mm/memblock.c: introduce bottom-up allocation mode
[platform/adaptation/renesas_rcar/renesas_kernel.git] / include / linux / sched.h
1 #ifndef _LINUX_SCHED_H
2 #define _LINUX_SCHED_H
3
4 #include <uapi/linux/sched.h>
5
6
7 struct sched_param {
8         int sched_priority;
9 };
10
11 #include <asm/param.h>  /* for HZ */
12
13 #include <linux/capability.h>
14 #include <linux/threads.h>
15 #include <linux/kernel.h>
16 #include <linux/types.h>
17 #include <linux/timex.h>
18 #include <linux/jiffies.h>
19 #include <linux/rbtree.h>
20 #include <linux/thread_info.h>
21 #include <linux/cpumask.h>
22 #include <linux/errno.h>
23 #include <linux/nodemask.h>
24 #include <linux/mm_types.h>
25 #include <linux/preempt.h>
26
27 #include <asm/page.h>
28 #include <asm/ptrace.h>
29 #include <asm/cputime.h>
30
31 #include <linux/smp.h>
32 #include <linux/sem.h>
33 #include <linux/signal.h>
34 #include <linux/compiler.h>
35 #include <linux/completion.h>
36 #include <linux/pid.h>
37 #include <linux/percpu.h>
38 #include <linux/topology.h>
39 #include <linux/proportions.h>
40 #include <linux/seccomp.h>
41 #include <linux/rcupdate.h>
42 #include <linux/rculist.h>
43 #include <linux/rtmutex.h>
44
45 #include <linux/time.h>
46 #include <linux/param.h>
47 #include <linux/resource.h>
48 #include <linux/timer.h>
49 #include <linux/hrtimer.h>
50 #include <linux/task_io_accounting.h>
51 #include <linux/latencytop.h>
52 #include <linux/cred.h>
53 #include <linux/llist.h>
54 #include <linux/uidgid.h>
55 #include <linux/gfp.h>
56
57 #include <asm/processor.h>
58
59 struct exec_domain;
60 struct futex_pi_state;
61 struct robust_list_head;
62 struct bio_list;
63 struct fs_struct;
64 struct perf_event_context;
65 struct blk_plug;
66
67 /*
68  * List of flags we want to share for kernel threads,
69  * if only because they are not used by them anyway.
70  */
71 #define CLONE_KERNEL    (CLONE_FS | CLONE_FILES | CLONE_SIGHAND)
72
73 /*
74  * These are the constant used to fake the fixed-point load-average
75  * counting. Some notes:
76  *  - 11 bit fractions expand to 22 bits by the multiplies: this gives
77  *    a load-average precision of 10 bits integer + 11 bits fractional
78  *  - if you want to count load-averages more often, you need more
79  *    precision, or rounding will get you. With 2-second counting freq,
80  *    the EXP_n values would be 1981, 2034 and 2043 if still using only
81  *    11 bit fractions.
82  */
83 extern unsigned long avenrun[];         /* Load averages */
84 extern void get_avenrun(unsigned long *loads, unsigned long offset, int shift);
85
86 #define FSHIFT          11              /* nr of bits of precision */
87 #define FIXED_1         (1<<FSHIFT)     /* 1.0 as fixed-point */
88 #define LOAD_FREQ       (5*HZ+1)        /* 5 sec intervals */
89 #define EXP_1           1884            /* 1/exp(5sec/1min) as fixed-point */
90 #define EXP_5           2014            /* 1/exp(5sec/5min) */
91 #define EXP_15          2037            /* 1/exp(5sec/15min) */
92
93 #define CALC_LOAD(load,exp,n) \
94         load *= exp; \
95         load += n*(FIXED_1-exp); \
96         load >>= FSHIFT;
97
98 extern unsigned long total_forks;
99 extern int nr_threads;
100 DECLARE_PER_CPU(unsigned long, process_counts);
101 extern int nr_processes(void);
102 extern unsigned long nr_running(void);
103 extern unsigned long nr_iowait(void);
104 extern unsigned long nr_iowait_cpu(int cpu);
105 extern unsigned long this_cpu_load(void);
106
107
108 extern void calc_global_load(unsigned long ticks);
109 extern void update_cpu_load_nohz(void);
110
111 extern unsigned long get_parent_ip(unsigned long addr);
112
113 extern void dump_cpu_task(int cpu);
114
115 struct seq_file;
116 struct cfs_rq;
117 struct task_group;
118 #ifdef CONFIG_SCHED_DEBUG
119 extern void proc_sched_show_task(struct task_struct *p, struct seq_file *m);
120 extern void proc_sched_set_task(struct task_struct *p);
121 extern void
122 print_cfs_rq(struct seq_file *m, int cpu, struct cfs_rq *cfs_rq);
123 #endif
124
125 /*
126  * Task state bitmask. NOTE! These bits are also
127  * encoded in fs/proc/array.c: get_task_state().
128  *
129  * We have two separate sets of flags: task->state
130  * is about runnability, while task->exit_state are
131  * about the task exiting. Confusing, but this way
132  * modifying one set can't modify the other one by
133  * mistake.
134  */
135 #define TASK_RUNNING            0
136 #define TASK_INTERRUPTIBLE      1
137 #define TASK_UNINTERRUPTIBLE    2
138 #define __TASK_STOPPED          4
139 #define __TASK_TRACED           8
140 /* in tsk->exit_state */
141 #define EXIT_ZOMBIE             16
142 #define EXIT_DEAD               32
143 /* in tsk->state again */
144 #define TASK_DEAD               64
145 #define TASK_WAKEKILL           128
146 #define TASK_WAKING             256
147 #define TASK_PARKED             512
148 #define TASK_STATE_MAX          1024
149
150 #define TASK_STATE_TO_CHAR_STR "RSDTtZXxKWP"
151
152 extern char ___assert_task_state[1 - 2*!!(
153                 sizeof(TASK_STATE_TO_CHAR_STR)-1 != ilog2(TASK_STATE_MAX)+1)];
154
155 /* Convenience macros for the sake of set_task_state */
156 #define TASK_KILLABLE           (TASK_WAKEKILL | TASK_UNINTERRUPTIBLE)
157 #define TASK_STOPPED            (TASK_WAKEKILL | __TASK_STOPPED)
158 #define TASK_TRACED             (TASK_WAKEKILL | __TASK_TRACED)
159
160 /* Convenience macros for the sake of wake_up */
161 #define TASK_NORMAL             (TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE)
162 #define TASK_ALL                (TASK_NORMAL | __TASK_STOPPED | __TASK_TRACED)
163
164 /* get_task_state() */
165 #define TASK_REPORT             (TASK_RUNNING | TASK_INTERRUPTIBLE | \
166                                  TASK_UNINTERRUPTIBLE | __TASK_STOPPED | \
167                                  __TASK_TRACED)
168
169 #define task_is_traced(task)    ((task->state & __TASK_TRACED) != 0)
170 #define task_is_stopped(task)   ((task->state & __TASK_STOPPED) != 0)
171 #define task_is_dead(task)      ((task)->exit_state != 0)
172 #define task_is_stopped_or_traced(task) \
173                         ((task->state & (__TASK_STOPPED | __TASK_TRACED)) != 0)
174 #define task_contributes_to_load(task)  \
175                                 ((task->state & TASK_UNINTERRUPTIBLE) != 0 && \
176                                  (task->flags & PF_FROZEN) == 0)
177
178 #define __set_task_state(tsk, state_value)              \
179         do { (tsk)->state = (state_value); } while (0)
180 #define set_task_state(tsk, state_value)                \
181         set_mb((tsk)->state, (state_value))
182
183 /*
184  * set_current_state() includes a barrier so that the write of current->state
185  * is correctly serialised wrt the caller's subsequent test of whether to
186  * actually sleep:
187  *
188  *      set_current_state(TASK_UNINTERRUPTIBLE);
189  *      if (do_i_need_to_sleep())
190  *              schedule();
191  *
192  * If the caller does not need such serialisation then use __set_current_state()
193  */
194 #define __set_current_state(state_value)                        \
195         do { current->state = (state_value); } while (0)
196 #define set_current_state(state_value)          \
197         set_mb(current->state, (state_value))
198
199 /* Task command name length */
200 #define TASK_COMM_LEN 16
201
202 #include <linux/spinlock.h>
203
204 /*
205  * This serializes "schedule()" and also protects
206  * the run-queue from deletions/modifications (but
207  * _adding_ to the beginning of the run-queue has
208  * a separate lock).
209  */
210 extern rwlock_t tasklist_lock;
211 extern spinlock_t mmlist_lock;
212
213 struct task_struct;
214
215 #ifdef CONFIG_PROVE_RCU
216 extern int lockdep_tasklist_lock_is_held(void);
217 #endif /* #ifdef CONFIG_PROVE_RCU */
218
219 extern void sched_init(void);
220 extern void sched_init_smp(void);
221 extern asmlinkage void schedule_tail(struct task_struct *prev);
222 extern void init_idle(struct task_struct *idle, int cpu);
223 extern void init_idle_bootup_task(struct task_struct *idle);
224
225 extern int runqueue_is_locked(int cpu);
226
227 #if defined(CONFIG_SMP) && defined(CONFIG_NO_HZ_COMMON)
228 extern void nohz_balance_enter_idle(int cpu);
229 extern void set_cpu_sd_state_idle(void);
230 extern int get_nohz_timer_target(void);
231 #else
232 static inline void nohz_balance_enter_idle(int cpu) { }
233 static inline void set_cpu_sd_state_idle(void) { }
234 #endif
235
236 /*
237  * Only dump TASK_* tasks. (0 for all tasks)
238  */
239 extern void show_state_filter(unsigned long state_filter);
240
241 static inline void show_state(void)
242 {
243         show_state_filter(0);
244 }
245
246 extern void show_regs(struct pt_regs *);
247
248 /*
249  * TASK is a pointer to the task whose backtrace we want to see (or NULL for current
250  * task), SP is the stack pointer of the first frame that should be shown in the back
251  * trace (or NULL if the entire call-chain of the task should be shown).
252  */
253 extern void show_stack(struct task_struct *task, unsigned long *sp);
254
255 void io_schedule(void);
256 long io_schedule_timeout(long timeout);
257
258 extern void cpu_init (void);
259 extern void trap_init(void);
260 extern void update_process_times(int user);
261 extern void scheduler_tick(void);
262
263 extern void sched_show_task(struct task_struct *p);
264
265 #ifdef CONFIG_LOCKUP_DETECTOR
266 extern void touch_softlockup_watchdog(void);
267 extern void touch_softlockup_watchdog_sync(void);
268 extern void touch_all_softlockup_watchdogs(void);
269 extern int proc_dowatchdog_thresh(struct ctl_table *table, int write,
270                                   void __user *buffer,
271                                   size_t *lenp, loff_t *ppos);
272 extern unsigned int  softlockup_panic;
273 void lockup_detector_init(void);
274 #else
275 static inline void touch_softlockup_watchdog(void)
276 {
277 }
278 static inline void touch_softlockup_watchdog_sync(void)
279 {
280 }
281 static inline void touch_all_softlockup_watchdogs(void)
282 {
283 }
284 static inline void lockup_detector_init(void)
285 {
286 }
287 #endif
288
289 /* Attach to any functions which should be ignored in wchan output. */
290 #define __sched         __attribute__((__section__(".sched.text")))
291
292 /* Linker adds these: start and end of __sched functions */
293 extern char __sched_text_start[], __sched_text_end[];
294
295 /* Is this address in the __sched functions? */
296 extern int in_sched_functions(unsigned long addr);
297
298 #define MAX_SCHEDULE_TIMEOUT    LONG_MAX
299 extern signed long schedule_timeout(signed long timeout);
300 extern signed long schedule_timeout_interruptible(signed long timeout);
301 extern signed long schedule_timeout_killable(signed long timeout);
302 extern signed long schedule_timeout_uninterruptible(signed long timeout);
303 asmlinkage void schedule(void);
304 extern void schedule_preempt_disabled(void);
305
306 struct nsproxy;
307 struct user_namespace;
308
309 #ifdef CONFIG_MMU
310 extern void arch_pick_mmap_layout(struct mm_struct *mm);
311 extern unsigned long
312 arch_get_unmapped_area(struct file *, unsigned long, unsigned long,
313                        unsigned long, unsigned long);
314 extern unsigned long
315 arch_get_unmapped_area_topdown(struct file *filp, unsigned long addr,
316                           unsigned long len, unsigned long pgoff,
317                           unsigned long flags);
318 #else
319 static inline void arch_pick_mmap_layout(struct mm_struct *mm) {}
320 #endif
321
322
323 extern void set_dumpable(struct mm_struct *mm, int value);
324 extern int get_dumpable(struct mm_struct *mm);
325
326 /* mm flags */
327 /* dumpable bits */
328 #define MMF_DUMPABLE      0  /* core dump is permitted */
329 #define MMF_DUMP_SECURELY 1  /* core file is readable only by root */
330
331 #define MMF_DUMPABLE_BITS 2
332 #define MMF_DUMPABLE_MASK ((1 << MMF_DUMPABLE_BITS) - 1)
333
334 /* coredump filter bits */
335 #define MMF_DUMP_ANON_PRIVATE   2
336 #define MMF_DUMP_ANON_SHARED    3
337 #define MMF_DUMP_MAPPED_PRIVATE 4
338 #define MMF_DUMP_MAPPED_SHARED  5
339 #define MMF_DUMP_ELF_HEADERS    6
340 #define MMF_DUMP_HUGETLB_PRIVATE 7
341 #define MMF_DUMP_HUGETLB_SHARED  8
342
343 #define MMF_DUMP_FILTER_SHIFT   MMF_DUMPABLE_BITS
344 #define MMF_DUMP_FILTER_BITS    7
345 #define MMF_DUMP_FILTER_MASK \
346         (((1 << MMF_DUMP_FILTER_BITS) - 1) << MMF_DUMP_FILTER_SHIFT)
347 #define MMF_DUMP_FILTER_DEFAULT \
348         ((1 << MMF_DUMP_ANON_PRIVATE) | (1 << MMF_DUMP_ANON_SHARED) |\
349          (1 << MMF_DUMP_HUGETLB_PRIVATE) | MMF_DUMP_MASK_DEFAULT_ELF)
350
351 #ifdef CONFIG_CORE_DUMP_DEFAULT_ELF_HEADERS
352 # define MMF_DUMP_MASK_DEFAULT_ELF      (1 << MMF_DUMP_ELF_HEADERS)
353 #else
354 # define MMF_DUMP_MASK_DEFAULT_ELF      0
355 #endif
356                                         /* leave room for more dump flags */
357 #define MMF_VM_MERGEABLE        16      /* KSM may merge identical pages */
358 #define MMF_VM_HUGEPAGE         17      /* set when VM_HUGEPAGE is set on vma */
359 #define MMF_EXE_FILE_CHANGED    18      /* see prctl_set_mm_exe_file() */
360
361 #define MMF_HAS_UPROBES         19      /* has uprobes */
362 #define MMF_RECALC_UPROBES      20      /* MMF_HAS_UPROBES can be wrong */
363
364 #define MMF_INIT_MASK           (MMF_DUMPABLE_MASK | MMF_DUMP_FILTER_MASK)
365
366 struct sighand_struct {
367         atomic_t                count;
368         struct k_sigaction      action[_NSIG];
369         spinlock_t              siglock;
370         wait_queue_head_t       signalfd_wqh;
371 };
372
373 struct pacct_struct {
374         int                     ac_flag;
375         long                    ac_exitcode;
376         unsigned long           ac_mem;
377         cputime_t               ac_utime, ac_stime;
378         unsigned long           ac_minflt, ac_majflt;
379 };
380
381 struct cpu_itimer {
382         cputime_t expires;
383         cputime_t incr;
384         u32 error;
385         u32 incr_error;
386 };
387
388 /**
389  * struct cputime - snaphsot of system and user cputime
390  * @utime: time spent in user mode
391  * @stime: time spent in system mode
392  *
393  * Gathers a generic snapshot of user and system time.
