1 /* SPDX-License-Identifier: GPL-2.0 */
6 * Define 'struct task_struct' and provide the main scheduler
7 * APIs (schedule(), wakeup variants, etc.)
10 #include <uapi/linux/sched.h>
12 #include <asm/current.h>
14 #include <linux/pid.h>
15 #include <linux/sem.h>
16 #include <linux/shm.h>
17 #include <linux/kcov.h>
18 #include <linux/mutex.h>
19 #include <linux/plist.h>
20 #include <linux/hrtimer.h>
21 #include <linux/irqflags.h>
22 #include <linux/seccomp.h>
23 #include <linux/nodemask.h>
24 #include <linux/rcupdate.h>
25 #include <linux/refcount.h>
26 #include <linux/resource.h>
27 #include <linux/latencytop.h>
28 #include <linux/sched/prio.h>
29 #include <linux/sched/types.h>
30 #include <linux/signal_types.h>
31 #include <linux/mm_types_task.h>
32 #include <linux/task_io_accounting.h>
33 #include <linux/posix-timers.h>
34 #include <linux/rseq.h>
35 #include <linux/kcsan.h>
37 /* task_struct member predeclarations (sorted alphabetically): */
39 struct backing_dev_info;
42 struct capture_control;
45 struct futex_pi_state;
50 struct perf_event_context;
52 struct pipe_inode_info;
55 struct robust_list_head;
61 struct sighand_struct;
63 struct task_delay_info;
67 * Task state bitmask. NOTE! These bits are also
68 * encoded in fs/proc/array.c: get_task_state().
70 * We have two separate sets of flags: task->state
71 * is about runnability, while task->exit_state are
72 * about the task exiting. Confusing, but this way
73 * modifying one set can't modify the other one by
77 /* Used in tsk->state: */
78 #define TASK_RUNNING 0x0000
79 #define TASK_INTERRUPTIBLE 0x0001
80 #define TASK_UNINTERRUPTIBLE 0x0002
81 #define __TASK_STOPPED 0x0004
82 #define __TASK_TRACED 0x0008
83 /* Used in tsk->exit_state: */
84 #define EXIT_DEAD 0x0010
85 #define EXIT_ZOMBIE 0x0020
86 #define EXIT_TRACE (EXIT_ZOMBIE | EXIT_DEAD)
87 /* Used in tsk->state again: */
88 #define TASK_PARKED 0x0040
89 #define TASK_DEAD 0x0080
90 #define TASK_WAKEKILL 0x0100
91 #define TASK_WAKING 0x0200
92 #define TASK_NOLOAD 0x0400
93 #define TASK_NEW 0x0800
94 #define TASK_STATE_MAX 0x1000
96 /* Convenience macros for the sake of set_current_state: */
97 #define TASK_KILLABLE (TASK_WAKEKILL | TASK_UNINTERRUPTIBLE)
98 #define TASK_STOPPED (TASK_WAKEKILL | __TASK_STOPPED)
99 #define TASK_TRACED (TASK_WAKEKILL | __TASK_TRACED)
101 #define TASK_IDLE (TASK_UNINTERRUPTIBLE | TASK_NOLOAD)
103 /* Convenience macros for the sake of wake_up(): */
104 #define TASK_NORMAL (TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE)
106 /* get_task_state(): */
107 #define TASK_REPORT (TASK_RUNNING | TASK_INTERRUPTIBLE | \
108 TASK_UNINTERRUPTIBLE | __TASK_STOPPED | \
109 __TASK_TRACED | EXIT_DEAD | EXIT_ZOMBIE | \
112 #define task_is_traced(task) ((task->state & __TASK_TRACED) != 0)
114 #define task_is_stopped(task) ((task->state & __TASK_STOPPED) != 0)
116 #define task_is_stopped_or_traced(task) ((task->state & (__TASK_STOPPED | __TASK_TRACED)) != 0)
118 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
121 * Special states are those that do not use the normal wait-loop pattern. See
122 * the comment with set_special_state().
124 #define is_special_task_state(state) \
125 ((state) & (__TASK_STOPPED | __TASK_TRACED | TASK_PARKED | TASK_DEAD))
127 #define __set_current_state(state_value) \
129 WARN_ON_ONCE(is_special_task_state(state_value));\
130 current->task_state_change = _THIS_IP_; \
131 current->state = (state_value); \
134 #define set_current_state(state_value) \
136 WARN_ON_ONCE(is_special_task_state(state_value));\
137 current->task_state_change = _THIS_IP_; \
138 smp_store_mb(current->state, (state_value)); \
141 #define set_special_state(state_value) \
143 unsigned long flags; /* may shadow */ \
144 WARN_ON_ONCE(!is_special_task_state(state_value)); \
145 raw_spin_lock_irqsave(¤t->pi_lock, flags); \
146 current->task_state_change = _THIS_IP_; \
147 current->state = (state_value); \
148 raw_spin_unlock_irqrestore(¤t->pi_lock, flags); \
152 * set_current_state() includes a barrier so that the write of current->state
153 * is correctly serialised wrt the caller's subsequent test of whether to
157 * set_current_state(TASK_UNINTERRUPTIBLE);
163 * __set_current_state(TASK_RUNNING);
165 * If the caller does not need such serialisation (because, for instance, the
166 * CONDITION test and condition change and wakeup are under the same lock) then
167 * use __set_current_state().
169 * The above is typically ordered against the wakeup, which does:
172 * wake_up_state(p, TASK_UNINTERRUPTIBLE);
174 * where wake_up_state()/try_to_wake_up() executes a full memory barrier before
175 * accessing p->state.
177 * Wakeup will do: if (@state & p->state) p->state = TASK_RUNNING, that is,
178 * once it observes the TASK_UNINTERRUPTIBLE store the waking CPU can issue a
179 * TASK_RUNNING store which can collide with __set_current_state(TASK_RUNNING).
181 * However, with slightly different timing the wakeup TASK_RUNNING store can
182 * also collide with the TASK_UNINTERRUPTIBLE store. Losing that store is not
183 * a problem either because that will result in one extra go around the loop
184 * and our @cond test will save the day.
186 * Also see the comments of try_to_wake_up().
188 #define __set_current_state(state_value) \
189 current->state = (state_value)
191 #define set_current_state(state_value) \
192 smp_store_mb(current->state, (state_value))
195 * set_special_state() should be used for those states when the blocking task
196 * can not use the regular condition based wait-loop. In that case we must
197 * serialize against wakeups such that any possible in-flight TASK_RUNNING stores
198 * will not collide with our state change.
200 #define set_special_state(state_value) \
202 unsigned long flags; /* may shadow */ \
203 raw_spin_lock_irqsave(¤t->pi_lock, flags); \
204 current->state = (state_value); \
205 raw_spin_unlock_irqrestore(¤t->pi_lock, flags); \
210 /* Task command name length: */
211 #define TASK_COMM_LEN 16
213 extern void scheduler_tick(void);
215 #define MAX_SCHEDULE_TIMEOUT LONG_MAX
217 extern long schedule_timeout(long timeout);
218 extern long schedule_timeout_interruptible(long timeout);
219 extern long schedule_timeout_killable(long timeout);
220 extern long schedule_timeout_uninterruptible(long timeout);
221 extern long schedule_timeout_idle(long timeout);
222 asmlinkage void schedule(void);
223 extern void schedule_preempt_disabled(void);
224 asmlinkage void preempt_schedule_irq(void);
226 extern int __must_check io_schedule_prepare(void);
227 extern void io_schedule_finish(int token);
228 extern long io_schedule_timeout(long timeout);
229 extern void io_schedule(void);
232 * struct prev_cputime - snapshot of system and user cputime
233 * @utime: time spent in user mode
234 * @stime: time spent in system mode
235 * @lock: protects the above two fields
237 * Stores previous user/system time values such that we can guarantee
240 struct prev_cputime {
241 #ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
249 /* Task is sleeping or running in a CPU with VTIME inactive: */
253 /* Task runs in kernelspace in a CPU with VTIME active: */
255 /* Task runs in userspace in a CPU with VTIME active: */
257 /* Task runs as guests in a CPU with VTIME active: */
263 unsigned long long starttime;
264 enum vtime_state state;
272 * Utilization clamp constraints.
