Merge tag 'sched-urgent-2020-11-22' of git://git.kernel.org/pub/scm/linux/kernel...
[platform/kernel/linux-starfive.git] / include / linux / sched.h
1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef _LINUX_SCHED_H
3 #define _LINUX_SCHED_H
4
5 /*
6  * Define 'struct task_struct' and provide the main scheduler
7  * APIs (schedule(), wakeup variants, etc.)
8  */
9
10 #include <uapi/linux/sched.h>
11
12 #include <asm/current.h>
13
14 #include <linux/pid.h>
15 #include <linux/sem.h>
16 #include <linux/shm.h>
17 #include <linux/kcov.h>
18 #include <linux/mutex.h>
19 #include <linux/plist.h>
20 #include <linux/hrtimer.h>
21 #include <linux/irqflags.h>
22 #include <linux/seccomp.h>
23 #include <linux/nodemask.h>
24 #include <linux/rcupdate.h>
25 #include <linux/refcount.h>
26 #include <linux/resource.h>
27 #include <linux/latencytop.h>
28 #include <linux/sched/prio.h>
29 #include <linux/sched/types.h>
30 #include <linux/signal_types.h>
31 #include <linux/mm_types_task.h>
32 #include <linux/task_io_accounting.h>
33 #include <linux/posix-timers.h>
34 #include <linux/rseq.h>
35 #include <linux/seqlock.h>
36 #include <linux/kcsan.h>
37
38 /* task_struct member predeclarations (sorted alphabetically): */
39 struct audit_context;
40 struct backing_dev_info;
41 struct bio_list;
42 struct blk_plug;
43 struct capture_control;
44 struct cfs_rq;
45 struct fs_struct;
46 struct futex_pi_state;
47 struct io_context;
48 struct mempolicy;
49 struct nameidata;
50 struct nsproxy;
51 struct perf_event_context;
52 struct pid_namespace;
53 struct pipe_inode_info;
54 struct rcu_node;
55 struct reclaim_state;
56 struct robust_list_head;
57 struct root_domain;
58 struct rq;
59 struct sched_attr;
60 struct sched_param;
61 struct seq_file;
62 struct sighand_struct;
63 struct signal_struct;
64 struct task_delay_info;
65 struct task_group;
66 struct io_uring_task;
67
68 /*
69  * Task state bitmask. NOTE! These bits are also
70  * encoded in fs/proc/array.c: get_task_state().
71  *
72  * We have two separate sets of flags: task->state
73  * is about runnability, while task->exit_state are
74  * about the task exiting. Confusing, but this way
75  * modifying one set can't modify the other one by
76  * mistake.
77  */
78
79 /* Used in tsk->state: */
80 #define TASK_RUNNING                    0x0000
81 #define TASK_INTERRUPTIBLE              0x0001
82 #define TASK_UNINTERRUPTIBLE            0x0002
83 #define __TASK_STOPPED                  0x0004
84 #define __TASK_TRACED                   0x0008
85 /* Used in tsk->exit_state: */
86 #define EXIT_DEAD                       0x0010
87 #define EXIT_ZOMBIE                     0x0020
88 #define EXIT_TRACE                      (EXIT_ZOMBIE | EXIT_DEAD)
89 /* Used in tsk->state again: */
90 #define TASK_PARKED                     0x0040
91 #define TASK_DEAD                       0x0080
92 #define TASK_WAKEKILL                   0x0100
93 #define TASK_WAKING                     0x0200
94 #define TASK_NOLOAD                     0x0400
95 #define TASK_NEW                        0x0800
96 #define TASK_STATE_MAX                  0x1000
97
98 /* Convenience macros for the sake of set_current_state: */
99 #define TASK_KILLABLE                   (TASK_WAKEKILL | TASK_UNINTERRUPTIBLE)
100 #define TASK_STOPPED                    (TASK_WAKEKILL | __TASK_STOPPED)
101 #define TASK_TRACED                     (TASK_WAKEKILL | __TASK_TRACED)
102
103 #define TASK_IDLE                       (TASK_UNINTERRUPTIBLE | TASK_NOLOAD)
104
105 /* Convenience macros for the sake of wake_up(): */
106 #define TASK_NORMAL                     (TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE)
107
108 /* get_task_state(): */
109 #define TASK_REPORT                     (TASK_RUNNING | TASK_INTERRUPTIBLE | \
110                                          TASK_UNINTERRUPTIBLE | __TASK_STOPPED | \
111                                          __TASK_TRACED | EXIT_DEAD | EXIT_ZOMBIE | \
112                                          TASK_PARKED)
113
114 #define task_is_traced(task)            ((task->state & __TASK_TRACED) != 0)
115
116 #define task_is_stopped(task)           ((task->state & __TASK_STOPPED) != 0)
117
118 #define task_is_stopped_or_traced(task) ((task->state & (__TASK_STOPPED | __TASK_TRACED)) != 0)
119
120 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
121
122 /*
123  * Special states are those that do not use the normal wait-loop pattern. See
124  * the comment with set_special_state().
125  */
126 #define is_special_task_state(state)                            \
127         ((state) & (__TASK_STOPPED | __TASK_TRACED | TASK_PARKED | TASK_DEAD))
128
129 #define __set_current_state(state_value)                        \
130         do {                                                    \
131                 WARN_ON_ONCE(is_special_task_state(state_value));\
132                 current->task_state_change = _THIS_IP_;         \
133                 current->state = (state_value);                 \
134         } while (0)
135
136 #define set_current_state(state_value)                          \
137         do {                                                    \
138                 WARN_ON_ONCE(is_special_task_state(state_value));\
139                 current->task_state_change = _THIS_IP_;         \
140                 smp_store_mb(current->state, (state_value));    \
141         } while (0)
142
143 #define set_special_state(state_value)                                  \
144         do {                                                            \
145                 unsigned long flags; /* may shadow */                   \
146                 WARN_ON_ONCE(!is_special_task_state(state_value));      \
147                 raw_spin_lock_irqsave(&current->pi_lock, flags);        \
148                 current->task_state_change = _THIS_IP_;                 \
149                 current->state = (state_value);                         \
150                 raw_spin_unlock_irqrestore(&current->pi_lock, flags);   \
151         } while (0)
152 #else
153 /*
154  * set_current_state() includes a barrier so that the write of current->state
155  * is correctly serialised wrt the caller's subsequent test of whether to
156  * actually sleep:
157  *
158  *   for (;;) {
159  *      set_current_state(TASK_UNINTERRUPTIBLE);
160  *      if (CONDITION)
161  *         break;
162  *
163  *      schedule();
164  *   }
165  *   __set_current_state(TASK_RUNNING);
166  *
167  * If the caller does not need such serialisation (because, for instance, the
168  * CONDITION test and condition change and wakeup are under the same lock) then
169  * use __set_current_state().
170  *
171  * The above is typically ordered against the wakeup, which does:
172  *
173  *   CONDITION = 1;
174  *   wake_up_state(p, TASK_UNINTERRUPTIBLE);
175  *
176  * where wake_up_state()/try_to_wake_up() executes a full memory barrier before
177  * accessing p->state.
178  *
179  * Wakeup will do: if (@state & p->state) p->state = TASK_RUNNING, that is,
180  * once it observes the TASK_UNINTERRUPTIBLE store the waking CPU can issue a
181  * TASK_RUNNING store which can collide with __set_current_state(TASK_RUNNING).
182  *
183  * However, with slightly different timing the wakeup TASK_RUNNING store can
184  * also collide with the TASK_UNINTERRUPTIBLE store. Losing that store is not
185  * a problem either because that will result in one extra go around the loop
186  * and our @cond test will save the day.
187  *
188  * Also see the comments of try_to_wake_up().
189  */
190 #define __set_current_state(state_value)                                \
191         current->state = (state_value)
192
193 #define set_current_state(state_value)                                  \
194         smp_store_mb(current->state, (state_value))
195
196 /*
197  * set_special_state() should be used for those states when the blocking task
198  * can not use the regular condition based wait-loop. In that case we must
199  * serialize against wakeups such that any possible in-flight TASK_RUNNING stores
200  * will not collide with our state change.
201  */
202 #define set_special_state(state_value)                                  \
203         do {                                                            \
204                 unsigned long flags; /* may shadow */                   \
205                 raw_spin_lock_irqsave(&current->pi_lock, flags);        \
206                 current->state = (state_value);                         \
207                 raw_spin_unlock_irqrestore(&current->pi_lock, flags);   \
208         } while (0)
209
210 #endif
211
212 /* Task command name length: */
213 #define TASK_COMM_LEN                   16
214
215 extern void scheduler_tick(void);
216
217 #define MAX_SCHEDULE_TIMEOUT            LONG_MAX
218
219 extern long schedule_timeout(long timeout);
220 extern long schedule_timeout_interruptible(long timeout);
221 extern long schedule_timeout_killable(long timeout);
222 extern long schedule_timeout_uninterruptible(long timeout);
223 extern long schedule_timeout_idle(long timeout);
224 asmlinkage void schedule(void);
225 extern void schedule_preempt_disabled(void);
226 asmlinkage void preempt_schedule_irq(void);
227
228 extern int __must_check io_schedule_prepare(void);
229 extern void io_schedule_finish(int token);
230 extern long io_schedule_timeout(long timeout);
231 extern void io_schedule(void);
232
233 /**
234  * struct prev_cputime - snapshot of system and user cputime
235  * @utime: time spent in user mode
236  * @stime: time spent in system mode
237  * @lock: protects the above two fields
238  *
239  * Stores previous user/system time values such that we can guarantee
240  * monotonicity.
241  */
242 struct prev_cputime {
243 #ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
244         u64                             utime;
245         u64                             stime;
246         raw_spinlock_t                  lock;
247 #endif
248 };
249
250 enum vtime_state {
251         /* Task is sleeping or running in a CPU with VTIME inactive: */
252         VTIME_INACTIVE = 0,
253         /* Task is idle */
254         VTIME_IDLE,
255         /* Task runs in kernelspace in a CPU with VTIME active: */
256         VTIME_SYS,
257         /* Task runs in userspace in a CPU with VTIME active: */
258         VTIME_USER,
259         /* Task runs as guests in a CPU with VTIME active: */
260         VTIME_GUEST,
261 };
262
263 struct vtime {
264         seqcount_t              seqcount;
265         unsigned long long      starttime;
266         enum vtime_state        state;
267         unsigned int            cpu;
268         u64                     utime;
269         u64                     stime;
270         u64                     gtime;
271 };
272
273 /*
274  * Utilization clamp constraints.
