weak arch_sd_sibiling_asym_packing(void);
796 struct sched_domain_attr {
797 int relax_domain_level;
800 #define SD_ATTR_INIT (struct sched_domain_attr) { \
801 .relax_domain_level = -1, \
804 extern int sched_domain_level_max;
808 struct sched_domain {
809 /* These fields must be setup */
810 struct sched_domain *parent; /* top domain must be null terminated */
811 struct sched_domain *child; /* bottom domain must be null terminated */
812 struct sched_group *groups; /* the balancing groups of the domain */
813 unsigned long min_interval; /* Minimum balance interval ms */
814 unsigned long max_interval; /* Maximum balance interval ms */
815 unsigned int busy_factor; /* less balancing by factor if busy */
816 unsigned int imbalance_pct; /* No balance until over watermark */
817 unsigned int cache_nice_tries; /* Leave cache hot tasks for # tries */
818 unsigned int busy_idx;
819 unsigned int idle_idx;
820 unsigned int newidle_idx;
821 unsigned int wake_idx;
822 unsigned int forkexec_idx;
823 unsigned int smt_gain;
825 int nohz_idle; /* NOHZ IDLE status */
826 int flags; /* See SD_* */
829 /* Runtime fields. */
830 unsigned long last_balance; /* init to jiffies. units in jiffies */
831 unsigned int balance_interval; /* initialise to 1. units in ms. */
832 unsigned int nr_balance_failed; /* initialise to 0 */
836 /* idle_balance() stats */
837 u64 max_newidle_lb_cost;
838 unsigned long next_decay_max_lb_cost;
840 #ifdef CONFIG_SCHEDSTATS
841 /* load_balance() stats */
842 unsigned int lb_count[CPU_MAX_IDLE_TYPES];
843 unsigned int lb_failed[CPU_MAX_IDLE_TYPES];
844 unsigned int lb_balanced[CPU_MAX_IDLE_TYPES];
845 unsigned int lb_imbalance[CPU_MAX_IDLE_TYPES];
846 unsigned int lb_gained[CPU_MAX_IDLE_TYPES];
847 unsigned int lb_hot_gained[CPU_MAX_IDLE_TYPES];
848 unsigned int lb_nobusyg[CPU_MAX_IDLE_TYPES];
849 unsigned int lb_nobusyq[CPU_MAX_IDLE_TYPES];
851 /* Active load balancing */
852 unsigned int alb_count;
853 unsigned int alb_failed;
854 unsigned int alb_pushed;
856 /* SD_BALANCE_EXEC stats */
857 unsigned int sbe_count;
858 unsigned int sbe_balanced;
859 unsigned int sbe_pushed;
861 /* SD_BALANCE_FORK stats */
862 unsigned int sbf_count;
863 unsigned int sbf_balanced;
864 unsigned int sbf_pushed;
866 /* try_to_wake_up() stats */
867 unsigned int ttwu_wake_remote;
868 unsigned int ttwu_move_affine;
869 unsigned int ttwu_move_balance;
871 #ifdef CONFIG_SCHED_DEBUG
875 void *private; /* used during construction */
876 struct rcu_head rcu; /* used during destruction */
879 unsigned int span_weight;
881 * Span of all CPUs in this domain.
883 * NOTE: this field is variable length. (Allocated dynamically
884 * by attaching extra space to the end of the structure,
885 * depending on how many CPUs the kernel has booted up with)
887 unsigned long span[0];
890 static inline struct cpumask *sched_domain_span(struct sched_domain *sd)
892 return to_cpumask(sd->span);
895 extern void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
896 struct sched_domain_attr *dattr_new);
898 /* Allocate an array of sched domains, for partition_sched_domains(). */
899 cpumask_var_t *alloc_sched_domains(unsigned int ndoms);
900 void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms);
902 bool cpus_share_cache(int this_cpu, int that_cpu);
904 #else /* CONFIG_SMP */
906 struct sched_domain_attr;
909 partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
910 struct sched_domain_attr *dattr_new)
914 static inline bool cpus_share_cache(int this_cpu, int that_cpu)
919 #endif /* !CONFIG_SMP */
922 struct io_context; /* See blkdev.h */
925 #ifdef ARCH_HAS_PREFETCH_SWITCH_STACK
926 extern void prefetch_stack(struct task_struct *t);
928 static inline void prefetch_stack(struct task_struct *t) { }
931 struct audit_context; /* See audit.c */
933 struct pipe_inode_info;
934 struct uts_namespace;
937 unsigned long weight, inv_weight;
942 * These sums represent an infinite geometric series and so are bound
943 * above by 1024/(1-y). Thus we only need a u32 to store them for all
944 * choices of y < 1-2^(-32)*1024.
946 u32 runnable_avg_sum, runnable_avg_period;
947 u64 last_runnable_update;
949 unsigned long load_avg_contrib;
952 #ifdef CONFIG_SCHEDSTATS
953 struct sched_statistics {
963 s64 sum_sleep_runtime;
970 u64 nr_migrations_cold;
971 u64 nr_failed_migrations_affine;
972 u64 nr_failed_migrations_running;
973 u64 nr_failed_migrations_hot;
974 u64 nr_forced_migrations;
978 u64 nr_wakeups_migrate;
979 u64 nr_wakeups_local;
980 u64 nr_wakeups_remote;
981 u64 nr_wakeups_affine;
982 u64 nr_wakeups_affine_attempts;
983 u64 nr_wakeups_passive;
988 struct sched_entity {
989 struct load_weight load; /* for load-balancing */
990 struct rb_node run_node;
991 struct list_head group_node;
995 u64 sum_exec_runtime;
997 u64 prev_sum_exec_runtime;
1001 #ifdef CONFIG_SCHEDSTATS
1002 struct sched_statistics statistics;
1005 #ifdef CONFIG_FAIR_GROUP_SCHED
1006 struct sched_entity *parent;
1007 /* rq on which this entity is (to be) queued: */
1008 struct cfs_rq *cfs_rq;
1009 /* rq "owned" by this entity/group: */
1010 struct cfs_rq *my_q;
1014 /* Per-entity load-tracking */
1015 struct sched_avg avg;
1019 struct sched_rt_entity {
1020 struct list_head run_list;
1021 unsigned long timeout;
1022 unsigned long watchdog_stamp;
1023 unsigned int time_slice;
1025 struct sched_rt_entity *back;
1026 #ifdef CONFIG_RT_GROUP_SCHED
1027 struct sched_rt_entity *parent;
1028 /* rq on which this entity is (to be) queued: */
1029 struct rt_rq *rt_rq;
1030 /* rq "owned" by this entity/group: */
1038 enum perf_event_task_context {
1039 perf_invalid_context = -1,
1040 perf_hw_context = 0,
1042 perf_nr_task_contexts,
1045 struct task_struct {
1046 volatile long state; /* -1 unrunnable, 0 runnable, >0 stopped */
1049 unsigned int flags; /* per process flags, defined below */
1050 unsigned int ptrace;
1053 struct llist_node wake_entry;
1055 struct task_struct *last_wakee;
1056 unsigned long wakee_flips;
1057 unsigned long wakee_flip_decay_ts;
1063 int prio, static_prio, normal_prio;
1064 unsigned int rt_priority;
1065 const struct sched_class *sched_class;
1066 struct sched_entity se;
1067 struct sched_rt_entity rt;
1068 #ifdef CONFIG_CGROUP_SCHED
1069 struct task_group *sched_task_group;
1072 #ifdef CONFIG_PREEMPT_NOTIFIERS
1073 /* list of struct preempt_notifier: */
1074 struct hlist_head preempt_notifiers;
1077 #ifdef CONFIG_BLK_DEV_IO_TRACE
1078 unsigned int btrace_seq;
1081 unsigned int policy;
1082 int nr_cpus_allowed;
1083 cpumask_t cpus_allowed;
1085 #ifdef CONFIG_PREEMPT_RCU
1086 int rcu_read_lock_nesting;
1087 char rcu_read_unlock_special;
1088 struct list_head rcu_node_entry;
1089 #endif /* #ifdef CONFIG_PREEMPT_RCU */
1090 #ifdef CONFIG_TREE_PREEMPT_RCU
1091 struct rcu_node *rcu_blocked_node;
1092 #endif /* #ifdef CONFIG_TREE_PREEMPT_RCU */
1093 #ifdef CONFIG_RCU_BOOST
1094 struct rt_mutex *rcu_boost_mutex;
1095 #endif /* #ifdef CONFIG_RCU_BOOST */
1097 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
1098 struct sched_info sched_info;
1101 struct list_head tasks;
1103 struct plist_node pushable_tasks;
1106 struct mm_struct *mm, *active_mm;
1107 #ifdef CONFIG_COMPAT_BRK
1108 unsigned brk_randomized:1;
1110 #if defined(SPLIT_RSS_COUNTING)
1111 struct task_rss_stat rss_stat;
1115 int exit_code, exit_signal;
1116 int pdeath_signal; /* The signal sent when the parent dies */
1117 unsigned int jobctl; /* JOBCTL_*, siglock protected */
1119 /* Used for emulating ABI behavior of previous Linux versions */
1120 unsigned int personality;
1122 unsigned did_exec:1;
1123 unsigned in_execve:1; /* Tell the LSMs that the process is doing an
1125 unsigned in_iowait:1;
1127 /* task may not gain privileges */
1128 unsigned no_new_privs:1;
1130 /* Revert to default priority/policy when forking */
1131 unsigned sched_reset_on_fork:1;
1132 unsigned sched_contributes_to_load:1;
1137 #ifdef CONFIG_CC_STACKPROTECTOR
1138 /* Canary value for the -fstack-protector gcc feature */
1139 unsigned long stack_canary;
1142 * pointers to (original) parent process, youngest child, younger sibling,
1143 * older sibling, respectively. (p->father can be replaced with
1144 * p->real_parent->pid)
1146 struct task_struct __rcu *real_parent; /* real parent process */
1147 struct task_struct __rcu *parent; /* recipient of SIGCHLD, wait4() reports */
1149 * children/sibling forms the list of my natural children
1151 struct list_head children; /* list of my children */
1152 struct list_head sibling; /* linkage in my parent's children list */
1153 struct task_struct *group_leader; /* threadgroup leader */
1156 * ptraced is the list of tasks this task is using ptrace on.