394  */
395 struct cputime {
396         cputime_t utime;
397         cputime_t stime;
398 };
399
400 /**
401  * struct task_cputime - collected CPU time counts
402  * @utime:              time spent in user mode, in &cputime_t units
403  * @stime:              time spent in kernel mode, in &cputime_t units
404  * @sum_exec_runtime:   total time spent on the CPU, in nanoseconds
405  *
406  * This is an extension of struct cputime that includes the total runtime
407  * spent by the task from the scheduler point of view.
408  *
409  * As a result, this structure groups together three kinds of CPU time
410  * that are tracked for threads and thread groups.  Most things considering
411  * CPU time want to group these counts together and treat all three
412  * of them in parallel.
413  */
414 struct task_cputime {
415         cputime_t utime;
416         cputime_t stime;
417         unsigned long long sum_exec_runtime;
418 };
419 /* Alternate field names when used to cache expirations. */
420 #define prof_exp        stime
421 #define virt_exp        utime
422 #define sched_exp       sum_exec_runtime
423
424 #define INIT_CPUTIME    \
425         (struct task_cputime) {                                 \
426                 .utime = 0,                                     \
427                 .stime = 0,                                     \
428                 .sum_exec_runtime = 0,                          \
429         }
430
431 #define PREEMPT_ENABLED         (PREEMPT_NEED_RESCHED)
432
433 #ifdef CONFIG_PREEMPT_COUNT
434 #define PREEMPT_DISABLED        (1 + PREEMPT_ENABLED)
435 #else
436 #define PREEMPT_DISABLED        PREEMPT_ENABLED
437 #endif
438
439 /*
440  * Disable preemption until the scheduler is running.
441  * Reset by start_kernel()->sched_init()->init_idle().
442  *
443  * We include PREEMPT_ACTIVE to avoid cond_resched() from working
444  * before the scheduler is active -- see should_resched().
445  */
446 #define INIT_PREEMPT_COUNT      (PREEMPT_DISABLED + PREEMPT_ACTIVE)
447
448 /**
449  * struct thread_group_cputimer - thread group interval timer counts
450  * @cputime:            thread group interval timers.
451  * @running:            non-zero when there are timers running and
452  *                      @cputime receives updates.
453  * @lock:               lock for fields in this struct.
454  *
455  * This structure contains the version of task_cputime, above, that is
456  * used for thread group CPU timer calculations.
457  */
458 struct thread_group_cputimer {
459         struct task_cputime cputime;
460         int running;
461         raw_spinlock_t lock;
462 };
463
464 #include <linux/rwsem.h>
465 struct autogroup;
466
467 /*
468  * NOTE! "signal_struct" does not have its own
469  * locking, because a shared signal_struct always
470  * implies a shared sighand_struct, so locking
471  * sighand_struct is always a proper superset of
472  * the locking of signal_struct.
473  */
474 struct signal_struct {
475         atomic_t                sigcnt;
476         atomic_t                live;
477         int                     nr_threads;
478
479         wait_queue_head_t       wait_chldexit;  /* for wait4() */
480
481         /* current thread group signal load-balancing target: */
482         struct task_struct      *curr_target;
483
484         /* shared signal handling: */
485         struct sigpending       shared_pending;
486
487         /* thread group exit support */
488         int                     group_exit_code;
489         /* overloaded:
490          * - notify group_exit_task when ->count is equal to notify_count
491          * - everyone except group_exit_task is stopped during signal delivery
492          *   of fatal signals, group_exit_task processes the signal.
493          */
494         int                     notify_count;
495         struct task_struct      *group_exit_task;
496
497         /* thread group stop support, overloads group_exit_code too */
498         int                     group_stop_count;
499         unsigned int            flags; /* see SIGNAL_* flags below */
500
501         /*
502          * PR_SET_CHILD_SUBREAPER marks a process, like a service
503          * manager, to re-parent orphan (double-forking) child processes
504          * to this process instead of 'init'. The service manager is
505          * able to receive SIGCHLD signals and is able to investigate
506          * the process until it calls wait(). All children of this
507          * process will inherit a flag if they should look for a
508          * child_subreaper process at exit.
509          */
510         unsigned int            is_child_subreaper:1;
511         unsigned int            has_child_subreaper:1;
512
513         /* POSIX.1b Interval Timers */
514         int                     posix_timer_id;
515         struct list_head        posix_timers;
516
517         /* ITIMER_REAL timer for the process */
518         struct hrtimer real_timer;
519         struct pid *leader_pid;
520         ktime_t it_real_incr;
521
522         /*
523          * ITIMER_PROF and ITIMER_VIRTUAL timers for the process, we use
524          * CPUCLOCK_PROF and CPUCLOCK_VIRT for indexing array as these
525          * values are defined to 0 and 1 respectively
526          */
527         struct cpu_itimer it[2];
528
529         /*
530          * Thread group totals for process CPU timers.
531          * See thread_group_cputimer(), et al, for details.
532          */
533         struct thread_group_cputimer cputimer;
534
535         /* Earliest-expiration cache. */
536         struct task_cputime cputime_expires;
537
538         struct list_head cpu_timers[3];
539
540         struct pid *tty_old_pgrp;
541
542         /* boolean value for session group leader */
543         int leader;
544
545         struct tty_struct *tty; /* NULL if no tty */
546
547 #ifdef CONFIG_SCHED_AUTOGROUP
548         struct autogroup *autogroup;
549 #endif
550         /*
551          * Cumulative resource counters for dead threads in the group,
552          * and for reaped dead child processes forked by this group.
553          * Live threads maintain their own counters and add to these
554          * in __exit_signal, except for the group leader.
555          */
556         cputime_t utime, stime, cutime, cstime;
557         cputime_t gtime;
558         cputime_t cgtime;
559 #ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
560         struct cputime prev_cputime;
561 #endif
562         unsigned long nvcsw, nivcsw, cnvcsw, cnivcsw;
563         unsigned long min_flt, maj_flt, cmin_flt, cmaj_flt;
564         unsigned long inblock, oublock, cinblock, coublock;
565         unsigned long maxrss, cmaxrss;
566         struct task_io_accounting ioac;
567
568         /*
569          * Cumulative ns of schedule CPU time fo dead threads in the
570          * group, not including a zombie group leader, (This only differs
571          * from jiffies_to_ns(utime + stime) if sched_clock uses something
572          * other than jiffies.)
573          */
574         unsigned long long sum_sched_runtime;
575
576         /*
577          * We don't bother to synchronize most readers of this at all,
578          * because there is no reader checking a limit that actually needs
579          * to get both rlim_cur and rlim_max atomically, and either one
580          * alone is a single word that can safely be read normally.
581          * getrlimit/setrlimit use task_lock(current->group_leader) to
582          * protect this instead of the siglock, because they really
583          * have no need to disable irqs.
584          */
585         struct rlimit rlim[RLIM_NLIMITS];
586
587 #ifdef CONFIG_BSD_PROCESS_ACCT
588         struct pacct_struct pacct;      /* per-process accounting information */
589 #endif
590 #ifdef CONFIG_TASKSTATS
591         struct taskstats *stats;
592 #endif
593 #ifdef CONFIG_AUDIT
594         unsigned audit_tty;
595         unsigned audit_tty_log_passwd;
596         struct tty_audit_buf *tty_audit_buf;
597 #endif
598 #ifdef CONFIG_CGROUPS
599         /*
600          * group_rwsem prevents new tasks from entering the threadgroup and
601          * member tasks from exiting,a more specifically, setting of
602          * PF_EXITING.  fork and exit paths are protected with this rwsem
603          * using threadgroup_change_begin/end().  Users which require
604          * threadgroup to remain stable should use threadgroup_[un]lock()
605          * which also takes care of exec path.  Currently, cgroup is the
606          * only user.
607          */
608         struct rw_semaphore group_rwsem;
609 #endif
610
611         oom_flags_t oom_flags;
612         short oom_score_adj;            /* OOM kill score adjustment */
613         short oom_score_adj_min;        /* OOM kill score adjustment min value.
614                                          * Only settable by CAP_SYS_RESOURCE. */
615
616         struct mutex cred_guard_mutex;  /* guard against foreign influences on
617                                          * credential calculations
618                                          * (notably. ptrace) */
619 };
620
621 /*
622  * Bits in flags field of signal_struct.
623  */
624 #define SIGNAL_STOP_STOPPED     0x00000001 /* job control stop in effect */
625 #define SIGNAL_STOP_CONTINUED   0x00000002 /* SIGCONT since WCONTINUED reap */
626 #define SIGNAL_GROUP_EXIT       0x00000004 /* group exit in progress */
627 #define SIGNAL_GROUP_COREDUMP   0x00000008 /* coredump in progress */
628 /*
629  * Pending notifications to parent.
630  */
631 #define SIGNAL_CLD_STOPPED      0x00000010
632 #define SIGNAL_CLD_CONTINUED    0x00000020
633 #define SIGNAL_CLD_MASK         (SIGNAL_CLD_STOPPED|SIGNAL_CLD_CONTINUED)
634
635 #define SIGNAL_UNKILLABLE       0x00000040 /* for init: ignore fatal signals */
636
637 /* If true, all threads except ->group_exit_task have pending SIGKILL */
638 static inline int signal_group_exit(const struct signal_struct *sig)
639 {
640         return  (sig->flags & SIGNAL_GROUP_EXIT) ||
641                 (sig->group_exit_task != NULL);
642 }
643
644 /*
645  * Some day this will be a full-fledged user tracking system..
646  */
647 struct user_struct {
648         atomic_t __count;       /* reference count */
649         atomic_t processes;     /* How many processes does this user have? */
650         atomic_t files;         /* How many open files does this user have? */
651         atomic_t sigpending;    /* How many pending signals does this user have? */
652 #ifdef CONFIG_INOTIFY_USER
653         atomic_t inotify_watches; /* How many inotify watches does this user have? */
654         atomic_t inotify_devs;  /* How many inotify devs does this user have opened? */
655 #endif
656 #ifdef CONFIG_FANOTIFY
657         atomic_t fanotify_listeners;
658 #endif
659 #ifdef CONFIG_EPOLL
660         atomic_long_t epoll_watches; /* The number of file descriptors currently watched */
661 #endif
662 #ifdef CONFIG_POSIX_MQUEUE
663         /* protected by mq_lock */
664         unsigned long mq_bytes; /* How many bytes can be allocated to mqueue? */
665 #endif
666         unsigned long locked_shm; /* How many pages of mlocked shm ? */
667
668 #ifdef CONFIG_KEYS
669         struct key *uid_keyring;        /* UID specific keyring */
670         struct key *session_keyring;    /* UID's default session keyring */
671 #endif
672
673         /* Hash table maintenance information */
674         struct hlist_node uidhash_node;
675         kuid_t uid;
676
677 #ifdef CONFIG_PERF_EVENTS
678         atomic_long_t locked_vm;
679 #endif
680 };
681
682 extern int uids_sysfs_init(void);
683
684 extern struct user_struct *find_user(kuid_t);
685
686 extern struct user_struct root_user;
687 #define INIT_USER (&root_user)
688
689
690 struct backing_dev_info;
691 struct reclaim_state;
692
693 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
694 struct sched_info {
695         /* cumulative counters */
696         unsigned long pcount;         /* # of times run on this cpu */
697         unsigned long long run_delay; /* time spent waiting on a runqueue */
698
699         /* timestamps */
700         unsigned long long last_arrival,/* when we last ran on a cpu */
701                            last_queued; /* when we were last queued to run */
702 };
703 #endif /* defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT) */
704
705 #ifdef CONFIG_TASK_DELAY_ACCT
706 struct task_delay_info {
707         spinlock_t      lock;
708         unsigned int    flags;  /* Private per-task flags */
709
710         /* For each stat XXX, add following, aligned appropriately
711          *
712          * struct timespec XXX_start, XXX_end;
713          * u64 XXX_delay;
714          * u32 XXX_count;
715          *
716          * Atomicity of updates to XXX_delay, XXX_count protected by
717          * single lock above (split into XXX_lock if contention is an issue).