273 * @UCLAMP_MIN: Minimum utilization
274 * @UCLAMP_MAX: Maximum utilization
275 * @UCLAMP_CNT: Utilization clamp constraints count
284 extern struct root_domain def_root_domain;
285 extern struct mutex sched_domains_mutex;
289 #ifdef CONFIG_SCHED_INFO
290 /* Cumulative counters: */
292 /* # of times we have run on this CPU: */
293 unsigned long pcount;
295 /* Time spent waiting on a runqueue: */
296 unsigned long long run_delay;
300 /* When did we last run on a CPU? */
301 unsigned long long last_arrival;
303 /* When were we last queued to run? */
304 unsigned long long last_queued;
306 #endif /* CONFIG_SCHED_INFO */
310 * Integer metrics need fixed point arithmetic, e.g., sched/fair
311 * has a few: load, load_avg, util_avg, freq, and capacity.
313 * We define a basic fixed point arithmetic range, and then formalize
314 * all these metrics based on that basic range.
316 # define SCHED_FIXEDPOINT_SHIFT 10
317 # define SCHED_FIXEDPOINT_SCALE (1L << SCHED_FIXEDPOINT_SHIFT)
319 /* Increase resolution of cpu_capacity calculations */
320 # define SCHED_CAPACITY_SHIFT SCHED_FIXEDPOINT_SHIFT
321 # define SCHED_CAPACITY_SCALE (1L << SCHED_CAPACITY_SHIFT)
324 unsigned long weight;
329 * struct util_est - Estimation utilization of FAIR tasks
330 * @enqueued: instantaneous estimated utilization of a task/cpu
331 * @ewma: the Exponential Weighted Moving Average (EWMA)
332 * utilization of a task
334 * Support data structure to track an Exponential Weighted Moving Average
335 * (EWMA) of a FAIR task's utilization. New samples are added to the moving
336 * average each time a task completes an activation. Sample's weight is chosen
337 * so that the EWMA will be relatively insensitive to transient changes to the
340 * The enqueued attribute has a slightly different meaning for tasks and cpus:
341 * - task: the task's util_avg at last task dequeue time
342 * - cfs_rq: the sum of util_est.enqueued for each RUNNABLE task on that CPU
343 * Thus, the util_est.enqueued of a task represents the contribution on the
344 * estimated utilization of the CPU where that task is currently enqueued.
346 * Only for tasks we track a moving average of the past instantaneous
347 * estimated utilization. This allows to absorb sporadic drops in utilization
348 * of an otherwise almost periodic task.
351 unsigned int enqueued;
353 #define UTIL_EST_WEIGHT_SHIFT 2
354 } __attribute__((__aligned__(sizeof(u64))));
357 * The load/runnable/util_avg accumulates an infinite geometric series
358 * (see __update_load_avg_cfs_rq() in kernel/sched/pelt.c).
360 * [load_avg definition]
362 * load_avg = runnable% * scale_load_down(load)
364 * [runnable_avg definition]
366 * runnable_avg = runnable% * SCHED_CAPACITY_SCALE
368 * [util_avg definition]
370 * util_avg = running% * SCHED_CAPACITY_SCALE
372 * where runnable% is the time ratio that a sched_entity is runnable and
373 * running% the time ratio that a sched_entity is running.
375 * For cfs_rq, they are the aggregated values of all runnable and blocked
378 * The load/runnable/util_avg doesn't directly factor frequency scaling and CPU
379 * capacity scaling. The scaling is done through the rq_clock_pelt that is used
380 * for computing those signals (see update_rq_clock_pelt())
382 * N.B., the above ratios (runnable% and running%) themselves are in the
383 * range of [0, 1]. To do fixed point arithmetics, we therefore scale them
384 * to as large a range as necessary. This is for example reflected by
385 * util_avg's SCHED_CAPACITY_SCALE.
389 * The 64-bit load_sum can have 4353082796 (=2^64/47742/88761) entities
390 * with the highest load (=88761), always runnable on a single cfs_rq,
391 * and should not overflow as the number already hits PID_MAX_LIMIT.
393 * For all other cases (including 32-bit kernels), struct load_weight's
394 * weight will overflow first before we do, because:
396 * Max(load_avg) <= Max(load.weight)
398 * Then it is the load_weight's responsibility to consider overflow
402 u64 last_update_time;
407 unsigned long load_avg;
408 unsigned long runnable_avg;
409 unsigned long util_avg;
410 struct util_est util_est;
411 } ____cacheline_aligned;
413 struct sched_statistics {
414 #ifdef CONFIG_SCHEDSTATS
424 s64 sum_sleep_runtime;
431 u64 nr_migrations_cold;
432 u64 nr_failed_migrations_affine;
433 u64 nr_failed_migrations_running;
434 u64 nr_failed_migrations_hot;
435 u64 nr_forced_migrations;
439 u64 nr_wakeups_migrate;
440 u64 nr_wakeups_local;
441 u64 nr_wakeups_remote;
442 u64 nr_wakeups_affine;
443 u64 nr_wakeups_affine_attempts;
444 u64 nr_wakeups_passive;
449 struct sched_entity {
450 /* For load-balancing: */
451 struct load_weight load;
452 struct rb_node run_node;
453 struct list_head group_node;
457 u64 sum_exec_runtime;
459 u64 prev_sum_exec_runtime;
463 struct sched_statistics statistics;
465 #ifdef CONFIG_FAIR_GROUP_SCHED
467 struct sched_entity *parent;
468 /* rq on which this entity is (to be) queued: */
469 struct cfs_rq *cfs_rq;
470 /* rq "owned" by this entity/group: */
472 /* cached value of my_q->h_nr_running */
473 unsigned long runnable_weight;
478 * Per entity load average tracking.
480 * Put into separate cache line so it does not
481 * collide with read-mostly values above.
483 struct sched_avg avg;
487 struct sched_rt_entity {
488 struct list_head run_list;
489 unsigned long timeout;
490 unsigned long watchdog_stamp;
491 unsigned int time_slice;
492 unsigned short on_rq;
493 unsigned short on_list;
495 struct sched_rt_entity *back;
496 #ifdef CONFIG_RT_GROUP_SCHED
497 struct sched_rt_entity *parent;
498 /* rq on which this entity is (to be) queued: */
500 /* rq "owned" by this entity/group: */
503 } __randomize_layout;
505 struct sched_dl_entity {
506 struct rb_node rb_node;
509 * Original scheduling parameters. Copied here from sched_attr
510 * during sched_setattr(), they will remain the same until
511 * the next sched_setattr().
513 u64 dl_runtime; /* Maximum runtime for each instance */
514 u64 dl_deadline; /* Relative deadline of each instance */
515 u64 dl_period; /* Separation of two instances (period) */
516 u64 dl_bw; /* dl_runtime / dl_period */
517 u64 dl_density; /* dl_runtime / dl_deadline */
520 * Actual scheduling parameters. Initialized with the values above,
521 * they are continuously updated during task execution. Note that
522 * the remaining runtime could be < 0 in case we are in overrun.
524 s64 runtime; /* Remaining runtime for this instance */
525 u64 deadline; /* Absolute deadline for this instance */
526 unsigned int flags; /* Specifying the scheduler behaviour */
531 * @dl_throttled tells if we exhausted the runtime. If so, the
532 * task has to wait for a replenishment to be performed at the
533 * next firing of dl_timer.
535 * @dl_boosted tells if we are boosted due to DI. If so we are
536 * outside bandwidth enforcement mechanism (but only until we
537 * exit the critical section);
539 * @dl_yielded tells if task gave up the CPU before consuming
540 * all its available runtime during the last job.