1157 * This includes both natural children and PTRACE_ATTACH targets.
1158 * p->ptrace_entry is p's link on the p->parent->ptraced list.
1160 struct list_head ptraced;
1161 struct list_head ptrace_entry;
1163 /* PID/PID hash table linkage. */
1164 struct pid_link pids[PIDTYPE_MAX];
1165 struct list_head thread_group;
1167 struct completion *vfork_done; /* for vfork() */
1168 int __user *set_child_tid; /* CLONE_CHILD_SETTID */
1169 int __user *clear_child_tid; /* CLONE_CHILD_CLEARTID */
1171 cputime_t utime, stime, utimescaled, stimescaled;
1173 #ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
1174 struct cputime prev_cputime;
1176 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
1177 seqlock_t vtime_seqlock;
1178 unsigned long long vtime_snap;
1183 } vtime_snap_whence;
1185 unsigned long nvcsw, nivcsw; /* context switch counts */
1186 struct timespec start_time; /* monotonic time */
1187 struct timespec real_start_time; /* boot based time */
1188 /* mm fault and swap info: this can arguably be seen as either mm-specific or thread-specific */
1189 unsigned long min_flt, maj_flt;
1191 struct task_cputime cputime_expires;
1192 struct list_head cpu_timers[3];
1194 /* process credentials */
1195 const struct cred __rcu *real_cred; /* objective and real subjective task
1196 * credentials (COW) */
1197 const struct cred __rcu *cred; /* effective (overridable) subjective task
1198 * credentials (COW) */
1199 char comm[TASK_COMM_LEN]; /* executable name excluding path
1200 - access with [gs]et_task_comm (which lock
1201 it with task_lock())
1202 - initialized normally by setup_new_exec */
1203 /* file system info */
1204 int link_count, total_link_count;
1205 #ifdef CONFIG_SYSVIPC
1207 struct sysv_sem sysvsem;
1209 #ifdef CONFIG_DETECT_HUNG_TASK
1210 /* hung task detection */
1211 unsigned long last_switch_count;
1213 /* CPU-specific state of this task */
1214 struct thread_struct thread;
1215 /* filesystem information */
1216 struct fs_struct *fs;
1217 /* open file information */
1218 struct files_struct *files;
1220 struct nsproxy *nsproxy;
1221 /* signal handlers */
1222 struct signal_struct *signal;
1223 struct sighand_struct *sighand;
1225 sigset_t blocked, real_blocked;
1226 sigset_t saved_sigmask; /* restored if set_restore_sigmask() was used */
1227 struct sigpending pending;
1229 unsigned long sas_ss_sp;
1231 int (*notifier)(void *priv);
1232 void *notifier_data;
1233 sigset_t *notifier_mask;
1234 struct callback_head *task_works;
1236 struct audit_context *audit_context;
1237 #ifdef CONFIG_AUDITSYSCALL
1239 unsigned int sessionid;
1241 struct seccomp seccomp;
1243 /* Thread group tracking */
1246 /* Protection of (de-)allocation: mm, files, fs, tty, keyrings, mems_allowed,
1248 spinlock_t alloc_lock;
1250 /* Protection of the PI data structures: */
1251 raw_spinlock_t pi_lock;
1253 #ifdef CONFIG_RT_MUTEXES
1254 /* PI waiters blocked on a rt_mutex held by this task */
1255 struct plist_head pi_waiters;
1256 /* Deadlock detection and priority inheritance handling */
1257 struct rt_mutex_waiter *pi_blocked_on;
1260 #ifdef CONFIG_DEBUG_MUTEXES
1261 /* mutex deadlock detection */
1262 struct mutex_waiter *blocked_on;
1264 #ifdef CONFIG_TRACE_IRQFLAGS
1265 unsigned int irq_events;
1266 unsigned long hardirq_enable_ip;
1267 unsigned long hardirq_disable_ip;
1268 unsigned int hardirq_enable_event;
1269 unsigned int hardirq_disable_event;
1270 int hardirqs_enabled;
1271 int hardirq_context;
1272 unsigned long softirq_disable_ip;
1273 unsigned long softirq_enable_ip;
1274 unsigned int softirq_disable_event;
1275 unsigned int softirq_enable_event;
1276 int softirqs_enabled;
1277 int softirq_context;
1279 #ifdef CONFIG_LOCKDEP
1280 # define MAX_LOCK_DEPTH 48UL
1283 unsigned int lockdep_recursion;
1284 struct held_lock held_locks[MAX_LOCK_DEPTH];
1285 gfp_t lockdep_reclaim_gfp;
1288 /* journalling filesystem info */
1291 /* stacked block device info */
1292 struct bio_list *bio_list;
1295 /* stack plugging */
1296 struct blk_plug *plug;
1300 struct reclaim_state *reclaim_state;
1302 struct backing_dev_info *backing_dev_info;
1304 struct io_context *io_context;
1306 unsigned long ptrace_message;
1307 siginfo_t *last_siginfo; /* For ptrace use. */
1308 struct task_io_accounting ioac;
1309 #if defined(CONFIG_TASK_XACCT)
1310 u64 acct_rss_mem1; /* accumulated rss usage */
1311 u64 acct_vm_mem1; /* accumulated virtual memory usage */
1312 cputime_t acct_timexpd; /* stime + utime since last update */
1314 #ifdef CONFIG_CPUSETS
1315 nodemask_t mems_allowed; /* Protected by alloc_lock */
1316 seqcount_t mems_allowed_seq; /* Seqence no to catch updates */
1317 int cpuset_mem_spread_rotor;
1318 int cpuset_slab_spread_rotor;
1320 #ifdef CONFIG_CGROUPS
1321 /* Control Group info protected by css_set_lock */
1322 struct css_set __rcu *cgroups;
1323 /* cg_list protected by css_set_lock and tsk->alloc_lock */
1324 struct list_head cg_list;
1327 struct robust_list_head __user *robust_list;
1328 #ifdef CONFIG_COMPAT
1329 struct compat_robust_list_head __user *compat_robust_list;
1331 struct list_head pi_state_list;
1332 struct futex_pi_state *pi_state_cache;
1334 #ifdef CONFIG_PERF_EVENTS
1335 struct perf_event_context *perf_event_ctxp[perf_nr_task_contexts];
1336 struct mutex perf_event_mutex;
1337 struct list_head perf_event_list;
1340 struct mempolicy *mempolicy; /* Protected by alloc_lock */
1342 short pref_node_fork;
1344 #ifdef CONFIG_NUMA_BALANCING
1346 unsigned int numa_scan_period;
1347 unsigned int numa_scan_period_max;
1348 int numa_preferred_nid;
1349 int numa_migrate_deferred;
1350 unsigned long numa_migrate_retry;
1351 u64 node_stamp; /* migration stamp */
1352 struct callback_head numa_work;
1354 struct list_head numa_entry;
1355 struct numa_group *numa_group;
1358 * Exponential decaying average of faults on a per-node basis.