718          */
719
720         /*
721          * XXX_count is incremented on every XXX operation, the delay
722          * associated with the operation is added to XXX_delay.
723          * XXX_delay contains the accumulated delay time in nanoseconds.
724          */
725         struct timespec blkio_start, blkio_end; /* Shared by blkio, swapin */
726         u64 blkio_delay;        /* wait for sync block io completion */
727         u64 swapin_delay;       /* wait for swapin block io completion */
728         u32 blkio_count;        /* total count of the number of sync block */
729                                 /* io operations performed */
730         u32 swapin_count;       /* total count of the number of swapin block */
731                                 /* io operations performed */
732
733         struct timespec freepages_start, freepages_end;
734         u64 freepages_delay;    /* wait for memory reclaim */
735         u32 freepages_count;    /* total count of memory reclaim */
736 };
737 #endif  /* CONFIG_TASK_DELAY_ACCT */
738
739 static inline int sched_info_on(void)
740 {
741 #ifdef CONFIG_SCHEDSTATS
742         return 1;
743 #elif defined(CONFIG_TASK_DELAY_ACCT)
744         extern int delayacct_on;
745         return delayacct_on;
746 #else
747         return 0;
748 #endif
749 }
750
751 enum cpu_idle_type {
752         CPU_IDLE,
753         CPU_NOT_IDLE,
754         CPU_NEWLY_IDLE,
755         CPU_MAX_IDLE_TYPES
756 };
757
758 /*
759  * Increase resolution of cpu_power calculations
760  */
761 #define SCHED_POWER_SHIFT       10
762 #define SCHED_POWER_SCALE       (1L << SCHED_POWER_SHIFT)
763
764 /*
765  * sched-domains (multiprocessor balancing) declarations:
766  */
767 #ifdef CONFIG_SMP
768 #define SD_LOAD_BALANCE         0x0001  /* Do load balancing on this domain. */
769 #define SD_BALANCE_NEWIDLE      0x0002  /* Balance when about to become idle */
770 #define SD_BALANCE_EXEC         0x0004  /* Balance on exec */
771 #define SD_BALANCE_FORK         0x0008  /* Balance on fork, clone */
772 #define SD_BALANCE_WAKE         0x0010  /* Balance on wakeup */
773 #define SD_WAKE_AFFINE          0x0020  /* Wake task to waking CPU */
774 #define SD_SHARE_CPUPOWER       0x0080  /* Domain members share cpu power */
775 #define SD_SHARE_PKG_RESOURCES  0x0200  /* Domain members share cpu pkg resources */
776 #define SD_SERIALIZE            0x0400  /* Only a single load balancing instance */
777 #define SD_ASYM_PACKING         0x0800  /* Place busy groups earlier in the domain */
778 #define SD_PREFER_SIBLING       0x1000  /* Prefer to place tasks in a sibling domain */
779 #define SD_OVERLAP              0x2000  /* sched_domains of this level overlap */
780 #define SD_NUMA                 0x4000  /* cross-node balancing */
781
782 extern int __weak arch_sd_sibiling_asym_packing(void);
783
784 struct sched_domain_attr {
785         int relax_domain_level;
786 };
787
788 #define SD_ATTR_INIT    (struct sched_domain_attr) {    \
789         .relax_domain_level = -1,                       \
790 }
791
792 extern int sched_domain_level_max;
793
794 struct sched_group;
795
796 struct sched_domain {
797         /* These fields must be setup */
798         struct sched_domain *parent;    /* top domain must be null terminated */
799         struct sched_domain *child;     /* bottom domain must be null terminated */
800         struct sched_group *groups;     /* the balancing groups of the domain */
801         unsigned long min_interval;     /* Minimum balance interval ms */
802         unsigned long max_interval;     /* Maximum balance interval ms */
803         unsigned int busy_factor;       /* less balancing by factor if busy */
804         unsigned int imbalance_pct;     /* No balance until over watermark */
805         unsigned int cache_nice_tries;  /* Leave cache hot tasks for # tries */
806         unsigned int busy_idx;
807         unsigned int idle_idx;
808         unsigned int newidle_idx;
809         unsigned int wake_idx;
810         unsigned int forkexec_idx;
811         unsigned int smt_gain;
812
813         int nohz_idle;                  /* NOHZ IDLE status */
814         int flags;                      /* See SD_* */
815         int level;
816
817         /* Runtime fields. */
818         unsigned long last_balance;     /* init to jiffies. units in jiffies */
819         unsigned int balance_interval;  /* initialise to 1. units in ms. */
820         unsigned int nr_balance_failed; /* initialise to 0 */
821
822         u64 last_update;
823
824         /* idle_balance() stats */
825         u64 max_newidle_lb_cost;
826         unsigned long next_decay_max_lb_cost;
827
828 #ifdef CONFIG_SCHEDSTATS
829         /* load_balance() stats */
830         unsigned int lb_count[CPU_MAX_IDLE_TYPES];
831         unsigned int lb_failed[CPU_MAX_IDLE_TYPES];
832         unsigned int lb_balanced[CPU_MAX_IDLE_TYPES];
833         unsigned int lb_imbalance[CPU_MAX_IDLE_TYPES];
834         unsigned int lb_gained[CPU_MAX_IDLE_TYPES];
835         unsigned int lb_hot_gained[CPU_MAX_IDLE_TYPES];
836         unsigned int lb_nobusyg[CPU_MAX_IDLE_TYPES];
837         unsigned int lb_nobusyq[CPU_MAX_IDLE_TYPES];
838
839         /* Active load balancing */
840         unsigned int alb_count;
841         unsigned int alb_failed;
842         unsigned int alb_pushed;
843
844         /* SD_BALANCE_EXEC stats */
845         unsigned int sbe_count;
846         unsigned int sbe_balanced;
847         unsigned int sbe_pushed;
848
849         /* SD_BALANCE_FORK stats */
850         unsigned int sbf_count;
851         unsigned int sbf_balanced;
852         unsigned int sbf_pushed;
853
854         /* try_to_wake_up() stats */
855         unsigned int ttwu_wake_remote;
856         unsigned int ttwu_move_affine;
857         unsigned int ttwu_move_balance;
858 #endif
859 #ifdef CONFIG_SCHED_DEBUG
860         char *name;
861 #endif
862         union {
863                 void *private;          /* used during construction */
864                 struct rcu_head rcu;    /* used during destruction */
865         };
866
867         unsigned int span_weight;
868         /*
869          * Span of all CPUs in this domain.
870          *
871          * NOTE: this field is variable length. (Allocated dynamically
872          * by attaching extra space to the end of the structure,
873          * depending on how many CPUs the kernel has booted up with)
874          */
875         unsigned long span[0];
876 };
877
878 static inline struct cpumask *sched_domain_span(struct sched_domain *sd)
879 {
880         return to_cpumask(sd->span);
881 }
882
883 extern void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
884                                     struct sched_domain_attr *dattr_new);
885
886 /* Allocate an array of sched domains, for partition_sched_domains(). */
887 cpumask_var_t *alloc_sched_domains(unsigned int ndoms);
888 void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms);
889
890 bool cpus_share_cache(int this_cpu, int that_cpu);
891
892 #else /* CONFIG_SMP */
893
894 struct sched_domain_attr;
895
896 static inline void
897 partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
898                         struct sched_domain_attr *dattr_new)
899 {
900 }
901
902 static inline bool cpus_share_cache(int this_cpu, int that_cpu)
903 {
904         return true;
905 }
906
907 #endif  /* !CONFIG_SMP */
908
909
910 struct io_context;                      /* See blkdev.h */
911
912
913 #ifdef ARCH_HAS_PREFETCH_SWITCH_STACK
914 extern void prefetch_stack(struct task_struct *t);
915 #else
916 static inline void prefetch_stack(struct task_struct *t) { }
917 #endif
918
919 struct audit_context;           /* See audit.c */
920 struct mempolicy;
921 struct pipe_inode_info;
922 struct uts_namespace;
923
924 struct load_weight {
925         unsigned long weight, inv_weight;
926 };
927
928 struct sched_avg {
929         /*
930          * These sums represent an infinite geometric series and so are bound
931          * above by 1024/(1-y).  Thus we only need a u32 to store them for all
932          * choices of y < 1-2^(-32)*1024.
933          */
934         u32 runnable_avg_sum, runnable_avg_period;
935         u64 last_runnable_update;
936         s64 decay_count;
937         unsigned long load_avg_contrib;
938 };
939
940 #ifdef CONFIG_SCHEDSTATS
941 struct sched_statistics {
942         u64                     wait_start;
943         u64                     wait_max;
944         u64                     wait_count;
945         u64                     wait_sum;
946         u64                     iowait_count;
947         u64                     iowait_sum;
948
949         u64                     sleep_start;
950         u64                     sleep_max;
951         s64                     sum_sleep_runtime;
952
953         u64                     block_start;
954         u64                     block_max;
955         u64                     exec_max;
956         u64                     slice_max;
957
958         u64                     nr_migrations_cold;
959         u64                     nr_failed_migrations_affine;
960         u64                     nr_failed_migrations_running;
961         u64                     nr_failed_migrations_hot;
962         u64                     nr_forced_migrations;
963
964         u64                     nr_wakeups;
965         u64                     nr_wakeups_sync;
966         u64                     nr_wakeups_migrate;
967         u64                     nr_wakeups_local;
968         u64                     nr_wakeups_remote;
969         u64                     nr_wakeups_affine;
970         u64                     nr_wakeups_affine_attempts;
971         u64                     nr_wakeups_passive;
972         u64                     nr_wakeups_idle;
973 };
974 #endif
975
976 struct sched_entity {
977         struct load_weight      load;           /* for load-balancing */
978         struct rb_node          run_node;
979         struct list_head        group_node;
980         unsigned int            on_rq;
981
982         u64                     exec_start;
983         u64                     sum_exec_runtime;
984         u64                     vruntime;
985         u64                     prev_sum_exec_runtime;
986
987         u64                     nr_migrations;
988
989 #ifdef CONFIG_SCHEDSTATS
990         struct sched_statistics statistics;
991 #endif
992
993 #ifdef CONFIG_FAIR_GROUP_SCHED
994         struct sched_entity     *parent;
995         /* rq on which this entity is (to be) queued: */
996         struct cfs_rq           *cfs_rq;
997         /* rq "owned" by this entity/group: */
998         struct cfs_rq           *my_q;
999 #endif
1000
1001 #ifdef CONFIG_SMP
1002         /* Per-entity load-tracking */
1003         struct sched_avg        avg;
1004 #endif
1005 };
1006
1007 struct sched_rt_entity {
1008         struct list_head run_list;
1009         unsigned long timeout;
1010         unsigned long watchdog_stamp;
1011         unsigned int time_slice;
1012
1013         struct sched_rt_entity *back;
1014 #ifdef CONFIG_RT_GROUP_SCHED
1015         struct sched_rt_entity  *parent;
1016         /* rq on which this entity is (to be) queued: */
1017         struct rt_rq            *rt_rq;
1018         /* rq "owned" by this entity/group: */
1019         struct rt_rq            *my_q;
1020 #endif
1021 };
1022
1023
1024 struct rcu_node;
1025
1026 enum perf_event_task_context {
1027         perf_invalid_context = -1,
1028         perf_hw_context = 0,
1029         perf_sw_context,
1030         perf_nr_task_contexts,
1031 };
1032
1033 struct task_struct {
1034         volatile long state;    /* -1 unrunnable, 0 runnable, >0 stopped */
1035         void *stack;
1036         atomic_t usage;
1037         unsigned int flags;     /* per process flags, defined below */
1038         unsigned int ptrace;
1039
1040 #ifdef CONFIG_SMP
1041         struct llist_node wake_entry;
1042         int on_cpu;
1043         struct task_struct *last_wakee;
1044         unsigned long wakee_flips;
1045         unsigned long wakee_flip_decay_ts;
1046
1047         int wake_cpu;
1048 #endif
1049         int on_rq;
1050
1051         int prio, static_prio, normal_prio;
1052         unsigned int rt_priority;
1053         const struct sched_class *sched_class;
1054         struct sched_entity se;
1055         struct sched_rt_entity rt;
1056 #ifdef CONFIG_CGROUP_SCHED
1057         struct task_group *sched_task_group;
1058 #endif
1059
1060 #ifdef CONFIG_PREEMPT_NOTIFIERS
1061         /* list of struct preempt_notifier: */
1062         struct hlist_head preempt_notifiers;
1063 #endif
1064
1065         /*
1066          * fpu_counter contains the number of consecutive context switches
1067          * that the FPU is used. If this is over a threshold, the lazy fpu
1068          * saving becomes unlazy to save the trap. This is an unsigned char
1069          * so that after 256 times the counter wraps and the behavior turns
1070          * lazy again; this to deal with bursty apps that only use FPU for
1071          * a short time
1072          */
1073         unsigned char fpu_counter;
1074 #ifdef CONFIG_BLK_DEV_IO_TRACE
1075         unsigned int btrace_seq;
1076 #endif
1077
1078         unsigned int policy;
1079         int nr_cpus_allowed;
1080         cpumask_t cpus_allowed;
1081
1082 #ifdef CONFIG_PREEMPT_RCU
1083         int rcu_read_lock_nesting;
1084         char rcu_read_unlock_special;
1085         struct list_head rcu_node_entry;
1086 #endif /* #ifdef CONFIG_PREEMPT_RCU */
1087 #ifdef CONFIG_TREE_PREEMPT_RCU
1088         struct rcu_node *rcu_blocked_node;
1089 #endif /* #ifdef CONFIG_TREE_PREEMPT_RCU */
1090 #ifdef CONFIG_RCU_BOOST
1091         struct rt_mutex *rcu_boost_mutex;
1092 #endif /* #ifdef CONFIG_RCU_BOOST */
1093
1094 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
1095         struct sched_info sched_info;
1096 #endif
1097
1098         struct list_head tasks;
1099 #ifdef CONFIG_SMP
1100         struct plist_node pushable_tasks;
1101 #endif
1102
1103         struct mm_struct *mm, *active_mm;
1104 #ifdef CONFIG_COMPAT_BRK
1105         unsigned brk_randomized:1;
1106 #endif
1107 #if defined(SPLIT_RSS_COUNTING)
1108         struct task_rss_stat    rss_stat;
1109 #endif
1110 /* task state */
1111         int exit_state;
1112         int exit_code, exit_signal;
1113         int pdeath_signal;  /*  The signal sent when the parent dies  */
1114         unsigned int jobctl;    /* JOBCTL_*, siglock protected */
1115
1116         /* Used for emulating ABI behavior of previous Linux versions */
1117         unsigned int personality;
1118
1119         unsigned did_exec:1;
1120         unsigned in_execve:1;   /* Tell the LSMs that the process is doing an
1121                                  * execve */
1122         unsigned in_iowait:1;
1123
1124         /* task may not gain privileges */
1125         unsigned no_new_privs:1;
1126
1127         /* Revert to default priority/policy when forking */
1128         unsigned sched_reset_on_fork:1;
1129         unsigned sched_contributes_to_load:1;
1130
1131         pid_t pid;
1132         pid_t tgid;
1133
1134 #ifdef CONFIG_CC_STACKPROTECTOR
1135         /* Canary value for the -fstack-protector gcc feature */
1136         unsigned long stack_canary;
1137 #endif
1138         /*
1139          * pointers to (original) parent process, youngest child, younger sibling,
1140          * older sibling, respectively.  (p->father can be replaced with
1141          * p->real_parent->pid)
1142          */
1143         struct task_struct __rcu *real_parent; /* real parent process */
1144         struct task_struct __rcu *parent; /* recipient of SIGCHLD, wait4() reports */
1145         /*
1146          * children/sibling forms the list of my natural children
1147          */
1148         struct list_head children;      /* list of my children */
1149         struct list_head sibling;       /* linkage in my parent's children list */
1150         struct task_struct *group_leader;       /* threadgroup leader */
1151
1152         /*
1153          * ptraced is the list of tasks this task is using ptrace on.