542 * @dl_non_contending tells if the task is inactive while still
543 * contributing to the active utilization. In other words, it
544 * indicates if the inactive timer has been armed and its handler
545 * has not been executed yet. This flag is useful to avoid race
546 * conditions between the inactive timer handler and the wakeup
549 * @dl_overrun tells if the task asked to be informed about runtime
552 unsigned int dl_throttled : 1;
553 unsigned int dl_boosted : 1;
554 unsigned int dl_yielded : 1;
555 unsigned int dl_non_contending : 1;
556 unsigned int dl_overrun : 1;
559 * Bandwidth enforcement timer. Each -deadline task has its
560 * own bandwidth to be enforced, thus we need one timer per task.
562 struct hrtimer dl_timer;
565 * Inactive timer, responsible for decreasing the active utilization
566 * at the "0-lag time". When a -deadline task blocks, it contributes
567 * to GRUB's active utilization until the "0-lag time", hence a
568 * timer is needed to decrease the active utilization at the correct
571 struct hrtimer inactive_timer;
574 #ifdef CONFIG_UCLAMP_TASK
575 /* Number of utilization clamp buckets (shorter alias) */
576 #define UCLAMP_BUCKETS CONFIG_UCLAMP_BUCKETS_COUNT
579 * Utilization clamp for a scheduling entity
580 * @value: clamp value "assigned" to a se
581 * @bucket_id: bucket index corresponding to the "assigned" value
582 * @active: the se is currently refcounted in a rq's bucket
583 * @user_defined: the requested clamp value comes from user-space
585 * The bucket_id is the index of the clamp bucket matching the clamp value
586 * which is pre-computed and stored to avoid expensive integer divisions from
589 * The active bit is set whenever a task has got an "effective" value assigned,
590 * which can be different from the clamp value "requested" from user-space.
591 * This allows to know a task is refcounted in the rq's bucket corresponding
592 * to the "effective" bucket_id.
594 * The user_defined bit is set whenever a task has got a task-specific clamp
595 * value requested from userspace, i.e. the system defaults apply to this task
596 * just as a restriction. This allows to relax default clamps when a less
597 * restrictive task-specific value has been requested, thus allowing to
598 * implement a "nice" semantic. For example, a task running with a 20%
599 * default boost can still drop its own boosting to 0%.
602 unsigned int value : bits_per(SCHED_CAPACITY_SCALE);
603 unsigned int bucket_id : bits_per(UCLAMP_BUCKETS);
604 unsigned int active : 1;
605 unsigned int user_defined : 1;
607 #endif /* CONFIG_UCLAMP_TASK */
613 u8 exp_hint; /* Hint for performance. */
614 u8 need_mb; /* Readers need smp_mb(). */
616 u32 s; /* Set of bits. */
619 enum perf_event_task_context {
620 perf_invalid_context = -1,
623 perf_nr_task_contexts,
627 struct wake_q_node *next;
631 #ifdef CONFIG_THREAD_INFO_IN_TASK
633 * For reasons of header soup (see current_thread_info()), this
634 * must be the first element of task_struct.
636 struct thread_info thread_info;
638 /* -1 unrunnable, 0 runnable, >0 stopped: */
642 * This begins the randomizable portion of task_struct. Only
643 * scheduling-critical items should be added above here.
645 randomized_struct_fields_start
649 /* Per task flags (PF_*), defined further below: */
655 struct __call_single_node wake_entry;
656 #ifdef CONFIG_THREAD_INFO_IN_TASK
660 unsigned int wakee_flips;
661 unsigned long wakee_flip_decay_ts;
662 struct task_struct *last_wakee;
665 * recent_used_cpu is initially set as the last CPU used by a task
666 * that wakes affine another task. Waker/wakee relationships can
667 * push tasks around a CPU where each wakeup moves to the next one.
668 * Tracking a recently used CPU allows a quick search for a recently
669 * used CPU that may be idle.
679 unsigned int rt_priority;
681 const struct sched_class *sched_class;
682 struct sched_entity se;
683 struct sched_rt_entity rt;
684 #ifdef CONFIG_CGROUP_SCHED
685 struct task_group *sched_task_group;
687 struct sched_dl_entity dl;
689 #ifdef CONFIG_UCLAMP_TASK
691 * Clamp values requested for a scheduling entity.
692 * Must be updated with task_rq_lock() held.
694 struct uclamp_se uclamp_req[UCLAMP_CNT];
696 * Effective clamp values used for a scheduling entity.
697 * Must be updated with task_rq_lock() held.
699 struct uclamp_se uclamp[UCLAMP_CNT];
702 #ifdef CONFIG_PREEMPT_NOTIFIERS
703 /* List of struct preempt_notifier: */
704 struct hlist_head preempt_notifiers;
707 #ifdef CONFIG_BLK_DEV_IO_TRACE
708 unsigned int btrace_seq;
713 const cpumask_t *cpus_ptr;
716 #ifdef CONFIG_PREEMPT_RCU
717 int rcu_read_lock_nesting;
718 union rcu_special rcu_read_unlock_special;
719 struct list_head rcu_node_entry;
720 struct rcu_node *rcu_blocked_node;
721 #endif /* #ifdef CONFIG_PREEMPT_RCU */
723 #ifdef CONFIG_TASKS_RCU
724 unsigned long rcu_tasks_nvcsw;
725 u8 rcu_tasks_holdout;
727 int rcu_tasks_idle_cpu;
728 struct list_head rcu_tasks_holdout_list;
729 #endif /* #ifdef CONFIG_TASKS_RCU */
731 #ifdef CONFIG_TASKS_TRACE_RCU
732 int trc_reader_nesting;
734 union rcu_special trc_reader_special;
735 bool trc_reader_checked;
736 struct list_head trc_holdout_list;
737 #endif /* #ifdef CONFIG_TASKS_TRACE_RCU */
739 struct sched_info sched_info;
741 struct list_head tasks;
743 struct plist_node pushable_tasks;
744 struct rb_node pushable_dl_tasks;
747 struct mm_struct *mm;
748 struct mm_struct *active_mm;
750 /* Per-thread vma caching: */
751 struct vmacache vmacache;
753 #ifdef SPLIT_RSS_COUNTING
754 struct task_rss_stat rss_stat;
759 /* The signal sent when the parent dies: */
761 /* JOBCTL_*, siglock protected: */
762 unsigned long jobctl;
764 /* Used for emulating ABI behavior of previous Linux versions: */
765 unsigned int personality;
767 /* Scheduler bits, serialized by scheduler locks: */
768 unsigned sched_reset_on_fork:1;
769 unsigned sched_contributes_to_load:1;
770 unsigned sched_migrated:1;
771 unsigned sched_remote_wakeup:1;
773 unsigned sched_psi_wake_requeue:1;
776 /* Force alignment to the next boundary: */
779 /* Unserialized, strictly 'current' */
781 /* Bit to tell LSMs we're in execve(): */
782 unsigned in_execve:1;
783 unsigned in_iowait:1;
784 #ifndef TIF_RESTORE_SIGMASK
785 unsigned restore_sigmask:1;
788 unsigned in_user_fault:1;
790 #ifdef CONFIG_COMPAT_BRK
791 unsigned brk_randomized:1;
793 #ifdef CONFIG_CGROUPS
794 /* disallow userland-initiated cgroup migration */
795 unsigned no_cgroup_migration:1;
796 /* task is frozen/stopped (used by the cgroup freezer) */
799 #ifdef CONFIG_BLK_CGROUP
800 unsigned use_memdelay:1;
803 /* Stalled due to lack of memory */
804 unsigned in_memstall:1;
807 unsigned long atomic_flags; /* Flags requiring atomic access. */
809 struct restart_block restart_block;
814 #ifdef CONFIG_STACKPROTECTOR
815 /* Canary value for the -fstack-protector GCC feature: */
816 unsigned long stack_canary;
819 * Pointers to the (original) parent process, youngest child, younger sibling,
820 * older sibling, respectively. (p->father can be replaced with
821 * p->real_parent->pid)
824 /* Real parent process: */
825 struct task_struct __rcu *real_parent;
827 /* Recipient of SIGCHLD, wait4() reports: */
828 struct task_struct __rcu *parent;
831 * Children/sibling form the list of natural children:
833 struct list_head children;
834 struct list_head sibling;
835 struct task_struct *group_leader;
838 * 'ptraced' is the list of tasks this task is using ptrace() on.