1359 * Scheduling placement decisions are made based on the these counts.
1360 * The values remain static for the duration of a PTE scan
1362 unsigned long *numa_faults;
1363 unsigned long total_numa_faults;
1366 * numa_faults_buffer records faults per node during the current
1367 * scan window. When the scan completes, the counts in numa_faults
1368 * decay and these values are copied.
1370 unsigned long *numa_faults_buffer;
1373 * numa_faults_locality tracks if faults recorded during the last
1374 * scan window were remote/local. The task scan period is adapted
1375 * based on the locality of the faults with different weights
1376 * depending on whether they were shared or private faults
1378 unsigned long numa_faults_locality[2];
1380 unsigned long numa_pages_migrated;
1381 #endif /* CONFIG_NUMA_BALANCING */
1383 struct rcu_head rcu;
1386 * cache last used pipe for splice
1388 struct pipe_inode_info *splice_pipe;
1390 struct page_frag task_frag;
1392 #ifdef CONFIG_TASK_DELAY_ACCT
1393 struct task_delay_info *delays;
1395 #ifdef CONFIG_FAULT_INJECTION
1399 * when (nr_dirtied >= nr_dirtied_pause), it's time to call
1400 * balance_dirty_pages() for some dirty throttling pause
1403 int nr_dirtied_pause;
1404 unsigned long dirty_paused_when; /* start of a write-and-pause period */
1406 #ifdef CONFIG_LATENCYTOP
1407 int latency_record_count;
1408 struct latency_record latency_record[LT_SAVECOUNT];
1411 * time slack values; these are used to round up poll() and
1412 * select() etc timeout values. These are in nanoseconds.
1414 unsigned long timer_slack_ns;
1415 unsigned long default_timer_slack_ns;
1417 #ifdef CONFIG_FUNCTION_GRAPH_TRACER
1418 /* Index of current stored address in ret_stack */
1420 /* Stack of return addresses for return function tracing */
1421 struct ftrace_ret_stack *ret_stack;
1422 /* time stamp for last schedule */
1423 unsigned long long ftrace_timestamp;
1425 * Number of functions that haven't been traced
1426 * because of depth overrun.
1428 atomic_t trace_overrun;
1429 /* Pause for the tracing */
1430 atomic_t tracing_graph_pause;
1432 #ifdef CONFIG_TRACING
1433 /* state flags for use by tracers */
1434 unsigned long trace;
1435 /* bitmask and counter of trace recursion */
1436 unsigned long trace_recursion;
1437 #endif /* CONFIG_TRACING */
1438 #ifdef CONFIG_MEMCG /* memcg uses this to do batch job */
1439 struct memcg_batch_info {
1440 int do_batch; /* incremented when batch uncharge started */
1441 struct mem_cgroup *memcg; /* target memcg of uncharge */
1442 unsigned long nr_pages; /* uncharged usage */
1443 unsigned long memsw_nr_pages; /* uncharged mem+swap usage */
1445 unsigned int memcg_kmem_skip_account;
1446 struct memcg_oom_info {
1447 struct mem_cgroup *memcg;
1450 unsigned int may_oom:1;
1453 #ifdef CONFIG_UPROBES
1454 struct uprobe_task *utask;
1456 #if defined(CONFIG_BCACHE) || defined(CONFIG_BCACHE_MODULE)
1457 unsigned int sequential_io;
1458 unsigned int sequential_io_avg;
1462 /* Future-safe accessor for struct task_struct's cpus_allowed. */
1463 #define tsk_cpus_allowed(tsk) (&(tsk)->cpus_allowed)
1465 #define TNF_MIGRATED 0x01
1466 #define TNF_NO_GROUP 0x02
1467 #define TNF_SHARED 0x04
1468 #define TNF_FAULT_LOCAL 0x08
1470 #ifdef CONFIG_NUMA_BALANCING
1471 extern void task_numa_fault(int last_node, int node, int pages, int flags);
1472 extern pid_t task_numa_group_id(struct task_struct *p);
1473 extern void set_numabalancing_state(bool enabled);
1474 extern void task_numa_free(struct task_struct *p);
1476 extern unsigned int sysctl_numa_balancing_migrate_deferred;
1478 static inline void task_numa_fault(int last_node, int node, int pages,
1482 static inline pid_t task_numa_group_id(struct task_struct *p)
1486 static inline void set_numabalancing_state(bool enabled)
1489 static inline void task_numa_free(struct task_struct *p)
1494 static inline struct pid *task_pid(struct task_struct *task)
1496 return task->pids[PIDTYPE_PID].pid;
1499 static inline struct pid *task_tgid(struct task_struct *task)
1501 return task->group_leader->pids[PIDTYPE_PID].pid;
1505 * Without tasklist or rcu lock it is not safe to dereference
1506 * the result of task_pgrp/task_session even if task == current,
1507 * we can race with another thread doing sys_setsid/sys_setpgid.
1509 static inline struct pid *task_pgrp(struct task_struct *task)
1511 return task->group_leader->pids[PIDTYPE_PGID].pid;
1514 static inline struct pid *task_session(struct task_struct *task)
1516 return task->group_leader->pids[PIDTYPE_SID].pid;
1519 struct pid_namespace;
1522 * the helpers to get the task's different pids as they are seen
1523 * from various namespaces
1525 * task_xid_nr() : global id, i.e. the id seen from the init namespace;
1526 * task_xid_vnr() : virtual id, i.e. the id seen from the pid namespace of
1528 * task_xid_nr_ns() : id seen from the ns specified;
1530 * set_task_vxid() : assigns a virtual id to a task;
1532 * see also pid_nr() etc in include/linux/pid.h
1534 pid_t __task_pid_nr_ns(struct task_struct *task, enum pid_type type,
1535 struct pid_namespace *ns);
1537 static inline pid_t task_pid_nr(struct task_struct *tsk)
1542 static inline pid_t task_pid_nr_ns(struct task_struct *tsk,
1543 struct pid_namespace *ns)
1545 return __task_pid_nr_ns(tsk, PIDTYPE_PID, ns);
1548 static inline pid_t task_pid_vnr(struct task_struct *tsk)
1550 return __task_pid_nr_ns(tsk, PIDTYPE_PID, NULL);
1554 static inline pid_t task_tgid_nr(struct task_struct *tsk)
1559 pid_t task_tgid_nr_ns(struct task_struct *tsk, struct pid_namespace *ns);
1561 static inline pid_t task_tgid_vnr(struct task_struct *tsk)
1563 return pid_vnr(task_tgid(tsk));
1567 static inline pid_t task_pgrp_nr_ns(struct task_struct *tsk,
1568 struct pid_namespace *ns)
1570 return __task_pid_nr_ns(tsk, PIDTYPE_PGID, ns);
1573 static inline pid_t task_pgrp_vnr(struct task_struct *tsk)
1575 return __task_pid_nr_ns(tsk, PIDTYPE_PGID, NULL);
1579 static inline pid_t task_session_nr_ns(struct task_struct *tsk,
1580 struct pid_namespace *ns)
1582 return __task_pid_nr_ns(tsk, PIDTYPE_SID, ns);
1585 static inline pid_t task_session_vnr(struct task_struct *tsk)
1587 return __task_pid_nr_ns(tsk, PIDTYPE_SID, NULL);
1590 /* obsolete, do not use */
1591 static inline pid_t task_pgrp_nr(struct task_struct *tsk)
1593 return task_pgrp_nr_ns(tsk, &init_pid_ns);
1597 * pid_alive - check that a task structure is not stale
1598 * @p: Task structure to be checked.