1154          * This includes both natural children and PTRACE_ATTACH targets.
1155          * p->ptrace_entry is p's link on the p->parent->ptraced list.
1156          */
1157         struct list_head ptraced;
1158         struct list_head ptrace_entry;
1159
1160         /* PID/PID hash table linkage. */
1161         struct pid_link pids[PIDTYPE_MAX];
1162         struct list_head thread_group;
1163
1164         struct completion *vfork_done;          /* for vfork() */
1165         int __user *set_child_tid;              /* CLONE_CHILD_SETTID */
1166         int __user *clear_child_tid;            /* CLONE_CHILD_CLEARTID */
1167
1168         cputime_t utime, stime, utimescaled, stimescaled;
1169         cputime_t gtime;
1170 #ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
1171         struct cputime prev_cputime;
1172 #endif
1173 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
1174         seqlock_t vtime_seqlock;
1175         unsigned long long vtime_snap;
1176         enum {
1177                 VTIME_SLEEPING = 0,
1178                 VTIME_USER,
1179                 VTIME_SYS,
1180         } vtime_snap_whence;
1181 #endif
1182         unsigned long nvcsw, nivcsw; /* context switch counts */
1183         struct timespec start_time;             /* monotonic time */
1184         struct timespec real_start_time;        /* boot based time */
1185 /* mm fault and swap info: this can arguably be seen as either mm-specific or thread-specific */
1186         unsigned long min_flt, maj_flt;
1187
1188         struct task_cputime cputime_expires;
1189         struct list_head cpu_timers[3];
1190
1191 /* process credentials */
1192         const struct cred __rcu *real_cred; /* objective and real subjective task
1193                                          * credentials (COW) */
1194         const struct cred __rcu *cred;  /* effective (overridable) subjective task
1195                                          * credentials (COW) */
1196         char comm[TASK_COMM_LEN]; /* executable name excluding path
1197                                      - access with [gs]et_task_comm (which lock
1198                                        it with task_lock())
1199                                      - initialized normally by setup_new_exec */
1200 /* file system info */
1201         int link_count, total_link_count;
1202 #ifdef CONFIG_SYSVIPC
1203 /* ipc stuff */
1204         struct sysv_sem sysvsem;
1205 #endif
1206 #ifdef CONFIG_DETECT_HUNG_TASK
1207 /* hung task detection */
1208         unsigned long last_switch_count;
1209 #endif
1210 /* CPU-specific state of this task */
1211         struct thread_struct thread;
1212 /* filesystem information */
1213         struct fs_struct *fs;
1214 /* open file information */
1215         struct files_struct *files;
1216 /* namespaces */
1217         struct nsproxy *nsproxy;
1218 /* signal handlers */
1219         struct signal_struct *signal;
1220         struct sighand_struct *sighand;
1221
1222         sigset_t blocked, real_blocked;
1223         sigset_t saved_sigmask; /* restored if set_restore_sigmask() was used */
1224         struct sigpending pending;
1225
1226         unsigned long sas_ss_sp;
1227         size_t sas_ss_size;
1228         int (*notifier)(void *priv);
1229         void *notifier_data;
1230         sigset_t *notifier_mask;
1231         struct callback_head *task_works;
1232
1233         struct audit_context *audit_context;
1234 #ifdef CONFIG_AUDITSYSCALL
1235         kuid_t loginuid;
1236         unsigned int sessionid;
1237 #endif
1238         struct seccomp seccomp;
1239
1240 /* Thread group tracking */
1241         u32 parent_exec_id;
1242         u32 self_exec_id;
1243 /* Protection of (de-)allocation: mm, files, fs, tty, keyrings, mems_allowed,
1244  * mempolicy */
1245         spinlock_t alloc_lock;
1246
1247         /* Protection of the PI data structures: */
1248         raw_spinlock_t pi_lock;
1249
1250 #ifdef CONFIG_RT_MUTEXES
1251         /* PI waiters blocked on a rt_mutex held by this task */
1252         struct plist_head pi_waiters;
1253         /* Deadlock detection and priority inheritance handling */
1254         struct rt_mutex_waiter *pi_blocked_on;
1255 #endif
1256
1257 #ifdef CONFIG_DEBUG_MUTEXES
1258         /* mutex deadlock detection */
1259         struct mutex_waiter *blocked_on;
1260 #endif
1261 #ifdef CONFIG_TRACE_IRQFLAGS
1262         unsigned int irq_events;
1263         unsigned long hardirq_enable_ip;
1264         unsigned long hardirq_disable_ip;
1265         unsigned int hardirq_enable_event;
1266         unsigned int hardirq_disable_event;
1267         int hardirqs_enabled;
1268         int hardirq_context;
1269         unsigned long softirq_disable_ip;
1270         unsigned long softirq_enable_ip;
1271         unsigned int softirq_disable_event;
1272         unsigned int softirq_enable_event;
1273         int softirqs_enabled;
1274         int softirq_context;
1275 #endif
1276 #ifdef CONFIG_LOCKDEP
1277 # define MAX_LOCK_DEPTH 48UL
1278         u64 curr_chain_key;
1279         int lockdep_depth;
1280         unsigned int lockdep_recursion;
1281         struct held_lock held_locks[MAX_LOCK_DEPTH];
1282         gfp_t lockdep_reclaim_gfp;
1283 #endif
1284
1285 /* journalling filesystem info */
1286         void *journal_info;
1287
1288 /* stacked block device info */
1289         struct bio_list *bio_list;
1290
1291 #ifdef CONFIG_BLOCK
1292 /* stack plugging */
1293         struct blk_plug *plug;
1294 #endif
1295
1296 /* VM state */
1297         struct reclaim_state *reclaim_state;
1298
1299         struct backing_dev_info *backing_dev_info;
1300
1301         struct io_context *io_context;
1302
1303         unsigned long ptrace_message;
1304         siginfo_t *last_siginfo; /* For ptrace use.  */
1305         struct task_io_accounting ioac;
1306 #if defined(CONFIG_TASK_XACCT)
1307         u64 acct_rss_mem1;      /* accumulated rss usage */
1308         u64 acct_vm_mem1;       /* accumulated virtual memory usage */
1309         cputime_t acct_timexpd; /* stime + utime since last update */
1310 #endif
1311 #ifdef CONFIG_CPUSETS
1312         nodemask_t mems_allowed;        /* Protected by alloc_lock */
1313         seqcount_t mems_allowed_seq;    /* Seqence no to catch updates */
1314         int cpuset_mem_spread_rotor;
1315         int cpuset_slab_spread_rotor;
1316 #endif
1317 #ifdef CONFIG_CGROUPS
1318         /* Control Group info protected by css_set_lock */
1319         struct css_set __rcu *cgroups;
1320         /* cg_list protected by css_set_lock and tsk->alloc_lock */
1321         struct list_head cg_list;
1322 #endif
1323 #ifdef CONFIG_FUTEX
1324         struct robust_list_head __user *robust_list;
1325 #ifdef CONFIG_COMPAT
1326         struct compat_robust_list_head __user *compat_robust_list;
1327 #endif
1328         struct list_head pi_state_list;
1329         struct futex_pi_state *pi_state_cache;
1330 #endif
1331 #ifdef CONFIG_PERF_EVENTS
1332         struct perf_event_context *perf_event_ctxp[perf_nr_task_contexts];
1333         struct mutex perf_event_mutex;
1334         struct list_head perf_event_list;
1335 #endif
1336 #ifdef CONFIG_NUMA
1337         struct mempolicy *mempolicy;    /* Protected by alloc_lock */
1338         short il_next;
1339         short pref_node_fork;
1340 #endif
1341 #ifdef CONFIG_NUMA_BALANCING
1342         int numa_scan_seq;
1343         unsigned int numa_scan_period;
1344         unsigned int numa_scan_period_max;
1345         int numa_preferred_nid;
1346         int numa_migrate_deferred;
1347         unsigned long numa_migrate_retry;
1348         u64 node_stamp;                 /* migration stamp  */
1349         struct callback_head numa_work;
1350
1351         struct list_head numa_entry;
1352         struct numa_group *numa_group;
1353
1354         /*
1355          * Exponential decaying average of faults on a per-node basis.
1356          * Scheduling placement decisions are made based on the these counts.
1357          * The values remain static for the duration of a PTE scan
1358          */
1359         unsigned long *numa_faults;
1360         unsigned long total_numa_faults;
1361
1362         /*
1363          * numa_faults_buffer records faults per node during the current
1364          * scan window. When the scan completes, the counts in numa_faults
1365          * decay and these values are copied.
1366          */
1367         unsigned long *numa_faults_buffer;
1368
1369         /*
1370          * numa_faults_locality tracks if faults recorded during the last
1371          * scan window were remote/local. The task scan period is adapted
1372          * based on the locality of the faults with different weights
1373          * depending on whether they were shared or private faults
1374          */
1375         unsigned long numa_faults_locality[2];
1376
1377         unsigned long numa_pages_migrated;
1378 #endif /* CONFIG_NUMA_BALANCING */
1379
1380         struct rcu_head rcu;
1381
1382         /*
1383          * cache last used pipe for splice
1384          */
1385         struct pipe_inode_info *splice_pipe;
1386
1387         struct page_frag task_frag;
1388
1389 #ifdef  CONFIG_TASK_DELAY_ACCT
1390         struct task_delay_info *delays;
1391 #endif
1392 #ifdef CONFIG_FAULT_INJECTION
1393         int make_it_fail;
1394 #endif
1395         /*
1396          * when (nr_dirtied >= nr_dirtied_pause), it's time to call
1397          * balance_dirty_pages() for some dirty throttling pause
1398          */
1399         int nr_dirtied;
1400         int nr_dirtied_pause;
1401         unsigned long dirty_paused_when; /* start of a write-and-pause period */
1402
1403 #ifdef CONFIG_LATENCYTOP
1404         int latency_record_count;
1405         struct latency_record latency_record[LT_SAVECOUNT];
1406 #endif
1407         /*
1408          * time slack values; these are used to round up poll() and
1409          * select() etc timeout values. These are in nanoseconds.
1410          */
1411         unsigned long timer_slack_ns;
1412         unsigned long default_timer_slack_ns;
1413
1414 #ifdef CONFIG_FUNCTION_GRAPH_TRACER
1415         /* Index of current stored address in ret_stack */
1416         int curr_ret_stack;
1417         /* Stack of return addresses for return function tracing */
1418         struct ftrace_ret_stack *ret_stack;
1419         /* time stamp for last schedule */
1420         unsigned long long ftrace_timestamp;
1421         /*
1422          * Number of functions that haven't been traced
1423          * because of depth overrun.
