1 /* SPDX-License-Identifier: GPL-2.0 */
6 * Define 'struct task_struct' and provide the main scheduler
7 * APIs (schedule(), wakeup variants, etc.)
10 #include <uapi/linux/sched.h>
12 #include <asm/current.h>
14 #include <linux/pid.h>
15 #include <linux/sem.h>
16 #include <linux/shm.h>
17 #include <linux/kmsan_types.h>
18 #include <linux/mutex.h>
19 #include <linux/plist.h>
20 #include <linux/hrtimer.h>
21 #include <linux/irqflags.h>
22 #include <linux/seccomp.h>
23 #include <linux/nodemask.h>
24 #include <linux/rcupdate.h>
25 #include <linux/refcount.h>
26 #include <linux/resource.h>
27 #include <linux/latencytop.h>
28 #include <linux/sched/prio.h>
29 #include <linux/sched/types.h>
30 #include <linux/signal_types.h>
31 #include <linux/syscall_user_dispatch.h>
32 #include <linux/mm_types_task.h>
33 #include <linux/task_io_accounting.h>
34 #include <linux/posix-timers.h>
35 #include <linux/rseq.h>
36 #include <linux/seqlock.h>
37 #include <linux/kcsan.h>
39 #include <asm/kmap_size.h>
41 /* task_struct member predeclarations (sorted alphabetically): */
43 struct backing_dev_info;
46 struct bpf_local_storage;
48 struct capture_control;
51 struct futex_pi_state;
57 struct perf_event_context;
59 struct pipe_inode_info;
62 struct robust_list_head;
68 struct sighand_struct;
70 struct task_delay_info;
74 * Task state bitmask. NOTE! These bits are also
75 * encoded in fs/proc/array.c: get_task_state().
77 * We have two separate sets of flags: task->state
78 * is about runnability, while task->exit_state are
79 * about the task exiting. Confusing, but this way
80 * modifying one set can't modify the other one by
84 /* Used in tsk->state: */
85 #define TASK_RUNNING 0x00000000
86 #define TASK_INTERRUPTIBLE 0x00000001
87 #define TASK_UNINTERRUPTIBLE 0x00000002
88 #define __TASK_STOPPED 0x00000004
89 #define __TASK_TRACED 0x00000008
90 /* Used in tsk->exit_state: */
91 #define EXIT_DEAD 0x00000010
92 #define EXIT_ZOMBIE 0x00000020
93 #define EXIT_TRACE (EXIT_ZOMBIE | EXIT_DEAD)
94 /* Used in tsk->state again: */
95 #define TASK_PARKED 0x00000040
96 #define TASK_DEAD 0x00000080
97 #define TASK_WAKEKILL 0x00000100
98 #define TASK_WAKING 0x00000200
99 #define TASK_NOLOAD 0x00000400
100 #define TASK_NEW 0x00000800
101 #define TASK_RTLOCK_WAIT 0x00001000
102 #define TASK_FREEZABLE 0x00002000
103 #define __TASK_FREEZABLE_UNSAFE (0x00004000 * IS_ENABLED(CONFIG_LOCKDEP))
104 #define TASK_FROZEN 0x00008000
105 #define TASK_STATE_MAX 0x00010000
107 #define TASK_ANY (TASK_STATE_MAX-1)
110 * DO NOT ADD ANY NEW USERS !
112 #define TASK_FREEZABLE_UNSAFE (TASK_FREEZABLE | __TASK_FREEZABLE_UNSAFE)
114 /* Convenience macros for the sake of set_current_state: */
115 #define TASK_KILLABLE (TASK_WAKEKILL | TASK_UNINTERRUPTIBLE)
116 #define TASK_STOPPED (TASK_WAKEKILL | __TASK_STOPPED)
117 #define TASK_TRACED __TASK_TRACED
119 #define TASK_IDLE (TASK_UNINTERRUPTIBLE | TASK_NOLOAD)
121 /* Convenience macros for the sake of wake_up(): */
122 #define TASK_NORMAL (TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE)
124 /* get_task_state(): */
125 #define TASK_REPORT (TASK_RUNNING | TASK_INTERRUPTIBLE | \
126 TASK_UNINTERRUPTIBLE | __TASK_STOPPED | \
127 __TASK_TRACED | EXIT_DEAD | EXIT_ZOMBIE | \
130 #define task_is_running(task) (READ_ONCE((task)->__state) == TASK_RUNNING)
132 #define task_is_traced(task) ((READ_ONCE(task->jobctl) & JOBCTL_TRACED) != 0)
133 #define task_is_stopped(task) ((READ_ONCE(task->jobctl) & JOBCTL_STOPPED) != 0)
134 #define task_is_stopped_or_traced(task) ((READ_ONCE(task->jobctl) & (JOBCTL_STOPPED | JOBCTL_TRACED)) != 0)
137 * Special states are those that do not use the normal wait-loop pattern. See
138 * the comment with set_special_state().
140 #define is_special_task_state(state) \
141 ((state) & (__TASK_STOPPED | __TASK_TRACED | TASK_PARKED | TASK_DEAD))
143 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
144 # define debug_normal_state_change(state_value) \
146 WARN_ON_ONCE(is_special_task_state(state_value)); \
147 current->task_state_change = _THIS_IP_; \
150 # define debug_special_state_change(state_value) \
152 WARN_ON_ONCE(!is_special_task_state(state_value)); \
153 current->task_state_change = _THIS_IP_; \
156 # define debug_rtlock_wait_set_state() \
158 current->saved_state_change = current->task_state_change;\
159 current->task_state_change = _THIS_IP_; \
162 # define debug_rtlock_wait_restore_state() \
164 current->task_state_change = current->saved_state_change;\
168 # define debug_normal_state_change(cond) do { } while (0)
169 # define debug_special_state_change(cond) do { } while (0)
170 # define debug_rtlock_wait_set_state() do { } while (0)
171 # define debug_rtlock_wait_restore_state() do { } while (0)
175 * set_current_state() includes a barrier so that the write of current->state
176 * is correctly serialised wrt the caller's subsequent test of whether to
180 * set_current_state(TASK_UNINTERRUPTIBLE);
186 * __set_current_state(TASK_RUNNING);
188 * If the caller does not need such serialisation (because, for instance, the
189 * CONDITION test and condition change and wakeup are under the same lock) then
190 * use __set_current_state().
192 * The above is typically ordered against the wakeup, which does:
195 * wake_up_state(p, TASK_UNINTERRUPTIBLE);
197 * where wake_up_state()/try_to_wake_up() executes a full memory barrier before
198 * accessing p->state.
200 * Wakeup will do: if (@state & p->state) p->state = TASK_RUNNING, that is,
201 * once it observes the TASK_UNINTERRUPTIBLE store the waking CPU can issue a
202 * TASK_RUNNING store which can collide with __set_current_state(TASK_RUNNING).
204 * However, with slightly different timing the wakeup TASK_RUNNING store can
205 * also collide with the TASK_UNINTERRUPTIBLE store. Losing that store is not
206 * a problem either because that will result in one extra go around the loop
207 * and our @cond test will save the day.
209 * Also see the comments of try_to_wake_up().
211 #define __set_current_state(state_value) \
213 debug_normal_state_change((state_value)); \
214 WRITE_ONCE(current->__state, (state_value)); \
217 #define set_current_state(state_value) \
219 debug_normal_state_change((state_value)); \
220 smp_store_mb(current->__state, (state_value)); \
224 * set_special_state() should be used for those states when the blocking task
225 * can not use the regular condition based wait-loop. In that case we must
226 * serialize against wakeups such that any possible in-flight TASK_RUNNING
227 * stores will not collide with our state change.
229 #define set_special_state(state_value) \
231 unsigned long flags; /* may shadow */ \
233 raw_spin_lock_irqsave(¤t->pi_lock, flags); \
234 debug_special_state_change((state_value)); \
235 WRITE_ONCE(current->__state, (state_value)); \
236 raw_spin_unlock_irqrestore(¤t->pi_lock, flags); \
240 * PREEMPT_RT specific variants for "sleeping" spin/rwlocks
242 * RT's spin/rwlock substitutions are state preserving. The state of the
243 * task when blocking on the lock is saved in task_struct::saved_state and
244 * restored after the lock has been acquired. These operations are
245 * serialized by task_struct::pi_lock against try_to_wake_up(). Any non RT
246 * lock related wakeups while the task is blocked on the lock are
247 * redirected to operate on task_struct::saved_state to ensure that these
248 * are not dropped. On restore task_struct::saved_state is set to
249 * TASK_RUNNING so any wakeup attempt redirected to saved_state will fail.