1600 * Test if a process is not yet dead (at most zombie state)
1601 * If pid_alive fails, then pointers within the task structure
1602 * can be stale and must not be dereferenced.
1604 * Return: 1 if the process is alive. 0 otherwise.
1606 static inline int pid_alive(struct task_struct *p)
1608 return p->pids[PIDTYPE_PID].pid != NULL;
1612 * is_global_init - check if a task structure is init
1613 * @tsk: Task structure to be checked.
1615 * Check if a task structure is the first user space task the kernel created.
1617 * Return: 1 if the task structure is init. 0 otherwise.
1619 static inline int is_global_init(struct task_struct *tsk)
1621 return tsk->pid == 1;
1624 extern struct pid *cad_pid;
1626 extern void free_task(struct task_struct *tsk);
1627 #define get_task_struct(tsk) do { atomic_inc(&(tsk)->usage); } while(0)
1629 extern void __put_task_struct(struct task_struct *t);
1631 static inline void put_task_struct(struct task_struct *t)
1633 if (atomic_dec_and_test(&t->usage))
1634 __put_task_struct(t);
1637 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
1638 extern void task_cputime(struct task_struct *t,
1639 cputime_t *utime, cputime_t *stime);
1640 extern void task_cputime_scaled(struct task_struct *t,
1641 cputime_t *utimescaled, cputime_t *stimescaled);
1642 extern cputime_t task_gtime(struct task_struct *t);
1644 static inline void task_cputime(struct task_struct *t,
1645 cputime_t *utime, cputime_t *stime)
1653 static inline void task_cputime_scaled(struct task_struct *t,
1654 cputime_t *utimescaled,
1655 cputime_t *stimescaled)
1658 *utimescaled = t->utimescaled;
1660 *stimescaled = t->stimescaled;
1663 static inline cputime_t task_gtime(struct task_struct *t)
1668 extern void task_cputime_adjusted(struct task_struct *p, cputime_t *ut, cputime_t *st);
1669 extern void thread_group_cputime_adjusted(struct task_struct *p, cputime_t *ut, cputime_t *st);
1674 #define PF_EXITING 0x00000004 /* getting shut down */
1675 #define PF_EXITPIDONE 0x00000008 /* pi exit done on shut down */
1676 #define PF_VCPU 0x00000010 /* I'm a virtual CPU */
1677 #define PF_WQ_WORKER 0x00000020 /* I'm a workqueue worker */
1678 #define PF_FORKNOEXEC 0x00000040 /* forked but didn't exec */
1679 #define PF_MCE_PROCESS 0x00000080 /* process policy on mce errors */
1680 #define PF_SUPERPRIV 0x00000100 /* used super-user privileges */
1681 #define PF_DUMPCORE 0x00000200 /* dumped core */
1682 #define PF_SIGNALED 0x00000400 /* killed by a signal */
1683 #define PF_MEMALLOC 0x00000800 /* Allocating memory */
1684 #define PF_NPROC_EXCEEDED 0x00001000 /* set_user noticed that RLIMIT_NPROC was exceeded */
1685 #define PF_USED_MATH 0x00002000 /* if unset the fpu must be initialized before use */
1686 #define PF_USED_ASYNC 0x00004000 /* used async_schedule*(), used by module init */
1687 #define PF_NOFREEZE 0x00008000 /* this thread should not be frozen */
1688 #define PF_FROZEN 0x00010000 /* frozen for system suspend */
1689 #define PF_FSTRANS 0x00020000 /* inside a filesystem transaction */
1690 #define PF_KSWAPD 0x00040000 /* I am kswapd */
1691 #define PF_MEMALLOC_NOIO 0x00080000 /* Allocating memory without IO involved */
1692 #define PF_LESS_THROTTLE 0x00100000 /* Throttle me less: I clean memory */
1693 #define PF_KTHREAD 0x00200000 /* I am a kernel thread */
1694 #define PF_RANDOMIZE 0x00400000 /* randomize virtual address space */
1695 #define PF_SWAPWRITE 0x00800000 /* Allowed to write to swap */
1696 #define PF_SPREAD_PAGE 0x01000000 /* Spread page cache over cpuset */
1697 #define PF_SPREAD_SLAB 0x02000000 /* Spread some slab caches over cpuset */
1698 #define PF_NO_SETAFFINITY 0x04000000 /* Userland is not allowed to meddle with cpus_allowed */
1699 #define PF_MCE_EARLY 0x08000000 /* Early kill for mce process policy */
1700 #define PF_MEMPOLICY 0x10000000 /* Non-default NUMA mempolicy */
1701 #define PF_MUTEX_TESTER 0x20000000 /* Thread belongs to the rt mutex tester */
1702 #define PF_FREEZER_SKIP 0x40000000 /* Freezer should not count it as freezable */
1703 #define PF_SUSPEND_TASK 0x80000000 /* this thread called freeze_processes and should not be frozen */
1706 * Only the _current_ task can read/write to tsk->flags, but other
1707 * tasks can access tsk->flags in readonly mode for example
1708 * with tsk_used_math (like during threaded core dumping).
1709 * There is however an exception to this rule during ptrace
1710 * or during fork: the ptracer task is allowed to write to the
1711 * child->flags of its traced child (same goes for fork, the parent
1712 * can write to the child->flags), because we're guaranteed the
1713 * child is not running and in turn not changing child->flags
1714 * at the same time the parent does it.
1716 #define clear_stopped_child_used_math(child) do { (child)->flags &= ~PF_USED_MATH; } while (0)
1717 #define set_stopped_child_used_math(child) do { (child)->flags |= PF_USED_MATH; } while (0)
1718 #define clear_used_math() clear_stopped_child_used_math(current)
1719 #define set_used_math() set_stopped_child_used_math(current)
1720 #define conditional_stopped_child_used_math(condition, child) \
1721 do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= (condition) ? PF_USED_MATH : 0; } while (0)
1722 #define conditional_used_math(condition) \
1723 conditional_stopped_child_used_math(condition, current)
1724 #define copy_to_stopped_child_used_math(child) \
1725 do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= current->flags & PF_USED_MATH; } while (0)
1726 /* NOTE: this will return 0 or PF_USED_MATH, it will never return 1 */
1727 #define tsk_used_math(p) ((p)->flags & PF_USED_MATH)
1728 #define used_math() tsk_used_math(current)
1730 /* __GFP_IO isn't allowed if PF_MEMALLOC_NOIO is set in current->flags */
1731 static inline gfp_t memalloc_noio_flags(gfp_t flags)
1733 if (unlikely(current->flags & PF_MEMALLOC_NOIO))
1738 static inline unsigned int memalloc_noio_save(void)
1740 unsigned int flags = current->flags & PF_MEMALLOC_NOIO;
1741 current->flags |= PF_MEMALLOC_NOIO;
1745 static inline void memalloc_noio_restore(unsigned int flags)
1747 current->flags = (current->flags & ~PF_MEMALLOC_NOIO) | flags;
1751 * task->jobctl flags
1753 #define JOBCTL_STOP_SIGMASK 0xffff /* signr of the last group stop */
1755 #define JOBCTL_STOP_DEQUEUED_BIT 16 /* stop signal dequeued */
1756 #define JOBCTL_STOP_PENDING_BIT 17 /* task should stop for group stop */
1757 #define JOBCTL_STOP_CONSUME_BIT 18 /* consume group stop count */
1758 #define JOBCTL_TRAP_STOP_BIT 19 /* trap for STOP */
1759 #define JOBCTL_TRAP_NOTIFY_BIT 20 /* trap for NOTIFY */
1760 #define JOBCTL_TRAPPING_BIT 21 /* switching to TRACED */
1761 #define JOBCTL_LISTENING_BIT 22 /* ptracer is listening for events */