1424          */
1425         atomic_t trace_overrun;
1426         /* Pause for the tracing */
1427         atomic_t tracing_graph_pause;
1428 #endif
1429 #ifdef CONFIG_TRACING
1430         /* state flags for use by tracers */
1431         unsigned long trace;
1432         /* bitmask and counter of trace recursion */
1433         unsigned long trace_recursion;
1434 #endif /* CONFIG_TRACING */
1435 #ifdef CONFIG_MEMCG /* memcg uses this to do batch job */
1436         struct memcg_batch_info {
1437                 int do_batch;   /* incremented when batch uncharge started */
1438                 struct mem_cgroup *memcg; /* target memcg of uncharge */
1439                 unsigned long nr_pages; /* uncharged usage */
1440                 unsigned long memsw_nr_pages; /* uncharged mem+swap usage */
1441         } memcg_batch;
1442         unsigned int memcg_kmem_skip_account;
1443         struct memcg_oom_info {
1444                 struct mem_cgroup *memcg;
1445                 gfp_t gfp_mask;
1446                 int order;
1447                 unsigned int may_oom:1;
1448         } memcg_oom;
1449 #endif
1450 #ifdef CONFIG_UPROBES
1451         struct uprobe_task *utask;
1452 #endif
1453 #if defined(CONFIG_BCACHE) || defined(CONFIG_BCACHE_MODULE)
1454         unsigned int    sequential_io;
1455         unsigned int    sequential_io_avg;
1456 #endif
1457 };
1458
1459 /* Future-safe accessor for struct task_struct's cpus_allowed. */
1460 #define tsk_cpus_allowed(tsk) (&(tsk)->cpus_allowed)
1461
1462 #define TNF_MIGRATED    0x01
1463 #define TNF_NO_GROUP    0x02
1464 #define TNF_SHARED      0x04
1465 #define TNF_FAULT_LOCAL 0x08
1466
1467 #ifdef CONFIG_NUMA_BALANCING
1468 extern void task_numa_fault(int last_node, int node, int pages, int flags);
1469 extern pid_t task_numa_group_id(struct task_struct *p);
1470 extern void set_numabalancing_state(bool enabled);
1471 extern void task_numa_free(struct task_struct *p);
1472
1473 extern unsigned int sysctl_numa_balancing_migrate_deferred;
1474 #else
1475 static inline void task_numa_fault(int last_node, int node, int pages,
1476                                    int flags)
1477 {
1478 }
1479 static inline pid_t task_numa_group_id(struct task_struct *p)
1480 {
1481         return 0;
1482 }
1483 static inline void set_numabalancing_state(bool enabled)
1484 {
1485 }
1486 static inline void task_numa_free(struct task_struct *p)
1487 {
1488 }
1489 #endif
1490
1491 static inline struct pid *task_pid(struct task_struct *task)
1492 {
1493         return task->pids[PIDTYPE_PID].pid;
1494 }
1495
1496 static inline struct pid *task_tgid(struct task_struct *task)
1497 {
1498         return task->group_leader->pids[PIDTYPE_PID].pid;
1499 }
1500
1501 /*
1502  * Without tasklist or rcu lock it is not safe to dereference
1503  * the result of task_pgrp/task_session even if task == current,
1504  * we can race with another thread doing sys_setsid/sys_setpgid.
1505  */
1506 static inline struct pid *task_pgrp(struct task_struct *task)
1507 {
1508         return task->group_leader->pids[PIDTYPE_PGID].pid;
1509 }
1510
1511 static inline struct pid *task_session(struct task_struct *task)
1512 {
1513         return task->group_leader->pids[PIDTYPE_SID].pid;
1514 }
1515
1516 struct pid_namespace;
1517
1518 /*
1519  * the helpers to get the task's different pids as they are seen
1520  * from various namespaces
1521  *
1522  * task_xid_nr()     : global id, i.e. the id seen from the init namespace;
1523  * task_xid_vnr()    : virtual id, i.e. the id seen from the pid namespace of
1524  *                     current.
1525  * task_xid_nr_ns()  : id seen from the ns specified;
1526  *
1527  * set_task_vxid()   : assigns a virtual id to a task;
1528  *
1529  * see also pid_nr() etc in include/linux/pid.h
1530  */
1531 pid_t __task_pid_nr_ns(struct task_struct *task, enum pid_type type,
1532                         struct pid_namespace *ns);
1533
1534 static inline pid_t task_pid_nr(struct task_struct *tsk)
1535 {
1536         return tsk->pid;
1537 }
1538
1539 static inline pid_t task_pid_nr_ns(struct task_struct *tsk,
1540                                         struct pid_namespace *ns)
1541 {
1542         return __task_pid_nr_ns(tsk, PIDTYPE_PID, ns);
1543 }
1544
1545 static inline pid_t task_pid_vnr(struct task_struct *tsk)
1546 {
1547         return __task_pid_nr_ns(tsk, PIDTYPE_PID, NULL);
1548 }
1549
1550
1551 static inline pid_t task_tgid_nr(struct task_struct *tsk)
1552 {
1553         return tsk->tgid;
1554 }
1555
1556 pid_t task_tgid_nr_ns(struct task_struct *tsk, struct pid_namespace *ns);
1557
1558 static inline pid_t task_tgid_vnr(struct task_struct *tsk)
1559 {
1560         return pid_vnr(task_tgid(tsk));
1561 }
1562
1563
1564 static inline pid_t task_pgrp_nr_ns(struct task_struct *tsk,
1565                                         struct pid_namespace *ns)
1566 {
1567         return __task_pid_nr_ns(tsk, PIDTYPE_PGID, ns);
1568 }
1569
1570 static inline pid_t task_pgrp_vnr(struct task_struct *tsk)
1571 {
1572         return __task_pid_nr_ns(tsk, PIDTYPE_PGID, NULL);
1573 }
1574
1575
1576 static inline pid_t task_session_nr_ns(struct task_struct *tsk,
1577                                         struct pid_namespace *ns)
1578 {
1579         return __task_pid_nr_ns(tsk, PIDTYPE_SID, ns);
1580 }
1581
1582 static inline pid_t task_session_vnr(struct task_struct *tsk)
1583 {
1584         return __task_pid_nr_ns(tsk, PIDTYPE_SID, NULL);
1585 }
1586
1587 /* obsolete, do not use */
1588 static inline pid_t task_pgrp_nr(struct task_struct *tsk)
1589 {
1590         return task_pgrp_nr_ns(tsk, &init_pid_ns);
1591 }
1592
1593 /**
1594  * pid_alive - check that a task structure is not stale
1595  * @p: Task structure to be checked.
1596  *
1597  * Test if a process is not yet dead (at most zombie state)
1598  * If pid_alive fails, then pointers within the task structure
1599  * can be stale and must not be dereferenced.
1600  *
1601  * Return: 1 if the process is alive. 0 otherwise.
1602  */
1603 static inline int pid_alive(struct task_struct *p)
1604 {
1605         return p->pids[PIDTYPE_PID].pid != NULL;
1606 }
1607
1608 /**
1609  * is_global_init - check if a task structure is init
1610  * @tsk: Task structure to be checked.
1611  *
1612  * Check if a task structure is the first user space task the kernel created.
1613  *
1614  * Return: 1 if the task structure is init. 0 otherwise.
1615  */
1616 static inline int is_global_init(struct task_struct *tsk)
1617 {
1618         return tsk->pid == 1;
1619 }
1620
1621 extern struct pid *cad_pid;
1622
1623 extern void free_task(struct task_struct *tsk);
1624 #define get_task_struct(tsk) do { atomic_inc(&(tsk)->usage); } while(0)
1625
1626 extern void __put_task_struct(struct task_struct *t);
1627
1628 static inline void put_task_struct(struct task_struct *t)
1629 {
1630         if (atomic_dec_and_test(&t->usage))
1631                 __put_task_struct(t);
1632 }
1633
1634 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
1635 extern void task_cputime(struct task_struct *t,
1636                          cputime_t *utime, cputime_t *stime);
1637 extern void task_cputime_scaled(struct task_struct *t,
1638                                 cputime_t *utimescaled, cputime_t *stimescaled);
1639 extern cputime_t task_gtime(struct task_struct *t);
1640 #else
1641 static inline void task_cputime(struct task_struct *t,
1642                                 cputime_t *utime, cputime_t *stime)
1643 {
1644         if (utime)
1645                 *utime = t->utime;
1646         if (stime)
1647                 *stime = t->stime;
1648 }
1649
1650 static inline void task_cputime_scaled(struct task_struct *t,
1651                                        cputime_t *utimescaled,
1652                                        cputime_t *stimescaled)
1653 {
1654         if (utimescaled)
1655                 *utimescaled = t->utimescaled;
1656         if (stimescaled)
1657                 *stimescaled = t->stimescaled;
1658 }
1659
1660 static inline cputime_t task_gtime(struct task_struct *t)
1661 {
1662         return t->gtime;
1663 }
1664 #endif
1665 extern void task_cputime_adjusted(struct task_struct *p, cputime_t *ut, cputime_t *st);
1666 extern void thread_group_cputime_adjusted(struct task_struct *p, cputime_t *ut, cputime_t *st);
1667
1668 /*
1669  * Per process flags
1670  */
1671 #define PF_EXITING      0x00000004      /* getting shut down */
1672 #define PF_EXITPIDONE   0x00000008      /* pi exit done on shut down */
1673 #define PF_VCPU         0x00000010      /* I'm a virtual CPU */
1674 #define PF_WQ_WORKER    0x00000020      /* I'm a workqueue worker */
1675 #define PF_FORKNOEXEC   0x00000040      /* forked but didn't exec */
1676 #define PF_MCE_PROCESS  0x00000080      /* process policy on mce errors */
1677 #define PF_SUPERPRIV    0x00000100      /* used super-user privileges */
1678 #define PF_DUMPCORE     0x00000200      /* dumped core */
1679 #define PF_SIGNALED     0x00000400      /* killed by a signal */
1680 #define PF_MEMALLOC     0x00000800      /* Allocating memory */
1681 #define PF_NPROC_EXCEEDED 0x00001000    /* set_user noticed that RLIMIT_NPROC was exceeded */
1682 #define PF_USED_MATH    0x00002000      /* if unset the fpu must be initialized before use */
1683 #define PF_USED_ASYNC   0x00004000      /* used async_schedule*(), used by module init */
1684 #define PF_NOFREEZE     0x00008000      /* this thread should not be frozen */
1685 #define PF_FROZEN       0x00010000      /* frozen for system suspend */
1686 #define PF_FSTRANS      0x00020000      /* inside a filesystem transaction */
1687 #define PF_KSWAPD       0x00040000      /* I am kswapd */
1688 #define PF_MEMALLOC_NOIO 0x00080000     /* Allocating memory without IO involved */
1689 #define PF_LESS_THROTTLE 0x00100000     /* Throttle me less: I clean memory */
1690 #define PF_KTHREAD      0x00200000      /* I am a kernel thread */
1691 #define PF_RANDOMIZE    0x00400000      /* randomize virtual address space */
1692 #define PF_SWAPWRITE    0x00800000      /* Allowed to write to swap */
1693 #define PF_SPREAD_PAGE  0x01000000      /* Spread page cache over cpuset */
1694 #define PF_SPREAD_SLAB  0x02000000      /* Spread some slab caches over cpuset */
1695 #define PF_NO_SETAFFINITY 0x04000000    /* Userland is not allowed to meddle with cpus_allowed */
1696 #define PF_MCE_EARLY    0x08000000      /* Early kill for mce process policy */
1697 #define PF_MEMPOLICY    0x10000000      /* Non-default NUMA mempolicy */
1698 #define PF_MUTEX_TESTER 0x20000000      /* Thread belongs to the rt mutex tester */
1699 #define PF_FREEZER_SKIP 0x40000000      /* Freezer should not count it as freezable */
1700 #define PF_SUSPEND_TASK 0x80000000      /* this thread called freeze_processes and should not be frozen */
1701
1702 /*
1703  * Only the _current_ task can read/write to tsk->flags, but other
1704  * tasks can access tsk->flags in readonly mode for example
1705  * with tsk_used_math (like during threaded core dumping).
1706  * There is however an exception to this rule during ptrace
1707  * or during fork: the ptracer task is allowed to write to the
1708  * child->flags of its traced child (same goes for fork, the parent
1709  * can write to the child->flags), because we're guaranteed the
1710  * child is not running and in turn not changing child->flags
1711  * at the same time the parent does it.