275  * @UCLAMP_MIN: Minimum utilization
276  * @UCLAMP_MAX: Maximum utilization
277  * @UCLAMP_CNT: Utilization clamp constraints count
278  */
279 enum uclamp_id {
280         UCLAMP_MIN = 0,
281         UCLAMP_MAX,
282         UCLAMP_CNT
283 };
284
285 #ifdef CONFIG_SMP
286 extern struct root_domain def_root_domain;
287 extern struct mutex sched_domains_mutex;
288 #endif
289
290 struct sched_info {
291 #ifdef CONFIG_SCHED_INFO
292         /* Cumulative counters: */
293
294         /* # of times we have run on this CPU: */
295         unsigned long                   pcount;
296
297         /* Time spent waiting on a runqueue: */
298         unsigned long long              run_delay;
299
300         /* Timestamps: */
301
302         /* When did we last run on a CPU? */
303         unsigned long long              last_arrival;
304
305         /* When were we last queued to run? */
306         unsigned long long              last_queued;
307
308 #endif /* CONFIG_SCHED_INFO */
309 };
310
311 /*
312  * Integer metrics need fixed point arithmetic, e.g., sched/fair
313  * has a few: load, load_avg, util_avg, freq, and capacity.
314  *
315  * We define a basic fixed point arithmetic range, and then formalize
316  * all these metrics based on that basic range.
317  */
318 # define SCHED_FIXEDPOINT_SHIFT         10
319 # define SCHED_FIXEDPOINT_SCALE         (1L << SCHED_FIXEDPOINT_SHIFT)
320
321 /* Increase resolution of cpu_capacity calculations */
322 # define SCHED_CAPACITY_SHIFT           SCHED_FIXEDPOINT_SHIFT
323 # define SCHED_CAPACITY_SCALE           (1L << SCHED_CAPACITY_SHIFT)
324
325 struct load_weight {
326         unsigned long                   weight;
327         u32                             inv_weight;
328 };
329
330 /**
331  * struct util_est - Estimation utilization of FAIR tasks
332  * @enqueued: instantaneous estimated utilization of a task/cpu
333  * @ewma:     the Exponential Weighted Moving Average (EWMA)
334  *            utilization of a task
335  *
336  * Support data structure to track an Exponential Weighted Moving Average
337  * (EWMA) of a FAIR task's utilization. New samples are added to the moving
338  * average each time a task completes an activation. Sample's weight is chosen
339  * so that the EWMA will be relatively insensitive to transient changes to the
340  * task's workload.
341  *
342  * The enqueued attribute has a slightly different meaning for tasks and cpus:
343  * - task:   the task's util_avg at last task dequeue time
344  * - cfs_rq: the sum of util_est.enqueued for each RUNNABLE task on that CPU
345  * Thus, the util_est.enqueued of a task represents the contribution on the
346  * estimated utilization of the CPU where that task is currently enqueued.
347  *
348  * Only for tasks we track a moving average of the past instantaneous
349  * estimated utilization. This allows to absorb sporadic drops in utilization
350  * of an otherwise almost periodic task.
351  */
352 struct util_est {
353         unsigned int                    enqueued;
354         unsigned int                    ewma;
355 #define UTIL_EST_WEIGHT_SHIFT           2
356 } __attribute__((__aligned__(sizeof(u64))));
357
358 /*
359  * The load/runnable/util_avg accumulates an infinite geometric series
360  * (see __update_load_avg_cfs_rq() in kernel/sched/pelt.c).
361  *
362  * [load_avg definition]
363  *
364  *   load_avg = runnable% * scale_load_down(load)
365  *
366  * [runnable_avg definition]
367  *
368  *   runnable_avg = runnable% * SCHED_CAPACITY_SCALE
369  *
370  * [util_avg definition]
371  *
372  *   util_avg = running% * SCHED_CAPACITY_SCALE
373  *
374  * where runnable% is the time ratio that a sched_entity is runnable and
375  * running% the time ratio that a sched_entity is running.
376  *
377  * For cfs_rq, they are the aggregated values of all runnable and blocked
378  * sched_entities.
379  *
380  * The load/runnable/util_avg doesn't directly factor frequency scaling and CPU
381  * capacity scaling. The scaling is done through the rq_clock_pelt that is used
382  * for computing those signals (see update_rq_clock_pelt())
383  *
384  * N.B., the above ratios (runnable% and running%) themselves are in the
385  * range of [0, 1]. To do fixed point arithmetics, we therefore scale them
386  * to as large a range as necessary. This is for example reflected by
387  * util_avg's SCHED_CAPACITY_SCALE.
388  *
389  * [Overflow issue]
390  *
391  * The 64-bit load_sum can have 4353082796 (=2^64/47742/88761) entities
392  * with the highest load (=88761), always runnable on a single cfs_rq,
393  * and should not overflow as the number already hits PID_MAX_LIMIT.
394  *
395  * For all other cases (including 32-bit kernels), struct load_weight's
396  * weight will overflow first before we do, because:
397  *
398  *    Max(load_avg) <= Max(load.weight)
399  *
400  * Then it is the load_weight's responsibility to consider overflow
401  * issues.
402  */
403 struct sched_avg {
404         u64                             last_update_time;
405         u64                             load_sum;
406         u64                             runnable_sum;
407         u32                             util_sum;
408         u32                             period_contrib;
409         unsigned long                   load_avg;
410         unsigned long                   runnable_avg;
411         unsigned long                   util_avg;
412         struct util_est                 util_est;
413 } ____cacheline_aligned;
414
415 struct sched_statistics {
416 #ifdef CONFIG_SCHEDSTATS
417         u64                             wait_start;
418         u64                             wait_max;
419         u64                             wait_count;
420         u64                             wait_sum;
421         u64                             iowait_count;
422         u64                             iowait_sum;
423
424         u64                             sleep_start;
425         u64                             sleep_max;
426         s64                             sum_sleep_runtime;
427
428         u64                             block_start;
429         u64                             block_max;
430         u64                             exec_max;
431         u64                             slice_max;
432
433         u64                             nr_migrations_cold;
434         u64                             nr_failed_migrations_affine;
435         u64                             nr_failed_migrations_running;
436         u64                             nr_failed_migrations_hot;
437         u64                             nr_forced_migrations;
438
439         u64                             nr_wakeups;
440         u64                             nr_wakeups_sync;
441         u64                             nr_wakeups_migrate;
442         u64                             nr_wakeups_local;
443         u64                             nr_wakeups_remote;
444         u64                             nr_wakeups_affine;
445         u64                             nr_wakeups_affine_attempts;
446         u64                             nr_wakeups_passive;
447         u64                             nr_wakeups_idle;
448 #endif
449 };
450
451 struct sched_entity {
452         /* For load-balancing: */
453         struct load_weight              load;
454         struct rb_node                  run_node;
455         struct list_head                group_node;
456         unsigned int                    on_rq;
457
458         u64                             exec_start;
459         u64                             sum_exec_runtime;
460         u64                             vruntime;
461         u64                             prev_sum_exec_runtime;
462
463         u64                             nr_migrations;
464
465         struct sched_statistics         statistics;
466
467 #ifdef CONFIG_FAIR_GROUP_SCHED
468         int                             depth;
469         struct sched_entity             *parent;
470         /* rq on which this entity is (to be) queued: */
471         struct cfs_rq                   *cfs_rq;
472         /* rq "owned" by this entity/group: */
473         struct cfs_rq                   *my_q;
474         /* cached value of my_q->h_nr_running */
475         unsigned long                   runnable_weight;
476 #endif
477
478 #ifdef CONFIG_SMP
479         /*
480          * Per entity load average tracking.
481          *
482          * Put into separate cache line so it does not
483          * collide with read-mostly values above.
484          */
485         struct sched_avg                avg;
486 #endif
487 };
488
489 struct sched_rt_entity {
490         struct list_head                run_list;
491         unsigned long                   timeout;
492         unsigned long                   watchdog_stamp;
493         unsigned int                    time_slice;
494         unsigned short                  on_rq;
495         unsigned short                  on_list;
496
497         struct sched_rt_entity          *back;
498 #ifdef CONFIG_RT_GROUP_SCHED
499         struct sched_rt_entity          *parent;
500         /* rq on which this entity is (to be) queued: */
501         struct rt_rq                    *rt_rq;
502         /* rq "owned" by this entity/group: */
503         struct rt_rq                    *my_q;
504 #endif
505 } __randomize_layout;
506
507 struct sched_dl_entity {
508         struct rb_node                  rb_node;
509
510         /*
511          * Original scheduling parameters. Copied here from sched_attr
512          * during sched_setattr(), they will remain the same until
513          * the next sched_setattr().
514          */
515         u64                             dl_runtime;     /* Maximum runtime for each instance    */
516         u64                             dl_deadline;    /* Relative deadline of each instance   */
517         u64                             dl_period;      /* Separation of two instances (period) */
518         u64                             dl_bw;          /* dl_runtime / dl_period               */
519         u64                             dl_density;     /* dl_runtime / dl_deadline             */
520
521         /*
522          * Actual scheduling parameters. Initialized with the values above,
523          * they are continuously updated during task execution. Note that
524          * the remaining runtime could be < 0 in case we are in overrun.
525          */
526         s64                             runtime;        /* Remaining runtime for this instance  */
527         u64                             deadline;       /* Absolute deadline for this instance  */
528         unsigned int                    flags;          /* Specifying the scheduler behaviour   */
529
530         /*
531          * Some bool flags:
532          *
533          * @dl_throttled tells if we exhausted the runtime. If so, the
534          * task has to wait for a replenishment to be performed at the
535          * next firing of dl_timer.
536          *
537          * @dl_boosted tells if we are boosted due to DI. If so we are
538          * outside bandwidth enforcement mechanism (but only until we
539          * exit the critical section);
540          *
541          * @dl_yielded tells if task gave up the CPU before consuming
542          * all its available runtime during the last job.