840 * This includes both natural children and PTRACE_ATTACH targets.
841 * 'ptrace_entry' is this task's link on the p->parent->ptraced list.
843 struct list_head ptraced;
844 struct list_head ptrace_entry;
846 /* PID/PID hash table linkage. */
847 struct pid *thread_pid;
848 struct hlist_node pid_links[PIDTYPE_MAX];
849 struct list_head thread_group;
850 struct list_head thread_node;
852 struct completion *vfork_done;
854 /* CLONE_CHILD_SETTID: */
855 int __user *set_child_tid;
857 /* CLONE_CHILD_CLEARTID: */
858 int __user *clear_child_tid;
862 #ifdef CONFIG_ARCH_HAS_SCALED_CPUTIME
867 struct prev_cputime prev_cputime;
868 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
872 #ifdef CONFIG_NO_HZ_FULL
873 atomic_t tick_dep_mask;
875 /* Context switch counts: */
877 unsigned long nivcsw;
879 /* Monotonic time in nsecs: */
882 /* Boot based time in nsecs: */
885 /* MM fault and swap info: this can arguably be seen as either mm-specific or thread-specific: */
886 unsigned long min_flt;
887 unsigned long maj_flt;
889 /* Empty if CONFIG_POSIX_CPUTIMERS=n */
890 struct posix_cputimers posix_cputimers;
892 #ifdef CONFIG_POSIX_CPU_TIMERS_TASK_WORK
893 struct posix_cputimers_work posix_cputimers_work;
896 /* Process credentials: */
898 /* Tracer's credentials at attach: */
899 const struct cred __rcu *ptracer_cred;
901 /* Objective and real subjective task credentials (COW): */
902 const struct cred __rcu *real_cred;
904 /* Effective (overridable) subjective task credentials (COW): */
905 const struct cred __rcu *cred;
908 /* Cached requested key. */
909 struct key *cached_requested_key;
913 * executable name, excluding path.
915 * - normally initialized setup_new_exec()
916 * - access it with [gs]et_task_comm()
917 * - lock it with task_lock()
919 char comm[TASK_COMM_LEN];
921 struct nameidata *nameidata;
923 #ifdef CONFIG_SYSVIPC
924 struct sysv_sem sysvsem;
925 struct sysv_shm sysvshm;
927 #ifdef CONFIG_DETECT_HUNG_TASK
928 unsigned long last_switch_count;
929 unsigned long last_switch_time;
931 /* Filesystem information: */
932 struct fs_struct *fs;
934 /* Open file information: */
935 struct files_struct *files;
938 struct nsproxy *nsproxy;
940 /* Signal handlers: */
941 struct signal_struct *signal;
942 struct sighand_struct __rcu *sighand;
944 sigset_t real_blocked;
945 /* Restored if set_restore_sigmask() was used: */
946 sigset_t saved_sigmask;
947 struct sigpending pending;
948 unsigned long sas_ss_sp;
950 unsigned int sas_ss_flags;
952 struct callback_head *task_works;
955 #ifdef CONFIG_AUDITSYSCALL
956 struct audit_context *audit_context;
959 unsigned int sessionid;
961 struct seccomp seccomp;
963 /* Thread group tracking: */
967 /* Protection against (de-)allocation: mm, files, fs, tty, keyrings, mems_allowed, mempolicy: */
968 spinlock_t alloc_lock;
970 /* Protection of the PI data structures: */
971 raw_spinlock_t pi_lock;
973 struct wake_q_node wake_q;
975 #ifdef CONFIG_RT_MUTEXES
976 /* PI waiters blocked on a rt_mutex held by this task: */
977 struct rb_root_cached pi_waiters;
978 /* Updated under owner's pi_lock and rq lock */
979 struct task_struct *pi_top_task;
980 /* Deadlock detection and priority inheritance handling: */
981 struct rt_mutex_waiter *pi_blocked_on;
984 #ifdef CONFIG_DEBUG_MUTEXES
985 /* Mutex deadlock detection: */
986 struct mutex_waiter *blocked_on;
989 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
993 #ifdef CONFIG_TRACE_IRQFLAGS
994 struct irqtrace_events irqtrace;
995 unsigned int hardirq_threaded;
996 u64 hardirq_chain_key;
997 int softirqs_enabled;
1002 #ifdef CONFIG_LOCKDEP
1003 # define MAX_LOCK_DEPTH 48UL
1006 unsigned int lockdep_recursion;
1007 struct held_lock held_locks[MAX_LOCK_DEPTH];
1011 unsigned int in_ubsan;
1014 /* Journalling filesystem info: */
1017 /* Stacked block device info: */
1018 struct bio_list *bio_list;
1021 /* Stack plugging: */
1022 struct blk_plug *plug;
1026 struct reclaim_state *reclaim_state;
1028 struct backing_dev_info *backing_dev_info;
1030 struct io_context *io_context;
1032 #ifdef CONFIG_COMPACTION
1033 struct capture_control *capture_control;
1036 unsigned long ptrace_message;
1037 kernel_siginfo_t *last_siginfo;
1039 struct task_io_accounting ioac;
1041 /* Pressure stall state */
1042 unsigned int psi_flags;
1044 #ifdef CONFIG_TASK_XACCT
1045 /* Accumulated RSS usage: */
1047 /* Accumulated virtual memory usage: */
1049 /* stime + utime since last update: */
1052 #ifdef CONFIG_CPUSETS
1053 /* Protected by ->alloc_lock: */
1054 nodemask_t mems_allowed;
1055 /* Seqence number to catch updates: */
1056 seqcount_t mems_allowed_seq;
1057 int cpuset_mem_spread_rotor;
1058 int cpuset_slab_spread_rotor;
1060 #ifdef CONFIG_CGROUPS
1061 /* Control Group info protected by css_set_lock: */
1062 struct css_set __rcu *cgroups;
1063 /* cg_list protected by css_set_lock and tsk->alloc_lock: */
1064 struct list_head cg_list;
1066 #ifdef CONFIG_X86_CPU_RESCTRL
1071 struct robust_list_head __user *robust_list;
1072 #ifdef CONFIG_COMPAT
1073 struct compat_robust_list_head __user *compat_robust_list;
1075 struct list_head pi_state_list;
1076 struct futex_pi_state *pi_state_cache;
1077 struct mutex futex_exit_mutex;
1078 unsigned int futex_state;
1080 #ifdef CONFIG_PERF_EVENTS
1081 struct perf_event_context *perf_event_ctxp[perf_nr_task_contexts];
1082 struct mutex perf_event_mutex;
1083 struct list_head perf_event_list;
1085 #ifdef CONFIG_DEBUG_PREEMPT
1086 unsigned long preempt_disable_ip;
1089 /* Protected by alloc_lock: */
1090 struct mempolicy *mempolicy;
1092 short pref_node_fork;
1094 #ifdef CONFIG_NUMA_BALANCING
1096 unsigned int numa_scan_period;
1097 unsigned int numa_scan_period_max;
1098 int numa_preferred_nid;
1099 unsigned long numa_migrate_retry;
1100 /* Migration stamp: */
1102 u64 last_task_numa_placement;
1103 u64 last_sum_exec_runtime;
1104 struct callback_head numa_work;
1107 * This pointer is only modified for current in syscall and
1108 * pagefault context (and for tasks being destroyed), so it can be read
1109 * from any of the following contexts:
1110 * - RCU read-side critical section
1111 * - current->numa_group from everywhere
1112 * - task's runqueue locked, task not running
1114 struct numa_group __rcu *numa_group;
1117 * numa_faults is an array split into four regions:
1118 * faults_memory, faults_cpu, faults_memory_buffer, faults_cpu_buffer
1119 * in this precise order.