251 * The lock operation looks like this:
253 * current_save_and_set_rtlock_wait_state();
257 * raw_spin_unlock_irq(&lock->wait_lock);
259 * raw_spin_lock_irq(&lock->wait_lock);
260 * set_current_state(TASK_RTLOCK_WAIT);
262 * current_restore_rtlock_saved_state();
264 #define current_save_and_set_rtlock_wait_state() \
266 lockdep_assert_irqs_disabled(); \
267 raw_spin_lock(¤t->pi_lock); \
268 current->saved_state = current->__state; \
269 debug_rtlock_wait_set_state(); \
270 WRITE_ONCE(current->__state, TASK_RTLOCK_WAIT); \
271 raw_spin_unlock(¤t->pi_lock); \
274 #define current_restore_rtlock_saved_state() \
276 lockdep_assert_irqs_disabled(); \
277 raw_spin_lock(¤t->pi_lock); \
278 debug_rtlock_wait_restore_state(); \
279 WRITE_ONCE(current->__state, current->saved_state); \
280 current->saved_state = TASK_RUNNING; \
281 raw_spin_unlock(¤t->pi_lock); \
284 #define get_current_state() READ_ONCE(current->__state)
287 * Define the task command name length as enum, then it can be visible to
294 extern void scheduler_tick(void);
296 #define MAX_SCHEDULE_TIMEOUT LONG_MAX
298 extern long schedule_timeout(long timeout);
299 extern long schedule_timeout_interruptible(long timeout);
300 extern long schedule_timeout_killable(long timeout);
301 extern long schedule_timeout_uninterruptible(long timeout);
302 extern long schedule_timeout_idle(long timeout);
303 asmlinkage void schedule(void);
304 extern void schedule_preempt_disabled(void);
305 asmlinkage void preempt_schedule_irq(void);
306 #ifdef CONFIG_PREEMPT_RT
307 extern void schedule_rtlock(void);
310 extern int __must_check io_schedule_prepare(void);
311 extern void io_schedule_finish(int token);
312 extern long io_schedule_timeout(long timeout);
313 extern void io_schedule(void);
316 * struct prev_cputime - snapshot of system and user cputime
317 * @utime: time spent in user mode
318 * @stime: time spent in system mode
319 * @lock: protects the above two fields
321 * Stores previous user/system time values such that we can guarantee
324 struct prev_cputime {
325 #ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
333 /* Task is sleeping or running in a CPU with VTIME inactive: */
337 /* Task runs in kernelspace in a CPU with VTIME active: */
339 /* Task runs in userspace in a CPU with VTIME active: */
341 /* Task runs as guests in a CPU with VTIME active: */
347 unsigned long long starttime;
348 enum vtime_state state;
356 * Utilization clamp constraints.
357 * @UCLAMP_MIN: Minimum utilization
358 * @UCLAMP_MAX: Maximum utilization
359 * @UCLAMP_CNT: Utilization clamp constraints count
368 extern struct root_domain def_root_domain;
369 extern struct mutex sched_domains_mutex;
373 #ifdef CONFIG_SCHED_INFO
374 /* Cumulative counters: */
376 /* # of times we have run on this CPU: */
377 unsigned long pcount;
379 /* Time spent waiting on a runqueue: */
380 unsigned long long run_delay;
384 /* When did we last run on a CPU? */
385 unsigned long long last_arrival;
387 /* When were we last queued to run? */
388 unsigned long long last_queued;
390 #endif /* CONFIG_SCHED_INFO */
394 * Integer metrics need fixed point arithmetic, e.g., sched/fair
395 * has a few: load, load_avg, util_avg, freq, and capacity.
397 * We define a basic fixed point arithmetic range, and then formalize
398 * all these metrics based on that basic range.
400 # define SCHED_FIXEDPOINT_SHIFT 10
401 # define SCHED_FIXEDPOINT_SCALE (1L << SCHED_FIXEDPOINT_SHIFT)
403 /* Increase resolution of cpu_capacity calculations */
404 # define SCHED_CAPACITY_SHIFT SCHED_FIXEDPOINT_SHIFT
405 # define SCHED_CAPACITY_SCALE (1L << SCHED_CAPACITY_SHIFT)
408 unsigned long weight;
413 * struct util_est - Estimation utilization of FAIR tasks
414 * @enqueued: instantaneous estimated utilization of a task/cpu
415 * @ewma: the Exponential Weighted Moving Average (EWMA)
416 * utilization of a task
418 * Support data structure to track an Exponential Weighted Moving Average
419 * (EWMA) of a FAIR task's utilization. New samples are added to the moving
420 * average each time a task completes an activation. Sample's weight is chosen
421 * so that the EWMA will be relatively insensitive to transient changes to the
424 * The enqueued attribute has a slightly different meaning for tasks and cpus:
425 * - task: the task's util_avg at last task dequeue time
426 * - cfs_rq: the sum of util_est.enqueued for each RUNNABLE task on that CPU
427 * Thus, the util_est.enqueued of a task represents the contribution on the
428 * estimated utilization of the CPU where that task is currently enqueued.
430 * Only for tasks we track a moving average of the past instantaneous
431 * estimated utilization. This allows to absorb sporadic drops in utilization
432 * of an otherwise almost periodic task.
434 * The UTIL_AVG_UNCHANGED flag is used to synchronize util_est with util_avg
435 * updates. When a task is dequeued, its util_est should not be updated if its
436 * util_avg has not been updated in the meantime.
437 * This information is mapped into the MSB bit of util_est.enqueued at dequeue
438 * time. Since max value of util_est.enqueued for a task is 1024 (PELT util_avg
439 * for a task) it is safe to use MSB.
442 unsigned int enqueued;
444 #define UTIL_EST_WEIGHT_SHIFT 2
445 #define UTIL_AVG_UNCHANGED 0x80000000
446 } __attribute__((__aligned__(sizeof(u64))));
449 * The load/runnable/util_avg accumulates an infinite geometric series
450 * (see __update_load_avg_cfs_rq() in kernel/sched/pelt.c).
452 * [load_avg definition]
454 * load_avg = runnable% * scale_load_down(load)
456 * [runnable_avg definition]
458 * runnable_avg = runnable% * SCHED_CAPACITY_SCALE
460 * [util_avg definition]
462 * util_avg = running% * SCHED_CAPACITY_SCALE
464 * where runnable% is the time ratio that a sched_entity is runnable and
465 * running% the time ratio that a sched_entity is running.
467 * For cfs_rq, they are the aggregated values of all runnable and blocked
470 * The load/runnable/util_avg doesn't directly factor frequency scaling and CPU
471 * capacity scaling. The scaling is done through the rq_clock_pelt that is used
472 * for computing those signals (see update_rq_clock_pelt())
474 * N.B., the above ratios (runnable% and running%) themselves are in the
475 * range of [0, 1]. To do fixed point arithmetics, we therefore scale them
476 * to as large a range as necessary. This is for example reflected by
477 * util_avg's SCHED_CAPACITY_SCALE.
481 * The 64-bit load_sum can have 4353082796 (=2^64/47742/88761) entities
482 * with the highest load (=88761), always runnable on a single cfs_rq,
483 * and should not overflow as the number already hits PID_MAX_LIMIT.
485 * For all other cases (including 32-bit kernels), struct load_weight's
486 * weight will overflow first before we do, because:
488 * Max(load_avg) <= Max(load.weight)
490 * Then it is the load_weight's responsibility to consider overflow
494 u64 last_update_time;
499 unsigned long load_avg;
500 unsigned long runnable_avg;
501 unsigned long util_avg;
502 struct util_est util_est;
503 } ____cacheline_aligned;
505 struct sched_statistics {
506 #ifdef CONFIG_SCHEDSTATS
516 s64 sum_sleep_runtime;
520 s64 sum_block_runtime;
525 u64 nr_migrations_cold;
526 u64 nr_failed_migrations_affine;
527 u64 nr_failed_migrations_running;
528 u64 nr_failed_migrations_hot;
529 u64 nr_forced_migrations;
533 u64 nr_wakeups_migrate;
534 u64 nr_wakeups_local;
535 u64 nr_wakeups_remote;
536 u64 nr_wakeups_affine;
537 u64 nr_wakeups_affine_attempts;
538 u64 nr_wakeups_passive;
541 #ifdef CONFIG_SCHED_CORE
542 u64 core_forceidle_sum;
544 #endif /* CONFIG_SCHEDSTATS */
545 } ____cacheline_aligned;
547 struct sched_entity {
548 /* For load-balancing: */
549 struct load_weight load;
550 struct rb_node run_node;
551 struct list_head group_node;
555 u64 sum_exec_runtime;
557 u64 prev_sum_exec_runtime;
561 #ifdef CONFIG_FAIR_GROUP_SCHED
563 struct sched_entity *parent;
564 /* rq on which this entity is (to be) queued: */
565 struct cfs_rq *cfs_rq;
566 /* rq "owned" by this entity/group: */
568 /* cached value of my_q->h_nr_running */
569 unsigned long runnable_weight;
574 * Per entity load average tracking.
576 * Put into separate cache line so it does not
577 * collide with read-mostly values above.
579 struct sched_avg avg;
583 struct sched_rt_entity {
584 struct list_head run_list;
585 unsigned long timeout;
586 unsigned long watchdog_stamp;
587 unsigned int time_slice;
588 unsigned short on_rq;
589 unsigned short on_list;
591 struct sched_rt_entity *back;
592 #ifdef CONFIG_RT_GROUP_SCHED
593 struct sched_rt_entity *parent;
594 /* rq on which this entity is (to be) queued: */
596 /* rq "owned" by this entity/group: */
599 } __randomize_layout;
601 struct sched_dl_entity {
602 struct rb_node rb_node;
605 * Original scheduling parameters. Copied here from sched_attr
606 * during sched_setattr(), they will remain the same until
607 * the next sched_setattr().
609 u64 dl_runtime; /* Maximum runtime for each instance */
610 u64 dl_deadline; /* Relative deadline of each instance */
611 u64 dl_period; /* Separation of two instances (period) */
612 u64 dl_bw; /* dl_runtime / dl_period */
613 u64 dl_density; /* dl_runtime / dl_deadline */
616 * Actual scheduling parameters. Initialized with the values above,
617 * they are continuously updated during task execution. Note that
618 * the remaining runtime could be < 0 in case we are in overrun.
620 s64 runtime; /* Remaining runtime for this instance */
621 u64 deadline; /* Absolute deadline for this instance */
622 unsigned int flags; /* Specifying the scheduler behaviour */
627 * @dl_throttled tells if we exhausted the runtime. If so, the
628 * task has to wait for a replenishment to be performed at the
629 * next firing of dl_timer.
631 * @dl_yielded tells if task gave up the CPU before consuming
632 * all its available runtime during the last job.