543          *
544          * @dl_non_contending tells if the task is inactive while still
545          * contributing to the active utilization. In other words, it
546          * indicates if the inactive timer has been armed and its handler
547          * has not been executed yet. This flag is useful to avoid race
548          * conditions between the inactive timer handler and the wakeup
549          * code.
550          *
551          * @dl_overrun tells if the task asked to be informed about runtime
552          * overruns.
553          */
554         unsigned int                    dl_throttled      : 1;
555         unsigned int                    dl_yielded        : 1;
556         unsigned int                    dl_non_contending : 1;
557         unsigned int                    dl_overrun        : 1;
558
559         /*
560          * Bandwidth enforcement timer. Each -deadline task has its
561          * own bandwidth to be enforced, thus we need one timer per task.
562          */
563         struct hrtimer                  dl_timer;
564
565         /*
566          * Inactive timer, responsible for decreasing the active utilization
567          * at the "0-lag time". When a -deadline task blocks, it contributes
568          * to GRUB's active utilization until the "0-lag time", hence a
569          * timer is needed to decrease the active utilization at the correct
570          * time.
571          */
572         struct hrtimer inactive_timer;
573
574 #ifdef CONFIG_RT_MUTEXES
575         /*
576          * Priority Inheritance. When a DEADLINE scheduling entity is boosted
577          * pi_se points to the donor, otherwise points to the dl_se it belongs
578          * to (the original one/itself).
579          */
580         struct sched_dl_entity *pi_se;
581 #endif
582 };
583
584 #ifdef CONFIG_UCLAMP_TASK
585 /* Number of utilization clamp buckets (shorter alias) */
586 #define UCLAMP_BUCKETS CONFIG_UCLAMP_BUCKETS_COUNT
587
588 /*
589  * Utilization clamp for a scheduling entity
590  * @value:              clamp value "assigned" to a se
591  * @bucket_id:          bucket index corresponding to the "assigned" value
592  * @active:             the se is currently refcounted in a rq's bucket
593  * @user_defined:       the requested clamp value comes from user-space
594  *
595  * The bucket_id is the index of the clamp bucket matching the clamp value
596  * which is pre-computed and stored to avoid expensive integer divisions from
597  * the fast path.
598  *
599  * The active bit is set whenever a task has got an "effective" value assigned,
600  * which can be different from the clamp value "requested" from user-space.
601  * This allows to know a task is refcounted in the rq's bucket corresponding
602  * to the "effective" bucket_id.
603  *
604  * The user_defined bit is set whenever a task has got a task-specific clamp
605  * value requested from userspace, i.e. the system defaults apply to this task
606  * just as a restriction. This allows to relax default clamps when a less
607  * restrictive task-specific value has been requested, thus allowing to
608  * implement a "nice" semantic. For example, a task running with a 20%
609  * default boost can still drop its own boosting to 0%.
610  */
611 struct uclamp_se {
612         unsigned int value              : bits_per(SCHED_CAPACITY_SCALE);
613         unsigned int bucket_id          : bits_per(UCLAMP_BUCKETS);
614         unsigned int active             : 1;
615         unsigned int user_defined       : 1;
616 };
617 #endif /* CONFIG_UCLAMP_TASK */
618
619 union rcu_special {
620         struct {
621                 u8                      blocked;
622                 u8                      need_qs;
623                 u8                      exp_hint; /* Hint for performance. */
624                 u8                      need_mb; /* Readers need smp_mb(). */
625         } b; /* Bits. */
626         u32 s; /* Set of bits. */
627 };
628
629 enum perf_event_task_context {
630         perf_invalid_context = -1,
631         perf_hw_context = 0,
632         perf_sw_context,
633         perf_nr_task_contexts,
634 };
635
636 struct wake_q_node {
637         struct wake_q_node *next;
638 };
639
640 struct task_struct {
641 #ifdef CONFIG_THREAD_INFO_IN_TASK
642         /*
643          * For reasons of header soup (see current_thread_info()), this
644          * must be the first element of task_struct.
645          */
646         struct thread_info              thread_info;
647 #endif
648         /* -1 unrunnable, 0 runnable, >0 stopped: */
649         volatile long                   state;
650
651         /*
652          * This begins the randomizable portion of task_struct. Only
653          * scheduling-critical items should be added above here.
654          */
655         randomized_struct_fields_start
656
657         void                            *stack;
658         refcount_t                      usage;
659         /* Per task flags (PF_*), defined further below: */
660         unsigned int                    flags;
661         unsigned int                    ptrace;
662
663 #ifdef CONFIG_SMP
664         int                             on_cpu;
665         struct __call_single_node       wake_entry;
666 #ifdef CONFIG_THREAD_INFO_IN_TASK
667         /* Current CPU: */
668         unsigned int                    cpu;
669 #endif
670         unsigned int                    wakee_flips;
671         unsigned long                   wakee_flip_decay_ts;
672         struct task_struct              *last_wakee;
673
674         /*
675          * recent_used_cpu is initially set as the last CPU used by a task
676          * that wakes affine another task. Waker/wakee relationships can
677          * push tasks around a CPU where each wakeup moves to the next one.
678          * Tracking a recently used CPU allows a quick search for a recently
679          * used CPU that may be idle.
680          */
681         int                             recent_used_cpu;
682         int                             wake_cpu;
683 #endif
684         int                             on_rq;
685
686         int                             prio;
687         int                             static_prio;
688         int                             normal_prio;
689         unsigned int                    rt_priority;
690
691         const struct sched_class        *sched_class;
692         struct sched_entity             se;
693         struct sched_rt_entity          rt;
694 #ifdef CONFIG_CGROUP_SCHED
695         struct task_group               *sched_task_group;
696 #endif
697         struct sched_dl_entity          dl;
698
699 #ifdef CONFIG_UCLAMP_TASK
700         /*
701          * Clamp values requested for a scheduling entity.
702          * Must be updated with task_rq_lock() held.
703          */
704         struct uclamp_se                uclamp_req[UCLAMP_CNT];
705         /*
706          * Effective clamp values used for a scheduling entity.
707          * Must be updated with task_rq_lock() held.
708          */
709         struct uclamp_se                uclamp[UCLAMP_CNT];
710 #endif
711
712 #ifdef CONFIG_PREEMPT_NOTIFIERS
713         /* List of struct preempt_notifier: */
714         struct hlist_head               preempt_notifiers;
715 #endif
716
717 #ifdef CONFIG_BLK_DEV_IO_TRACE
718         unsigned int                    btrace_seq;
719 #endif
720
721         unsigned int                    policy;
722         int                             nr_cpus_allowed;
723         const cpumask_t                 *cpus_ptr;
724         cpumask_t                       cpus_mask;
725
726 #ifdef CONFIG_PREEMPT_RCU
727         int                             rcu_read_lock_nesting;
728         union rcu_special               rcu_read_unlock_special;
729         struct list_head                rcu_node_entry;
730         struct rcu_node                 *rcu_blocked_node;
731 #endif /* #ifdef CONFIG_PREEMPT_RCU */
732
733 #ifdef CONFIG_TASKS_RCU
734         unsigned long                   rcu_tasks_nvcsw;
735         u8                              rcu_tasks_holdout;
736         u8                              rcu_tasks_idx;
737         int                             rcu_tasks_idle_cpu;
738         struct list_head                rcu_tasks_holdout_list;
739 #endif /* #ifdef CONFIG_TASKS_RCU */
740
741 #ifdef CONFIG_TASKS_TRACE_RCU
742         int                             trc_reader_nesting;
743         int                             trc_ipi_to_cpu;
744         union rcu_special               trc_reader_special;
745         bool                            trc_reader_checked;
746         struct list_head                trc_holdout_list;
747 #endif /* #ifdef CONFIG_TASKS_TRACE_RCU */
748
749         struct sched_info               sched_info;
750
751         struct list_head                tasks;
752 #ifdef CONFIG_SMP
753         struct plist_node               pushable_tasks;
754         struct rb_node                  pushable_dl_tasks;
755 #endif
756
757         struct mm_struct                *mm;
758         struct mm_struct                *active_mm;
759
760         /* Per-thread vma caching: */
761         struct vmacache                 vmacache;
762
763 #ifdef SPLIT_RSS_COUNTING
764         struct task_rss_stat            rss_stat;
765 #endif
766         int                             exit_state;
767         int                             exit_code;
768         int                             exit_signal;
769         /* The signal sent when the parent dies: */
770         int                             pdeath_signal;
771         /* JOBCTL_*, siglock protected: */
772         unsigned long                   jobctl;
773
774         /* Used for emulating ABI behavior of previous Linux versions: */
775         unsigned int                    personality;
776
777         /* Scheduler bits, serialized by scheduler locks: */
778         unsigned                        sched_reset_on_fork:1;
779         unsigned                        sched_contributes_to_load:1;
780         unsigned                        sched_migrated:1;
781 #ifdef CONFIG_PSI
782         unsigned                        sched_psi_wake_requeue:1;
783 #endif
784
785         /* Force alignment to the next boundary: */
786         unsigned                        :0;
787
788         /* Unserialized, strictly 'current' */
789
790         /*
791          * This field must not be in the scheduler word above due to wakelist
792          * queueing no longer being serialized by p->on_cpu. However:
793          *
794          * p->XXX = X;                  ttwu()
795          * schedule()                     if (p->on_rq && ..) // false
796          *   smp_mb__after_spinlock();    if (smp_load_acquire(&p->on_cpu) && //true
797          *   deactivate_task()                ttwu_queue_wakelist())
798          *     p->on_rq = 0;                    p->sched_remote_wakeup = Y;
799          *
800          * guarantees all stores of 'current' are visible before
801          * ->sched_remote_wakeup gets used, so it can be in this word.