1121 * faults_memory: Exponential decaying average of faults on a per-node
1122 * basis. Scheduling placement decisions are made based on these
1123 * counts. The values remain static for the duration of a PTE scan.
1124 * faults_cpu: Track the nodes the process was running on when a NUMA
1125 * hinting fault was incurred.
1126 * faults_memory_buffer and faults_cpu_buffer: Record faults per node
1127 * during the current scan window. When the scan completes, the counts
1128 * in faults_memory and faults_cpu decay and these values are copied.
1130 unsigned long *numa_faults;
1131 unsigned long total_numa_faults;
1134 * numa_faults_locality tracks if faults recorded during the last
1135 * scan window were remote/local or failed to migrate. The task scan
1136 * period is adapted based on the locality of the faults with different
1137 * weights depending on whether they were shared or private faults
1139 unsigned long numa_faults_locality[3];
1141 unsigned long numa_pages_migrated;
1142 #endif /* CONFIG_NUMA_BALANCING */
1145 struct rseq __user *rseq;
1148 * RmW on rseq_event_mask must be performed atomically
1149 * with respect to preemption.
1151 unsigned long rseq_event_mask;
1154 struct tlbflush_unmap_batch tlb_ubc;
1157 refcount_t rcu_users;
1158 struct rcu_head rcu;
1161 /* Cache last used pipe for splice(): */
1162 struct pipe_inode_info *splice_pipe;
1164 struct page_frag task_frag;
1166 #ifdef CONFIG_TASK_DELAY_ACCT
1167 struct task_delay_info *delays;
1170 #ifdef CONFIG_FAULT_INJECTION
1172 unsigned int fail_nth;
1175 * When (nr_dirtied >= nr_dirtied_pause), it's time to call
1176 * balance_dirty_pages() for a dirty throttling pause:
1179 int nr_dirtied_pause;
1180 /* Start of a write-and-pause period: */
1181 unsigned long dirty_paused_when;
1183 #ifdef CONFIG_LATENCYTOP
1184 int latency_record_count;
1185 struct latency_record latency_record[LT_SAVECOUNT];
1188 * Time slack values; these are used to round up poll() and
1189 * select() etc timeout values. These are in nanoseconds.
1192 u64 default_timer_slack_ns;
1195 unsigned int kasan_depth;
1199 struct kcsan_ctx kcsan_ctx;
1200 #ifdef CONFIG_TRACE_IRQFLAGS
1201 struct irqtrace_events kcsan_save_irqtrace;
1205 #ifdef CONFIG_FUNCTION_GRAPH_TRACER
1206 /* Index of current stored address in ret_stack: */
1210 /* Stack of return addresses for return function tracing: */
1211 struct ftrace_ret_stack *ret_stack;
1213 /* Timestamp for last schedule: */
1214 unsigned long long ftrace_timestamp;
1217 * Number of functions that haven't been traced
1218 * because of depth overrun:
1220 atomic_t trace_overrun;
1222 /* Pause tracing: */
1223 atomic_t tracing_graph_pause;
1226 #ifdef CONFIG_TRACING
1227 /* State flags for use by tracers: */
1228 unsigned long trace;
1230 /* Bitmask and counter of trace recursion: */
1231 unsigned long trace_recursion;
1232 #endif /* CONFIG_TRACING */
1235 /* See kernel/kcov.c for more details. */
1237 /* Coverage collection mode enabled for this task (0 if disabled): */
1238 unsigned int kcov_mode;
1240 /* Size of the kcov_area: */
1241 unsigned int kcov_size;
1243 /* Buffer for coverage collection: */
1246 /* KCOV descriptor wired with this task or NULL: */
1249 /* KCOV common handle for remote coverage collection: */
1252 /* KCOV sequence number: */
1255 /* Collect coverage from softirq context: */
1256 unsigned int kcov_softirq;
1260 struct mem_cgroup *memcg_in_oom;
1261 gfp_t memcg_oom_gfp_mask;
1262 int memcg_oom_order;
1264 /* Number of pages to reclaim on returning to userland: */
1265 unsigned int memcg_nr_pages_over_high;
1267 /* Used by memcontrol for targeted memcg charge: */
1268 struct mem_cgroup *active_memcg;
1271 #ifdef CONFIG_BLK_CGROUP
1272 struct request_queue *throttle_queue;
1275 #ifdef CONFIG_UPROBES
1276 struct uprobe_task *utask;
1278 #if defined(CONFIG_BCACHE) || defined(CONFIG_BCACHE_MODULE)
1279 unsigned int sequential_io;
1280 unsigned int sequential_io_avg;
1282 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
1283 unsigned long task_state_change;
1285 int pagefault_disabled;
1287 struct task_struct *oom_reaper_list;
1289 #ifdef CONFIG_VMAP_STACK
1290 struct vm_struct *stack_vm_area;
1292 #ifdef CONFIG_THREAD_INFO_IN_TASK
1293 /* A live task holds one reference: */
1294 refcount_t stack_refcount;
1296 #ifdef CONFIG_LIVEPATCH
1299 #ifdef CONFIG_SECURITY
1300 /* Used by LSM modules for access restriction: */
1304 #ifdef CONFIG_GCC_PLUGIN_STACKLEAK
1305 unsigned long lowest_stack;
1306 unsigned long prev_lowest_stack;
1309 #ifdef CONFIG_X86_MCE
1313 __mce_reserved : 62;
1314 struct callback_head mce_kill_me;
1318 * New fields for task_struct should be added above here, so that
1319 * they are included in the randomized portion of task_struct.
1321 randomized_struct_fields_end
1323 /* CPU-specific state of this task: */
1324 struct thread_struct thread;
1327 * WARNING: on x86, 'thread_struct' contains a variable-sized
1328 * structure. It *MUST* be at the end of 'task_struct'.
1330 * Do not put anything below here!
1334 static inline struct pid *task_pid(struct task_struct *task)
1336 return task->thread_pid;
1340 * the helpers to get the task's different pids as they are seen
1341 * from various namespaces
1343 * task_xid_nr() : global id, i.e. the id seen from the init namespace;
1344 * task_xid_vnr() : virtual id, i.e. the id seen from the pid namespace of
1346 * task_xid_nr_ns() : id seen from the ns specified;
1348 * see also pid_nr() etc in include/linux/pid.h
1350 pid_t __task_pid_nr_ns(struct task_struct *task, enum pid_type type, struct pid_namespace *ns);
1352 static inline pid_t task_pid_nr(struct task_struct *tsk)
1357 static inline pid_t task_pid_nr_ns(struct task_struct *tsk, struct pid_namespace *ns)
1359 return __task_pid_nr_ns(tsk, PIDTYPE_PID, ns);
1362 static inline pid_t task_pid_vnr(struct task_struct *tsk)
1364 return __task_pid_nr_ns(tsk, PIDTYPE_PID, NULL);
1368 static inline pid_t task_tgid_nr(struct task_struct *tsk)
1374 * pid_alive - check that a task structure is not stale
1375 * @p: Task structure to be checked.
1377 * Test if a process is not yet dead (at most zombie state)
1378 * If pid_alive fails, then pointers within the task structure
1379 * can be stale and must not be dereferenced.
1381 * Return: 1 if the process is alive. 0 otherwise.