634 * @dl_non_contending tells if the task is inactive while still
635 * contributing to the active utilization. In other words, it
636 * indicates if the inactive timer has been armed and its handler
637 * has not been executed yet. This flag is useful to avoid race
638 * conditions between the inactive timer handler and the wakeup
641 * @dl_overrun tells if the task asked to be informed about runtime
644 unsigned int dl_throttled : 1;
645 unsigned int dl_yielded : 1;
646 unsigned int dl_non_contending : 1;
647 unsigned int dl_overrun : 1;
650 * Bandwidth enforcement timer. Each -deadline task has its
651 * own bandwidth to be enforced, thus we need one timer per task.
653 struct hrtimer dl_timer;
656 * Inactive timer, responsible for decreasing the active utilization
657 * at the "0-lag time". When a -deadline task blocks, it contributes
658 * to GRUB's active utilization until the "0-lag time", hence a
659 * timer is needed to decrease the active utilization at the correct
662 struct hrtimer inactive_timer;
664 #ifdef CONFIG_RT_MUTEXES
666 * Priority Inheritance. When a DEADLINE scheduling entity is boosted
667 * pi_se points to the donor, otherwise points to the dl_se it belongs
668 * to (the original one/itself).
670 struct sched_dl_entity *pi_se;
674 #ifdef CONFIG_UCLAMP_TASK
675 /* Number of utilization clamp buckets (shorter alias) */
676 #define UCLAMP_BUCKETS CONFIG_UCLAMP_BUCKETS_COUNT
679 * Utilization clamp for a scheduling entity
680 * @value: clamp value "assigned" to a se
681 * @bucket_id: bucket index corresponding to the "assigned" value
682 * @active: the se is currently refcounted in a rq's bucket
683 * @user_defined: the requested clamp value comes from user-space
685 * The bucket_id is the index of the clamp bucket matching the clamp value
686 * which is pre-computed and stored to avoid expensive integer divisions from
689 * The active bit is set whenever a task has got an "effective" value assigned,
690 * which can be different from the clamp value "requested" from user-space.
691 * This allows to know a task is refcounted in the rq's bucket corresponding
692 * to the "effective" bucket_id.
694 * The user_defined bit is set whenever a task has got a task-specific clamp
695 * value requested from userspace, i.e. the system defaults apply to this task
696 * just as a restriction. This allows to relax default clamps when a less
697 * restrictive task-specific value has been requested, thus allowing to
698 * implement a "nice" semantic. For example, a task running with a 20%
699 * default boost can still drop its own boosting to 0%.
702 unsigned int value : bits_per(SCHED_CAPACITY_SCALE);
703 unsigned int bucket_id : bits_per(UCLAMP_BUCKETS);
704 unsigned int active : 1;
705 unsigned int user_defined : 1;
707 #endif /* CONFIG_UCLAMP_TASK */
713 u8 exp_hint; /* Hint for performance. */
714 u8 need_mb; /* Readers need smp_mb(). */
716 u32 s; /* Set of bits. */
719 enum perf_event_task_context {
720 perf_invalid_context = -1,
723 perf_nr_task_contexts,
727 struct wake_q_node *next;
731 #ifdef CONFIG_KMAP_LOCAL
733 pte_t pteval[KM_MAX_IDX];
738 #ifdef CONFIG_THREAD_INFO_IN_TASK
740 * For reasons of header soup (see current_thread_info()), this
741 * must be the first element of task_struct.
743 struct thread_info thread_info;
745 unsigned int __state;
747 #ifdef CONFIG_PREEMPT_RT
748 /* saved state for "spinlock sleepers" */
749 unsigned int saved_state;
753 * This begins the randomizable portion of task_struct. Only
754 * scheduling-critical items should be added above here.
756 randomized_struct_fields_start
760 /* Per task flags (PF_*), defined further below: */
766 struct __call_single_node wake_entry;
767 unsigned int wakee_flips;
768 unsigned long wakee_flip_decay_ts;
769 struct task_struct *last_wakee;
772 * recent_used_cpu is initially set as the last CPU used by a task
773 * that wakes affine another task. Waker/wakee relationships can
774 * push tasks around a CPU where each wakeup moves to the next one.
775 * Tracking a recently used CPU allows a quick search for a recently
776 * used CPU that may be idle.
786 unsigned int rt_priority;
788 struct sched_entity se;
789 struct sched_rt_entity rt;
790 struct sched_dl_entity dl;
791 const struct sched_class *sched_class;
793 #ifdef CONFIG_SCHED_CORE
794 struct rb_node core_node;
795 unsigned long core_cookie;
796 unsigned int core_occupation;
799 #ifdef CONFIG_CGROUP_SCHED
800 struct task_group *sched_task_group;
803 #ifdef CONFIG_UCLAMP_TASK
805 * Clamp values requested for a scheduling entity.
806 * Must be updated with task_rq_lock() held.
808 struct uclamp_se uclamp_req[UCLAMP_CNT];
810 * Effective clamp values used for a scheduling entity.
811 * Must be updated with task_rq_lock() held.
813 struct uclamp_se uclamp[UCLAMP_CNT];
816 struct sched_statistics stats;
818 #ifdef CONFIG_PREEMPT_NOTIFIERS
819 /* List of struct preempt_notifier: */
820 struct hlist_head preempt_notifiers;
823 #ifdef CONFIG_BLK_DEV_IO_TRACE
824 unsigned int btrace_seq;
829 const cpumask_t *cpus_ptr;
830 cpumask_t *user_cpus_ptr;
832 void *migration_pending;
834 unsigned short migration_disabled;
836 unsigned short migration_flags;
838 #ifdef CONFIG_PREEMPT_RCU
839 int rcu_read_lock_nesting;
840 union rcu_special rcu_read_unlock_special;
841 struct list_head rcu_node_entry;
842 struct rcu_node *rcu_blocked_node;
843 #endif /* #ifdef CONFIG_PREEMPT_RCU */
845 #ifdef CONFIG_TASKS_RCU
846 unsigned long rcu_tasks_nvcsw;
847 u8 rcu_tasks_holdout;
849 int rcu_tasks_idle_cpu;
850 struct list_head rcu_tasks_holdout_list;
851 #endif /* #ifdef CONFIG_TASKS_RCU */
853 #ifdef CONFIG_TASKS_TRACE_RCU
854 int trc_reader_nesting;
856 union rcu_special trc_reader_special;
857 struct list_head trc_holdout_list;
858 struct list_head trc_blkd_node;
860 #endif /* #ifdef CONFIG_TASKS_TRACE_RCU */
862 struct sched_info sched_info;
864 struct list_head tasks;
866 struct plist_node pushable_tasks;
867 struct rb_node pushable_dl_tasks;
870 struct mm_struct *mm;
871 struct mm_struct *active_mm;
873 #ifdef SPLIT_RSS_COUNTING
874 struct task_rss_stat rss_stat;
879 /* The signal sent when the parent dies: */
881 /* JOBCTL_*, siglock protected: */
882 unsigned long jobctl;
884 /* Used for emulating ABI behavior of previous Linux versions: */
885 unsigned int personality;
887 /* Scheduler bits, serialized by scheduler locks: */
888 unsigned sched_reset_on_fork:1;
889 unsigned sched_contributes_to_load:1;
890 unsigned sched_migrated:1;
892 unsigned sched_psi_wake_requeue:1;
895 /* Force alignment to the next boundary: */
898 /* Unserialized, strictly 'current' */
901 * This field must not be in the scheduler word above due to wakelist
902 * queueing no longer being serialized by p->on_cpu. However:
905 * schedule() if (p->on_rq && ..) // false
906 * smp_mb__after_spinlock(); if (smp_load_acquire(&p->on_cpu) && //true
907 * deactivate_task() ttwu_queue_wakelist())
908 * p->on_rq = 0; p->sched_remote_wakeup = Y;
910 * guarantees all stores of 'current' are visible before
911 * ->sched_remote_wakeup gets used, so it can be in this word.
913 unsigned sched_remote_wakeup:1;
915 /* Bit to tell LSMs we're in execve(): */
916 unsigned in_execve:1;
917 unsigned in_iowait:1;
918 #ifndef TIF_RESTORE_SIGMASK
919 unsigned restore_sigmask:1;
922 unsigned in_user_fault:1;
924 #ifdef CONFIG_LRU_GEN
925 /* whether the LRU algorithm may apply to this access */
926 unsigned in_lru_fault:1;
928 #ifdef CONFIG_COMPAT_BRK
929 unsigned brk_randomized:1;
931 #ifdef CONFIG_CGROUPS
932 /* disallow userland-initiated cgroup migration */
933 unsigned no_cgroup_migration:1;
934 /* task is frozen/stopped (used by the cgroup freezer) */
937 #ifdef CONFIG_BLK_CGROUP
938 unsigned use_memdelay:1;
941 /* Stalled due to lack of memory */
942 unsigned in_memstall:1;
944 #ifdef CONFIG_PAGE_OWNER
945 /* Used by page_owner=on to detect recursion in page tracking. */
946 unsigned in_page_owner:1;
948 #ifdef CONFIG_EVENTFD
949 /* Recursion prevention for eventfd_signal() */
950 unsigned in_eventfd:1;
952 #ifdef CONFIG_IOMMU_SVA
953 unsigned pasid_activated:1;
955 #ifdef CONFIG_CPU_SUP_INTEL
956 unsigned reported_split_lock:1;
958 #ifdef CONFIG_TASK_DELAY_ACCT
959 /* delay due to memory thrashing */
960 unsigned in_thrashing:1;
963 unsigned long atomic_flags; /* Flags requiring atomic access. */
965 struct restart_block restart_block;
970 #ifdef CONFIG_STACKPROTECTOR
971 /* Canary value for the -fstack-protector GCC feature: */
972 unsigned long stack_canary;
975 * Pointers to the (original) parent process, youngest child, younger sibling,
976 * older sibling, respectively. (p->father can be replaced with
977 * p->real_parent->pid)
980 /* Real parent process: */
981 struct task_struct __rcu *real_parent;
983 /* Recipient of SIGCHLD, wait4() reports: */
984 struct task_struct __rcu *parent;
987 * Children/sibling form the list of natural children:
989 struct list_head children;
990 struct list_head sibling;
991 struct task_struct *group_leader;
994 * 'ptraced' is the list of tasks this task is using ptrace() on.