802          */
803         unsigned                        sched_remote_wakeup:1;
804
805         /* Bit to tell LSMs we're in execve(): */
806         unsigned                        in_execve:1;
807         unsigned                        in_iowait:1;
808 #ifndef TIF_RESTORE_SIGMASK
809         unsigned                        restore_sigmask:1;
810 #endif
811 #ifdef CONFIG_MEMCG
812         unsigned                        in_user_fault:1;
813 #endif
814 #ifdef CONFIG_COMPAT_BRK
815         unsigned                        brk_randomized:1;
816 #endif
817 #ifdef CONFIG_CGROUPS
818         /* disallow userland-initiated cgroup migration */
819         unsigned                        no_cgroup_migration:1;
820         /* task is frozen/stopped (used by the cgroup freezer) */
821         unsigned                        frozen:1;
822 #endif
823 #ifdef CONFIG_BLK_CGROUP
824         unsigned                        use_memdelay:1;
825 #endif
826 #ifdef CONFIG_PSI
827         /* Stalled due to lack of memory */
828         unsigned                        in_memstall:1;
829 #endif
830
831         unsigned long                   atomic_flags; /* Flags requiring atomic access. */
832
833         struct restart_block            restart_block;
834
835         pid_t                           pid;
836         pid_t                           tgid;
837
838 #ifdef CONFIG_STACKPROTECTOR
839         /* Canary value for the -fstack-protector GCC feature: */
840         unsigned long                   stack_canary;
841 #endif
842         /*
843          * Pointers to the (original) parent process, youngest child, younger sibling,
844          * older sibling, respectively.  (p->father can be replaced with
845          * p->real_parent->pid)
846          */
847
848         /* Real parent process: */
849         struct task_struct __rcu        *real_parent;
850
851         /* Recipient of SIGCHLD, wait4() reports: */
852         struct task_struct __rcu        *parent;
853
854         /*
855          * Children/sibling form the list of natural children:
856          */
857         struct list_head                children;
858         struct list_head                sibling;
859         struct task_struct              *group_leader;
860
861         /*
862          * 'ptraced' is the list of tasks this task is using ptrace() on.
863          *
864          * This includes both natural children and PTRACE_ATTACH targets.
865          * 'ptrace_entry' is this task's link on the p->parent->ptraced list.
866          */
867         struct list_head                ptraced;
868         struct list_head                ptrace_entry;
869
870         /* PID/PID hash table linkage. */
871         struct pid                      *thread_pid;
872         struct hlist_node               pid_links[PIDTYPE_MAX];
873         struct list_head                thread_group;
874         struct list_head                thread_node;
875
876         struct completion               *vfork_done;
877
878         /* CLONE_CHILD_SETTID: */
879         int __user                      *set_child_tid;
880
881         /* CLONE_CHILD_CLEARTID: */
882         int __user                      *clear_child_tid;
883
884         u64                             utime;
885         u64                             stime;
886 #ifdef CONFIG_ARCH_HAS_SCALED_CPUTIME
887         u64                             utimescaled;
888         u64                             stimescaled;
889 #endif
890         u64                             gtime;
891         struct prev_cputime             prev_cputime;
892 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
893         struct vtime                    vtime;
894 #endif
895
896 #ifdef CONFIG_NO_HZ_FULL
897         atomic_t                        tick_dep_mask;
898 #endif
899         /* Context switch counts: */
900         unsigned long                   nvcsw;
901         unsigned long                   nivcsw;
902
903         /* Monotonic time in nsecs: */
904         u64                             start_time;
905
906         /* Boot based time in nsecs: */
907         u64                             start_boottime;
908
909         /* MM fault and swap info: this can arguably be seen as either mm-specific or thread-specific: */
910         unsigned long                   min_flt;
911         unsigned long                   maj_flt;
912
913         /* Empty if CONFIG_POSIX_CPUTIMERS=n */
914         struct posix_cputimers          posix_cputimers;
915
916 #ifdef CONFIG_POSIX_CPU_TIMERS_TASK_WORK
917         struct posix_cputimers_work     posix_cputimers_work;
918 #endif
919
920         /* Process credentials: */
921
922         /* Tracer's credentials at attach: */
923         const struct cred __rcu         *ptracer_cred;
924
925         /* Objective and real subjective task credentials (COW): */
926         const struct cred __rcu         *real_cred;
927
928         /* Effective (overridable) subjective task credentials (COW): */
929         const struct cred __rcu         *cred;
930
931 #ifdef CONFIG_KEYS
932         /* Cached requested key. */
933         struct key                      *cached_requested_key;
934 #endif
935
936         /*
937          * executable name, excluding path.
938          *
939          * - normally initialized setup_new_exec()
940          * - access it with [gs]et_task_comm()
941          * - lock it with task_lock()
942          */
943         char                            comm[TASK_COMM_LEN];
944
945         struct nameidata                *nameidata;
946
947 #ifdef CONFIG_SYSVIPC
948         struct sysv_sem                 sysvsem;
949         struct sysv_shm                 sysvshm;
950 #endif
951 #ifdef CONFIG_DETECT_HUNG_TASK
952         unsigned long                   last_switch_count;
953         unsigned long                   last_switch_time;
954 #endif
955         /* Filesystem information: */
956         struct fs_struct                *fs;
957
958         /* Open file information: */
959         struct files_struct             *files;
960
961 #ifdef CONFIG_IO_URING
962         struct io_uring_task            *io_uring;
963 #endif
964
965         /* Namespaces: */
966         struct nsproxy                  *nsproxy;
967
968         /* Signal handlers: */
969         struct signal_struct            *signal;
970         struct sighand_struct __rcu             *sighand;
971         sigset_t                        blocked;
972         sigset_t                        real_blocked;
973         /* Restored if set_restore_sigmask() was used: */
974         sigset_t                        saved_sigmask;
975         struct sigpending               pending;
976         unsigned long                   sas_ss_sp;
977         size_t                          sas_ss_size;
978         unsigned int                    sas_ss_flags;
979
980         struct callback_head            *task_works;
981
982 #ifdef CONFIG_AUDIT
983 #ifdef CONFIG_AUDITSYSCALL
984         struct audit_context            *audit_context;
985 #endif
986         kuid_t                          loginuid;
987         unsigned int                    sessionid;
988 #endif
989         struct seccomp                  seccomp;
990
991         /* Thread group tracking: */
992         u64                             parent_exec_id;
993         u64                             self_exec_id;
994
995         /* Protection against (de-)allocation: mm, files, fs, tty, keyrings, mems_allowed, mempolicy: */
996         spinlock_t                      alloc_lock;
997
998         /* Protection of the PI data structures: */
999         raw_spinlock_t                  pi_lock;
1000
1001         struct wake_q_node              wake_q;
1002
1003 #ifdef CONFIG_RT_MUTEXES
1004         /* PI waiters blocked on a rt_mutex held by this task: */
1005         struct rb_root_cached           pi_waiters;
1006         /* Updated under owner's pi_lock and rq lock */
1007         struct task_struct              *pi_top_task;
1008         /* Deadlock detection and priority inheritance handling: */
1009         struct rt_mutex_waiter          *pi_blocked_on;
1010 #endif
1011
1012 #ifdef CONFIG_DEBUG_MUTEXES
1013         /* Mutex deadlock detection: */
1014         struct mutex_waiter             *blocked_on;
1015 #endif
1016
1017 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
1018         int                             non_block_count;
1019 #endif
1020
1021 #ifdef CONFIG_TRACE_IRQFLAGS
1022         struct irqtrace_events          irqtrace;
1023         unsigned int                    hardirq_threaded;
1024         u64                             hardirq_chain_key;
1025         int                             softirqs_enabled;
1026         int                             softirq_context;
1027         int                             irq_config;
1028 #endif
1029
1030 #ifdef CONFIG_LOCKDEP
1031 # define MAX_LOCK_DEPTH                 48UL
1032         u64                             curr_chain_key;
1033         int                             lockdep_depth;
1034         unsigned int                    lockdep_recursion;
1035         struct held_lock                held_locks[MAX_LOCK_DEPTH];
1036 #endif
1037
1038 #if defined(CONFIG_UBSAN) && !defined(CONFIG_UBSAN_TRAP)
1039         unsigned int                    in_ubsan;
1040 #endif
1041
1042         /* Journalling filesystem info: */
1043         void                            *journal_info;
1044
1045         /* Stacked block device info: */
1046         struct bio_list                 *bio_list;
1047
1048 #ifdef CONFIG_BLOCK
1049         /* Stack plugging: */
1050         struct blk_plug                 *plug;
1051 #endif
1052
1053         /* VM state: */
1054         struct reclaim_state            *reclaim_state;
1055
1056         struct backing_dev_info         *backing_dev_info;
1057
1058         struct io_context               *io_context;
1059
1060 #ifdef CONFIG_COMPACTION
1061         struct capture_control          *capture_control;
1062 #endif
1063         /* Ptrace state: */
1064         unsigned long                   ptrace_message;
1065         kernel_siginfo_t                *last_siginfo;
1066
1067         struct task_io_accounting       ioac;
1068 #ifdef CONFIG_PSI
1069         /* Pressure stall state */
1070         unsigned int                    psi_flags;
1071 #endif
1072 #ifdef CONFIG_TASK_XACCT
1073         /* Accumulated RSS usage: */
1074         u64                             acct_rss_mem1;
1075         /* Accumulated virtual memory usage: */
1076         u64                             acct_vm_mem1;
1077         /* stime + utime since last update: */
1078         u64                             acct_timexpd;
1079 #endif
1080 #ifdef CONFIG_CPUSETS
1081         /* Protected by ->alloc_lock: */
1082         nodemask_t                      mems_allowed;
1083         /* Seqence number to catch updates: */
1084         seqcount_spinlock_t             mems_allowed_seq;
1085         int                             cpuset_mem_spread_rotor;
1086         int                             cpuset_slab_spread_rotor;
1087 #endif
1088 #ifdef CONFIG_CGROUPS
1089         /* Control Group info protected by css_set_lock: */
1090         struct css_set __rcu            *cgroups;
1091         /* cg_list protected by css_set_lock and tsk->alloc_lock: */
1092         struct list_head                cg_list;
1093 #endif
1094 #ifdef CONFIG_X86_CPU_RESCTRL
1095         u32                             closid;
1096         u32                             rmid;
1097 #endif
1098 #ifdef CONFIG_FUTEX
1099         struct robust_list_head __user  *robust_list;
1100 #ifdef CONFIG_COMPAT
1101         struct compat_robust_list_head __user *compat_robust_list;
1102 #endif
1103         struct list_head                pi_state_list;
1104         struct futex_pi_state           *pi_state_cache;
1105         struct mutex                    futex_exit_mutex;
1106         unsigned int                    futex_state;
1107 #endif
1108 #ifdef CONFIG_PERF_EVENTS
1109         struct perf_event_context       *perf_event_ctxp[perf_nr_task_contexts];
1110         struct mutex                    perf_event_mutex;
1111         struct list_head                perf_event_list;
1112 #endif
1113 #ifdef CONFIG_DEBUG_PREEMPT
1114         unsigned long                   preempt_disable_ip;
1115 #endif
1116 #ifdef CONFIG_NUMA
1117         /* Protected by alloc_lock: */
1118         struct mempolicy                *mempolicy;
1119         short                           il_prev;
1120         short                           pref_node_fork;
1121 #endif
1122 #ifdef CONFIG_NUMA_BALANCING
1123         int                             numa_scan_seq;
1124         unsigned int                    numa_scan_period;
1125         unsigned int                    numa_scan_period_max;
1126         int                             numa_preferred_nid;
1127         unsigned long                   numa_migrate_retry;
1128         /* Migration stamp: */
1129         u64                             node_stamp;
1130         u64                             last_task_numa_placement;
1131         u64                             last_sum_exec_runtime;
1132         struct callback_head            numa_work;
1133
1134         /*
1135          * This pointer is only modified for current in syscall and
1136          * pagefault context (and for tasks being destroyed), so it can be read
1137          * from any of the following contexts:
1138          *  - RCU read-side critical section
1139          *  - current->numa_group from everywhere
1140          *  - task's runqueue locked, task not running
1141          */
1142         struct numa_group __rcu         *numa_group;
1143
1144         /*
1145          * numa_faults is an array split into four regions:
1146          * faults_memory, faults_cpu, faults_memory_buffer, faults_cpu_buffer
1147          * in this precise order.