1763 #define JOBCTL_STOP_DEQUEUED (1 << JOBCTL_STOP_DEQUEUED_BIT)
1764 #define JOBCTL_STOP_PENDING (1 << JOBCTL_STOP_PENDING_BIT)
1765 #define JOBCTL_STOP_CONSUME (1 << JOBCTL_STOP_CONSUME_BIT)
1766 #define JOBCTL_TRAP_STOP (1 << JOBCTL_TRAP_STOP_BIT)
1767 #define JOBCTL_TRAP_NOTIFY (1 << JOBCTL_TRAP_NOTIFY_BIT)
1768 #define JOBCTL_TRAPPING (1 << JOBCTL_TRAPPING_BIT)
1769 #define JOBCTL_LISTENING (1 << JOBCTL_LISTENING_BIT)
1771 #define JOBCTL_TRAP_MASK (JOBCTL_TRAP_STOP | JOBCTL_TRAP_NOTIFY)
1772 #define JOBCTL_PENDING_MASK (JOBCTL_STOP_PENDING | JOBCTL_TRAP_MASK)
1774 extern bool task_set_jobctl_pending(struct task_struct *task,
1776 extern void task_clear_jobctl_trapping(struct task_struct *task);
1777 extern void task_clear_jobctl_pending(struct task_struct *task,
1780 #ifdef CONFIG_PREEMPT_RCU
1782 #define RCU_READ_UNLOCK_BLOCKED (1 << 0) /* blocked while in RCU read-side. */
1783 #define RCU_READ_UNLOCK_NEED_QS (1 << 1) /* RCU core needs CPU response. */
1785 static inline void rcu_copy_process(struct task_struct *p)
1787 p->rcu_read_lock_nesting = 0;
1788 p->rcu_read_unlock_special = 0;
1789 #ifdef CONFIG_TREE_PREEMPT_RCU
1790 p->rcu_blocked_node = NULL;
1791 #endif /* #ifdef CONFIG_TREE_PREEMPT_RCU */
1792 #ifdef CONFIG_RCU_BOOST
1793 p->rcu_boost_mutex = NULL;
1794 #endif /* #ifdef CONFIG_RCU_BOOST */
1795 INIT_LIST_HEAD(&p->rcu_node_entry);
1800 static inline void rcu_copy_process(struct task_struct *p)
1806 static inline void tsk_restore_flags(struct task_struct *task,
1807 unsigned long orig_flags, unsigned long flags)
1809 task->flags &= ~flags;
1810 task->flags |= orig_flags & flags;
1814 extern void do_set_cpus_allowed(struct task_struct *p,
1815 const struct cpumask *new_mask);
1817 extern int set_cpus_allowed_ptr(struct task_struct *p,
1818 const struct cpumask *new_mask);
1820 static inline void do_set_cpus_allowed(struct task_struct *p,
1821 const struct cpumask *new_mask)
1824 static inline int set_cpus_allowed_ptr(struct task_struct *p,
1825 const struct cpumask *new_mask)
1827 if (!cpumask_test_cpu(0, new_mask))
1833 #ifdef CONFIG_NO_HZ_COMMON
1834 void calc_load_enter_idle(void);
1835 void calc_load_exit_idle(void);
1837 static inline void calc_load_enter_idle(void) { }
1838 static inline void calc_load_exit_idle(void) { }
1839 #endif /* CONFIG_NO_HZ_COMMON */
1841 #ifndef CONFIG_CPUMASK_OFFSTACK
1842 static inline int set_cpus_allowed(struct task_struct *p, cpumask_t new_mask)
1844 return set_cpus_allowed_ptr(p, &new_mask);
1849 * Do not use outside of architecture code which knows its limitations.
1851 * sched_clock() has no promise of monotonicity or bounded drift between
1852 * CPUs, use (which you should not) requires disabling IRQs.
1854 * Please use one of the three interfaces below.
1856 extern unsigned long long notrace sched_clock(void);
1858 * See the comment in kernel/sched/clock.c
1860 extern u64 cpu_clock(int cpu);
1861 extern u64 local_clock(void);
1862 extern u64 sched_clock_cpu(int cpu);
1865 extern void sched_clock_init(void);
1867 #ifndef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK
1868 static inline void sched_clock_tick(void)
1872 static inline void sched_clock_idle_sleep_event(void)
1876 static inline void sched_clock_idle_wakeup_event(u64 delta_ns)
1881 * Architectures can set this to 1 if they have specified
1882 * CONFIG_HAVE_UNSTABLE_SCHED_CLOCK in their arch Kconfig,
1883 * but then during bootup it turns out that sched_clock()
1884 * is reliable after all:
1886 extern int sched_clock_stable;
1888 extern void sched_clock_tick(void);
1889 extern void sched_clock_idle_sleep_event(void);
1890 extern void sched_clock_idle_wakeup_event(u64 delta_ns);
1893 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
1895 * An i/f to runtime opt-in for irq time accounting based off of sched_clock.
1896 * The reason for this explicit opt-in is not to have perf penalty with
1897 * slow sched_clocks.
1899 extern void enable_sched_clock_irqtime(void);
1900 extern void disable_sched_clock_irqtime(void);
1902 static inline void enable_sched_clock_irqtime(void) {}
1903 static inline void disable_sched_clock_irqtime(void) {}
1906 extern unsigned long long
1907 task_sched_runtime(struct task_struct *task);
1909 /* sched_exec is called by processes performing an exec */
1911 extern void sched_exec(void);
1913 #define sched_exec() {}
1916 extern void sched_clock_idle_sleep_event(void);
1917 extern void sched_clock_idle_wakeup_event(u64 delta_ns);
1919 #ifdef CONFIG_HOTPLUG_CPU
1920 extern void idle_task_exit(void);
1922 static inline void idle_task_exit(void) {}
1925 #if defined(CONFIG_NO_HZ_COMMON) && defined(CONFIG_SMP)
1926 extern void wake_up_nohz_cpu(int cpu);
1928 static inline void wake_up_nohz_cpu(int cpu) { }
1931 #ifdef CONFIG_NO_HZ_FULL
1932 extern bool sched_can_stop_tick(void);
1933 extern u64 scheduler_tick_max_deferment(void);
1935 static inline bool sched_can_stop_tick(void) { return false; }
1938 #ifdef CONFIG_SCHED_AUTOGROUP
1939 extern void sched_autogroup_create_attach(struct task_struct *p);
1940 extern void sched_autogroup_detach(struct task_struct *p);
1941 extern void sched_autogroup_fork(struct signal_struct *sig);
1942 extern void sched_autogroup_exit(struct signal_struct *sig);
1943 #ifdef CONFIG_PROC_FS
1944 extern void proc_sched_autogroup_show_task(struct task_struct *p, struct seq_file *m);
1945 extern int proc_sched_autogroup_set_nice(struct task_struct *p, int nice);
1948 static inline void sched_autogroup_create_attach(struct task_struct *p) { }
1949 static inline void sched_autogroup_detach(struct task_struct *p) { }
1950 static inline void sched_autogroup_fork(struct signal_struct *sig) { }
1951 static inline void sched_autogroup_exit(struct signal_struct *sig) { }
1954 extern bool yield_to(struct task_struct *p, bool preempt);
1955 extern void set_user_nice(struct task_struct *p, long nice);
1956 extern int task_prio(const struct task_struct *p);
1957 extern int task_nice(const struct task_struct *p);
1958 extern int can_nice(const struct task_struct *p, const int nice);
1959 extern int task_curr(const struct task_struct *p);
1960 extern int idle_cpu(int cpu);
1961 extern int sched_setscheduler(struct task_struct *, int,
1962 const struct sched_param *);
1963 extern int sched_setscheduler_nocheck(struct task_struct *, int,
1964 const struct sched_param *);
1965 extern struct task_struct *idle_task(int cpu);
1967 * is_idle_task - is the specified task an idle task?
1968 * @p: the task in question.
1970 * Return: 1 if @p is an idle task. 0 otherwise.
1972 static inline bool is_idle_task(const struct task_struct *p)
1976 extern struct task_struct *curr_task(int cpu);
1977 extern void set_curr_task(int cpu, struct task_struct *p);
1982 * The default (Linux) execution domain.
