2 * consumer.h -- SoC Regulator consumer support.
4 * Copyright (C) 2007, 2008 Wolfson Microelectronics PLC.
6 * Author: Liam Girdwood <lrg@slimlogic.co.uk>
8 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License version 2 as
10 * published by the Free Software Foundation.
12 * Regulator Consumer Interface.
14 * A Power Management Regulator framework for SoC based devices.
16 * o Voltage and current level control.
17 * o Operating mode control.
19 * o sysfs entries for showing client devices and status
21 * EXPERIMENTAL FEATURES:
22 * Dynamic Regulator operating Mode Switching (DRMS) - allows regulators
23 * to use most efficient operating mode depending upon voltage and load and
24 * is transparent to client drivers.
26 * e.g. Devices x,y,z share regulator r. Device x and y draw 20mA each during
27 * IO and 1mA at idle. Device z draws 100mA when under load and 5mA when
28 * idling. Regulator r has > 90% efficiency in NORMAL mode at loads > 100mA
29 * but this drops rapidly to 60% when below 100mA. Regulator r has > 90%
30 * efficiency in IDLE mode at loads < 10mA. Thus regulator r will operate
31 * in normal mode for loads > 10mA and in IDLE mode for load <= 10mA.
35 #ifndef __LINUX_REGULATOR_CONSUMER_H_
36 #define __LINUX_REGULATOR_CONSUMER_H_
39 struct notifier_block;
42 * Regulator operating modes.
44 * Regulators can run in a variety of different operating modes depending on
45 * output load. This allows further system power savings by selecting the
46 * best (and most efficient) regulator mode for a desired load.
48 * Most drivers will only care about NORMAL. The modes below are generic and
49 * will probably not match the naming convention of your regulator data sheet
50 * but should match the use cases in the datasheet.
52 * In order of power efficiency (least efficient at top).
55 * FAST Regulator can handle fast changes in it's load.
56 * e.g. useful in CPU voltage & frequency scaling where
57 * load can quickly increase with CPU frequency increases.
59 * NORMAL Normal regulator power supply mode. Most drivers will
62 * IDLE Regulator runs in a more efficient mode for light
63 * loads. Can be used for devices that have a low power
64 * requirement during periods of inactivity. This mode
65 * may be more noisy than NORMAL and may not be able
66 * to handle fast load switching.
68 * STANDBY Regulator runs in the most efficient mode for very
69 * light loads. Can be used by devices when they are
70 * in a sleep/standby state. This mode is likely to be
71 * the most noisy and may not be able to handle fast load
74 * NOTE: Most regulators will only support a subset of these modes. Some
75 * will only just support NORMAL.
77 * These modes can be OR'ed together to make up a mask of valid register modes.
80 #define REGULATOR_MODE_FAST 0x1
81 #define REGULATOR_MODE_NORMAL 0x2
82 #define REGULATOR_MODE_IDLE 0x4
83 #define REGULATOR_MODE_STANDBY 0x8
86 * Regulator notifier events.
88 * UNDER_VOLTAGE Regulator output is under voltage.
89 * OVER_CURRENT Regulator output current is too high.
90 * REGULATION_OUT Regulator output is out of regulation.
91 * FAIL Regulator output has failed.
92 * OVER_TEMP Regulator over temp.
93 * FORCE_DISABLE Regulator forcibly shut down by software.
94 * VOLTAGE_CHANGE Regulator voltage changed.
95 * DISABLE Regulator was disabled.
97 * NOTE: These events can be OR'ed together when passed into handler.
100 #define REGULATOR_EVENT_UNDER_VOLTAGE 0x01
101 #define REGULATOR_EVENT_OVER_CURRENT 0x02
102 #define REGULATOR_EVENT_REGULATION_OUT 0x04
103 #define REGULATOR_EVENT_FAIL 0x08
104 #define REGULATOR_EVENT_OVER_TEMP 0x10
105 #define REGULATOR_EVENT_FORCE_DISABLE 0x20
106 #define REGULATOR_EVENT_VOLTAGE_CHANGE 0x40
107 #define REGULATOR_EVENT_DISABLE 0x80
112 * struct regulator_bulk_data - Data used for bulk regulator operations.
114 * @supply: The name of the supply. Initialised by the user before
115 * using the bulk regulator APIs.
116 * @consumer: The regulator consumer for the supply. This will be managed
119 * The regulator APIs provide a series of regulator_bulk_() API calls as
120 * a convenience to consumers which require multiple supplies. This
121 * structure is used to manage data for these calls.