1148          *
1149          * faults_memory: Exponential decaying average of faults on a per-node
1150          * basis. Scheduling placement decisions are made based on these
1151          * counts. The values remain static for the duration of a PTE scan.
1152          * faults_cpu: Track the nodes the process was running on when a NUMA
1153          * hinting fault was incurred.
1154          * faults_memory_buffer and faults_cpu_buffer: Record faults per node
1155          * during the current scan window. When the scan completes, the counts
1156          * in faults_memory and faults_cpu decay and these values are copied.
1157          */
1158         unsigned long                   *numa_faults;
1159         unsigned long                   total_numa_faults;
1160
1161         /*
1162          * numa_faults_locality tracks if faults recorded during the last
1163          * scan window were remote/local or failed to migrate. The task scan
1164          * period is adapted based on the locality of the faults with different
1165          * weights depending on whether they were shared or private faults
1166          */
1167         unsigned long                   numa_faults_locality[3];
1168
1169         unsigned long                   numa_pages_migrated;
1170 #endif /* CONFIG_NUMA_BALANCING */
1171
1172 #ifdef CONFIG_RSEQ
1173         struct rseq __user *rseq;
1174         u32 rseq_sig;
1175         /*
1176          * RmW on rseq_event_mask must be performed atomically
1177          * with respect to preemption.
1178          */
1179         unsigned long rseq_event_mask;
1180 #endif
1181
1182         struct tlbflush_unmap_batch     tlb_ubc;
1183
1184         union {
1185                 refcount_t              rcu_users;
1186                 struct rcu_head         rcu;
1187         };
1188
1189         /* Cache last used pipe for splice(): */
1190         struct pipe_inode_info          *splice_pipe;
1191
1192         struct page_frag                task_frag;
1193
1194 #ifdef CONFIG_TASK_DELAY_ACCT
1195         struct task_delay_info          *delays;
1196 #endif
1197
1198 #ifdef CONFIG_FAULT_INJECTION
1199         int                             make_it_fail;
1200         unsigned int                    fail_nth;
1201 #endif
1202         /*
1203          * When (nr_dirtied >= nr_dirtied_pause), it's time to call
1204          * balance_dirty_pages() for a dirty throttling pause:
1205          */
1206         int                             nr_dirtied;
1207         int                             nr_dirtied_pause;
1208         /* Start of a write-and-pause period: */
1209         unsigned long                   dirty_paused_when;
1210
1211 #ifdef CONFIG_LATENCYTOP
1212         int                             latency_record_count;
1213         struct latency_record           latency_record[LT_SAVECOUNT];
1214 #endif
1215         /*
1216          * Time slack values; these are used to round up poll() and
1217          * select() etc timeout values. These are in nanoseconds.
1218          */
1219         u64                             timer_slack_ns;
1220         u64                             default_timer_slack_ns;
1221
1222 #ifdef CONFIG_KASAN
1223         unsigned int                    kasan_depth;
1224 #endif
1225
1226 #ifdef CONFIG_KCSAN
1227         struct kcsan_ctx                kcsan_ctx;
1228 #ifdef CONFIG_TRACE_IRQFLAGS
1229         struct irqtrace_events          kcsan_save_irqtrace;
1230 #endif
1231 #endif
1232
1233 #if IS_ENABLED(CONFIG_KUNIT)
1234         struct kunit                    *kunit_test;
1235 #endif
1236
1237 #ifdef CONFIG_FUNCTION_GRAPH_TRACER
1238         /* Index of current stored address in ret_stack: */
1239         int                             curr_ret_stack;
1240         int                             curr_ret_depth;
1241
1242         /* Stack of return addresses for return function tracing: */
1243         struct ftrace_ret_stack         *ret_stack;
1244
1245         /* Timestamp for last schedule: */
1246         unsigned long long              ftrace_timestamp;
1247
1248         /*
1249          * Number of functions that haven't been traced
1250          * because of depth overrun:
1251          */
1252         atomic_t                        trace_overrun;
1253
1254         /* Pause tracing: */
1255         atomic_t                        tracing_graph_pause;
1256 #endif
1257
1258 #ifdef CONFIG_TRACING
1259         /* State flags for use by tracers: */
1260         unsigned long                   trace;
1261
1262         /* Bitmask and counter of trace recursion: */
1263         unsigned long                   trace_recursion;
1264 #endif /* CONFIG_TRACING */
1265
1266 #ifdef CONFIG_KCOV
1267         /* See kernel/kcov.c for more details. */
1268
1269         /* Coverage collection mode enabled for this task (0 if disabled): */
1270         unsigned int                    kcov_mode;
1271
1272         /* Size of the kcov_area: */
1273         unsigned int                    kcov_size;
1274
1275         /* Buffer for coverage collection: */
1276         void                            *kcov_area;
1277
1278         /* KCOV descriptor wired with this task or NULL: */
1279         struct kcov                     *kcov;
1280
1281         /* KCOV common handle for remote coverage collection: */
1282         u64                             kcov_handle;
1283
1284         /* KCOV sequence number: */
1285         int                             kcov_sequence;
1286
1287         /* Collect coverage from softirq context: */
1288         unsigned int                    kcov_softirq;
1289 #endif
1290
1291 #ifdef CONFIG_MEMCG
1292         struct mem_cgroup               *memcg_in_oom;
1293         gfp_t                           memcg_oom_gfp_mask;
1294         int                             memcg_oom_order;
1295
1296         /* Number of pages to reclaim on returning to userland: */
1297         unsigned int                    memcg_nr_pages_over_high;
1298
1299         /* Used by memcontrol for targeted memcg charge: */
1300         struct mem_cgroup               *active_memcg;
1301 #endif
1302
1303 #ifdef CONFIG_BLK_CGROUP
1304         struct request_queue            *throttle_queue;
1305 #endif
1306
1307 #ifdef CONFIG_UPROBES
1308         struct uprobe_task              *utask;
1309 #endif
1310 #if defined(CONFIG_BCACHE) || defined(CONFIG_BCACHE_MODULE)
1311         unsigned int                    sequential_io;
1312         unsigned int                    sequential_io_avg;
1313 #endif
1314 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
1315         unsigned long                   task_state_change;
1316 #endif
1317         int                             pagefault_disabled;
1318 #ifdef CONFIG_MMU
1319         struct task_struct              *oom_reaper_list;
1320 #endif
1321 #ifdef CONFIG_VMAP_STACK
1322         struct vm_struct                *stack_vm_area;
1323 #endif
1324 #ifdef CONFIG_THREAD_INFO_IN_TASK
1325         /* A live task holds one reference: */
1326         refcount_t                      stack_refcount;
1327 #endif
1328 #ifdef CONFIG_LIVEPATCH
1329         int patch_state;
1330 #endif
1331 #ifdef CONFIG_SECURITY
1332         /* Used by LSM modules for access restriction: */
1333         void                            *security;
1334 #endif
1335
1336 #ifdef CONFIG_GCC_PLUGIN_STACKLEAK
1337         unsigned long                   lowest_stack;
1338         unsigned long                   prev_lowest_stack;
1339 #endif
1340
1341 #ifdef CONFIG_X86_MCE
1342         void __user                     *mce_vaddr;
1343         __u64                           mce_kflags;
1344         u64                             mce_addr;
1345         __u64                           mce_ripv : 1,
1346                                         mce_whole_page : 1,
1347                                         __mce_reserved : 62;
1348         struct callback_head            mce_kill_me;
1349 #endif
1350
1351         /*
1352          * New fields for task_struct should be added above here, so that
1353          * they are included in the randomized portion of task_struct.
1354          */
1355         randomized_struct_fields_end
1356
1357         /* CPU-specific state of this task: */
1358         struct thread_struct            thread;
1359
1360         /*
1361          * WARNING: on x86, 'thread_struct' contains a variable-sized
1362          * structure.  It *MUST* be at the end of 'task_struct'.
1363          *
1364          * Do not put anything below here!
1365          */
1366 };
1367
1368 static inline struct pid *task_pid(struct task_struct *task)
1369 {
1370         return task->thread_pid;
1371 }
1372
1373 /*
1374  * the helpers to get the task's different pids as they are seen
1375  * from various namespaces
1376  *
1377  * task_xid_nr()     : global id, i.e. the id seen from the init namespace;
1378  * task_xid_vnr()    : virtual id, i.e. the id seen from the pid namespace of
1379  *                     current.