1712  */
1713 #define clear_stopped_child_used_math(child) do { (child)->flags &= ~PF_USED_MATH; } while (0)
1714 #define set_stopped_child_used_math(child) do { (child)->flags |= PF_USED_MATH; } while (0)
1715 #define clear_used_math() clear_stopped_child_used_math(current)
1716 #define set_used_math() set_stopped_child_used_math(current)
1717 #define conditional_stopped_child_used_math(condition, child) \
1718         do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= (condition) ? PF_USED_MATH : 0; } while (0)
1719 #define conditional_used_math(condition) \
1720         conditional_stopped_child_used_math(condition, current)
1721 #define copy_to_stopped_child_used_math(child) \
1722         do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= current->flags & PF_USED_MATH; } while (0)
1723 /* NOTE: this will return 0 or PF_USED_MATH, it will never return 1 */
1724 #define tsk_used_math(p) ((p)->flags & PF_USED_MATH)
1725 #define used_math() tsk_used_math(current)
1726
1727 /* __GFP_IO isn't allowed if PF_MEMALLOC_NOIO is set in current->flags */
1728 static inline gfp_t memalloc_noio_flags(gfp_t flags)
1729 {
1730         if (unlikely(current->flags & PF_MEMALLOC_NOIO))
1731                 flags &= ~__GFP_IO;
1732         return flags;
1733 }
1734
1735 static inline unsigned int memalloc_noio_save(void)
1736 {
1737         unsigned int flags = current->flags & PF_MEMALLOC_NOIO;
1738         current->flags |= PF_MEMALLOC_NOIO;
1739         return flags;
1740 }
1741
1742 static inline void memalloc_noio_restore(unsigned int flags)
1743 {
1744         current->flags = (current->flags & ~PF_MEMALLOC_NOIO) | flags;
1745 }
1746
1747 /*
1748  * task->jobctl flags
1749  */
1750 #define JOBCTL_STOP_SIGMASK     0xffff  /* signr of the last group stop */
1751
1752 #define JOBCTL_STOP_DEQUEUED_BIT 16     /* stop signal dequeued */
1753 #define JOBCTL_STOP_PENDING_BIT 17      /* task should stop for group stop */
1754 #define JOBCTL_STOP_CONSUME_BIT 18      /* consume group stop count */
1755 #define JOBCTL_TRAP_STOP_BIT    19      /* trap for STOP */
1756 #define JOBCTL_TRAP_NOTIFY_BIT  20      /* trap for NOTIFY */
1757 #define JOBCTL_TRAPPING_BIT     21      /* switching to TRACED */
1758 #define JOBCTL_LISTENING_BIT    22      /* ptracer is listening for events */
1759
1760 #define JOBCTL_STOP_DEQUEUED    (1 << JOBCTL_STOP_DEQUEUED_BIT)
1761 #define JOBCTL_STOP_PENDING     (1 << JOBCTL_STOP_PENDING_BIT)
1762 #define JOBCTL_STOP_CONSUME     (1 << JOBCTL_STOP_CONSUME_BIT)
1763 #define JOBCTL_TRAP_STOP        (1 << JOBCTL_TRAP_STOP_BIT)
1764 #define JOBCTL_TRAP_NOTIFY      (1 << JOBCTL_TRAP_NOTIFY_BIT)
1765 #define JOBCTL_TRAPPING         (1 << JOBCTL_TRAPPING_BIT)
1766 #define JOBCTL_LISTENING        (1 << JOBCTL_LISTENING_BIT)
1767
1768 #define JOBCTL_TRAP_MASK        (JOBCTL_TRAP_STOP | JOBCTL_TRAP_NOTIFY)
1769 #define JOBCTL_PENDING_MASK     (JOBCTL_STOP_PENDING | JOBCTL_TRAP_MASK)
1770
1771 extern bool task_set_jobctl_pending(struct task_struct *task,
1772                                     unsigned int mask);
1773 extern void task_clear_jobctl_trapping(struct task_struct *task);
1774 extern void task_clear_jobctl_pending(struct task_struct *task,
1775                                       unsigned int mask);
1776
1777 #ifdef CONFIG_PREEMPT_RCU
1778
1779 #define RCU_READ_UNLOCK_BLOCKED (1 << 0) /* blocked while in RCU read-side. */
1780 #define RCU_READ_UNLOCK_NEED_QS (1 << 1) /* RCU core needs CPU response. */
1781
1782 static inline void rcu_copy_process(struct task_struct *p)
1783 {
1784         p->rcu_read_lock_nesting = 0;
1785         p->rcu_read_unlock_special = 0;
1786 #ifdef CONFIG_TREE_PREEMPT_RCU
1787         p->rcu_blocked_node = NULL;
1788 #endif /* #ifdef CONFIG_TREE_PREEMPT_RCU */
1789 #ifdef CONFIG_RCU_BOOST
1790         p->rcu_boost_mutex = NULL;
1791 #endif /* #ifdef CONFIG_RCU_BOOST */
1792         INIT_LIST_HEAD(&p->rcu_node_entry);
1793 }
1794
1795 #else
1796
1797 static inline void rcu_copy_process(struct task_struct *p)
1798 {
1799 }
1800
1801 #endif
1802
1803 static inline void tsk_restore_flags(struct task_struct *task,
1804                                 unsigned long orig_flags, unsigned long flags)
1805 {
1806         task->flags &= ~flags;
1807         task->flags |= orig_flags & flags;
1808 }
1809
1810 #ifdef CONFIG_SMP
1811 extern void do_set_cpus_allowed(struct task_struct *p,
1812                                const struct cpumask *new_mask);
1813
1814 extern int set_cpus_allowed_ptr(struct task_struct *p,
1815                                 const struct cpumask *new_mask);
1816 #else
1817 static inline void do_set_cpus_allowed(struct task_struct *p,
1818                                       const struct cpumask *new_mask)
1819 {
1820 }
1821 static inline int set_cpus_allowed_ptr(struct task_struct *p,
1822                                        const struct cpumask *new_mask)
1823 {
1824         if (!cpumask_test_cpu(0, new_mask))
1825                 return -EINVAL;
1826         return 0;
1827 }
1828 #endif
1829
1830 #ifdef CONFIG_NO_HZ_COMMON
1831 void calc_load_enter_idle(void);
1832 void calc_load_exit_idle(void);
1833 #else
1834 static inline void calc_load_enter_idle(void) { }
1835 static inline void calc_load_exit_idle(void) { }
1836 #endif /* CONFIG_NO_HZ_COMMON */
1837
1838 #ifndef CONFIG_CPUMASK_OFFSTACK
1839 static inline int set_cpus_allowed(struct task_struct *p, cpumask_t new_mask)
1840 {
1841         return set_cpus_allowed_ptr(p, &new_mask);
1842 }
1843 #endif
1844
1845 /*
1846  * Do not use outside of architecture code which knows its limitations.
1847  *
1848  * sched_clock() has no promise of monotonicity or bounded drift between
1849  * CPUs, use (which you should not) requires disabling IRQs.
1850  *
1851  * Please use one of the three interfaces below.
1852  */
1853 extern unsigned long long notrace sched_clock(void);
1854 /*
1855  * See the comment in kernel/sched/clock.c
1856  */
1857 extern u64 cpu_clock(int cpu);
1858 extern u64 local_clock(void);
1859 extern u64 sched_clock_cpu(int cpu);
1860
1861
1862 extern void sched_clock_init(void);
1863
1864 #ifndef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK
1865 static inline void sched_clock_tick(void)
1866 {
1867 }
1868
1869 static inline void sched_clock_idle_sleep_event(void)
1870 {
1871 }
1872
1873 static inline void sched_clock_idle_wakeup_event(u64 delta_ns)
1874 {
1875 }
1876 #else
1877 /*
1878  * Architectures can set this to 1 if they have specified
1879  * CONFIG_HAVE_UNSTABLE_SCHED_CLOCK in their arch Kconfig,
1880  * but then during bootup it turns out that sched_clock()
1881  * is reliable after all:
1882  */
1883 extern int sched_clock_stable;
1884
1885 extern void sched_clock_tick(void);
1886 extern void sched_clock_idle_sleep_event(void);
1887 extern void sched_clock_idle_wakeup_event(u64 delta_ns);
1888 #endif
1889
1890 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
1891 /*
1892  * An i/f to runtime opt-in for irq time accounting based off of sched_clock.
1893  * The reason for this explicit opt-in is not to have perf penalty with
1894  * slow sched_clocks.
1895  */
1896 extern void enable_sched_clock_irqtime(void);
1897 extern void disable_sched_clock_irqtime(void);
1898 #else
1899 static inline void enable_sched_clock_irqtime(void) {}
1900 static inline void disable_sched_clock_irqtime(void) {}
1901 #endif
1902
1903 extern unsigned long long
1904 task_sched_runtime(struct task_struct *task);
1905
1906 /* sched_exec is called by processes performing an exec */
1907 #ifdef CONFIG_SMP
1908 extern void sched_exec(void);
1909 #else
1910 #define sched_exec()   {}
1911 #endif
1912
1913 extern void sched_clock_idle_sleep_event(void);
1914 extern void sched_clock_idle_wakeup_event(u64 delta_ns);
1915
1916 #ifdef CONFIG_HOTPLUG_CPU
1917 extern void idle_task_exit(void);
1918 #else
1919 static inline void idle_task_exit(void) {}
1920 #endif
1921
1922 #if defined(CONFIG_NO_HZ_COMMON) && defined(CONFIG_SMP)
1923 extern void wake_up_nohz_cpu(int cpu);
1924 #else
1925 static inline void wake_up_nohz_cpu(int cpu) { }
1926 #endif
1927
1928 #ifdef CONFIG_NO_HZ_FULL
1929 extern bool sched_can_stop_tick(void);
1930 extern u64 scheduler_tick_max_deferment(void);
1931 #else
1932 static inline bool sched_can_stop_tick(void) { return false; }
1933 #endif
1934
1935 #ifdef CONFIG_SCHED_AUTOGROUP
1936 extern void sched_autogroup_create_attach(struct task_struct *p);
1937 extern void sched_autogroup_detach(struct task_struct *p);
1938 extern void sched_autogroup_fork(struct signal_struct *sig);
1939 extern void sched_autogroup_exit(struct signal_struct *sig);
1940 #ifdef CONFIG_PROC_FS
1941 extern void proc_sched_autogroup_show_task(struct task_struct *p, struct seq_file *m);
1942 extern int proc_sched_autogroup_set_nice(struct task_struct *p, int nice);
1943 #endif
1944 #else
1945 static inline void sched_autogroup_create_attach(struct task_struct *p) { }
1946 static inline void sched_autogroup_detach(struct task_struct *p) { }
1947 static inline void sched_autogroup_fork(struct signal_struct *sig) { }
1948 static inline void sched_autogroup_exit(struct signal_struct *sig) { }
1949 #endif
1950
1951 extern bool yield_to(struct task_struct *p, bool preempt);
1952 extern void set_user_nice(struct task_struct *p, long nice);
1953 extern int task_prio(const struct task_struct *p);
1954 extern int task_nice(const struct task_struct *p);
1955 extern int can_nice(const struct task_struct *p, const int nice);
1956 extern int task_curr(const struct task_struct *p);
1957 extern int idle_cpu(int cpu);
1958 extern int sched_setscheduler(struct task_struct *, int,
1959                               const struct sched_param *);
1960 extern int sched_setscheduler_nocheck(struct task_struct *, int,
1961                                       const struct sched_param *);
1962 extern struct task_struct *idle_task(int cpu);
1963 /**
1964  * is_idle_task - is the specified task an idle task?
1965  * @p: the task in question.
1966  *
1967  * Return: 1 if @p is an idle task. 0 otherwise.
1968  */
1969 static inline bool is_idle_task(const struct task_struct *p)
1970 {
1971         return p->pid == 0;
1972 }
1973 extern struct task_struct *curr_task(int cpu);
1974 extern void set_curr_task(int cpu, struct task_struct *p);
1975
1976 void yield(void);
1977
1978 /*
1979  * The default (Linux) execution domain.