996 * This includes both natural children and PTRACE_ATTACH targets.
997 * 'ptrace_entry' is this task's link on the p->parent->ptraced list.
999 struct list_head ptraced;
1000 struct list_head ptrace_entry;
1002 /* PID/PID hash table linkage. */
1003 struct pid *thread_pid;
1004 struct hlist_node pid_links[PIDTYPE_MAX];
1005 struct list_head thread_group;
1006 struct list_head thread_node;
1008 struct completion *vfork_done;
1010 /* CLONE_CHILD_SETTID: */
1011 int __user *set_child_tid;
1013 /* CLONE_CHILD_CLEARTID: */
1014 int __user *clear_child_tid;
1016 /* PF_KTHREAD | PF_IO_WORKER */
1017 void *worker_private;
1021 #ifdef CONFIG_ARCH_HAS_SCALED_CPUTIME
1026 struct prev_cputime prev_cputime;
1027 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
1031 #ifdef CONFIG_NO_HZ_FULL
1032 atomic_t tick_dep_mask;
1034 /* Context switch counts: */
1035 unsigned long nvcsw;
1036 unsigned long nivcsw;
1038 /* Monotonic time in nsecs: */
1041 /* Boot based time in nsecs: */
1044 /* MM fault and swap info: this can arguably be seen as either mm-specific or thread-specific: */
1045 unsigned long min_flt;
1046 unsigned long maj_flt;
1048 /* Empty if CONFIG_POSIX_CPUTIMERS=n */
1049 struct posix_cputimers posix_cputimers;
1051 #ifdef CONFIG_POSIX_CPU_TIMERS_TASK_WORK
1052 struct posix_cputimers_work posix_cputimers_work;
1055 /* Process credentials: */
1057 /* Tracer's credentials at attach: */
1058 const struct cred __rcu *ptracer_cred;
1060 /* Objective and real subjective task credentials (COW): */
1061 const struct cred __rcu *real_cred;
1063 /* Effective (overridable) subjective task credentials (COW): */
1064 const struct cred __rcu *cred;
1067 /* Cached requested key. */
1068 struct key *cached_requested_key;
1072 * executable name, excluding path.
1074 * - normally initialized setup_new_exec()
1075 * - access it with [gs]et_task_comm()
1076 * - lock it with task_lock()
1078 char comm[TASK_COMM_LEN];
1080 struct nameidata *nameidata;
1082 #ifdef CONFIG_SYSVIPC
1083 struct sysv_sem sysvsem;
1084 struct sysv_shm sysvshm;
1086 #ifdef CONFIG_DETECT_HUNG_TASK
1087 unsigned long last_switch_count;
1088 unsigned long last_switch_time;
1090 /* Filesystem information: */
1091 struct fs_struct *fs;
1093 /* Open file information: */
1094 struct files_struct *files;
1096 #ifdef CONFIG_IO_URING
1097 struct io_uring_task *io_uring;
1101 struct nsproxy *nsproxy;
1103 /* Signal handlers: */
1104 struct signal_struct *signal;
1105 struct sighand_struct __rcu *sighand;
1107 sigset_t real_blocked;
1108 /* Restored if set_restore_sigmask() was used: */
1109 sigset_t saved_sigmask;
1110 struct sigpending pending;
1111 unsigned long sas_ss_sp;
1113 unsigned int sas_ss_flags;
1115 struct callback_head *task_works;
1118 #ifdef CONFIG_AUDITSYSCALL
1119 struct audit_context *audit_context;
1122 unsigned int sessionid;
1124 struct seccomp seccomp;
1125 struct syscall_user_dispatch syscall_dispatch;
1127 /* Thread group tracking: */
1131 /* Protection against (de-)allocation: mm, files, fs, tty, keyrings, mems_allowed, mempolicy: */
1132 spinlock_t alloc_lock;
1134 /* Protection of the PI data structures: */
1135 raw_spinlock_t pi_lock;
1137 struct wake_q_node wake_q;
1139 #ifdef CONFIG_RT_MUTEXES
1140 /* PI waiters blocked on a rt_mutex held by this task: */
1141 struct rb_root_cached pi_waiters;
1142 /* Updated under owner's pi_lock and rq lock */
1143 struct task_struct *pi_top_task;
1144 /* Deadlock detection and priority inheritance handling: */
1145 struct rt_mutex_waiter *pi_blocked_on;
1148 #ifdef CONFIG_DEBUG_MUTEXES
1149 /* Mutex deadlock detection: */
1150 struct mutex_waiter *blocked_on;
1153 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
1154 int non_block_count;
1157 #ifdef CONFIG_TRACE_IRQFLAGS
1158 struct irqtrace_events irqtrace;
1159 unsigned int hardirq_threaded;
1160 u64 hardirq_chain_key;
1161 int softirqs_enabled;
1162 int softirq_context;
1165 #ifdef CONFIG_PREEMPT_RT
1166 int softirq_disable_cnt;
1169 #ifdef CONFIG_LOCKDEP
1170 # define MAX_LOCK_DEPTH 48UL
1173 unsigned int lockdep_recursion;
1174 struct held_lock held_locks[MAX_LOCK_DEPTH];
1177 #if defined(CONFIG_UBSAN) && !defined(CONFIG_UBSAN_TRAP)
1178 unsigned int in_ubsan;
1181 /* Journalling filesystem info: */
1184 /* Stacked block device info: */
1185 struct bio_list *bio_list;
1187 /* Stack plugging: */
1188 struct blk_plug *plug;
1191 struct reclaim_state *reclaim_state;
1193 struct backing_dev_info *backing_dev_info;
1195 struct io_context *io_context;
1197 #ifdef CONFIG_COMPACTION
1198 struct capture_control *capture_control;
1201 unsigned long ptrace_message;
1202 kernel_siginfo_t *last_siginfo;
1204 struct task_io_accounting ioac;
1206 /* Pressure stall state */
1207 unsigned int psi_flags;
1209 #ifdef CONFIG_TASK_XACCT
1210 /* Accumulated RSS usage: */
1212 /* Accumulated virtual memory usage: */
1214 /* stime + utime since last update: */
1217 #ifdef CONFIG_CPUSETS
1218 /* Protected by ->alloc_lock: */
1219 nodemask_t mems_allowed;
1220 /* Sequence number to catch updates: */
1221 seqcount_spinlock_t mems_allowed_seq;
1222 int cpuset_mem_spread_rotor;
1223 int cpuset_slab_spread_rotor;
1225 #ifdef CONFIG_CGROUPS
1226 /* Control Group info protected by css_set_lock: */
1227 struct css_set __rcu *cgroups;
1228 /* cg_list protected by css_set_lock and tsk->alloc_lock: */
1229 struct list_head cg_list;
1231 #ifdef CONFIG_X86_CPU_RESCTRL
1236 struct robust_list_head __user *robust_list;
1237 #ifdef CONFIG_COMPAT
1238 struct compat_robust_list_head __user *compat_robust_list;
1240 struct list_head pi_state_list;
1241 struct futex_pi_state *pi_state_cache;
1242 struct mutex futex_exit_mutex;
1243 unsigned int futex_state;
1245 #ifdef CONFIG_PERF_EVENTS
1246 struct perf_event_context *perf_event_ctxp[perf_nr_task_contexts];
1247 struct mutex perf_event_mutex;
1248 struct list_head perf_event_list;
1250 #ifdef CONFIG_DEBUG_PREEMPT
1251 unsigned long preempt_disable_ip;
1254 /* Protected by alloc_lock: */
1255 struct mempolicy *mempolicy;
1257 short pref_node_fork;
1259 #ifdef CONFIG_NUMA_BALANCING
1261 unsigned int numa_scan_period;
1262 unsigned int numa_scan_period_max;
1263 int numa_preferred_nid;
1264 unsigned long numa_migrate_retry;
1265 /* Migration stamp: */
1267 u64 last_task_numa_placement;
1268 u64 last_sum_exec_runtime;
1269 struct callback_head numa_work;
1272 * This pointer is only modified for current in syscall and
1273 * pagefault context (and for tasks being destroyed), so it can be read
1274 * from any of the following contexts:
1275 * - RCU read-side critical section
1276 * - current->numa_group from everywhere
1277 * - task's runqueue locked, task not running
1279 struct numa_group __rcu *numa_group;
1282 * numa_faults is an array split into four regions:
1283 * faults_memory, faults_cpu, faults_memory_buffer, faults_cpu_buffer
1284 * in this precise order.
1286 * faults_memory: Exponential decaying average of faults on a per-node
1287 * basis. Scheduling placement decisions are made based on these
1288 * counts. The values remain static for the duration of a PTE scan.
1289 * faults_cpu: Track the nodes the process was running on when a NUMA
1290 * hinting fault was incurred.
1291 * faults_memory_buffer and faults_cpu_buffer: Record faults per node
1292 * during the current scan window. When the scan completes, the counts
1293 * in faults_memory and faults_cpu decay and these values are copied.