1380  * task_xid_nr_ns()  : id seen from the ns specified;
1381  *
1382  * see also pid_nr() etc in include/linux/pid.h
1383  */
1384 pid_t __task_pid_nr_ns(struct task_struct *task, enum pid_type type, struct pid_namespace *ns);
1385
1386 static inline pid_t task_pid_nr(struct task_struct *tsk)
1387 {
1388         return tsk->pid;
1389 }
1390
1391 static inline pid_t task_pid_nr_ns(struct task_struct *tsk, struct pid_namespace *ns)
1392 {
1393         return __task_pid_nr_ns(tsk, PIDTYPE_PID, ns);
1394 }
1395
1396 static inline pid_t task_pid_vnr(struct task_struct *tsk)
1397 {
1398         return __task_pid_nr_ns(tsk, PIDTYPE_PID, NULL);
1399 }
1400
1401
1402 static inline pid_t task_tgid_nr(struct task_struct *tsk)
1403 {
1404         return tsk->tgid;
1405 }
1406
1407 /**
1408  * pid_alive - check that a task structure is not stale
1409  * @p: Task structure to be checked.
1410  *
1411  * Test if a process is not yet dead (at most zombie state)
1412  * If pid_alive fails, then pointers within the task structure
1413  * can be stale and must not be dereferenced.
1414  *
1415  * Return: 1 if the process is alive. 0 otherwise.
1416  */
1417 static inline int pid_alive(const struct task_struct *p)
1418 {
1419         return p->thread_pid != NULL;
1420 }
1421
1422 static inline pid_t task_pgrp_nr_ns(struct task_struct *tsk, struct pid_namespace *ns)
1423 {
1424         return __task_pid_nr_ns(tsk, PIDTYPE_PGID, ns);
1425 }
1426
1427 static inline pid_t task_pgrp_vnr(struct task_struct *tsk)
1428 {
1429         return __task_pid_nr_ns(tsk, PIDTYPE_PGID, NULL);
1430 }
1431
1432
1433 static inline pid_t task_session_nr_ns(struct task_struct *tsk, struct pid_namespace *ns)
1434 {
1435         return __task_pid_nr_ns(tsk, PIDTYPE_SID, ns);
1436 }
1437
1438 static inline pid_t task_session_vnr(struct task_struct *tsk)
1439 {
1440         return __task_pid_nr_ns(tsk, PIDTYPE_SID, NULL);
1441 }
1442
1443 static inline pid_t task_tgid_nr_ns(struct task_struct *tsk, struct pid_namespace *ns)
1444 {
1445         return __task_pid_nr_ns(tsk, PIDTYPE_TGID, ns);
1446 }
1447
1448 static inline pid_t task_tgid_vnr(struct task_struct *tsk)
1449 {
1450         return __task_pid_nr_ns(tsk, PIDTYPE_TGID, NULL);
1451 }
1452
1453 static inline pid_t task_ppid_nr_ns(const struct task_struct *tsk, struct pid_namespace *ns)
1454 {
1455         pid_t pid = 0;
1456
1457         rcu_read_lock();
1458         if (pid_alive(tsk))
1459                 pid = task_tgid_nr_ns(rcu_dereference(tsk->real_parent), ns);
1460         rcu_read_unlock();
1461
1462         return pid;
1463 }
1464
1465 static inline pid_t task_ppid_nr(const struct task_struct *tsk)
1466 {
1467         return task_ppid_nr_ns(tsk, &init_pid_ns);
1468 }
1469
1470 /* Obsolete, do not use: */
1471 static inline pid_t task_pgrp_nr(struct task_struct *tsk)
1472 {
1473         return task_pgrp_nr_ns(tsk, &init_pid_ns);
1474 }
1475
1476 #define TASK_REPORT_IDLE        (TASK_REPORT + 1)
1477 #define TASK_REPORT_MAX         (TASK_REPORT_IDLE << 1)
1478
1479 static inline unsigned int task_state_index(struct task_struct *tsk)
1480 {
1481         unsigned int tsk_state = READ_ONCE(tsk->state);
1482         unsigned int state = (tsk_state | tsk->exit_state) & TASK_REPORT;
1483
1484         BUILD_BUG_ON_NOT_POWER_OF_2(TASK_REPORT_MAX);
1485
1486         if (tsk_state == TASK_IDLE)
1487                 state = TASK_REPORT_IDLE;
1488
1489         return fls(state);
1490 }
1491
1492 static inline char task_index_to_char(unsigned int state)
1493 {
1494         static const char state_char[] = "RSDTtXZPI";
1495
1496         BUILD_BUG_ON(1 + ilog2(TASK_REPORT_MAX) != sizeof(state_char) - 1);
1497
1498         return state_char[state];
1499 }
1500
1501 static inline char task_state_to_char(struct task_struct *tsk)
1502 {
1503         return task_index_to_char(task_state_index(tsk));
1504 }
1505
1506 /**
1507  * is_global_init - check if a task structure is init. Since init
1508  * is free to have sub-threads we need to check tgid.
1509  * @tsk: Task structure to be checked.
1510  *
1511  * Check if a task structure is the first user space task the kernel created.
1512  *
1513  * Return: 1 if the task structure is init. 0 otherwise.
1514  */
1515 static inline int is_global_init(struct task_struct *tsk)
1516 {
1517         return task_tgid_nr(tsk) == 1;
1518 }
1519
1520 extern struct pid *cad_pid;
1521
1522 /*
1523  * Per process flags
1524  */
1525 #define PF_VCPU                 0x00000001      /* I'm a virtual CPU */
1526 #define PF_IDLE                 0x00000002      /* I am an IDLE thread */
1527 #define PF_EXITING              0x00000004      /* Getting shut down */
1528 #define PF_IO_WORKER            0x00000010      /* Task is an IO worker */
1529 #define PF_WQ_WORKER            0x00000020      /* I'm a workqueue worker */
1530 #define PF_FORKNOEXEC           0x00000040      /* Forked but didn't exec */
1531 #define PF_MCE_PROCESS          0x00000080      /* Process policy on mce errors */
1532 #define PF_SUPERPRIV            0x00000100      /* Used super-user privileges */
1533 #define PF_DUMPCORE             0x00000200      /* Dumped core */
1534 #define PF_SIGNALED             0x00000400      /* Killed by a signal */
1535 #define PF_MEMALLOC             0x00000800      /* Allocating memory */
1536 #define PF_NPROC_EXCEEDED       0x00001000      /* set_user() noticed that RLIMIT_NPROC was exceeded */
1537 #define PF_USED_MATH            0x00002000      /* If unset the fpu must be initialized before use */
1538 #define PF_USED_ASYNC           0x00004000      /* Used async_schedule*(), used by module init */
1539 #define PF_NOFREEZE             0x00008000      /* This thread should not be frozen */
1540 #define PF_FROZEN               0x00010000      /* Frozen for system suspend */
1541 #define PF_KSWAPD               0x00020000      /* I am kswapd */
1542 #define PF_MEMALLOC_NOFS        0x00040000      /* All allocation requests will inherit GFP_NOFS */
1543 #define PF_MEMALLOC_NOIO        0x00080000      /* All allocation requests will inherit GFP_NOIO */
1544 #define PF_LOCAL_THROTTLE       0x00100000      /* Throttle writes only against the bdi I write to,
1545                                                  * I am cleaning dirty pages from some other bdi. */
1546 #define PF_KTHREAD              0x00200000      /* I am a kernel thread */
1547 #define PF_RANDOMIZE            0x00400000      /* Randomize virtual address space */
1548 #define PF_SWAPWRITE            0x00800000      /* Allowed to write to swap */
1549 #define PF_NO_SETAFFINITY       0x04000000      /* Userland is not allowed to meddle with cpus_mask */
1550 #define PF_MCE_EARLY            0x08000000      /* Early kill for mce process policy */
1551 #define PF_MEMALLOC_NOCMA       0x10000000      /* All allocation request will have _GFP_MOVABLE cleared */
1552 #define PF_FREEZER_SKIP         0x40000000      /* Freezer should not count it as freezable */
1553 #define PF_SUSPEND_TASK         0x80000000      /* This thread called freeze_processes() and should not be frozen */
1554
1555 /*
1556  * Only the _current_ task can read/write to tsk->flags, but other
1557  * tasks can access tsk->flags in readonly mode for example
1558  * with tsk_used_math (like during threaded core dumping).
1559  * There is however an exception to this rule during ptrace
1560  * or during fork: the ptracer task is allowed to write to the
1561  * child->flags of its traced child (same goes for fork, the parent
1562  * can write to the child->flags), because we're guaranteed the
1563  * child is not running and in turn not changing child->flags
1564  * at the same time the parent does it.