1980  */
1981 extern struct exec_domain       default_exec_domain;
1982
1983 union thread_union {
1984         struct thread_info thread_info;
1985         unsigned long stack[THREAD_SIZE/sizeof(long)];
1986 };
1987
1988 #ifndef __HAVE_ARCH_KSTACK_END
1989 static inline int kstack_end(void *addr)
1990 {
1991         /* Reliable end of stack detection:
1992          * Some APM bios versions misalign the stack
1993          */
1994         return !(((unsigned long)addr+sizeof(void*)-1) & (THREAD_SIZE-sizeof(void*)));
1995 }
1996 #endif
1997
1998 extern union thread_union init_thread_union;
1999 extern struct task_struct init_task;
2000
2001 extern struct   mm_struct init_mm;
2002
2003 extern struct pid_namespace init_pid_ns;
2004
2005 /*
2006  * find a task by one of its numerical ids
2007  *
2008  * find_task_by_pid_ns():
2009  *      finds a task by its pid in the specified namespace
2010  * find_task_by_vpid():
2011  *      finds a task by its virtual pid
2012  *
2013  * see also find_vpid() etc in include/linux/pid.h
2014  */
2015
2016 extern struct task_struct *find_task_by_vpid(pid_t nr);
2017 extern struct task_struct *find_task_by_pid_ns(pid_t nr,
2018                 struct pid_namespace *ns);
2019
2020 /* per-UID process charging. */
2021 extern struct user_struct * alloc_uid(kuid_t);
2022 static inline struct user_struct *get_uid(struct user_struct *u)
2023 {
2024         atomic_inc(&u->__count);
2025         return u;
2026 }
2027 extern void free_uid(struct user_struct *);
2028
2029 #include <asm/current.h>
2030
2031 extern void xtime_update(unsigned long ticks);
2032
2033 extern int wake_up_state(struct task_struct *tsk, unsigned int state);
2034 extern int wake_up_process(struct task_struct *tsk);
2035 extern void wake_up_new_task(struct task_struct *tsk);
2036 #ifdef CONFIG_SMP
2037  extern void kick_process(struct task_struct *tsk);
2038 #else
2039  static inline void kick_process(struct task_struct *tsk) { }
2040 #endif
2041 extern void sched_fork(unsigned long clone_flags, struct task_struct *p);
2042 extern void sched_dead(struct task_struct *p);
2043
2044 extern void proc_caches_init(void);
2045 extern void flush_signals(struct task_struct *);
2046 extern void __flush_signals(struct task_struct *);
2047 extern void ignore_signals(struct task_struct *);
2048 extern void flush_signal_handlers(struct task_struct *, int force_default);
2049 extern int dequeue_signal(struct task_struct *tsk, sigset_t *mask, siginfo_t *info);
2050
2051 static inline int dequeue_signal_lock(struct task_struct *tsk, sigset_t *mask, siginfo_t *info)
2052 {
2053         unsigned long flags;
2054         int ret;
2055
2056         spin_lock_irqsave(&tsk->sighand->siglock, flags);
2057         ret = dequeue_signal(tsk, mask, info);
2058         spin_unlock_irqrestore(&tsk->sighand->siglock, flags);
2059
2060         return ret;
2061 }
2062
2063 extern void block_all_signals(int (*notifier)(void *priv), void *priv,
2064                               sigset_t *mask);
2065 extern void unblock_all_signals(void);
2066 extern void release_task(struct task_struct * p);
2067 extern int send_sig_info(int, struct siginfo *, struct task_struct *);
2068 extern int force_sigsegv(int, struct task_struct *);
2069 extern int force_sig_info(int, struct siginfo *, struct task_struct *);
2070 extern int __kill_pgrp_info(int sig, struct siginfo *info, struct pid *pgrp);
2071 extern int kill_pid_info(int sig, struct siginfo *info, struct pid *pid);
2072 extern int kill_pid_info_as_cred(int, struct siginfo *, struct pid *,
2073                                 const struct cred *, u32);
2074 extern int kill_pgrp(struct pid *pid, int sig, int priv);
2075 extern int kill_pid(struct pid *pid, int sig, int priv);
2076 extern int kill_proc_info(int, struct siginfo *, pid_t);
2077 extern __must_check bool do_notify_parent(struct task_struct *, int);
2078 extern void __wake_up_parent(struct task_struct *p, struct task_struct *parent);
2079 extern void force_sig(int, struct task_struct *);
2080 extern int send_sig(int, struct task_struct *, int);
2081 extern int zap_other_threads(struct task_struct *p);
2082 extern struct sigqueue *sigqueue_alloc(void);
2083 extern void sigqueue_free(struct sigqueue *);
2084 extern int send_sigqueue(struct sigqueue *,  struct task_struct *, int group);
2085 extern int do_sigaction(int, struct k_sigaction *, struct k_sigaction *);
2086
2087 static inline void restore_saved_sigmask(void)
2088 {
2089         if (test_and_clear_restore_sigmask())
2090                 __set_current_blocked(&current->saved_sigmask);
2091 }
2092
2093 static inline sigset_t *sigmask_to_save(void)
2094 {
2095         sigset_t *res = &current->blocked;
2096         if (unlikely(test_restore_sigmask()))
2097                 res = &current->saved_sigmask;
2098         return res;
2099 }
2100
2101 static inline int kill_cad_pid(int sig, int priv)
2102 {
2103         return kill_pid(cad_pid, sig, priv);
2104 }
2105
2106 /* These can be the second arg to send_sig_info/send_group_sig_info.  */
2107 #define SEND_SIG_NOINFO ((struct siginfo *) 0)
2108 #define SEND_SIG_PRIV   ((struct siginfo *) 1)
2109 #define SEND_SIG_FORCED ((struct siginfo *) 2)
2110
2111 /*
2112  * True if we are on the alternate signal stack.
2113  */
2114 static inline int on_sig_stack(unsigned long sp)
2115 {
2116 #ifdef CONFIG_STACK_GROWSUP
2117         return sp >= current->sas_ss_sp &&
2118                 sp - current->sas_ss_sp < current->sas_ss_size;
2119 #else
2120         return sp > current->sas_ss_sp &&
2121                 sp - current->sas_ss_sp <= current->sas_ss_size;
2122 #endif
2123 }
2124
2125 static inline int sas_ss_flags(unsigned long sp)
2126 {
2127         return (current->sas_ss_size == 0 ? SS_DISABLE
2128                 : on_sig_stack(sp) ? SS_ONSTACK : 0);
2129 }
2130
2131 static inline unsigned long sigsp(unsigned long sp, struct ksignal *ksig)
2132 {
2133         if (unlikely((ksig->ka.sa.sa_flags & SA_ONSTACK)) && ! sas_ss_flags(sp))
2134 #ifdef CONFIG_STACK_GROWSUP
2135                 return current->sas_ss_sp;
2136 #else
2137                 return current->sas_ss_sp + current->sas_ss_size;
2138 #endif
2139         return sp;
2140 }
2141
2142 /*
2143  * Routines for handling mm_structs
2144  */
2145 extern struct mm_struct * mm_alloc(void);
2146
2147 /* mmdrop drops the mm and the page tables */
2148 extern void __mmdrop(struct mm_struct *);
2149 static inline void mmdrop(struct mm_struct * mm)
2150 {
2151         if (unlikely(atomic_dec_and_test(&mm->mm_count)))
2152                 __mmdrop(mm);
2153 }
2154
2155 /* mmput gets rid of the mappings and all user-space */
2156 extern void mmput(struct mm_struct *);
2157 /* Grab a reference to a task's mm, if it is not already going away */
2158 extern struct mm_struct *get_task_mm(struct task_struct *task);
2159 /*
2160  * Grab a reference to a task's mm, if it is not already going away
2161  * and ptrace_may_access with the mode parameter passed to it
2162  * succeeds.
2163  */
2164 extern struct mm_struct *mm_access(struct task_struct *task, unsigned int mode);
2165 /* Remove the current tasks stale references to the old mm_struct */
2166 extern void mm_release(struct task_struct *, struct mm_struct *);
2167 /* Allocate a new mm structure and copy contents from tsk->mm */
2168 extern struct mm_struct *dup_mm(struct task_struct *tsk);
2169
2170 extern int copy_thread(unsigned long, unsigned long, unsigned long,
2171                         struct task_struct *);
2172 extern void flush_thread(void);
2173 extern void exit_thread(void);
2174
2175 extern void exit_files(struct task_struct *);
2176 extern void __cleanup_sighand(struct sighand_struct *);
2177
2178 extern void exit_itimers(struct signal_struct *);
2179 extern void flush_itimer_signals(void);
2180
2181 extern void do_group_exit(int);
2182
2183 extern int allow_signal(int);
2184 extern int disallow_signal(int);
2185
2186 extern int do_execve(const char *,
2187                      const char __user * const __user *,
2188                      const char __user * const __user *);
2189 extern long do_fork(unsigned long, unsigned long, unsigned long, int __user *, int __user *);
2190 struct task_struct *fork_idle(int);
2191 extern pid_t kernel_thread(int (*fn)(void *), void *arg, unsigned long flags);
2192
2193 extern void set_task_comm(struct task_struct *tsk, char *from);
2194 extern char *get_task_comm(char *to, struct task_struct *tsk);
2195
2196 #ifdef CONFIG_SMP
2197 void scheduler_ipi(void);
2198 extern unsigned long wait_task_inactive(struct task_struct *, long match_state);
2199 #else
2200 static inline void scheduler_ipi(void) { }
2201 static inline unsigned long wait_task_inactive(struct task_struct *p,
2202                                                long match_state)
2203 {
2204         return 1;
2205 }
2206 #endif
2207
2208 #define next_task(p) \
2209         list_entry_rcu((p)->tasks.next, struct task_struct, tasks)
2210
2211 #define for_each_process(p) \
2212         for (p = &init_task ; (p = next_task(p)) != &init_task ; )
2213
2214 extern bool current_is_single_threaded(void);
2215
2216 /*
2217  * Careful: do_each_thread/while_each_thread is a double loop so
2218  *          'break' will not work as expected - use goto instead.
2219  */
2220 #define do_each_thread(g, t) \
2221         for (g = t = &init_task ; (g = t = next_task(g)) != &init_task ; ) do
2222
2223 #define while_each_thread(g, t) \
2224         while ((t = next_thread(t)) != g)
2225
2226 static inline int get_nr_threads(struct task_struct *tsk)
2227 {
2228         return tsk->signal->nr_threads;
2229 }
2230
2231 static inline bool thread_group_leader(struct task_struct *p)
2232 {
2233         return p->exit_signal >= 0;
2234 }
2235
2236 /* Do to the insanities of de_thread it is possible for a process
2237  * to have the pid of the thread group leader without actually being
2238  * the thread group leader.  For iteration through the pids in proc
2239  * all we care about is that we have a task with the appropriate
2240  * pid, we don't actually care if we have the right task.
2241  */
2242 static inline bool has_group_leader_pid(struct task_struct *p)
2243 {
2244         return task_pid(p) == p->signal->leader_pid;
2245 }
2246
2247 static inline
2248 bool same_thread_group(struct task_struct *p1, struct task_struct *p2)
2249 {
2250         return p1->signal == p2->signal;
2251 }
2252
2253 static inline struct task_struct *next_thread(const struct task_struct *p)
2254 {
2255         return list_entry_rcu(p->thread_group.next,
2256                               struct task_struct, thread_group);
2257 }
2258
2259 static inline int thread_group_empty(struct task_struct *p)
2260 {
2261         return list_empty(&p->thread_group);
2262 }
2263
2264 #define delay_group_leader(p) \
2265                 (thread_group_leader(p) && !thread_group_empty(p))
2266
2267 /*
2268  * Protects ->fs, ->files, ->mm, ->group_info, ->comm, keyring
2269  * subscriptions and synchronises with wait4().  Also used in procfs.  Also
2270  * pins the final release of task.io_context.  Also protects ->cpuset and
2271  * ->cgroup.subsys[]. And ->vfork_done.
2272  *
2273  * Nests both inside and outside of read_lock(&tasklist_lock).
2274  * It must not be nested with write_lock_irq(&tasklist_lock),
2275  * neither inside nor outside.
2276  */
2277 static inline void task_lock(struct task_struct *p)
2278 {
2279         spin_lock(&p->alloc_lock);
2280 }
2281
2282 static inline void task_unlock(struct task_struct *p)
2283 {
2284         spin_unlock(&p->alloc_lock);
2285 }
2286
2287 extern struct sighand_struct *__lock_task_sighand(struct task_struct *tsk,
2288                                                         unsigned long *flags);
2289
2290 static inline struct sighand_struct *lock_task_sighand(struct task_struct *tsk,
2291                                                        unsigned long *flags)
2292 {
2293         struct sighand_struct *ret;
2294
2295         ret = __lock_task_sighand(tsk, flags);
2296         (void)__cond_lock(&tsk->sighand->siglock, ret);
2297         return ret;
2298 }
2299
2300 static inline void unlock_task_sighand(struct task_struct *tsk,
2301                                                 unsigned long *flags)
2302 {
2303         spin_unlock_irqrestore(&tsk->sighand->siglock, *flags);
2304 }
2305
2306 #ifdef CONFIG_CGROUPS
2307 static inline void threadgroup_change_begin(struct task_struct *tsk)
2308 {
2309         down_read(&tsk->signal->group_rwsem);
2310 }
2311 static inline void threadgroup_change_end(struct task_struct *tsk)
2312 {
2313         up_read(&tsk->signal->group_rwsem);
2314 }
2315
2316 /**
2317  * threadgroup_lock - lock threadgroup
2318  * @tsk: member task of the threadgroup to lock
2319  *
2320  * Lock the threadgroup @tsk belongs to.  No new task is allowed to enter
2321  * and member tasks aren't allowed to exit (as indicated by PF_EXITING) or
2322  * change ->group_leader/pid.  This is useful for cases where the threadgroup
2323  * needs to stay stable across blockable operations.
2324  *
2325  * fork and exit paths explicitly call threadgroup_change_{begin|end}() for
2326  * synchronization.  While held, no new task will be added to threadgroup
2327  * and no existing live task will have its PF_EXITING set.
2328  *
2329  * de_thread() does threadgroup_change_{begin|end}() when a non-leader
2330  * sub-thread becomes a new leader.
2331  */
2332 static inline void threadgroup_lock(struct task_struct *tsk)
2333 {
2334         down_write(&tsk->signal->group_rwsem);
2335 }
2336
2337 /**
2338  * threadgroup_unlock - unlock threadgroup
2339  * @tsk: member task of the threadgroup to unlock
2340  *
2341  * Reverse threadgroup_lock().