1984 extern struct exec_domain default_exec_domain;
1986 union thread_union {
1987 struct thread_info thread_info;
1988 unsigned long stack[THREAD_SIZE/sizeof(long)];
1991 #ifndef __HAVE_ARCH_KSTACK_END
1992 static inline int kstack_end(void *addr)
1994 /* Reliable end of stack detection:
1995 * Some APM bios versions misalign the stack
1997 return !(((unsigned long)addr+sizeof(void*)-1) & (THREAD_SIZE-sizeof(void*)));
2001 extern union thread_union init_thread_union;
2002 extern struct task_struct init_task;
2004 extern struct mm_struct init_mm;
2006 extern struct pid_namespace init_pid_ns;
2009 * find a task by one of its numerical ids
2011 * find_task_by_pid_ns():
2012 * finds a task by its pid in the specified namespace
2013 * find_task_by_vpid():
2014 * finds a task by its virtual pid
2016 * see also find_vpid() etc in include/linux/pid.h
2019 extern struct task_struct *find_task_by_vpid(pid_t nr);
2020 extern struct task_struct *find_task_by_pid_ns(pid_t nr,
2021 struct pid_namespace *ns);
2023 /* per-UID process charging. */
2024 extern struct user_struct * alloc_uid(kuid_t);
2025 static inline struct user_struct *get_uid(struct user_struct *u)
2027 atomic_inc(&u->__count);
2030 extern void free_uid(struct user_struct *);
2032 #include <asm/current.h>
2034 extern void xtime_update(unsigned long ticks);
2036 extern int wake_up_state(struct task_struct *tsk, unsigned int state);
2037 extern int wake_up_process(struct task_struct *tsk);
2038 extern void wake_up_new_task(struct task_struct *tsk);
2040 extern void kick_process(struct task_struct *tsk);
2042 static inline void kick_process(struct task_struct *tsk) { }
2044 extern void sched_fork(unsigned long clone_flags, struct task_struct *p);
2045 extern void sched_dead(struct task_struct *p);
2047 extern void proc_caches_init(void);
2048 extern void flush_signals(struct task_struct *);
2049 extern void __flush_signals(struct task_struct *);
2050 extern void ignore_signals(struct task_struct *);
2051 extern void flush_signal_handlers(struct task_struct *, int force_default);
2052 extern int dequeue_signal(struct task_struct *tsk, sigset_t *mask, siginfo_t *info);
2054 static inline int dequeue_signal_lock(struct task_struct *tsk, sigset_t *mask, siginfo_t *info)
2056 unsigned long flags;
2059 spin_lock_irqsave(&tsk->sighand->siglock, flags);
2060 ret = dequeue_signal(tsk, mask, info);
2061 spin_unlock_irqrestore(&tsk->sighand->siglock, flags);
2066 extern void block_all_signals(int (*notifier)(void *priv), void *priv,
2068 extern void unblock_all_signals(void);
2069 extern void release_task(struct task_struct * p);
2070 extern int send_sig_info(int, struct siginfo *, struct task_struct *);
2071 extern int force_sigsegv(int, struct task_struct *);
2072 extern int force_sig_info(int, struct siginfo *, struct task_struct *);
2073 extern int __kill_pgrp_info(int sig, struct siginfo *info, struct pid *pgrp);
2074 extern int kill_pid_info(int sig, struct siginfo *info, struct pid *pid);
2075 extern int kill_pid_info_as_cred(int, struct siginfo *, struct pid *,
2076 const struct cred *, u32);
2077 extern int kill_pgrp(struct pid *pid, int sig, int priv);
2078 extern int kill_pid(struct pid *pid, int sig, int priv);
2079 extern int kill_proc_info(int, struct siginfo *, pid_t);
2080 extern __must_check bool do_notify_parent(struct task_struct *, int);
2081 extern void __wake_up_parent(struct task_struct *p, struct task_struct *parent);
2082 extern void force_sig(int, struct task_struct *);
2083 extern int send_sig(int, struct task_struct *, int);
2084 extern int zap_other_threads(struct task_struct *p);
2085 extern struct sigqueue *sigqueue_alloc(void);
2086 extern void sigqueue_free(struct sigqueue *);
2087 extern int send_sigqueue(struct sigqueue *, struct task_struct *, int group);
2088 extern int do_sigaction(int, struct k_sigaction *, struct k_sigaction *);
2090 static inline void restore_saved_sigmask(void)
2092 if (test_and_clear_restore_sigmask())
2093 __set_current_blocked(¤t->saved_sigmask);
2096 static inline sigset_t *sigmask_to_save(void)
2098 sigset_t *res = ¤t->blocked;
2099 if (unlikely(test_restore_sigmask()))
2100 res = ¤t->saved_sigmask;
2104 static inline int kill_cad_pid(int sig, int priv)
2106 return kill_pid(cad_pid, sig, priv);
2109 /* These can be the second arg to send_sig_info/send_group_sig_info. */
2110 #define SEND_SIG_NOINFO ((struct siginfo *) 0)
2111 #define SEND_SIG_PRIV ((struct siginfo *) 1)
2112 #define SEND_SIG_FORCED ((struct siginfo *) 2)
2115 * True if we are on the alternate signal stack.
2117 static inline int on_sig_stack(unsigned long sp)
2119 #ifdef CONFIG_STACK_GROWSUP
2120 return sp >= current->sas_ss_sp &&
2121 sp - current->sas_ss_sp < current->sas_ss_size;
2123 return sp > current->sas_ss_sp &&
2124 sp - current->sas_ss_sp <= current->sas_ss_size;
2128 static inline int sas_ss_flags(unsigned long sp)
2130 return (current->sas_ss_size == 0 ? SS_DISABLE
2131 : on_sig_stack(sp) ? SS_ONSTACK : 0);
2134 static inline unsigned long sigsp(unsigned long sp, struct ksignal *ksig)
2136 if (unlikely((ksig->ka.sa.sa_flags & SA_ONSTACK)) && ! sas_ss_flags(sp))
2137 #ifdef CONFIG_STACK_GROWSUP
2138 return current->sas_ss_sp;
2140 return current->sas_ss_sp + current->sas_ss_size;
2146 * Routines for handling mm_structs
2148 extern struct mm_struct * mm_alloc(void);
2150 /* mmdrop drops the mm and the page tables */
2151 extern void __mmdrop(struct mm_struct *);
2152 static inline void mmdrop(struct mm_struct * mm)
2154 if (unlikely(atomic_dec_and_test(&mm->mm_count)))
2158 /* mmput gets rid of the mappings and all user-space */
2159 extern void mmput(struct mm_struct *);
2160 /* Grab a reference to a task's mm, if it is not already going away */
2161 extern struct mm_struct *get_task_mm(struct task_struct *task);
2163 * Grab a reference to a task's mm, if it is not already going away
2164 * and ptrace_may_access with the mode parameter passed to it
2167 extern struct mm_struct *mm_access(struct task_struct *task, unsigned int mode);
2168 /* Remove the current tasks stale references to the old mm_struct */
2169 extern void mm_release(struct task_struct *, struct mm_struct *);
2170 /* Allocate a new mm structure and copy contents from tsk->mm */
2171 extern struct mm_struct *dup_mm(struct task_struct *tsk);
2173 extern int copy_thread(unsigned long, unsigned long, unsigned long,
2174 struct task_struct *);
2175 extern void flush_thread(void);
2176 extern void exit_thread(void);
2178 extern void exit_files(struct task_struct *);
2179 extern void __cleanup_sighand(struct sighand_struct *);
2181 extern void exit_itimers(struct signal_struct *);
2182 extern void flush_itimer_signals(void);
2184 extern void do_group_exit(int);
2186 extern int allow_signal(int);
2187 extern int disallow_signal(int);
2189 extern int do_execve(const char *,
2190 const char __user * const __user *,
2191 const char __user * const __user *);
2192 extern long do_fork(unsigned long, unsigned long, unsigned long, int __user *, int __user *);
2193 struct task_struct *fork_idle(int);
2194 extern pid_t kernel_thread(int (*fn)(void *), void *arg, unsigned long flags);
2196 extern void set_task_comm(struct task_struct *tsk, char *from);
2197 extern char *get_task_comm(char *to, struct task_struct *tsk);
2200 void scheduler_ipi(void);
2201 extern unsigned long wait_task_inactive(struct task_struct *, long match_state);
2203 static inline void scheduler_ipi(void) { }
2204 static inline unsigned long wait_task_inactive(struct task_struct *p,
2211 #define next_task(p) \
2212 list_entry_rcu((p)->tasks.next, struct task_struct, tasks)
2214 #define for_each_process(p) \
2215 for (p = &init_task ; (p = next_task(p)) != &init_task ; )
2217 extern bool current_is_single_threaded(void);
2220 * Careful: do_each_thread/while_each_thread is a double loop so
2221 * 'break' will not work as expected - use goto instead.