1565  */
1566 #define clear_stopped_child_used_math(child)    do { (child)->flags &= ~PF_USED_MATH; } while (0)
1567 #define set_stopped_child_used_math(child)      do { (child)->flags |= PF_USED_MATH; } while (0)
1568 #define clear_used_math()                       clear_stopped_child_used_math(current)
1569 #define set_used_math()                         set_stopped_child_used_math(current)
1570
1571 #define conditional_stopped_child_used_math(condition, child) \
1572         do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= (condition) ? PF_USED_MATH : 0; } while (0)
1573
1574 #define conditional_used_math(condition)        conditional_stopped_child_used_math(condition, current)
1575
1576 #define copy_to_stopped_child_used_math(child) \
1577         do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= current->flags & PF_USED_MATH; } while (0)
1578
1579 /* NOTE: this will return 0 or PF_USED_MATH, it will never return 1 */
1580 #define tsk_used_math(p)                        ((p)->flags & PF_USED_MATH)
1581 #define used_math()                             tsk_used_math(current)
1582
1583 static inline bool is_percpu_thread(void)
1584 {
1585 #ifdef CONFIG_SMP
1586         return (current->flags & PF_NO_SETAFFINITY) &&
1587                 (current->nr_cpus_allowed  == 1);
1588 #else
1589         return true;
1590 #endif
1591 }
1592
1593 /* Per-process atomic flags. */
1594 #define PFA_NO_NEW_PRIVS                0       /* May not gain new privileges. */
1595 #define PFA_SPREAD_PAGE                 1       /* Spread page cache over cpuset */
1596 #define PFA_SPREAD_SLAB                 2       /* Spread some slab caches over cpuset */
1597 #define PFA_SPEC_SSB_DISABLE            3       /* Speculative Store Bypass disabled */
1598 #define PFA_SPEC_SSB_FORCE_DISABLE      4       /* Speculative Store Bypass force disabled*/
1599 #define PFA_SPEC_IB_DISABLE             5       /* Indirect branch speculation restricted */
1600 #define PFA_SPEC_IB_FORCE_DISABLE       6       /* Indirect branch speculation permanently restricted */
1601 #define PFA_SPEC_SSB_NOEXEC             7       /* Speculative Store Bypass clear on execve() */
1602
1603 #define TASK_PFA_TEST(name, func)                                       \
1604         static inline bool task_##func(struct task_struct *p)           \
1605         { return test_bit(PFA_##name, &p->atomic_flags); }
1606
1607 #define TASK_PFA_SET(name, func)                                        \
1608         static inline void task_set_##func(struct task_struct *p)       \
1609         { set_bit(PFA_##name, &p->atomic_flags); }
1610
1611 #define TASK_PFA_CLEAR(name, func)                                      \
1612         static inline void task_clear_##func(struct task_struct *p)     \
1613         { clear_bit(PFA_##name, &p->atomic_flags); }
1614
1615 TASK_PFA_TEST(NO_NEW_PRIVS, no_new_privs)
1616 TASK_PFA_SET(NO_NEW_PRIVS, no_new_privs)
1617
1618 TASK_PFA_TEST(SPREAD_PAGE, spread_page)
1619 TASK_PFA_SET(SPREAD_PAGE, spread_page)
1620 TASK_PFA_CLEAR(SPREAD_PAGE, spread_page)
1621
1622 TASK_PFA_TEST(SPREAD_SLAB, spread_slab)
1623 TASK_PFA_SET(SPREAD_SLAB, spread_slab)
1624 TASK_PFA_CLEAR(SPREAD_SLAB, spread_slab)
1625
1626 TASK_PFA_TEST(SPEC_SSB_DISABLE, spec_ssb_disable)
1627 TASK_PFA_SET(SPEC_SSB_DISABLE, spec_ssb_disable)
1628 TASK_PFA_CLEAR(SPEC_SSB_DISABLE, spec_ssb_disable)
1629
1630 TASK_PFA_TEST(SPEC_SSB_NOEXEC, spec_ssb_noexec)
1631 TASK_PFA_SET(SPEC_SSB_NOEXEC, spec_ssb_noexec)
1632 TASK_PFA_CLEAR(SPEC_SSB_NOEXEC, spec_ssb_noexec)
1633
1634 TASK_PFA_TEST(SPEC_SSB_FORCE_DISABLE, spec_ssb_force_disable)
1635 TASK_PFA_SET(SPEC_SSB_FORCE_DISABLE, spec_ssb_force_disable)
1636
1637 TASK_PFA_TEST(SPEC_IB_DISABLE, spec_ib_disable)
1638 TASK_PFA_SET(SPEC_IB_DISABLE, spec_ib_disable)
1639 TASK_PFA_CLEAR(SPEC_IB_DISABLE, spec_ib_disable)
1640
1641 TASK_PFA_TEST(SPEC_IB_FORCE_DISABLE, spec_ib_force_disable)
1642 TASK_PFA_SET(SPEC_IB_FORCE_DISABLE, spec_ib_force_disable)
1643
1644 static inline void
1645 current_restore_flags(unsigned long orig_flags, unsigned long flags)
1646 {
1647         current->flags &= ~flags;
1648         current->flags |= orig_flags & flags;
1649 }
1650
1651 extern int cpuset_cpumask_can_shrink(const struct cpumask *cur, const struct cpumask *trial);
1652 extern int task_can_attach(struct task_struct *p, const struct cpumask *cs_cpus_allowed);
1653 #ifdef CONFIG_SMP
1654 extern void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask);
1655 extern int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask);
1656 #else
1657 static inline void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
1658 {
1659 }
1660 static inline int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
1661 {
1662         if (!cpumask_test_cpu(0, new_mask))
1663                 return -EINVAL;
1664         return 0;
1665 }
1666 #endif
1667
1668 extern int yield_to(struct task_struct *p, bool preempt);
1669 extern void set_user_nice(struct task_struct *p, long nice);
1670 extern int task_prio(const struct task_struct *p);
1671
1672 /**
1673  * task_nice - return the nice value of a given task.
1674  * @p: the task in question.
1675  *
1676  * Return: The nice value [ -20 ... 0 ... 19 ].
1677  */
1678 static inline int task_nice(const struct task_struct *p)
1679 {
1680         return PRIO_TO_NICE((p)->static_prio);
1681 }
1682
1683 extern int can_nice(const struct task_struct *p, const int nice);
1684 extern int task_curr(const struct task_struct *p);
1685 extern int idle_cpu(int cpu);
1686 extern int available_idle_cpu(int cpu);
1687 extern int sched_setscheduler(struct task_struct *, int, const struct sched_param *);
1688 extern int sched_setscheduler_nocheck(struct task_struct *, int, const struct sched_param *);
1689 extern void sched_set_fifo(struct task_struct *p);
1690 extern void sched_set_fifo_low(struct task_struct *p);
1691 extern void sched_set_normal(struct task_struct *p, int nice);
1692 extern int sched_setattr(struct task_struct *, const struct sched_attr *);
1693 extern int sched_setattr_nocheck(struct task_struct *, const struct sched_attr *);
1694 extern struct task_struct *idle_task(int cpu);
1695
1696 /**
1697  * is_idle_task - is the specified task an idle task?
1698  * @p: the task in question.
1699  *
1700  * Return: 1 if @p is an idle task. 0 otherwise.
1701  */
1702 static __always_inline bool is_idle_task(const struct task_struct *p)
1703 {
1704         return !!(p->flags & PF_IDLE);
1705 }
1706
1707 extern struct task_struct *curr_task(int cpu);
1708 extern void ia64_set_curr_task(int cpu, struct task_struct *p);
1709
1710 void yield(void);
1711
1712 union thread_union {
1713 #ifndef CONFIG_ARCH_TASK_STRUCT_ON_STACK
1714         struct task_struct task;
1715 #endif
1716 #ifndef CONFIG_THREAD_INFO_IN_TASK
1717         struct thread_info thread_info;
1718 #endif
1719         unsigned long stack[THREAD_SIZE/sizeof(long)];
1720 };
1721
1722 #ifndef CONFIG_THREAD_INFO_IN_TASK
1723 extern struct thread_info init_thread_info;
1724 #endif
1725
1726 extern unsigned long init_stack[THREAD_SIZE / sizeof(unsigned long)];
1727
1728 #ifdef CONFIG_THREAD_INFO_IN_TASK
1729 static inline struct thread_info *task_thread_info(struct task_struct *task)
1730 {
1731         return &task->thread_info;
1732 }
1733 #elif !defined(__HAVE_THREAD_FUNCTIONS)
1734 # define task_thread_info(task) ((struct thread_info *)(task)->stack)
1735 #endif
1736
1737 /*
1738  * find a task by one of its numerical ids
1739  *
1740  * find_task_by_pid_ns():
1741  *      finds a task by its pid in the specified namespace
1742  * find_task_by_vpid():
1743  *      finds a task by its virtual pid
1744  *
1745  * see also find_vpid() etc in include/linux/pid.h
1746  */
1747
1748 extern struct task_struct *find_task_by_vpid(pid_t nr);
1749 extern struct task_struct *find_task_by_pid_ns(pid_t nr, struct pid_namespace *ns);
1750
1751 /*
1752  * find a task by its virtual pid and get the task struct
1753  */
1754 extern struct task_struct *find_get_task_by_vpid(pid_t nr);
1755
1756 extern int wake_up_state(struct task_struct *tsk, unsigned int state);
1757 extern int wake_up_process(struct task_struct *tsk);
1758 extern void wake_up_new_task(struct task_struct *tsk);
1759
1760 #ifdef CONFIG_SMP
1761 extern void kick_process(struct task_struct *tsk);
1762 #else
1763 static inline void kick_process(struct task_struct *tsk) { }
1764 #endif
1765
1766 extern void __set_task_comm(struct task_struct *tsk, const char *from, bool exec);
1767
1768 static inline void set_task_comm(struct task_struct *tsk, const char *from)
1769 {
1770         __set_task_comm(tsk, from, false);
1771 }
1772
1773 extern char *__get_task_comm(char *to, size_t len, struct task_struct *tsk);
1774 #define get_task_comm(buf, tsk) ({                      \
1775         BUILD_BUG_ON(sizeof(buf) != TASK_COMM_LEN);     \
1776         __get_task_comm(buf, sizeof(buf), tsk);         \
1777 })
1778
1779 #ifdef CONFIG_SMP
1780 static __always_inline void scheduler_ipi(void)
1781 {
1782         /*
1783          * Fold TIF_NEED_RESCHED into the preempt_count; anybody setting
1784          * TIF_NEED_RESCHED remotely (for the first time) will also send
1785          * this IPI.
1786          */
1787         preempt_fold_need_resched();
1788 }
1789 extern unsigned long wait_task_inactive(struct task_struct *, long match_state);
1790 #else
1791 static inline void scheduler_ipi(void) { }
1792 static inline unsigned long wait_task_inactive(struct task_struct *p, long match_state)
1793 {
1794         return 1;
1795 }
1796 #endif
1797
1798 /*
1799  * Set thread flags in other task's structures.