1383 static inline int pid_alive(const struct task_struct *p)
1385 return p->thread_pid != NULL;
1388 static inline pid_t task_pgrp_nr_ns(struct task_struct *tsk, struct pid_namespace *ns)
1390 return __task_pid_nr_ns(tsk, PIDTYPE_PGID, ns);
1393 static inline pid_t task_pgrp_vnr(struct task_struct *tsk)
1395 return __task_pid_nr_ns(tsk, PIDTYPE_PGID, NULL);
1399 static inline pid_t task_session_nr_ns(struct task_struct *tsk, struct pid_namespace *ns)
1401 return __task_pid_nr_ns(tsk, PIDTYPE_SID, ns);
1404 static inline pid_t task_session_vnr(struct task_struct *tsk)
1406 return __task_pid_nr_ns(tsk, PIDTYPE_SID, NULL);
1409 static inline pid_t task_tgid_nr_ns(struct task_struct *tsk, struct pid_namespace *ns)
1411 return __task_pid_nr_ns(tsk, PIDTYPE_TGID, ns);
1414 static inline pid_t task_tgid_vnr(struct task_struct *tsk)
1416 return __task_pid_nr_ns(tsk, PIDTYPE_TGID, NULL);
1419 static inline pid_t task_ppid_nr_ns(const struct task_struct *tsk, struct pid_namespace *ns)
1425 pid = task_tgid_nr_ns(rcu_dereference(tsk->real_parent), ns);
1431 static inline pid_t task_ppid_nr(const struct task_struct *tsk)
1433 return task_ppid_nr_ns(tsk, &init_pid_ns);
1436 /* Obsolete, do not use: */
1437 static inline pid_t task_pgrp_nr(struct task_struct *tsk)
1439 return task_pgrp_nr_ns(tsk, &init_pid_ns);
1442 #define TASK_REPORT_IDLE (TASK_REPORT + 1)
1443 #define TASK_REPORT_MAX (TASK_REPORT_IDLE << 1)
1445 static inline unsigned int task_state_index(struct task_struct *tsk)
1447 unsigned int tsk_state = READ_ONCE(tsk->state);
1448 unsigned int state = (tsk_state | tsk->exit_state) & TASK_REPORT;
1450 BUILD_BUG_ON_NOT_POWER_OF_2(TASK_REPORT_MAX);
1452 if (tsk_state == TASK_IDLE)
1453 state = TASK_REPORT_IDLE;
1458 static inline char task_index_to_char(unsigned int state)
1460 static const char state_char[] = "RSDTtXZPI";
1462 BUILD_BUG_ON(1 + ilog2(TASK_REPORT_MAX) != sizeof(state_char) - 1);
1464 return state_char[state];
1467 static inline char task_state_to_char(struct task_struct *tsk)
1469 return task_index_to_char(task_state_index(tsk));
1473 * is_global_init - check if a task structure is init. Since init
1474 * is free to have sub-threads we need to check tgid.
1475 * @tsk: Task structure to be checked.
1477 * Check if a task structure is the first user space task the kernel created.
1479 * Return: 1 if the task structure is init. 0 otherwise.
1481 static inline int is_global_init(struct task_struct *tsk)
1483 return task_tgid_nr(tsk) == 1;
1486 extern struct pid *cad_pid;
1491 #define PF_IDLE 0x00000002 /* I am an IDLE thread */
1492 #define PF_EXITING 0x00000004 /* Getting shut down */
1493 #define PF_VCPU 0x00000010 /* I'm a virtual CPU */
1494 #define PF_WQ_WORKER 0x00000020 /* I'm a workqueue worker */
1495 #define PF_FORKNOEXEC 0x00000040 /* Forked but didn't exec */
1496 #define PF_MCE_PROCESS 0x00000080 /* Process policy on mce errors */
1497 #define PF_SUPERPRIV 0x00000100 /* Used super-user privileges */
1498 #define PF_DUMPCORE 0x00000200 /* Dumped core */
1499 #define PF_SIGNALED 0x00000400 /* Killed by a signal */
1500 #define PF_MEMALLOC 0x00000800 /* Allocating memory */
1501 #define PF_NPROC_EXCEEDED 0x00001000 /* set_user() noticed that RLIMIT_NPROC was exceeded */
1502 #define PF_USED_MATH 0x00002000 /* If unset the fpu must be initialized before use */
1503 #define PF_USED_ASYNC 0x00004000 /* Used async_schedule*(), used by module init */
1504 #define PF_NOFREEZE 0x00008000 /* This thread should not be frozen */
1505 #define PF_FROZEN 0x00010000 /* Frozen for system suspend */
1506 #define PF_KSWAPD 0x00020000 /* I am kswapd */
1507 #define PF_MEMALLOC_NOFS 0x00040000 /* All allocation requests will inherit GFP_NOFS */
1508 #define PF_MEMALLOC_NOIO 0x00080000 /* All allocation requests will inherit GFP_NOIO */
1509 #define PF_LOCAL_THROTTLE 0x00100000 /* Throttle writes only against the bdi I write to,
1510 * I am cleaning dirty pages from some other bdi. */
1511 #define PF_KTHREAD 0x00200000 /* I am a kernel thread */
1512 #define PF_RANDOMIZE 0x00400000 /* Randomize virtual address space */
1513 #define PF_SWAPWRITE 0x00800000 /* Allowed to write to swap */
1514 #define PF_NO_SETAFFINITY 0x04000000 /* Userland is not allowed to meddle with cpus_mask */
1515 #define PF_MCE_EARLY 0x08000000 /* Early kill for mce process policy */
1516 #define PF_MEMALLOC_NOCMA 0x10000000 /* All allocation request will have _GFP_MOVABLE cleared */
1517 #define PF_IO_WORKER 0x20000000 /* Task is an IO worker */
1518 #define PF_FREEZER_SKIP 0x40000000 /* Freezer should not count it as freezable */
1519 #define PF_SUSPEND_TASK 0x80000000 /* This thread called freeze_processes() and should not be frozen */
1522 * Only the _current_ task can read/write to tsk->flags, but other
1523 * tasks can access tsk->flags in readonly mode for example
1524 * with tsk_used_math (like during threaded core dumping).
1525 * There is however an exception to this rule during ptrace
1526 * or during fork: the ptracer task is allowed to write to the
1527 * child->flags of its traced child (same goes for fork, the parent
1528 * can write to the child->flags), because we're guaranteed the
1529 * child is not running and in turn not changing child->flags
1530 * at the same time the parent does it.