2223 #define do_each_thread(g, t) \
2224 for (g = t = &init_task ; (g = t = next_task(g)) != &init_task ; ) do
2226 #define while_each_thread(g, t) \
2227 while ((t = next_thread(t)) != g)
2229 static inline int get_nr_threads(struct task_struct *tsk)
2231 return tsk->signal->nr_threads;
2234 static inline bool thread_group_leader(struct task_struct *p)
2236 return p->exit_signal >= 0;
2239 /* Do to the insanities of de_thread it is possible for a process
2240 * to have the pid of the thread group leader without actually being
2241 * the thread group leader. For iteration through the pids in proc
2242 * all we care about is that we have a task with the appropriate
2243 * pid, we don't actually care if we have the right task.
2245 static inline bool has_group_leader_pid(struct task_struct *p)
2247 return task_pid(p) == p->signal->leader_pid;
2251 bool same_thread_group(struct task_struct *p1, struct task_struct *p2)
2253 return p1->signal == p2->signal;
2256 static inline struct task_struct *next_thread(const struct task_struct *p)
2258 return list_entry_rcu(p->thread_group.next,
2259 struct task_struct, thread_group);
2262 static inline int thread_group_empty(struct task_struct *p)
2264 return list_empty(&p->thread_group);
2267 #define delay_group_leader(p) \
2268 (thread_group_leader(p) && !thread_group_empty(p))
2271 * Protects ->fs, ->files, ->mm, ->group_info, ->comm, keyring
2272 * subscriptions and synchronises with wait4(). Also used in procfs. Also
2273 * pins the final release of task.io_context. Also protects ->cpuset and
2274 * ->cgroup.subsys[]. And ->vfork_done.
2276 * Nests both inside and outside of read_lock(&tasklist_lock).
2277 * It must not be nested with write_lock_irq(&tasklist_lock),
2278 * neither inside nor outside.
2280 static inline void task_lock(struct task_struct *p)
2282 spin_lock(&p->alloc_lock);
2285 static inline void task_unlock(struct task_struct *p)
2287 spin_unlock(&p->alloc_lock);
2290 extern struct sighand_struct *__lock_task_sighand(struct task_struct *tsk,
2291 unsigned long *flags);
2293 static inline struct sighand_struct *lock_task_sighand(struct task_struct *tsk,
2294 unsigned long *flags)
2296 struct sighand_struct *ret;
2298 ret = __lock_task_sighand(tsk, flags);
2299 (void)__cond_lock(&tsk->sighand->siglock, ret);
2303 static inline void unlock_task_sighand(struct task_struct *tsk,
2304 unsigned long *flags)
2306 spin_unlock_irqrestore(&tsk->sighand->siglock, *flags);
2309 #ifdef CONFIG_CGROUPS
2310 static inline void threadgroup_change_begin(struct task_struct *tsk)
2312 down_read(&tsk->signal->group_rwsem);
2314 static inline void threadgroup_change_end(struct task_struct *tsk)
2316 up_read(&tsk->signal->group_rwsem);
2320 * threadgroup_lock - lock threadgroup
2321 * @tsk: member task of the threadgroup to lock
2323 * Lock the threadgroup @tsk belongs to. No new task is allowed to enter
2324 * and member tasks aren't allowed to exit (as indicated by PF_EXITING) or
2325 * change ->group_leader/pid. This is useful for cases where the threadgroup
2326 * needs to stay stable across blockable operations.
2328 * fork and exit paths explicitly call threadgroup_change_{begin|end}() for
2329 * synchronization. While held, no new task will be added to threadgroup
2330 * and no existing live task will have its PF_EXITING set.
2332 * de_thread() does threadgroup_change_{begin|end}() when a non-leader
2333 * sub-thread becomes a new leader.
2335 static inline void threadgroup_lock(struct task_struct *tsk)
2337 down_write(&tsk->signal->group_rwsem);
2341 * threadgroup_unlock - unlock threadgroup
2342 * @tsk: member task of the threadgroup to unlock
2344 * Reverse threadgroup_lock().
2346 static inline void threadgroup_unlock(struct task_struct *tsk)
2348 up_write(&tsk->signal->group_rwsem);
2351 static inline void threadgroup_change_begin(struct task_struct *tsk) {}
2352 static inline void threadgroup_change_end(struct task_struct *tsk) {}
2353 static inline void threadgroup_lock(struct task_struct *tsk) {}
2354 static inline void threadgroup_unlock(struct task_struct *tsk) {}
2357 #ifndef __HAVE_THREAD_FUNCTIONS
2359 #define task_thread_info(task) ((struct thread_info *)(task)->stack)
2360 #define task_stack_page(task) ((task)->stack)
2362 static inline void setup_thread_stack(struct task_struct *p, struct task_struct *org)
2364 *task_thread_info(p) = *task_thread_info(org);
2365 task_thread_info(p)->task = p;
2368 static inline unsigned long *end_of_stack(struct task_struct *p)
2370 return (unsigned long *)(task_thread_info(p) + 1);
2375 static inline int object_is_on_stack(void *obj)
2377 void *stack = task_stack_page(current);
2379 return (obj >= stack) && (obj < (stack + THREAD_SIZE));
2382 extern void thread_info_cache_init(void);
2384 #ifdef CONFIG_DEBUG_STACK_USAGE
2385 static inline unsigned long stack_not_used(struct task_struct *p)
2387 unsigned long *n = end_of_stack(p);
2389 do { /* Skip over canary */
2393 return (unsigned long)n - (unsigned long)end_of_stack(p);
2397 /* set thread flags in other task's structures
2398 * - see asm/thread_info.h for TIF_xxxx flags available
2400 static inline void set_tsk_thread_flag(struct task_struct *tsk, int flag)
2402 set_ti_thread_flag(task_thread_info(tsk), flag);
2405 static inline void clear_tsk_thread_flag(struct task_struct *tsk, int flag)
2407 clear_ti_thread_flag(task_thread_info(tsk), flag);
2410 static inline int test_and_set_tsk_thread_flag(struct task_struct *tsk, int flag)
2412 return test_and_set_ti_thread_flag(task_thread_info(tsk), flag);
2415 static inline int test_and_clear_tsk_thread_flag(struct task_struct *tsk, int flag)
2417 return test_and_clear_ti_thread_flag(task_thread_info(tsk), flag);
2420 static inline int test_tsk_thread_flag(struct task_struct *tsk, int flag)
2422 return test_ti_thread_flag(task_thread_info(tsk), flag);
2425 static inline void set_tsk_need_resched(struct task_struct *tsk)
2427 set_tsk_thread_flag(tsk,TIF_NEED_RESCHED);
2430 static inline void clear_tsk_need_resched(struct task_struct *tsk)
2432 clear_tsk_thread_flag(tsk,TIF_NEED_RESCHED);
2435 static inline int test_tsk_need_resched(struct task_struct *tsk)
2437 return unlikely(test_tsk_thread_flag(tsk,TIF_NEED_RESCHED));
2440 static inline int restart_syscall(void)
2442 set_tsk_thread_flag(current, TIF_SIGPENDING);
2443 return -ERESTARTNOINTR;
2446 static inline int signal_pending(struct task_struct *p)
2448 return unlikely(test_tsk_thread_flag(p,TIF_SIGPENDING));
2451 static inline int __fatal_signal_pending(struct task_struct *p)
2453 return unlikely(sigismember(&p->pending.signal, SIGKILL));
2456 static inline int fatal_signal_pending(struct task_struct *p)
2458 return signal_pending(p) && __fatal_signal_pending(p);
2461 static inline int signal_pending_state(long state, struct task_struct *p)
2463 if (!(state & (TASK_INTERRUPTIBLE | TASK_WAKEKILL)))
2465 if (!signal_pending(p))
2468 return (state & TASK_INTERRUPTIBLE) || __fatal_signal_pending(p);
2472 * cond_resched() and cond_resched_lock(): latency reduction via
2473 * explicit rescheduling in places that are safe. The return
2474 * value indicates whether a reschedule was done in fact.