1295 unsigned long *numa_faults;
1296 unsigned long total_numa_faults;
1299 * numa_faults_locality tracks if faults recorded during the last
1300 * scan window were remote/local or failed to migrate. The task scan
1301 * period is adapted based on the locality of the faults with different
1302 * weights depending on whether they were shared or private faults
1304 unsigned long numa_faults_locality[3];
1306 unsigned long numa_pages_migrated;
1307 #endif /* CONFIG_NUMA_BALANCING */
1310 struct rseq __user *rseq;
1313 * RmW on rseq_event_mask must be performed atomically
1314 * with respect to preemption.
1316 unsigned long rseq_event_mask;
1319 struct tlbflush_unmap_batch tlb_ubc;
1322 refcount_t rcu_users;
1323 struct rcu_head rcu;
1326 /* Cache last used pipe for splice(): */
1327 struct pipe_inode_info *splice_pipe;
1329 struct page_frag task_frag;
1331 #ifdef CONFIG_TASK_DELAY_ACCT
1332 struct task_delay_info *delays;
1335 #ifdef CONFIG_FAULT_INJECTION
1337 unsigned int fail_nth;
1340 * When (nr_dirtied >= nr_dirtied_pause), it's time to call
1341 * balance_dirty_pages() for a dirty throttling pause:
1344 int nr_dirtied_pause;
1345 /* Start of a write-and-pause period: */
1346 unsigned long dirty_paused_when;
1348 #ifdef CONFIG_LATENCYTOP
1349 int latency_record_count;
1350 struct latency_record latency_record[LT_SAVECOUNT];
1353 * Time slack values; these are used to round up poll() and
1354 * select() etc timeout values. These are in nanoseconds.
1357 u64 default_timer_slack_ns;
1359 #if defined(CONFIG_KASAN_GENERIC) || defined(CONFIG_KASAN_SW_TAGS)
1360 unsigned int kasan_depth;
1364 struct kcsan_ctx kcsan_ctx;
1365 #ifdef CONFIG_TRACE_IRQFLAGS
1366 struct irqtrace_events kcsan_save_irqtrace;
1368 #ifdef CONFIG_KCSAN_WEAK_MEMORY
1369 int kcsan_stack_depth;
1374 struct kmsan_ctx kmsan_ctx;
1377 #if IS_ENABLED(CONFIG_KUNIT)
1378 struct kunit *kunit_test;
1381 #ifdef CONFIG_FUNCTION_GRAPH_TRACER
1382 /* Index of current stored address in ret_stack: */
1386 /* Stack of return addresses for return function tracing: */
1387 struct ftrace_ret_stack *ret_stack;
1389 /* Timestamp for last schedule: */
1390 unsigned long long ftrace_timestamp;
1393 * Number of functions that haven't been traced
1394 * because of depth overrun:
1396 atomic_t trace_overrun;
1398 /* Pause tracing: */
1399 atomic_t tracing_graph_pause;
1402 #ifdef CONFIG_TRACING
1403 /* Bitmask and counter of trace recursion: */
1404 unsigned long trace_recursion;
1405 #endif /* CONFIG_TRACING */
1408 /* See kernel/kcov.c for more details. */
1410 /* Coverage collection mode enabled for this task (0 if disabled): */
1411 unsigned int kcov_mode;
1413 /* Size of the kcov_area: */
1414 unsigned int kcov_size;
1416 /* Buffer for coverage collection: */
1419 /* KCOV descriptor wired with this task or NULL: */
1422 /* KCOV common handle for remote coverage collection: */
1425 /* KCOV sequence number: */
1428 /* Collect coverage from softirq context: */
1429 unsigned int kcov_softirq;
1433 struct mem_cgroup *memcg_in_oom;
1434 gfp_t memcg_oom_gfp_mask;
1435 int memcg_oom_order;
1437 /* Number of pages to reclaim on returning to userland: */
1438 unsigned int memcg_nr_pages_over_high;
1440 /* Used by memcontrol for targeted memcg charge: */
1441 struct mem_cgroup *active_memcg;
1444 #ifdef CONFIG_BLK_CGROUP
1445 struct request_queue *throttle_queue;
1448 #ifdef CONFIG_UPROBES
1449 struct uprobe_task *utask;
1451 #if defined(CONFIG_BCACHE) || defined(CONFIG_BCACHE_MODULE)
1452 unsigned int sequential_io;
1453 unsigned int sequential_io_avg;
1455 struct kmap_ctrl kmap_ctrl;
1456 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
1457 unsigned long task_state_change;
1458 # ifdef CONFIG_PREEMPT_RT
1459 unsigned long saved_state_change;
1462 int pagefault_disabled;
1464 struct task_struct *oom_reaper_list;
1465 struct timer_list oom_reaper_timer;
1467 #ifdef CONFIG_VMAP_STACK
1468 struct vm_struct *stack_vm_area;
1470 #ifdef CONFIG_THREAD_INFO_IN_TASK
1471 /* A live task holds one reference: */
1472 refcount_t stack_refcount;
1474 #ifdef CONFIG_LIVEPATCH
1477 #ifdef CONFIG_SECURITY
1478 /* Used by LSM modules for access restriction: */
1481 #ifdef CONFIG_BPF_SYSCALL
1482 /* Used by BPF task local storage */
1483 struct bpf_local_storage __rcu *bpf_storage;
1484 /* Used for BPF run context */
1485 struct bpf_run_ctx *bpf_ctx;
1488 #ifdef CONFIG_GCC_PLUGIN_STACKLEAK
1489 unsigned long lowest_stack;
1490 unsigned long prev_lowest_stack;
1493 #ifdef CONFIG_X86_MCE
1494 void __user *mce_vaddr;
1499 __mce_reserved : 62;
1500 struct callback_head mce_kill_me;
1504 #ifdef CONFIG_KRETPROBES
1505 struct llist_head kretprobe_instances;
1507 #ifdef CONFIG_RETHOOK
1508 struct llist_head rethooks;
1511 #ifdef CONFIG_ARCH_HAS_PARANOID_L1D_FLUSH
1513 * If L1D flush is supported on mm context switch
1514 * then we use this callback head to queue kill work
1515 * to kill tasks that are not running on SMT disabled
1518 struct callback_head l1d_flush_kill;
1523 * Per-task RV monitor. Nowadays fixed in RV_PER_TASK_MONITORS.
1524 * If we find justification for more monitors, we can think
1525 * about adding more or developing a dynamic method. So far,
1526 * none of these are justified.
1528 union rv_task_monitor rv[RV_PER_TASK_MONITORS];
1532 * New fields for task_struct should be added above here, so that
1533 * they are included in the randomized portion of task_struct.
1535 randomized_struct_fields_end
1537 /* CPU-specific state of this task: */
1538 struct thread_struct thread;
1541 * WARNING: on x86, 'thread_struct' contains a variable-sized
1542 * structure. It *MUST* be at the end of 'task_struct'.
1544 * Do not put anything below here!
1548 static inline struct pid *task_pid(struct task_struct *task)
1550 return task->thread_pid;
1554 * the helpers to get the task's different pids as they are seen
1555 * from various namespaces
1557 * task_xid_nr() : global id, i.e. the id seen from the init namespace;
1558 * task_xid_vnr() : virtual id, i.e. the id seen from the pid namespace of
1560 * task_xid_nr_ns() : id seen from the ns specified;
1562 * see also pid_nr() etc in include/linux/pid.h
1564 pid_t __task_pid_nr_ns(struct task_struct *task, enum pid_type type, struct pid_namespace *ns);
1566 static inline pid_t task_pid_nr(struct task_struct *tsk)
1571 static inline pid_t task_pid_nr_ns(struct task_struct *tsk, struct pid_namespace *ns)
1573 return __task_pid_nr_ns(tsk, PIDTYPE_PID, ns);
1576 static inline pid_t task_pid_vnr(struct task_struct *tsk)
1578 return __task_pid_nr_ns(tsk, PIDTYPE_PID, NULL);
1582 static inline pid_t task_tgid_nr(struct task_struct *tsk)
1588 * pid_alive - check that a task structure is not stale
1589 * @p: Task structure to be checked.
1591 * Test if a process is not yet dead (at most zombie state)
1592 * If pid_alive fails, then pointers within the task structure
1593 * can be stale and must not be dereferenced.
1595 * Return: 1 if the process is alive. 0 otherwise.
1597 static inline int pid_alive(const struct task_struct *p)
1599 return p->thread_pid != NULL;
1602 static inline pid_t task_pgrp_nr_ns(struct task_struct *tsk, struct pid_namespace *ns)
1604 return __task_pid_nr_ns(tsk, PIDTYPE_PGID, ns);
1607 static inline pid_t task_pgrp_vnr(struct task_struct *tsk)
1609 return __task_pid_nr_ns(tsk, PIDTYPE_PGID, NULL);
1613 static inline pid_t task_session_nr_ns(struct task_struct *tsk, struct pid_namespace *ns)
1615 return __task_pid_nr_ns(tsk, PIDTYPE_SID, ns);
1618 static inline pid_t task_session_vnr(struct task_struct *tsk)
1620 return __task_pid_nr_ns(tsk, PIDTYPE_SID, NULL);
1623 static inline pid_t task_tgid_nr_ns(struct task_struct *tsk, struct pid_namespace *ns)
1625 return __task_pid_nr_ns(tsk, PIDTYPE_TGID, ns);
1628 static inline pid_t task_tgid_vnr(struct task_struct *tsk)
1630 return __task_pid_nr_ns(tsk, PIDTYPE_TGID, NULL);
1633 static inline pid_t task_ppid_nr_ns(const struct task_struct *tsk, struct pid_namespace *ns)
1639 pid = task_tgid_nr_ns(rcu_dereference(tsk->real_parent), ns);
1645 static inline pid_t task_ppid_nr(const struct task_struct *tsk)
1647 return task_ppid_nr_ns(tsk, &init_pid_ns);
1650 /* Obsolete, do not use: */
1651 static inline pid_t task_pgrp_nr(struct task_struct *tsk)
1653 return task_pgrp_nr_ns(tsk, &init_pid_ns);
1656 #define TASK_REPORT_IDLE (TASK_REPORT + 1)
1657 #define TASK_REPORT_MAX (TASK_REPORT_IDLE << 1)
1659 static inline unsigned int __task_state_index(unsigned int tsk_state,
1660 unsigned int tsk_exit_state)
1662 unsigned int state = (tsk_state | tsk_exit_state) & TASK_REPORT;
1664 BUILD_BUG_ON_NOT_POWER_OF_2(TASK_REPORT_MAX);
1666 if (tsk_state == TASK_IDLE)
1667 state = TASK_REPORT_IDLE;
1670 * We're lying here, but rather than expose a completely new task state
1671 * to userspace, we can make this appear as if the task has gone through
1672 * a regular rt_mutex_lock() call.