123 struct regulator_bulk_data {
125 struct regulator *consumer;
127 /* private: Internal use */
131 #if defined(CONFIG_REGULATOR)
133 /* regulator get and put */
134 struct regulator *__must_check regulator_get(struct device *dev,
136 struct regulator *__must_check devm_regulator_get(struct device *dev,
138 struct regulator *__must_check regulator_get_exclusive(struct device *dev,
140 void regulator_put(struct regulator *regulator);
141 void devm_regulator_put(struct regulator *regulator);
143 /* regulator output control and status */
144 int regulator_enable(struct regulator *regulator);
145 int regulator_disable(struct regulator *regulator);
146 int regulator_force_disable(struct regulator *regulator);
147 int regulator_is_enabled(struct regulator *regulator);
148 int regulator_disable_deferred(struct regulator *regulator, int ms);
150 int regulator_bulk_get(struct device *dev, int num_consumers,
151 struct regulator_bulk_data *consumers);
152 int devm_regulator_bulk_get(struct device *dev, int num_consumers,
153 struct regulator_bulk_data *consumers);
154 int regulator_bulk_enable(int num_consumers,
155 struct regulator_bulk_data *consumers);
156 int regulator_bulk_disable(int num_consumers,
157 struct regulator_bulk_data *consumers);
158 int regulator_bulk_force_disable(int num_consumers,
159 struct regulator_bulk_data *consumers);
160 void regulator_bulk_free(int num_consumers,
161 struct regulator_bulk_data *consumers);
163 int regulator_count_voltages(struct regulator *regulator);
164 int regulator_list_voltage(struct regulator *regulator, unsigned selector);
165 int regulator_is_supported_voltage(struct regulator *regulator,
166 int min_uV, int max_uV);
167 int regulator_set_voltage(struct regulator *regulator, int min_uV, int max_uV);
168 int regulator_set_voltage_time(struct regulator *regulator,
169 int old_uV, int new_uV);
170 int regulator_get_voltage(struct regulator *regulator);
171 int regulator_sync_voltage(struct regulator *regulator);
172 int regulator_set_current_limit(struct regulator *regulator,
173 int min_uA, int max_uA);
174 int regulator_get_current_limit(struct regulator *regulator);
176 int regulator_set_mode(struct regulator *regulator, unsigned int mode);
177 unsigned int regulator_get_mode(struct regulator *regulator);
178 int regulator_set_optimum_mode(struct regulator *regulator, int load_uA);
180 /* regulator notifier block */
181 int regulator_register_notifier(struct regulator *regulator,
182 struct notifier_block *nb);
183 int regulator_unregister_notifier(struct regulator *regulator,
184 struct notifier_block *nb);
186 /* driver data - core doesn't touch */
187 void *regulator_get_drvdata(struct regulator *regulator);
188 void regulator_set_drvdata(struct regulator *regulator, void *data);
193 * Make sure client drivers will still build on systems with no software
194 * controllable voltage or current regulators.
196 static inline struct regulator *__must_check regulator_get(struct device *dev,
199 /* Nothing except the stubbed out regulator API should be
200 * looking at the value except to check if it is an error
201 * value. Drivers are free to handle NULL specifically by
202 * skipping all regulator API calls, but they don't have to.
203 * Drivers which don't, should make sure they properly handle
204 * corner cases of the API, such as regulator_get_voltage()
210 static inline struct regulator *__must_check
211 devm_regulator_get(struct device *dev, const char *id)
216 static inline void regulator_put(struct regulator *regulator)
220 static inline void devm_regulator_put(struct regulator *regulator)
224 static inline int regulator_enable(struct regulator *regulator)
229 static inline int regulator_disable(struct regulator *regulator)
234 static inline int regulator_force_disable(struct regulator *regulator)
239 static inline int regulator_disable_deferred(struct regulator *regulator,
245 static inline int regulator_is_enabled(struct regulator *regulator)
250 static inline int regulator_bulk_get(struct device *dev,
252 struct regulator_bulk_data *consumers)
257 static inline int devm_regulator_bulk_get(struct device *dev, int num_consumers,
258 struct regulator_bulk_data *consumers)
263 static inline int regulator_bulk_enable(int num_consumers,
264 struct regulator_bulk_data *consumers)
269 static inline int regulator_bulk_disable(int num_consumers,
270 struct regulator_bulk_data *consumers)
275 static inline int regulator_bulk_force_disable(int num_consumers,
276 struct regulator_bulk_data *consumers)
281 static inline void regulator_bulk_free(int num_consumers,
282 struct regulator_bulk_data *consumers)
286 static inline int regulator_set_voltage(struct regulator *regulator,
287 int min_uV, int max_uV)
292 static inline int regulator_get_voltage(struct regulator *regulator)
297 static inline int regulator_is_supported_voltage(struct regulator *regulator,
298 int min_uV, int max_uV)
303 static inline int regulator_set_current_limit(struct regulator *regulator,
304 int min_uA, int max_uA)
309 static inline int regulator_get_current_limit(struct regulator *regulator)
314 static inline int regulator_set_mode(struct regulator *regulator,
320 static inline unsigned int regulator_get_mode(struct regulator *regulator)
322 return REGULATOR_MODE_NORMAL;
325 static inline int regulator_set_optimum_mode(struct regulator *regulator,
328 return REGULATOR_MODE_NORMAL;
331 static inline int regulator_register_notifier(struct regulator *regulator,
332 struct notifier_block *nb)
337 static inline int regulator_unregister_notifier(struct regulator *regulator,
338 struct notifier_block *nb)
343 static inline void *regulator_get_drvdata(struct regulator *regulator)
348 static inline void regulator_set_drvdata(struct regulator *regulator,