2342  */
2343 static inline void threadgroup_unlock(struct task_struct *tsk)
2344 {
2345         up_write(&tsk->signal->group_rwsem);
2346 }
2347 #else
2348 static inline void threadgroup_change_begin(struct task_struct *tsk) {}
2349 static inline void threadgroup_change_end(struct task_struct *tsk) {}
2350 static inline void threadgroup_lock(struct task_struct *tsk) {}
2351 static inline void threadgroup_unlock(struct task_struct *tsk) {}
2352 #endif
2353
2354 #ifndef __HAVE_THREAD_FUNCTIONS
2355
2356 #define task_thread_info(task)  ((struct thread_info *)(task)->stack)
2357 #define task_stack_page(task)   ((task)->stack)
2358
2359 static inline void setup_thread_stack(struct task_struct *p, struct task_struct *org)
2360 {
2361         *task_thread_info(p) = *task_thread_info(org);
2362         task_thread_info(p)->task = p;
2363 }
2364
2365 static inline unsigned long *end_of_stack(struct task_struct *p)
2366 {
2367         return (unsigned long *)(task_thread_info(p) + 1);
2368 }
2369
2370 #endif
2371
2372 static inline int object_is_on_stack(void *obj)
2373 {
2374         void *stack = task_stack_page(current);
2375
2376         return (obj >= stack) && (obj < (stack + THREAD_SIZE));
2377 }
2378
2379 extern void thread_info_cache_init(void);
2380
2381 #ifdef CONFIG_DEBUG_STACK_USAGE
2382 static inline unsigned long stack_not_used(struct task_struct *p)
2383 {
2384         unsigned long *n = end_of_stack(p);
2385
2386         do {    /* Skip over canary */
2387                 n++;
2388         } while (!*n);
2389
2390         return (unsigned long)n - (unsigned long)end_of_stack(p);
2391 }
2392 #endif
2393
2394 /* set thread flags in other task's structures
2395  * - see asm/thread_info.h for TIF_xxxx flags available
2396  */
2397 static inline void set_tsk_thread_flag(struct task_struct *tsk, int flag)
2398 {
2399         set_ti_thread_flag(task_thread_info(tsk), flag);
2400 }
2401
2402 static inline void clear_tsk_thread_flag(struct task_struct *tsk, int flag)
2403 {
2404         clear_ti_thread_flag(task_thread_info(tsk), flag);
2405 }
2406
2407 static inline int test_and_set_tsk_thread_flag(struct task_struct *tsk, int flag)
2408 {
2409         return test_and_set_ti_thread_flag(task_thread_info(tsk), flag);
2410 }
2411
2412 static inline int test_and_clear_tsk_thread_flag(struct task_struct *tsk, int flag)
2413 {
2414         return test_and_clear_ti_thread_flag(task_thread_info(tsk), flag);
2415 }
2416
2417 static inline int test_tsk_thread_flag(struct task_struct *tsk, int flag)
2418 {
2419         return test_ti_thread_flag(task_thread_info(tsk), flag);
2420 }
2421
2422 static inline void set_tsk_need_resched(struct task_struct *tsk)
2423 {
2424         set_tsk_thread_flag(tsk,TIF_NEED_RESCHED);
2425 }
2426
2427 static inline void clear_tsk_need_resched(struct task_struct *tsk)
2428 {
2429         clear_tsk_thread_flag(tsk,TIF_NEED_RESCHED);
2430 }
2431
2432 static inline int test_tsk_need_resched(struct task_struct *tsk)
2433 {
2434         return unlikely(test_tsk_thread_flag(tsk,TIF_NEED_RESCHED));
2435 }
2436
2437 static inline int restart_syscall(void)
2438 {
2439         set_tsk_thread_flag(current, TIF_SIGPENDING);
2440         return -ERESTARTNOINTR;
2441 }
2442
2443 static inline int signal_pending(struct task_struct *p)
2444 {
2445         return unlikely(test_tsk_thread_flag(p,TIF_SIGPENDING));
2446 }
2447
2448 static inline int __fatal_signal_pending(struct task_struct *p)
2449 {
2450         return unlikely(sigismember(&p->pending.signal, SIGKILL));
2451 }
2452
2453 static inline int fatal_signal_pending(struct task_struct *p)
2454 {
2455         return signal_pending(p) && __fatal_signal_pending(p);
2456 }
2457
2458 static inline int signal_pending_state(long state, struct task_struct *p)
2459 {
2460         if (!(state & (TASK_INTERRUPTIBLE | TASK_WAKEKILL)))
2461                 return 0;
2462         if (!signal_pending(p))
2463                 return 0;
2464
2465         return (state & TASK_INTERRUPTIBLE) || __fatal_signal_pending(p);
2466 }
2467
2468 /*
2469  * cond_resched() and cond_resched_lock(): latency reduction via
2470  * explicit rescheduling in places that are safe. The return
2471  * value indicates whether a reschedule was done in fact.
2472  * cond_resched_lock() will drop the spinlock before scheduling,
2473  * cond_resched_softirq() will enable bhs before scheduling.
2474  */
2475 extern int _cond_resched(void);
2476
2477 #define cond_resched() ({                       \
2478         __might_sleep(__FILE__, __LINE__, 0);   \
2479         _cond_resched();                        \
2480 })
2481
2482 extern int __cond_resched_lock(spinlock_t *lock);
2483
2484 #ifdef CONFIG_PREEMPT_COUNT
2485 #define PREEMPT_LOCK_OFFSET     PREEMPT_OFFSET
2486 #else
2487 #define PREEMPT_LOCK_OFFSET     0
2488 #endif
2489
2490 #define cond_resched_lock(lock) ({                              \
2491         __might_sleep(__FILE__, __LINE__, PREEMPT_LOCK_OFFSET); \
2492         __cond_resched_lock(lock);                              \
2493 })
2494
2495 extern int __cond_resched_softirq(void);
2496
2497 #define cond_resched_softirq() ({                                       \
2498         __might_sleep(__FILE__, __LINE__, SOFTIRQ_DISABLE_OFFSET);      \
2499         __cond_resched_softirq();                                       \
2500 })
2501
2502 static inline void cond_resched_rcu(void)
2503 {
2504 #if defined(CONFIG_DEBUG_ATOMIC_SLEEP) || !defined(CONFIG_PREEMPT_RCU)
2505         rcu_read_unlock();
2506         cond_resched();
2507         rcu_read_lock();
2508 #endif
2509 }
2510
2511 /*
2512  * Does a critical section need to be broken due to another
2513  * task waiting?: (technically does not depend on CONFIG_PREEMPT,
2514  * but a general need for low latency)
2515  */
2516 static inline int spin_needbreak(spinlock_t *lock)
2517 {
2518 #ifdef CONFIG_PREEMPT
2519         return spin_is_contended(lock);
2520 #else
2521         return 0;
2522 #endif
2523 }
2524
2525 /*
2526  * Idle thread specific functions to determine the need_resched
2527  * polling state. We have two versions, one based on TS_POLLING in
2528  * thread_info.status and one based on TIF_POLLING_NRFLAG in
2529  * thread_info.flags
2530  */
2531 #ifdef TS_POLLING
2532 static inline int tsk_is_polling(struct task_struct *p)
2533 {
2534         return task_thread_info(p)->status & TS_POLLING;
2535 }
2536 static inline void __current_set_polling(void)
2537 {
2538         current_thread_info()->status |= TS_POLLING;
2539 }
2540
2541 static inline bool __must_check current_set_polling_and_test(void)
2542 {
2543         __current_set_polling();
2544
2545         /*
2546          * Polling state must be visible before we test NEED_RESCHED,
2547          * paired by resched_task()
2548          */
2549         smp_mb();
2550
2551         return unlikely(tif_need_resched());
2552 }
2553
2554 static inline void __current_clr_polling(void)
2555 {
2556         current_thread_info()->status &= ~TS_POLLING;
2557 }
2558
2559 static inline bool __must_check current_clr_polling_and_test(void)
2560 {
2561         __current_clr_polling();
2562
2563         /*
2564          * Polling state must be visible before we test NEED_RESCHED,
2565          * paired by resched_task()
2566          */
2567         smp_mb();
2568
2569         return unlikely(tif_need_resched());
2570 }
2571 #elif defined(TIF_POLLING_NRFLAG)
2572 static inline int tsk_is_polling(struct task_struct *p)
2573 {
2574         return test_tsk_thread_flag(p, TIF_POLLING_NRFLAG);
2575 }
2576
2577 static inline void __current_set_polling(void)
2578 {
2579         set_thread_flag(TIF_POLLING_NRFLAG);
2580 }
2581
2582 static inline bool __must_check current_set_polling_and_test(void)
2583 {
2584         __current_set_polling();
2585
2586         /*
2587          * Polling state must be visible before we test NEED_RESCHED,
2588          * paired by resched_task()
2589          *
2590          * XXX: assumes set/clear bit are identical barrier wise.
2591          */
2592         smp_mb__after_clear_bit();
2593
2594         return unlikely(tif_need_resched());
2595 }
2596
2597 static inline void __current_clr_polling(void)
2598 {
2599         clear_thread_flag(TIF_POLLING_NRFLAG);
2600 }
2601
2602 static inline bool __must_check current_clr_polling_and_test(void)
2603 {
2604         __current_clr_polling();
2605
2606         /*
2607          * Polling state must be visible before we test NEED_RESCHED,
2608          * paired by resched_task()
2609          */
2610         smp_mb__after_clear_bit();
2611
2612         return unlikely(tif_need_resched());
2613 }
2614
2615 #else
2616 static inline int tsk_is_polling(struct task_struct *p) { return 0; }
2617 static inline void __current_set_polling(void) { }
2618 static inline void __current_clr_polling(void) { }
2619
2620 static inline bool __must_check current_set_polling_and_test(void)
2621 {
2622         return unlikely(tif_need_resched());
2623 }
2624 static inline bool __must_check current_clr_polling_and_test(void)
2625 {
2626         return unlikely(tif_need_resched());
2627 }
2628 #endif
2629
2630 static __always_inline bool need_resched(void)
2631 {
2632         return unlikely(tif_need_resched());
2633 }
2634
2635 /*
2636  * Thread group CPU time accounting.
2637  */
2638 void thread_group_cputime(struct task_struct *tsk, struct task_cputime *times);
2639 void thread_group_cputimer(struct task_struct *tsk, struct task_cputime *times);
2640
2641 static inline void thread_group_cputime_init(struct signal_struct *sig)
2642 {
2643         raw_spin_lock_init(&sig->cputimer.lock);
2644 }
2645
2646 /*
2647  * Reevaluate whether the task has signals pending delivery.
2648  * Wake the task if so.
2649  * This is required every time the blocked sigset_t changes.
2650  * callers must hold sighand->siglock.
2651  */
2652 extern void recalc_sigpending_and_wake(struct task_struct *t);
2653 extern void recalc_sigpending(void);
2654
2655 extern void signal_wake_up_state(struct task_struct *t, unsigned int state);
2656
2657 static inline void signal_wake_up(struct task_struct *t, bool resume)
2658 {
2659         signal_wake_up_state(t, resume ? TASK_WAKEKILL : 0);
2660 }
2661 static inline void ptrace_signal_wake_up(struct task_struct *t, bool resume)
2662 {
2663         signal_wake_up_state(t, resume ? __TASK_TRACED : 0);
2664 }
2665
2666 /*
2667  * Wrappers for p->thread_info->cpu access. No-op on UP.
2668  */
2669 #ifdef CONFIG_SMP
2670
2671 static inline unsigned int task_cpu(const struct task_struct *p)
2672 {
2673         return task_thread_info(p)->cpu;
2674 }
2675
2676 static inline int task_node(const struct task_struct *p)
2677 {
2678         return cpu_to_node(task_cpu(p));
2679 }
2680
2681 extern void set_task_cpu(struct task_struct *p, unsigned int cpu);
2682
2683 #else
2684
2685 static inline unsigned int task_cpu(const struct task_struct *p)
2686 {
2687         return 0;
2688 }
2689
2690 static inline void set_task_cpu(struct task_struct *p, unsigned int cpu)
2691 {
2692 }
2693
2694 #endif /* CONFIG_SMP */
2695
2696 extern long sched_setaffinity(pid_t pid, const struct cpumask *new_mask);
2697 extern long sched_getaffinity(pid_t pid, struct cpumask *mask);
2698
2699 #ifdef CONFIG_CGROUP_SCHED
2700 extern struct task_group root_task_group;
2701 #endif /* CONFIG_CGROUP_SCHED */
2702
2703 extern int task_can_switch_user(struct user_struct *up,
2704                                         struct task_struct *tsk);
2705
2706 #ifdef CONFIG_TASK_XACCT
2707 static inline void add_rchar(struct task_struct *tsk, ssize_t amt)
2708 {
2709         tsk->ioac.rchar += amt;
2710 }
2711
2712 static inline void add_wchar(struct task_struct *tsk, ssize_t amt)
2713 {
2714         tsk->ioac.wchar += amt;
2715 }
2716
2717 static inline void inc_syscr(struct task_struct *tsk)
2718 {
2719         tsk->ioac.syscr++;
2720 }
2721
2722 static inline void inc_syscw(struct task_struct *tsk)
2723 {
2724         tsk->ioac.syscw++;
2725 }
2726 #else
2727 static inline void add_rchar(struct task_struct *tsk, ssize_t amt)
2728 {
2729 }
2730
2731 static inline void add_wchar(struct task_struct *tsk, ssize_t amt)
2732 {
2733 }
2734
2735 static inline void inc_syscr(struct task_struct *tsk)
2736 {
2737 }
2738
2739 static inline void inc_syscw(struct task_struct *tsk)
2740 {
2741 }
2742 #endif
2743
2744 #ifndef TASK_SIZE_OF
2745 #define TASK_SIZE_OF(tsk)       TASK_SIZE
2746 #endif
2747
2748 #ifdef CONFIG_MM_OWNER
2749 extern void mm_update_next_owner(struct mm_struct *mm);
2750 extern void mm_init_owner(struct mm_struct *mm, struct task_struct *p);
2751 #else
2752 static inline void mm_update_next_owner(struct mm_struct *mm)
2753 {
2754 }
2755
2756 static inline void mm_init_owner(struct mm_struct *mm, struct task_struct *p)
2757 {
2758 }
2759 #endif /* CONFIG_MM_OWNER */
2760
2761 static inline unsigned long task_rlimit(const struct task_struct *tsk,
2762                 unsigned int limit)
2763 {
2764         return ACCESS_ONCE(tsk->signal->rlim[limit].rlim_cur);
2765 }
2766
2767 static inline unsigned long task_rlimit_max(const struct task_struct *tsk,
2768                 unsigned int limit)
2769 {
2770         return ACCESS_ONCE(tsk->signal->rlim[limit].rlim_max);
2771 }
2772
2773 static inline unsigned long rlimit(unsigned int limit)
2774 {
2775         return task_rlimit(current, limit);
2776 }
2777
2778 static inline unsigned long rlimit_max(unsigned int limit)
2779 {
2780         return task_rlimit_max(current, limit);
2781 }
2782
2783 #endif