1532 #define clear_stopped_child_used_math(child) do { (child)->flags &= ~PF_USED_MATH; } while (0)
1533 #define set_stopped_child_used_math(child) do { (child)->flags |= PF_USED_MATH; } while (0)
1534 #define clear_used_math() clear_stopped_child_used_math(current)
1535 #define set_used_math() set_stopped_child_used_math(current)
1537 #define conditional_stopped_child_used_math(condition, child) \
1538 do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= (condition) ? PF_USED_MATH : 0; } while (0)
1540 #define conditional_used_math(condition) conditional_stopped_child_used_math(condition, current)
1542 #define copy_to_stopped_child_used_math(child) \
1543 do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= current->flags & PF_USED_MATH; } while (0)
1545 /* NOTE: this will return 0 or PF_USED_MATH, it will never return 1 */
1546 #define tsk_used_math(p) ((p)->flags & PF_USED_MATH)
1547 #define used_math() tsk_used_math(current)
1549 static inline bool is_percpu_thread(void)
1552 return (current->flags & PF_NO_SETAFFINITY) &&
1553 (current->nr_cpus_allowed == 1);
1559 /* Per-process atomic flags. */
1560 #define PFA_NO_NEW_PRIVS 0 /* May not gain new privileges. */
1561 #define PFA_SPREAD_PAGE 1 /* Spread page cache over cpuset */
1562 #define PFA_SPREAD_SLAB 2 /* Spread some slab caches over cpuset */
1563 #define PFA_SPEC_SSB_DISABLE 3 /* Speculative Store Bypass disabled */
1564 #define PFA_SPEC_SSB_FORCE_DISABLE 4 /* Speculative Store Bypass force disabled*/
1565 #define PFA_SPEC_IB_DISABLE 5 /* Indirect branch speculation restricted */
1566 #define PFA_SPEC_IB_FORCE_DISABLE 6 /* Indirect branch speculation permanently restricted */
1567 #define PFA_SPEC_SSB_NOEXEC 7 /* Speculative Store Bypass clear on execve() */
1569 #define TASK_PFA_TEST(name, func) \
1570 static inline bool task_##func(struct task_struct *p) \
1571 { return test_bit(PFA_##name, &p->atomic_flags); }
1573 #define TASK_PFA_SET(name, func) \
1574 static inline void task_set_##func(struct task_struct *p) \
1575 { set_bit(PFA_##name, &p->atomic_flags); }
1577 #define TASK_PFA_CLEAR(name, func) \
1578 static inline void task_clear_##func(struct task_struct *p) \
1579 { clear_bit(PFA_##name, &p->atomic_flags); }
1581 TASK_PFA_TEST(NO_NEW_PRIVS, no_new_privs)
1582 TASK_PFA_SET(NO_NEW_PRIVS, no_new_privs)
1584 TASK_PFA_TEST(SPREAD_PAGE, spread_page)
1585 TASK_PFA_SET(SPREAD_PAGE, spread_page)
1586 TASK_PFA_CLEAR(SPREAD_PAGE, spread_page)
1588 TASK_PFA_TEST(SPREAD_SLAB, spread_slab)
1589 TASK_PFA_SET(SPREAD_SLAB, spread_slab)
1590 TASK_PFA_CLEAR(SPREAD_SLAB, spread_slab)
1592 TASK_PFA_TEST(SPEC_SSB_DISABLE, spec_ssb_disable)
1593 TASK_PFA_SET(SPEC_SSB_DISABLE, spec_ssb_disable)
1594 TASK_PFA_CLEAR(SPEC_SSB_DISABLE, spec_ssb_disable)
1596 TASK_PFA_TEST(SPEC_SSB_NOEXEC, spec_ssb_noexec)
1597 TASK_PFA_SET(SPEC_SSB_NOEXEC, spec_ssb_noexec)
1598 TASK_PFA_CLEAR(SPEC_SSB_NOEXEC, spec_ssb_noexec)
1600 TASK_PFA_TEST(SPEC_SSB_FORCE_DISABLE, spec_ssb_force_disable)
1601 TASK_PFA_SET(SPEC_SSB_FORCE_DISABLE, spec_ssb_force_disable)
1603 TASK_PFA_TEST(SPEC_IB_DISABLE, spec_ib_disable)
1604 TASK_PFA_SET(SPEC_IB_DISABLE, spec_ib_disable)
1605 TASK_PFA_CLEAR(SPEC_IB_DISABLE, spec_ib_disable)
1607 TASK_PFA_TEST(SPEC_IB_FORCE_DISABLE, spec_ib_force_disable)
1608 TASK_PFA_SET(SPEC_IB_FORCE_DISABLE, spec_ib_force_disable)
1611 current_restore_flags(unsigned long orig_flags, unsigned long flags)
1613 current->flags &= ~flags;
1614 current->flags |= orig_flags & flags;
1617 extern int cpuset_cpumask_can_shrink(const struct cpumask *cur, const struct cpumask *trial);
1618 extern int task_can_attach(struct task_struct *p, const struct cpumask *cs_cpus_allowed);
1620 extern void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask);
1621 extern int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask);
1623 static inline void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
1626 static inline int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
1628 if (!cpumask_test_cpu(0, new_mask))
1634 extern int yield_to(struct task_struct *p, bool preempt);
1635 extern void set_user_nice(struct task_struct *p, long nice);
1636 extern int task_prio(const struct task_struct *p);
1639 * task_nice - return the nice value of a given task.
1640 * @p: the task in question.
1642 * Return: The nice value [ -20 ... 0 ... 19 ].
1644 static inline int task_nice(const struct task_struct *p)
1646 return PRIO_TO_NICE((p)->static_prio);
1649 extern int can_nice(const struct task_struct *p, const int nice);
1650 extern int task_curr(const struct task_struct *p);
1651 extern int idle_cpu(int cpu);
1652 extern int available_idle_cpu(int cpu);
1653 extern int sched_setscheduler(struct task_struct *, int, const struct sched_param *);
1654 extern int sched_setscheduler_nocheck(struct task_struct *, int, const struct sched_param *);
1655 extern int sched_setattr(struct task_struct *, const struct sched_attr *);
1656 extern int sched_setattr_nocheck(struct task_struct *, const struct sched_attr *);
1657 extern struct task_struct *idle_task(int cpu);
1660 * is_idle_task - is the specified task an idle task?
1661 * @p: the task in question.
1663 * Return: 1 if @p is an idle task. 0 otherwise.
1665 static inline bool is_idle_task(const struct task_struct *p)
1667 return !!(p->flags & PF_IDLE);
1670 extern struct task_struct *curr_task(int cpu);
1671 extern void ia64_set_curr_task(int cpu, struct task_struct *p);
1675 union thread_union {
1676 #ifndef CONFIG_ARCH_TASK_STRUCT_ON_STACK
1677 struct task_struct task;
1679 #ifndef CONFIG_THREAD_INFO_IN_TASK
1680 struct thread_info thread_info;
1682 unsigned long stack[THREAD_SIZE/sizeof(long)];
1685 #ifndef CONFIG_THREAD_INFO_IN_TASK
1686 extern struct thread_info init_thread_info;
1689 extern unsigned long init_stack[THREAD_SIZE / sizeof(unsigned long)];
1691 #ifdef CONFIG_THREAD_INFO_IN_TASK
1692 static inline struct thread_info *task_thread_info(struct task_struct *task)
1694 return &task->thread_info;
1696 #elif !defined(__HAVE_THREAD_FUNCTIONS)
1697 # define task_thread_info(task) ((struct thread_info *)(task)->stack)
1701 * find a task by one of its numerical ids
1703 * find_task_by_pid_ns():
1704 * finds a task by its pid in the specified namespace
1705 * find_task_by_vpid():
1706 * finds a task by its virtual pid
1708 * see also find_vpid() etc in include/linux/pid.h
1711 extern struct task_struct *find_task_by_vpid(pid_t nr);
1712 extern struct task_struct *find_task_by_pid_ns(pid_t nr, struct pid_namespace *ns);
1715 * find a task by its virtual pid and get the task struct
1717 extern struct task_struct *find_get_task_by_vpid(pid_t nr);
1719 extern int wake_up_state(struct task_struct *tsk, unsigned int state);
1720 extern int wake_up_process(struct task_struct *tsk);
1721 extern void wake_up_new_task(struct task_struct *tsk);
1724 extern void kick_process(struct task_struct *tsk);
1726 static inline void kick_process(struct task_struct *tsk) { }
1729 extern void __set_task_comm(struct task_struct *tsk, const char *from, bool exec);
1731 static inline void set_task_comm(struct task_struct *tsk, const char *from)
1733 __set_task_comm(tsk, from, false);
1736 extern char *__get_task_comm(char *to, size_t len, struct task_struct *tsk);
1737 #define get_task_comm(buf, tsk) ({ \
1738 BUILD_BUG_ON(sizeof(buf) != TASK_COMM_LEN); \
1739 __get_task_comm(buf, sizeof(buf), tsk); \
1743 static __always_inline void scheduler_ipi(void)
1746 * Fold TIF_NEED_RESCHED into the preempt_count; anybody setting
1747 * TIF_NEED_RESCHED remotely (for the first time) will also send
1750 preempt_fold_need_resched();
1752 extern unsigned long wait_task_inactive(struct task_struct *, long match_state);
1754 static inline void scheduler_ipi(void) { }
1755 static inline unsigned long wait_task_inactive(struct task_struct *p, long match_state)
1762 * Set thread flags in other task's structures.