1674 if (tsk_state == TASK_RTLOCK_WAIT)
1675 state = TASK_UNINTERRUPTIBLE;
1680 static inline unsigned int task_state_index(struct task_struct *tsk)
1682 return __task_state_index(READ_ONCE(tsk->__state), tsk->exit_state);
1685 static inline char task_index_to_char(unsigned int state)
1687 static const char state_char[] = "RSDTtXZPI";
1689 BUILD_BUG_ON(1 + ilog2(TASK_REPORT_MAX) != sizeof(state_char) - 1);
1691 return state_char[state];
1694 static inline char task_state_to_char(struct task_struct *tsk)
1696 return task_index_to_char(task_state_index(tsk));
1700 * is_global_init - check if a task structure is init. Since init
1701 * is free to have sub-threads we need to check tgid.
1702 * @tsk: Task structure to be checked.
1704 * Check if a task structure is the first user space task the kernel created.
1706 * Return: 1 if the task structure is init. 0 otherwise.
1708 static inline int is_global_init(struct task_struct *tsk)
1710 return task_tgid_nr(tsk) == 1;
1713 extern struct pid *cad_pid;
1718 #define PF_VCPU 0x00000001 /* I'm a virtual CPU */
1719 #define PF_IDLE 0x00000002 /* I am an IDLE thread */
1720 #define PF_EXITING 0x00000004 /* Getting shut down */
1721 #define PF_POSTCOREDUMP 0x00000008 /* Coredumps should ignore this task */
1722 #define PF_IO_WORKER 0x00000010 /* Task is an IO worker */
1723 #define PF_WQ_WORKER 0x00000020 /* I'm a workqueue worker */
1724 #define PF_FORKNOEXEC 0x00000040 /* Forked but didn't exec */
1725 #define PF_MCE_PROCESS 0x00000080 /* Process policy on mce errors */
1726 #define PF_SUPERPRIV 0x00000100 /* Used super-user privileges */
1727 #define PF_DUMPCORE 0x00000200 /* Dumped core */
1728 #define PF_SIGNALED 0x00000400 /* Killed by a signal */
1729 #define PF_MEMALLOC 0x00000800 /* Allocating memory */
1730 #define PF_NPROC_EXCEEDED 0x00001000 /* set_user() noticed that RLIMIT_NPROC was exceeded */
1731 #define PF_USED_MATH 0x00002000 /* If unset the fpu must be initialized before use */
1732 #define PF__HOLE__00004000 0x00004000
1733 #define PF_NOFREEZE 0x00008000 /* This thread should not be frozen */
1734 #define PF__HOLE__00010000 0x00010000
1735 #define PF_KSWAPD 0x00020000 /* I am kswapd */
1736 #define PF_MEMALLOC_NOFS 0x00040000 /* All allocation requests will inherit GFP_NOFS */
1737 #define PF_MEMALLOC_NOIO 0x00080000 /* All allocation requests will inherit GFP_NOIO */
1738 #define PF_LOCAL_THROTTLE 0x00100000 /* Throttle writes only against the bdi I write to,
1739 * I am cleaning dirty pages from some other bdi. */
1740 #define PF_KTHREAD 0x00200000 /* I am a kernel thread */
1741 #define PF_RANDOMIZE 0x00400000 /* Randomize virtual address space */
1742 #define PF__HOLE__00800000 0x00800000
1743 #define PF__HOLE__01000000 0x01000000
1744 #define PF__HOLE__02000000 0x02000000
1745 #define PF_NO_SETAFFINITY 0x04000000 /* Userland is not allowed to meddle with cpus_mask */
1746 #define PF_MCE_EARLY 0x08000000 /* Early kill for mce process policy */
1747 #define PF_MEMALLOC_PIN 0x10000000 /* Allocation context constrained to zones which allow long term pinning. */
1748 #define PF__HOLE__20000000 0x20000000
1749 #define PF__HOLE__40000000 0x40000000
1750 #define PF_SUSPEND_TASK 0x80000000 /* This thread called freeze_processes() and should not be frozen */
1753 * Only the _current_ task can read/write to tsk->flags, but other
1754 * tasks can access tsk->flags in readonly mode for example
1755 * with tsk_used_math (like during threaded core dumping).
1756 * There is however an exception to this rule during ptrace
1757 * or during fork: the ptracer task is allowed to write to the
1758 * child->flags of its traced child (same goes for fork, the parent
1759 * can write to the child->flags), because we're guaranteed the
1760 * child is not running and in turn not changing child->flags
1761 * at the same time the parent does it.
1763 #define clear_stopped_child_used_math(child) do { (child)->flags &= ~PF_USED_MATH; } while (0)
1764 #define set_stopped_child_used_math(child) do { (child)->flags |= PF_USED_MATH; } while (0)
1765 #define clear_used_math() clear_stopped_child_used_math(current)
1766 #define set_used_math() set_stopped_child_used_math(current)
1768 #define conditional_stopped_child_used_math(condition, child) \
1769 do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= (condition) ? PF_USED_MATH : 0; } while (0)
1771 #define conditional_used_math(condition) conditional_stopped_child_used_math(condition, current)
1773 #define copy_to_stopped_child_used_math(child) \
1774 do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= current->flags & PF_USED_MATH; } while (0)
1776 /* NOTE: this will return 0 or PF_USED_MATH, it will never return 1 */
1777 #define tsk_used_math(p) ((p)->flags & PF_USED_MATH)
1778 #define used_math() tsk_used_math(current)
1780 static __always_inline bool is_percpu_thread(void)
1783 return (current->flags & PF_NO_SETAFFINITY) &&
1784 (current->nr_cpus_allowed == 1);
1790 /* Per-process atomic flags. */
1791 #define PFA_NO_NEW_PRIVS 0 /* May not gain new privileges. */
1792 #define PFA_SPREAD_PAGE 1 /* Spread page cache over cpuset */
1793 #define PFA_SPREAD_SLAB 2 /* Spread some slab caches over cpuset */
1794 #define PFA_SPEC_SSB_DISABLE 3 /* Speculative Store Bypass disabled */
1795 #define PFA_SPEC_SSB_FORCE_DISABLE 4 /* Speculative Store Bypass force disabled*/
1796 #define PFA_SPEC_IB_DISABLE 5 /* Indirect branch speculation restricted */
1797 #define PFA_SPEC_IB_FORCE_DISABLE 6 /* Indirect branch speculation permanently restricted */
1798 #define PFA_SPEC_SSB_NOEXEC 7 /* Speculative Store Bypass clear on execve() */
1800 #define TASK_PFA_TEST(name, func) \
1801 static inline bool task_##func(struct task_struct *p) \
1802 { return test_bit(PFA_##name, &p->atomic_flags); }
1804 #define TASK_PFA_SET(name, func) \
1805 static inline void task_set_##func(struct task_struct *p) \
1806 { set_bit(PFA_##name, &p->atomic_flags); }
1808 #define TASK_PFA_CLEAR(name, func) \
1809 static inline void task_clear_##func(struct task_struct *p) \
1810 { clear_bit(PFA_##name, &p->atomic_flags); }
1812 TASK_PFA_TEST(NO_NEW_PRIVS, no_new_privs)
1813 TASK_PFA_SET(NO_NEW_PRIVS, no_new_privs)
1815 TASK_PFA_TEST(SPREAD_PAGE, spread_page)
1816 TASK_PFA_SET(SPREAD_PAGE, spread_page)
1817 TASK_PFA_CLEAR(SPREAD_PAGE, spread_page)
1819 TASK_PFA_TEST(SPREAD_SLAB, spread_slab)
1820 TASK_PFA_SET(SPREAD_SLAB, spread_slab)
1821 TASK_PFA_CLEAR(SPREAD_SLAB, spread_slab)
1823 TASK_PFA_TEST(SPEC_SSB_DISABLE, spec_ssb_disable)
1824 TASK_PFA_SET(SPEC_SSB_DISABLE, spec_ssb_disable)
1825 TASK_PFA_CLEAR(SPEC_SSB_DISABLE, spec_ssb_disable)
1827 TASK_PFA_TEST(SPEC_SSB_NOEXEC, spec_ssb_noexec)
1828 TASK_PFA_SET(SPEC_SSB_NOEXEC, spec_ssb_noexec)
1829 TASK_PFA_CLEAR(SPEC_SSB_NOEXEC, spec_ssb_noexec)
1831 TASK_PFA_TEST(SPEC_SSB_FORCE_DISABLE, spec_ssb_force_disable)
1832 TASK_PFA_SET(SPEC_SSB_FORCE_DISABLE, spec_ssb_force_disable)
1834 TASK_PFA_TEST(SPEC_IB_DISABLE, spec_ib_disable)
1835 TASK_PFA_SET(SPEC_IB_DISABLE, spec_ib_disable)
1836 TASK_PFA_CLEAR(SPEC_IB_DISABLE, spec_ib_disable)
1838 TASK_PFA_TEST(SPEC_IB_FORCE_DISABLE, spec_ib_force_disable)
1839 TASK_PFA_SET(SPEC_IB_FORCE_DISABLE, spec_ib_force_disable)
1842 current_restore_flags(unsigned long orig_flags, unsigned long flags)
1844 current->flags &= ~flags;
1845 current->flags |= orig_flags & flags;
1848 extern int cpuset_cpumask_can_shrink(const struct cpumask *cur, const struct cpumask *trial);
1849 extern int task_can_attach(struct task_struct *p, const struct cpumask *cs_effective_cpus);
1851 extern void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask);
1852 extern int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask);
1853 extern int dup_user_cpus_ptr(struct task_struct *dst, struct task_struct *src, int node);
1854 extern void release_user_cpus_ptr(struct task_struct *p);
1855 extern int dl_task_check_affinity(struct task_struct *p, const struct cpumask *mask);
1856 extern void force_compatible_cpus_allowed_ptr(struct task_struct *p);
1857 extern void relax_compatible_cpus_allowed_ptr(struct task_struct *p);
1859 static inline void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
1862 static inline int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
1864 if (!cpumask_test_cpu(0, new_mask))
1868 static inline int dup_user_cpus_ptr(struct task_struct *dst, struct task_struct *src, int node)
1870 if (src->user_cpus_ptr)
1874 static inline void release_user_cpus_ptr(struct task_struct *p)
1876 WARN_ON(p->user_cpus_ptr);
1879 static inline int dl_task_check_affinity(struct task_struct *p, const struct cpumask *mask)
1885 extern int yield_to(struct task_struct *p, bool preempt);
1886 extern void set_user_nice(struct task_struct *p, long nice);
1887 extern int task_prio(const struct task_struct *p);
1890 * task_nice - return the nice value of a given task.