1800  * See asm/thread_info.h for TIF_xxxx flags available:
1801  */
1802 static inline void set_tsk_thread_flag(struct task_struct *tsk, int flag)
1803 {
1804         set_ti_thread_flag(task_thread_info(tsk), flag);
1805 }
1806
1807 static inline void clear_tsk_thread_flag(struct task_struct *tsk, int flag)
1808 {
1809         clear_ti_thread_flag(task_thread_info(tsk), flag);
1810 }
1811
1812 static inline void update_tsk_thread_flag(struct task_struct *tsk, int flag,
1813                                           bool value)
1814 {
1815         update_ti_thread_flag(task_thread_info(tsk), flag, value);
1816 }
1817
1818 static inline int test_and_set_tsk_thread_flag(struct task_struct *tsk, int flag)
1819 {
1820         return test_and_set_ti_thread_flag(task_thread_info(tsk), flag);
1821 }
1822
1823 static inline int test_and_clear_tsk_thread_flag(struct task_struct *tsk, int flag)
1824 {
1825         return test_and_clear_ti_thread_flag(task_thread_info(tsk), flag);
1826 }
1827
1828 static inline int test_tsk_thread_flag(struct task_struct *tsk, int flag)
1829 {
1830         return test_ti_thread_flag(task_thread_info(tsk), flag);
1831 }
1832
1833 static inline void set_tsk_need_resched(struct task_struct *tsk)
1834 {
1835         set_tsk_thread_flag(tsk,TIF_NEED_RESCHED);
1836 }
1837
1838 static inline void clear_tsk_need_resched(struct task_struct *tsk)
1839 {
1840         clear_tsk_thread_flag(tsk,TIF_NEED_RESCHED);
1841 }
1842
1843 static inline int test_tsk_need_resched(struct task_struct *tsk)
1844 {
1845         return unlikely(test_tsk_thread_flag(tsk,TIF_NEED_RESCHED));
1846 }
1847
1848 /*
1849  * cond_resched() and cond_resched_lock(): latency reduction via
1850  * explicit rescheduling in places that are safe. The return
1851  * value indicates whether a reschedule was done in fact.
1852  * cond_resched_lock() will drop the spinlock before scheduling,
1853  */
1854 #ifndef CONFIG_PREEMPTION
1855 extern int _cond_resched(void);
1856 #else
1857 static inline int _cond_resched(void) { return 0; }
1858 #endif
1859
1860 #define cond_resched() ({                       \
1861         ___might_sleep(__FILE__, __LINE__, 0);  \
1862         _cond_resched();                        \
1863 })
1864
1865 extern int __cond_resched_lock(spinlock_t *lock);
1866
1867 #define cond_resched_lock(lock) ({                              \
1868         ___might_sleep(__FILE__, __LINE__, PREEMPT_LOCK_OFFSET);\
1869         __cond_resched_lock(lock);                              \
1870 })
1871
1872 static inline void cond_resched_rcu(void)
1873 {
1874 #if defined(CONFIG_DEBUG_ATOMIC_SLEEP) || !defined(CONFIG_PREEMPT_RCU)
1875         rcu_read_unlock();
1876         cond_resched();
1877         rcu_read_lock();
1878 #endif
1879 }
1880
1881 /*
1882  * Does a critical section need to be broken due to another
1883  * task waiting?: (technically does not depend on CONFIG_PREEMPTION,
1884  * but a general need for low latency)
1885  */
1886 static inline int spin_needbreak(spinlock_t *lock)
1887 {
1888 #ifdef CONFIG_PREEMPTION
1889         return spin_is_contended(lock);
1890 #else
1891         return 0;
1892 #endif
1893 }
1894
1895 static __always_inline bool need_resched(void)
1896 {
1897         return unlikely(tif_need_resched());
1898 }
1899
1900 /*
1901  * Wrappers for p->thread_info->cpu access. No-op on UP.
1902  */
1903 #ifdef CONFIG_SMP
1904
1905 static inline unsigned int task_cpu(const struct task_struct *p)
1906 {
1907 #ifdef CONFIG_THREAD_INFO_IN_TASK
1908         return READ_ONCE(p->cpu);
1909 #else
1910         return READ_ONCE(task_thread_info(p)->cpu);
1911 #endif
1912 }
1913
1914 extern void set_task_cpu(struct task_struct *p, unsigned int cpu);
1915
1916 #else
1917
1918 static inline unsigned int task_cpu(const struct task_struct *p)
1919 {
1920         return 0;
1921 }
1922
1923 static inline void set_task_cpu(struct task_struct *p, unsigned int cpu)
1924 {
1925 }
1926
1927 #endif /* CONFIG_SMP */
1928
1929 /*
1930  * In order to reduce various lock holder preemption latencies provide an
1931  * interface to see if a vCPU is currently running or not.
1932  *
1933  * This allows us to terminate optimistic spin loops and block, analogous to
1934  * the native optimistic spin heuristic of testing if the lock owner task is
1935  * running or not.
1936  */
1937 #ifndef vcpu_is_preempted
1938 static inline bool vcpu_is_preempted(int cpu)
1939 {
1940         return false;
1941 }
1942 #endif
1943
1944 extern long sched_setaffinity(pid_t pid, const struct cpumask *new_mask);
1945 extern long sched_getaffinity(pid_t pid, struct cpumask *mask);
1946
1947 #ifndef TASK_SIZE_OF
1948 #define TASK_SIZE_OF(tsk)       TASK_SIZE
1949 #endif
1950
1951 #ifdef CONFIG_RSEQ
1952
1953 /*
1954  * Map the event mask on the user-space ABI enum rseq_cs_flags
1955  * for direct mask checks.
1956  */
1957 enum rseq_event_mask_bits {
1958         RSEQ_EVENT_PREEMPT_BIT  = RSEQ_CS_FLAG_NO_RESTART_ON_PREEMPT_BIT,
1959         RSEQ_EVENT_SIGNAL_BIT   = RSEQ_CS_FLAG_NO_RESTART_ON_SIGNAL_BIT,
1960         RSEQ_EVENT_MIGRATE_BIT  = RSEQ_CS_FLAG_NO_RESTART_ON_MIGRATE_BIT,
1961 };
1962
1963 enum rseq_event_mask {
1964         RSEQ_EVENT_PREEMPT      = (1U << RSEQ_EVENT_PREEMPT_BIT),
1965         RSEQ_EVENT_SIGNAL       = (1U << RSEQ_EVENT_SIGNAL_BIT),
1966         RSEQ_EVENT_MIGRATE      = (1U << RSEQ_EVENT_MIGRATE_BIT),
1967 };
1968
1969 static inline void rseq_set_notify_resume(struct task_struct *t)
1970 {
1971         if (t->rseq)
1972                 set_tsk_thread_flag(t, TIF_NOTIFY_RESUME);
1973 }
1974
1975 void __rseq_handle_notify_resume(struct ksignal *sig, struct pt_regs *regs);
1976
1977 static inline void rseq_handle_notify_resume(struct ksignal *ksig,
1978                                              struct pt_regs *regs)
1979 {
1980         if (current->rseq)
1981                 __rseq_handle_notify_resume(ksig, regs);
1982 }
1983
1984 static inline void rseq_signal_deliver(struct ksignal *ksig,
1985                                        struct pt_regs *regs)
1986 {
1987         preempt_disable();
1988         __set_bit(RSEQ_EVENT_SIGNAL_BIT, &current->rseq_event_mask);
1989         preempt_enable();
1990         rseq_handle_notify_resume(ksig, regs);
1991 }
1992
1993 /* rseq_preempt() requires preemption to be disabled. */
1994 static inline void rseq_preempt(struct task_struct *t)
1995 {
1996         __set_bit(RSEQ_EVENT_PREEMPT_BIT, &t->rseq_event_mask);
1997         rseq_set_notify_resume(t);
1998 }
1999
2000 /* rseq_migrate() requires preemption to be disabled. */
2001 static inline void rseq_migrate(struct task_struct *t)
2002 {
2003         __set_bit(RSEQ_EVENT_MIGRATE_BIT, &t->rseq_event_mask);
2004         rseq_set_notify_resume(t);
2005 }
2006
2007 /*
2008  * If parent process has a registered restartable sequences area, the
2009  * child inherits. Unregister rseq for a clone with CLONE_VM set.
2010  */
2011 static inline void rseq_fork(struct task_struct *t, unsigned long clone_flags)
2012 {
2013         if (clone_flags & CLONE_VM) {
2014                 t->rseq = NULL;
2015                 t->rseq_sig = 0;
2016                 t->rseq_event_mask = 0;
2017         } else {
2018                 t->rseq = current->rseq;
2019                 t->rseq_sig = current->rseq_sig;
2020                 t->rseq_event_mask = current->rseq_event_mask;
2021         }
2022 }
2023
2024 static inline void rseq_execve(struct task_struct *t)
2025 {
2026         t->rseq = NULL;
2027         t->rseq_sig = 0;
2028         t->rseq_event_mask = 0;
2029 }
2030
2031 #else
2032
2033 static inline void rseq_set_notify_resume(struct task_struct *t)
2034 {
2035 }
2036 static inline void rseq_handle_notify_resume(struct ksignal *ksig,
2037                                              struct pt_regs *regs)
2038 {
2039 }
2040 static inline void rseq_signal_deliver(struct ksignal *ksig,
2041                                        struct pt_regs *regs)
2042 {
2043 }
2044 static inline void rseq_preempt(struct task_struct *t)
2045 {
2046 }
2047 static inline void rseq_migrate(struct task_struct *t)
2048 {
2049 }
2050 static inline void rseq_fork(struct task_struct *t, unsigned long clone_flags)
2051 {
2052 }
2053 static inline void rseq_execve(struct task_struct *t)
2054 {
2055 }
2056
2057 #endif
2058
2059 #ifdef CONFIG_DEBUG_RSEQ
2060
2061 void rseq_syscall(struct pt_regs *regs);
2062
2063 #else
2064
2065 static inline void rseq_syscall(struct pt_regs *regs)
2066 {
2067 }
2068
2069 #endif
2070
2071 const struct sched_avg *sched_trace_cfs_rq_avg(struct cfs_rq *cfs_rq);
2072 char *sched_trace_cfs_rq_path(struct cfs_rq *cfs_rq, char *str, int len);
2073 int sched_trace_cfs_rq_cpu(struct cfs_rq *cfs_rq);
2074
2075 const struct sched_avg *sched_trace_rq_avg_rt(struct rq *rq);
2076 const struct sched_avg *sched_trace_rq_avg_dl(struct rq *rq);
2077 const struct sched_avg *sched_trace_rq_avg_irq(struct rq *rq);
2078
2079 int sched_trace_rq_cpu(struct rq *rq);
2080 int sched_trace_rq_cpu_capacity(struct rq *rq);
2081 int sched_trace_rq_nr_running(struct rq *rq);
2082
2083 const struct cpumask *sched_trace_rd_span(struct root_domain *rd);
2084
2085 #endif