1763 * See asm/thread_info.h for TIF_xxxx flags available:
1765 static inline void set_tsk_thread_flag(struct task_struct *tsk, int flag)
1767 set_ti_thread_flag(task_thread_info(tsk), flag);
1770 static inline void clear_tsk_thread_flag(struct task_struct *tsk, int flag)
1772 clear_ti_thread_flag(task_thread_info(tsk), flag);
1775 static inline void update_tsk_thread_flag(struct task_struct *tsk, int flag,
1778 update_ti_thread_flag(task_thread_info(tsk), flag, value);
1781 static inline int test_and_set_tsk_thread_flag(struct task_struct *tsk, int flag)
1783 return test_and_set_ti_thread_flag(task_thread_info(tsk), flag);
1786 static inline int test_and_clear_tsk_thread_flag(struct task_struct *tsk, int flag)
1788 return test_and_clear_ti_thread_flag(task_thread_info(tsk), flag);
1791 static inline int test_tsk_thread_flag(struct task_struct *tsk, int flag)
1793 return test_ti_thread_flag(task_thread_info(tsk), flag);
1796 static inline void set_tsk_need_resched(struct task_struct *tsk)
1798 set_tsk_thread_flag(tsk,TIF_NEED_RESCHED);
1801 static inline void clear_tsk_need_resched(struct task_struct *tsk)
1803 clear_tsk_thread_flag(tsk,TIF_NEED_RESCHED);
1806 static inline int test_tsk_need_resched(struct task_struct *tsk)
1808 return unlikely(test_tsk_thread_flag(tsk,TIF_NEED_RESCHED));
1812 * cond_resched() and cond_resched_lock(): latency reduction via
1813 * explicit rescheduling in places that are safe. The return
1814 * value indicates whether a reschedule was done in fact.
1815 * cond_resched_lock() will drop the spinlock before scheduling,
1817 #ifndef CONFIG_PREEMPTION
1818 extern int _cond_resched(void);
1820 static inline int _cond_resched(void) { return 0; }
1823 #define cond_resched() ({ \
1824 ___might_sleep(__FILE__, __LINE__, 0); \
1828 extern int __cond_resched_lock(spinlock_t *lock);
1830 #define cond_resched_lock(lock) ({ \
1831 ___might_sleep(__FILE__, __LINE__, PREEMPT_LOCK_OFFSET);\
1832 __cond_resched_lock(lock); \
1835 static inline void cond_resched_rcu(void)
1837 #if defined(CONFIG_DEBUG_ATOMIC_SLEEP) || !defined(CONFIG_PREEMPT_RCU)
1845 * Does a critical section need to be broken due to another
1846 * task waiting?: (technically does not depend on CONFIG_PREEMPTION,
1847 * but a general need for low latency)
1849 static inline int spin_needbreak(spinlock_t *lock)
1851 #ifdef CONFIG_PREEMPTION
1852 return spin_is_contended(lock);
1858 static __always_inline bool need_resched(void)
1860 return unlikely(tif_need_resched());
1864 * Wrappers for p->thread_info->cpu access. No-op on UP.
1868 static inline unsigned int task_cpu(const struct task_struct *p)
1870 #ifdef CONFIG_THREAD_INFO_IN_TASK
1871 return READ_ONCE(p->cpu);
1873 return READ_ONCE(task_thread_info(p)->cpu);
1877 extern void set_task_cpu(struct task_struct *p, unsigned int cpu);
1881 static inline unsigned int task_cpu(const struct task_struct *p)
1886 static inline void set_task_cpu(struct task_struct *p, unsigned int cpu)
1890 #endif /* CONFIG_SMP */
1893 * In order to reduce various lock holder preemption latencies provide an
1894 * interface to see if a vCPU is currently running or not.
1896 * This allows us to terminate optimistic spin loops and block, analogous to
1897 * the native optimistic spin heuristic of testing if the lock owner task is
1900 #ifndef vcpu_is_preempted
1901 static inline bool vcpu_is_preempted(int cpu)
1907 extern long sched_setaffinity(pid_t pid, const struct cpumask *new_mask);
1908 extern long sched_getaffinity(pid_t pid, struct cpumask *mask);
1910 #ifndef TASK_SIZE_OF
1911 #define TASK_SIZE_OF(tsk) TASK_SIZE
1917 * Map the event mask on the user-space ABI enum rseq_cs_flags
1918 * for direct mask checks.
1920 enum rseq_event_mask_bits {
1921 RSEQ_EVENT_PREEMPT_BIT = RSEQ_CS_FLAG_NO_RESTART_ON_PREEMPT_BIT,
1922 RSEQ_EVENT_SIGNAL_BIT = RSEQ_CS_FLAG_NO_RESTART_ON_SIGNAL_BIT,
1923 RSEQ_EVENT_MIGRATE_BIT = RSEQ_CS_FLAG_NO_RESTART_ON_MIGRATE_BIT,
1926 enum rseq_event_mask {
1927 RSEQ_EVENT_PREEMPT = (1U << RSEQ_EVENT_PREEMPT_BIT),
1928 RSEQ_EVENT_SIGNAL = (1U << RSEQ_EVENT_SIGNAL_BIT),
1929 RSEQ_EVENT_MIGRATE = (1U << RSEQ_EVENT_MIGRATE_BIT),
1932 static inline void rseq_set_notify_resume(struct task_struct *t)
1935 set_tsk_thread_flag(t, TIF_NOTIFY_RESUME);
1938 void __rseq_handle_notify_resume(struct ksignal *sig, struct pt_regs *regs);
1940 static inline void rseq_handle_notify_resume(struct ksignal *ksig,
1941 struct pt_regs *regs)
1944 __rseq_handle_notify_resume(ksig, regs);
1947 static inline void rseq_signal_deliver(struct ksignal *ksig,
1948 struct pt_regs *regs)
1951 __set_bit(RSEQ_EVENT_SIGNAL_BIT, ¤t->rseq_event_mask);
1953 rseq_handle_notify_resume(ksig, regs);
1956 /* rseq_preempt() requires preemption to be disabled. */
1957 static inline void rseq_preempt(struct task_struct *t)
1959 __set_bit(RSEQ_EVENT_PREEMPT_BIT, &t->rseq_event_mask);
1960 rseq_set_notify_resume(t);
1963 /* rseq_migrate() requires preemption to be disabled. */
1964 static inline void rseq_migrate(struct task_struct *t)
1966 __set_bit(RSEQ_EVENT_MIGRATE_BIT, &t->rseq_event_mask);
1967 rseq_set_notify_resume(t);
1971 * If parent process has a registered restartable sequences area, the
1972 * child inherits. Unregister rseq for a clone with CLONE_VM set.
1974 static inline void rseq_fork(struct task_struct *t, unsigned long clone_flags)
1976 if (clone_flags & CLONE_VM) {
1979 t->rseq_event_mask = 0;
1981 t->rseq = current->rseq;
1982 t->rseq_sig = current->rseq_sig;
1983 t->rseq_event_mask = current->rseq_event_mask;
1987 static inline void rseq_execve(struct task_struct *t)
1991 t->rseq_event_mask = 0;
1996 static inline void rseq_set_notify_resume(struct task_struct *t)
1999 static inline void rseq_handle_notify_resume(struct ksignal *ksig,
2000 struct pt_regs *regs)
2003 static inline void rseq_signal_deliver(struct ksignal *ksig,
2004 struct pt_regs *regs)
2007 static inline void rseq_preempt(struct task_struct *t)
2010 static inline void rseq_migrate(struct task_struct *t)
2013 static inline void rseq_fork(struct task_struct *t, unsigned long clone_flags)
2016 static inline void rseq_execve(struct task_struct *t)
2022 #ifdef CONFIG_DEBUG_RSEQ
2024 void rseq_syscall(struct pt_regs *regs);
2028 static inline void rseq_syscall(struct pt_regs *regs)
2034 const struct sched_avg *sched_trace_cfs_rq_avg(struct cfs_rq *cfs_rq);
2035 char *sched_trace_cfs_rq_path(struct cfs_rq *cfs_rq, char *str, int len);
2036 int sched_trace_cfs_rq_cpu(struct cfs_rq *cfs_rq);
2038 const struct sched_avg *sched_trace_rq_avg_rt(struct rq *rq);
2039 const struct sched_avg *sched_trace_rq_avg_dl(struct rq *rq);
2040 const struct sched_avg *sched_trace_rq_avg_irq(struct rq *rq);
2042 int sched_trace_rq_cpu(struct rq *rq);
2043 int sched_trace_rq_nr_running(struct rq *rq);
2045 const struct cpumask *sched_trace_rd_span(struct root_domain *rd);