1891 * @p: the task in question.
1893 * Return: The nice value [ -20 ... 0 ... 19 ].
1895 static inline int task_nice(const struct task_struct *p)
1897 return PRIO_TO_NICE((p)->static_prio);
1900 extern int can_nice(const struct task_struct *p, const int nice);
1901 extern int task_curr(const struct task_struct *p);
1902 extern int idle_cpu(int cpu);
1903 extern int available_idle_cpu(int cpu);
1904 extern int sched_setscheduler(struct task_struct *, int, const struct sched_param *);
1905 extern int sched_setscheduler_nocheck(struct task_struct *, int, const struct sched_param *);
1906 extern void sched_set_fifo(struct task_struct *p);
1907 extern void sched_set_fifo_low(struct task_struct *p);
1908 extern void sched_set_normal(struct task_struct *p, int nice);
1909 extern int sched_setattr(struct task_struct *, const struct sched_attr *);
1910 extern int sched_setattr_nocheck(struct task_struct *, const struct sched_attr *);
1911 extern struct task_struct *idle_task(int cpu);
1914 * is_idle_task - is the specified task an idle task?
1915 * @p: the task in question.
1917 * Return: 1 if @p is an idle task. 0 otherwise.
1919 static __always_inline bool is_idle_task(const struct task_struct *p)
1921 return !!(p->flags & PF_IDLE);
1924 extern struct task_struct *curr_task(int cpu);
1925 extern void ia64_set_curr_task(int cpu, struct task_struct *p);
1929 union thread_union {
1930 #ifndef CONFIG_ARCH_TASK_STRUCT_ON_STACK
1931 struct task_struct task;
1933 #ifndef CONFIG_THREAD_INFO_IN_TASK
1934 struct thread_info thread_info;
1936 unsigned long stack[THREAD_SIZE/sizeof(long)];
1939 #ifndef CONFIG_THREAD_INFO_IN_TASK
1940 extern struct thread_info init_thread_info;
1943 extern unsigned long init_stack[THREAD_SIZE / sizeof(unsigned long)];
1945 #ifdef CONFIG_THREAD_INFO_IN_TASK
1946 # define task_thread_info(task) (&(task)->thread_info)
1947 #elif !defined(__HAVE_THREAD_FUNCTIONS)
1948 # define task_thread_info(task) ((struct thread_info *)(task)->stack)
1952 * find a task by one of its numerical ids
1954 * find_task_by_pid_ns():
1955 * finds a task by its pid in the specified namespace
1956 * find_task_by_vpid():
1957 * finds a task by its virtual pid
1959 * see also find_vpid() etc in include/linux/pid.h
1962 extern struct task_struct *find_task_by_vpid(pid_t nr);
1963 extern struct task_struct *find_task_by_pid_ns(pid_t nr, struct pid_namespace *ns);
1966 * find a task by its virtual pid and get the task struct
1968 extern struct task_struct *find_get_task_by_vpid(pid_t nr);
1970 extern int wake_up_state(struct task_struct *tsk, unsigned int state);
1971 extern int wake_up_process(struct task_struct *tsk);
1972 extern void wake_up_new_task(struct task_struct *tsk);
1975 extern void kick_process(struct task_struct *tsk);
1977 static inline void kick_process(struct task_struct *tsk) { }
1980 extern void __set_task_comm(struct task_struct *tsk, const char *from, bool exec);
1982 static inline void set_task_comm(struct task_struct *tsk, const char *from)
1984 __set_task_comm(tsk, from, false);
1987 extern char *__get_task_comm(char *to, size_t len, struct task_struct *tsk);
1988 #define get_task_comm(buf, tsk) ({ \
1989 BUILD_BUG_ON(sizeof(buf) != TASK_COMM_LEN); \
1990 __get_task_comm(buf, sizeof(buf), tsk); \
1994 static __always_inline void scheduler_ipi(void)
1997 * Fold TIF_NEED_RESCHED into the preempt_count; anybody setting
1998 * TIF_NEED_RESCHED remotely (for the first time) will also send
2001 preempt_fold_need_resched();
2003 extern unsigned long wait_task_inactive(struct task_struct *, unsigned int match_state);
2005 static inline void scheduler_ipi(void) { }
2006 static inline unsigned long wait_task_inactive(struct task_struct *p, unsigned int match_state)
2013 * Set thread flags in other task's structures.
2014 * See asm/thread_info.h for TIF_xxxx flags available:
2016 static inline void set_tsk_thread_flag(struct task_struct *tsk, int flag)
2018 set_ti_thread_flag(task_thread_info(tsk), flag);
2021 static inline void clear_tsk_thread_flag(struct task_struct *tsk, int flag)
2023 clear_ti_thread_flag(task_thread_info(tsk), flag);
2026 static inline void update_tsk_thread_flag(struct task_struct *tsk, int flag,
2029 update_ti_thread_flag(task_thread_info(tsk), flag, value);
2032 static inline int test_and_set_tsk_thread_flag(struct task_struct *tsk, int flag)
2034 return test_and_set_ti_thread_flag(task_thread_info(tsk), flag);
2037 static inline int test_and_clear_tsk_thread_flag(struct task_struct *tsk, int flag)
2039 return test_and_clear_ti_thread_flag(task_thread_info(tsk), flag);
2042 static inline int test_tsk_thread_flag(struct task_struct *tsk, int flag)
2044 return test_ti_thread_flag(task_thread_info(tsk), flag);
2047 static inline void set_tsk_need_resched(struct task_struct *tsk)
2049 set_tsk_thread_flag(tsk,TIF_NEED_RESCHED);
2052 static inline void clear_tsk_need_resched(struct task_struct *tsk)
2054 clear_tsk_thread_flag(tsk,TIF_NEED_RESCHED);
2057 static inline int test_tsk_need_resched(struct task_struct *tsk)
2059 return unlikely(test_tsk_thread_flag(tsk,TIF_NEED_RESCHED));
2063 * cond_resched() and cond_resched_lock(): latency reduction via
2064 * explicit rescheduling in places that are safe. The return
2065 * value indicates whether a reschedule was done in fact.
2066 * cond_resched_lock() will drop the spinlock before scheduling,
2068 #if !defined(CONFIG_PREEMPTION) || defined(CONFIG_PREEMPT_DYNAMIC)
2069 extern int __cond_resched(void);
2071 #if defined(CONFIG_PREEMPT_DYNAMIC) && defined(CONFIG_HAVE_PREEMPT_DYNAMIC_CALL)
2073 DECLARE_STATIC_CALL(cond_resched, __cond_resched);
2075 static __always_inline int _cond_resched(void)
2077 return static_call_mod(cond_resched)();
2080 #elif defined(CONFIG_PREEMPT_DYNAMIC) && defined(CONFIG_HAVE_PREEMPT_DYNAMIC_KEY)
2081 extern int dynamic_cond_resched(void);
2083 static __always_inline int _cond_resched(void)
2085 return dynamic_cond_resched();
2090 static inline int _cond_resched(void)
2092 return __cond_resched();
2095 #endif /* CONFIG_PREEMPT_DYNAMIC */
2099 static inline int _cond_resched(void) { return 0; }
2101 #endif /* !defined(CONFIG_PREEMPTION) || defined(CONFIG_PREEMPT_DYNAMIC) */
2103 #define cond_resched() ({ \
2104 __might_resched(__FILE__, __LINE__, 0); \
2108 extern int __cond_resched_lock(spinlock_t *lock);
2109 extern int __cond_resched_rwlock_read(rwlock_t *lock);
2110 extern int __cond_resched_rwlock_write(rwlock_t *lock);
2112 #define MIGHT_RESCHED_RCU_SHIFT 8
2113 #define MIGHT_RESCHED_PREEMPT_MASK ((1U << MIGHT_RESCHED_RCU_SHIFT) - 1)
2115 #ifndef CONFIG_PREEMPT_RT
2117 * Non RT kernels have an elevated preempt count due to the held lock,
2118 * but are not allowed to be inside a RCU read side critical section
2120 # define PREEMPT_LOCK_RESCHED_OFFSETS PREEMPT_LOCK_OFFSET
2123 * spin/rw_lock() on RT implies rcu_read_lock(). The might_sleep() check in
2124 * cond_resched*lock() has to take that into account because it checks for
2125 * preempt_count() and rcu_preempt_depth().