2475 * cond_resched_lock() will drop the spinlock before scheduling,
2476 * cond_resched_softirq() will enable bhs before scheduling.
2478 extern int _cond_resched(void);
2480 #define cond_resched() ({ \
2481 __might_sleep(__FILE__, __LINE__, 0); \
2485 extern int __cond_resched_lock(spinlock_t *lock);
2487 #ifdef CONFIG_PREEMPT_COUNT
2488 #define PREEMPT_LOCK_OFFSET PREEMPT_OFFSET
2490 #define PREEMPT_LOCK_OFFSET 0
2493 #define cond_resched_lock(lock) ({ \
2494 __might_sleep(__FILE__, __LINE__, PREEMPT_LOCK_OFFSET); \
2495 __cond_resched_lock(lock); \
2498 extern int __cond_resched_softirq(void);
2500 #define cond_resched_softirq() ({ \
2501 __might_sleep(__FILE__, __LINE__, SOFTIRQ_DISABLE_OFFSET); \
2502 __cond_resched_softirq(); \
2505 static inline void cond_resched_rcu(void)
2507 #if defined(CONFIG_DEBUG_ATOMIC_SLEEP) || !defined(CONFIG_PREEMPT_RCU)
2515 * Does a critical section need to be broken due to another
2516 * task waiting?: (technically does not depend on CONFIG_PREEMPT,
2517 * but a general need for low latency)
2519 static inline int spin_needbreak(spinlock_t *lock)
2521 #ifdef CONFIG_PREEMPT
2522 return spin_is_contended(lock);
2529 * Idle thread specific functions to determine the need_resched
2530 * polling state. We have two versions, one based on TS_POLLING in
2531 * thread_info.status and one based on TIF_POLLING_NRFLAG in
2535 static inline int tsk_is_polling(struct task_struct *p)
2537 return task_thread_info(p)->status & TS_POLLING;
2539 static inline void __current_set_polling(void)
2541 current_thread_info()->status |= TS_POLLING;
2544 static inline bool __must_check current_set_polling_and_test(void)
2546 __current_set_polling();
2549 * Polling state must be visible before we test NEED_RESCHED,
2550 * paired by resched_task()
2554 return unlikely(tif_need_resched());
2557 static inline void __current_clr_polling(void)
2559 current_thread_info()->status &= ~TS_POLLING;
2562 static inline bool __must_check current_clr_polling_and_test(void)
2564 __current_clr_polling();
2567 * Polling state must be visible before we test NEED_RESCHED,
2568 * paired by resched_task()
2572 return unlikely(tif_need_resched());
2574 #elif defined(TIF_POLLING_NRFLAG)
2575 static inline int tsk_is_polling(struct task_struct *p)
2577 return test_tsk_thread_flag(p, TIF_POLLING_NRFLAG);
2580 static inline void __current_set_polling(void)
2582 set_thread_flag(TIF_POLLING_NRFLAG);
2585 static inline bool __must_check current_set_polling_and_test(void)
2587 __current_set_polling();
2590 * Polling state must be visible before we test NEED_RESCHED,
2591 * paired by resched_task()
2593 * XXX: assumes set/clear bit are identical barrier wise.
2595 smp_mb__after_clear_bit();
2597 return unlikely(tif_need_resched());
2600 static inline void __current_clr_polling(void)
2602 clear_thread_flag(TIF_POLLING_NRFLAG);
2605 static inline bool __must_check current_clr_polling_and_test(void)
2607 __current_clr_polling();
2610 * Polling state must be visible before we test NEED_RESCHED,
2611 * paired by resched_task()
2613 smp_mb__after_clear_bit();
2615 return unlikely(tif_need_resched());
2619 static inline int tsk_is_polling(struct task_struct *p) { return 0; }
2620 static inline void __current_set_polling(void) { }
2621 static inline void __current_clr_polling(void) { }
2623 static inline bool __must_check current_set_polling_and_test(void)
2625 return unlikely(tif_need_resched());
2627 static inline bool __must_check current_clr_polling_and_test(void)
2629 return unlikely(tif_need_resched());
2633 static __always_inline bool need_resched(void)
2635 return unlikely(tif_need_resched());
2639 * Thread group CPU time accounting.
2641 void thread_group_cputime(struct task_struct *tsk, struct task_cputime *times);
2642 void thread_group_cputimer(struct task_struct *tsk, struct task_cputime *times);
2644 static inline void thread_group_cputime_init(struct signal_struct *sig)
2646 raw_spin_lock_init(&sig->cputimer.lock);
2650 * Reevaluate whether the task has signals pending delivery.
2651 * Wake the task if so.
2652 * This is required every time the blocked sigset_t changes.
2653 * callers must hold sighand->siglock.
2655 extern void recalc_sigpending_and_wake(struct task_struct *t);
2656 extern void recalc_sigpending(void);
2658 extern void signal_wake_up_state(struct task_struct *t, unsigned int state);
2660 static inline void signal_wake_up(struct task_struct *t, bool resume)
2662 signal_wake_up_state(t, resume ? TASK_WAKEKILL : 0);
2664 static inline void ptrace_signal_wake_up(struct task_struct *t, bool resume)
2666 signal_wake_up_state(t, resume ? __TASK_TRACED : 0);
2670 * Wrappers for p->thread_info->cpu access. No-op on UP.
2674 static inline unsigned int task_cpu(const struct task_struct *p)
2676 return task_thread_info(p)->cpu;
2679 static inline int task_node(const struct task_struct *p)
2681 return cpu_to_node(task_cpu(p));
2684 extern void set_task_cpu(struct task_struct *p, unsigned int cpu);
2688 static inline unsigned int task_cpu(const struct task_struct *p)
2693 static inline void set_task_cpu(struct task_struct *p, unsigned int cpu)
2697 #endif /* CONFIG_SMP */
2699 extern long sched_setaffinity(pid_t pid, const struct cpumask *new_mask);
2700 extern long sched_getaffinity(pid_t pid, struct cpumask *mask);
2702 #ifdef CONFIG_CGROUP_SCHED
2703 extern struct task_group root_task_group;
2704 #endif /* CONFIG_CGROUP_SCHED */
2706 extern int task_can_switch_user(struct user_struct *up,
2707 struct task_struct *tsk);
2709 #ifdef CONFIG_TASK_XACCT
2710 static inline void add_rchar(struct task_struct *tsk, ssize_t amt)
2712 tsk->ioac.rchar += amt;
2715 static inline void add_wchar(struct task_struct *tsk, ssize_t amt)
2717 tsk->ioac.wchar += amt;
2720 static inline void inc_syscr(struct task_struct *tsk)
2725 static inline void inc_syscw(struct task_struct *tsk)
2730 static inline void add_rchar(struct task_struct *tsk, ssize_t amt)
2734 static inline void add_wchar(struct task_struct *tsk, ssize_t amt)
2738 static inline void inc_syscr(struct task_struct *tsk)
2742 static inline void inc_syscw(struct task_struct *tsk)
2747 #ifndef TASK_SIZE_OF
2748 #define TASK_SIZE_OF(tsk) TASK_SIZE
2751 #ifdef CONFIG_MM_OWNER
2752 extern void mm_update_next_owner(struct mm_struct *mm);
2753 extern void mm_init_owner(struct mm_struct *mm, struct task_struct *p);
2755 static inline void mm_update_next_owner(struct mm_struct *mm)
2759 static inline void mm_init_owner(struct mm_struct *mm, struct task_struct *p)
2762 #endif /* CONFIG_MM_OWNER */
2764 static inline unsigned long task_rlimit(const struct task_struct *tsk,
2767 return ACCESS_ONCE(tsk->signal->rlim[limit].rlim_cur);
2770 static inline unsigned long task_rlimit_max(const struct task_struct *tsk,
2773 return ACCESS_ONCE(tsk->signal->rlim[limit].rlim_max);
2776 static inline unsigned long rlimit(unsigned int limit)
2778 return task_rlimit(current, limit);
2781 static inline unsigned long rlimit_max(unsigned int limit)
2783 return task_rlimit_max(current, limit);