2127 # define PREEMPT_LOCK_RESCHED_OFFSETS \
2128 (PREEMPT_LOCK_OFFSET + (1U << MIGHT_RESCHED_RCU_SHIFT))
2131 #define cond_resched_lock(lock) ({ \
2132 __might_resched(__FILE__, __LINE__, PREEMPT_LOCK_RESCHED_OFFSETS); \
2133 __cond_resched_lock(lock); \
2136 #define cond_resched_rwlock_read(lock) ({ \
2137 __might_resched(__FILE__, __LINE__, PREEMPT_LOCK_RESCHED_OFFSETS); \
2138 __cond_resched_rwlock_read(lock); \
2141 #define cond_resched_rwlock_write(lock) ({ \
2142 __might_resched(__FILE__, __LINE__, PREEMPT_LOCK_RESCHED_OFFSETS); \
2143 __cond_resched_rwlock_write(lock); \
2146 static inline void cond_resched_rcu(void)
2148 #if defined(CONFIG_DEBUG_ATOMIC_SLEEP) || !defined(CONFIG_PREEMPT_RCU)
2155 #ifdef CONFIG_PREEMPT_DYNAMIC
2157 extern bool preempt_model_none(void);
2158 extern bool preempt_model_voluntary(void);
2159 extern bool preempt_model_full(void);
2163 static inline bool preempt_model_none(void)
2165 return IS_ENABLED(CONFIG_PREEMPT_NONE);
2167 static inline bool preempt_model_voluntary(void)
2169 return IS_ENABLED(CONFIG_PREEMPT_VOLUNTARY);
2171 static inline bool preempt_model_full(void)
2173 return IS_ENABLED(CONFIG_PREEMPT);
2178 static inline bool preempt_model_rt(void)
2180 return IS_ENABLED(CONFIG_PREEMPT_RT);
2184 * Does the preemption model allow non-cooperative preemption?
2186 * For !CONFIG_PREEMPT_DYNAMIC kernels this is an exact match with
2187 * CONFIG_PREEMPTION; for CONFIG_PREEMPT_DYNAMIC this doesn't work as the
2188 * kernel is *built* with CONFIG_PREEMPTION=y but may run with e.g. the
2189 * PREEMPT_NONE model.
2191 static inline bool preempt_model_preemptible(void)
2193 return preempt_model_full() || preempt_model_rt();
2197 * Does a critical section need to be broken due to another
2198 * task waiting?: (technically does not depend on CONFIG_PREEMPTION,
2199 * but a general need for low latency)
2201 static inline int spin_needbreak(spinlock_t *lock)
2203 #ifdef CONFIG_PREEMPTION
2204 return spin_is_contended(lock);
2211 * Check if a rwlock is contended.
2212 * Returns non-zero if there is another task waiting on the rwlock.
2213 * Returns zero if the lock is not contended or the system / underlying
2214 * rwlock implementation does not support contention detection.
2215 * Technically does not depend on CONFIG_PREEMPTION, but a general need
2218 static inline int rwlock_needbreak(rwlock_t *lock)
2220 #ifdef CONFIG_PREEMPTION
2221 return rwlock_is_contended(lock);
2227 static __always_inline bool need_resched(void)
2229 return unlikely(tif_need_resched());
2233 * Wrappers for p->thread_info->cpu access. No-op on UP.
2237 static inline unsigned int task_cpu(const struct task_struct *p)
2239 return READ_ONCE(task_thread_info(p)->cpu);
2242 extern void set_task_cpu(struct task_struct *p, unsigned int cpu);
2246 static inline unsigned int task_cpu(const struct task_struct *p)
2251 static inline void set_task_cpu(struct task_struct *p, unsigned int cpu)
2255 #endif /* CONFIG_SMP */
2257 extern bool sched_task_on_rq(struct task_struct *p);
2258 extern unsigned long get_wchan(struct task_struct *p);
2259 extern struct task_struct *cpu_curr_snapshot(int cpu);
2262 * In order to reduce various lock holder preemption latencies provide an
2263 * interface to see if a vCPU is currently running or not.
2265 * This allows us to terminate optimistic spin loops and block, analogous to
2266 * the native optimistic spin heuristic of testing if the lock owner task is
2269 #ifndef vcpu_is_preempted
2270 static inline bool vcpu_is_preempted(int cpu)
2276 extern long sched_setaffinity(pid_t pid, const struct cpumask *new_mask);
2277 extern long sched_getaffinity(pid_t pid, struct cpumask *mask);
2279 #ifndef TASK_SIZE_OF
2280 #define TASK_SIZE_OF(tsk) TASK_SIZE
2284 static inline bool owner_on_cpu(struct task_struct *owner)
2287 * As lock holder preemption issue, we both skip spinning if
2288 * task is not on cpu or its cpu is preempted
2290 return READ_ONCE(owner->on_cpu) && !vcpu_is_preempted(task_cpu(owner));
2293 /* Returns effective CPU energy utilization, as seen by the scheduler */
2294 unsigned long sched_cpu_util(int cpu);
2295 #endif /* CONFIG_SMP */
2300 * Map the event mask on the user-space ABI enum rseq_cs_flags
2301 * for direct mask checks.
2303 enum rseq_event_mask_bits {
2304 RSEQ_EVENT_PREEMPT_BIT = RSEQ_CS_FLAG_NO_RESTART_ON_PREEMPT_BIT,
2305 RSEQ_EVENT_SIGNAL_BIT = RSEQ_CS_FLAG_NO_RESTART_ON_SIGNAL_BIT,
2306 RSEQ_EVENT_MIGRATE_BIT = RSEQ_CS_FLAG_NO_RESTART_ON_MIGRATE_BIT,
2309 enum rseq_event_mask {
2310 RSEQ_EVENT_PREEMPT = (1U << RSEQ_EVENT_PREEMPT_BIT),
2311 RSEQ_EVENT_SIGNAL = (1U << RSEQ_EVENT_SIGNAL_BIT),
2312 RSEQ_EVENT_MIGRATE = (1U << RSEQ_EVENT_MIGRATE_BIT),
2315 static inline void rseq_set_notify_resume(struct task_struct *t)
2318 set_tsk_thread_flag(t, TIF_NOTIFY_RESUME);
2321 void __rseq_handle_notify_resume(struct ksignal *sig, struct pt_regs *regs);
2323 static inline void rseq_handle_notify_resume(struct ksignal *ksig,
2324 struct pt_regs *regs)
2327 __rseq_handle_notify_resume(ksig, regs);
2330 static inline void rseq_signal_deliver(struct ksignal *ksig,
2331 struct pt_regs *regs)
2334 __set_bit(RSEQ_EVENT_SIGNAL_BIT, ¤t->rseq_event_mask);
2336 rseq_handle_notify_resume(ksig, regs);
2339 /* rseq_preempt() requires preemption to be disabled. */
2340 static inline void rseq_preempt(struct task_struct *t)
2342 __set_bit(RSEQ_EVENT_PREEMPT_BIT, &t->rseq_event_mask);
2343 rseq_set_notify_resume(t);
2346 /* rseq_migrate() requires preemption to be disabled. */
2347 static inline void rseq_migrate(struct task_struct *t)
2349 __set_bit(RSEQ_EVENT_MIGRATE_BIT, &t->rseq_event_mask);
2350 rseq_set_notify_resume(t);
2354 * If parent process has a registered restartable sequences area, the
2355 * child inherits. Unregister rseq for a clone with CLONE_VM set.
2357 static inline void rseq_fork(struct task_struct *t, unsigned long clone_flags)
2359 if (clone_flags & CLONE_VM) {
2362 t->rseq_event_mask = 0;
2364 t->rseq = current->rseq;
2365 t->rseq_sig = current->rseq_sig;
2366 t->rseq_event_mask = current->rseq_event_mask;
2370 static inline void rseq_execve(struct task_struct *t)
2374 t->rseq_event_mask = 0;
2379 static inline void rseq_set_notify_resume(struct task_struct *t)
2382 static inline void rseq_handle_notify_resume(struct ksignal *ksig,
2383 struct pt_regs *regs)
2386 static inline void rseq_signal_deliver(struct ksignal *ksig,
2387 struct pt_regs *regs)
2390 static inline void rseq_preempt(struct task_struct *t)
2393 static inline void rseq_migrate(struct task_struct *t)
2396 static inline void rseq_fork(struct task_struct *t, unsigned long clone_flags)
2399 static inline void rseq_execve(struct task_struct *t)
2405 #ifdef CONFIG_DEBUG_RSEQ
2407 void rseq_syscall(struct pt_regs *regs);
2411 static inline void rseq_syscall(struct pt_regs *regs)
2417 #ifdef CONFIG_SCHED_CORE
2418 extern void sched_core_free(struct task_struct *tsk);
2419 extern void sched_core_fork(struct task_struct *p);
2420 extern int sched_core_share_pid(unsigned int cmd, pid_t pid, enum pid_type type,
2421 unsigned long uaddr);
2423 static inline void sched_core_free(struct task_struct *tsk) { }
2424 static inline void sched_core_fork(struct task_struct *p) { }
2427 extern void sched_set_stop_task(int cpu, struct task_struct *stop);