2 * Read-Copy Update mechanism for mutual exclusion
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License as published by
6 * the Free Software Foundation; either version 2 of the License, or
7 * (at your option) any later version.
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write to the Free Software
16 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
18 * Copyright IBM Corporation, 2001
20 * Author: Dipankar Sarma <dipankar@in.ibm.com>
22 * Based on the original work by Paul McKenney <paulmck@us.ibm.com>
23 * and inputs from Rusty Russell, Andrea Arcangeli and Andi Kleen.
25 * http://www.rdrop.com/users/paulmck/paper/rclockpdcsproof.pdf
26 * http://lse.sourceforge.net/locking/rclock_OLS.2001.05.01c.sc.pdf (OLS2001)
28 * For detailed explanation of Read-Copy Update mechanism see -
29 * http://lse.sourceforge.net/locking/rcupdate.html
33 #ifndef __LINUX_RCUPDATE_H
34 #define __LINUX_RCUPDATE_H
36 #include <linux/types.h>
37 #include <linux/cache.h>
38 #include <linux/spinlock.h>
39 #include <linux/threads.h>
40 #include <linux/cpumask.h>
41 #include <linux/seqlock.h>
42 #include <linux/lockdep.h>
43 #include <linux/completion.h>
44 #include <linux/debugobjects.h>
45 #include <linux/bug.h>
46 #include <linux/compiler.h>
48 #ifdef CONFIG_RCU_TORTURE_TEST
49 extern int rcutorture_runnable; /* for sysctl */
50 #endif /* #ifdef CONFIG_RCU_TORTURE_TEST */
52 #if defined(CONFIG_TREE_RCU) || defined(CONFIG_TREE_PREEMPT_RCU)
53 extern void rcutorture_record_test_transition(void);
54 extern void rcutorture_record_progress(unsigned long vernum);
55 extern void do_trace_rcu_torture_read(const char *rcutorturename,
61 static inline void rcutorture_record_test_transition(void)
64 static inline void rcutorture_record_progress(unsigned long vernum)
67 #ifdef CONFIG_RCU_TRACE
68 extern void do_trace_rcu_torture_read(const char *rcutorturename,
74 #define do_trace_rcu_torture_read(rcutorturename, rhp, secs, c_old, c) \
79 #define UINT_CMP_GE(a, b) (UINT_MAX / 2 >= (a) - (b))
80 #define UINT_CMP_LT(a, b) (UINT_MAX / 2 < (a) - (b))
81 #define ULONG_CMP_GE(a, b) (ULONG_MAX / 2 >= (a) - (b))
82 #define ULONG_CMP_LT(a, b) (ULONG_MAX / 2 < (a) - (b))
83 #define ulong2long(a) (*(long *)(&(a)))
85 /* Exported common interfaces */
87 #ifdef CONFIG_PREEMPT_RCU
90 * call_rcu() - Queue an RCU callback for invocation after a grace period.
91 * @head: structure to be used for queueing the RCU updates.
92 * @func: actual callback function to be invoked after the grace period
94 * The callback function will be invoked some time after a full grace
95 * period elapses, in other words after all pre-existing RCU read-side
96 * critical sections have completed. However, the callback function
97 * might well execute concurrently with RCU read-side critical sections
98 * that started after call_rcu() was invoked. RCU read-side critical
99 * sections are delimited by rcu_read_lock() and rcu_read_unlock(),
102 * Note that all CPUs must agree that the grace period extended beyond
103 * all pre-existing RCU read-side critical section. On systems with more
104 * than one CPU, this means that when "func()" is invoked, each CPU is
105 * guaranteed to have executed a full memory barrier since the end of its
106 * last RCU read-side critical section whose beginning preceded the call
107 * to call_rcu(). It also means that each CPU executing an RCU read-side
108 * critical section that continues beyond the start of "func()" must have
109 * executed a memory barrier after the call_rcu() but before the beginning
110 * of that RCU read-side critical section. Note that these guarantees
111 * include CPUs that are offline, idle, or executing in user mode, as
112 * well as CPUs that are executing in the kernel.
114 * Furthermore, if CPU A invoked call_rcu() and CPU B invoked the
115 * resulting RCU callback function "func()", then both CPU A and CPU B are
116 * guaranteed to execute a full memory barrier during the time interval
117 * between the call to call_rcu() and the invocation of "func()" -- even
118 * if CPU A and CPU B are the same CPU (but again only if the system has
119 * more than one CPU).
121 extern void call_rcu(struct rcu_head *head,
122 void (*func)(struct rcu_head *head));
124 #else /* #ifdef CONFIG_PREEMPT_RCU */
126 /* In classic RCU, call_rcu() is just call_rcu_sched(). */
127 #define call_rcu call_rcu_sched
129 #endif /* #else #ifdef CONFIG_PREEMPT_RCU */
132 * call_rcu_bh() - Queue an RCU for invocation after a quicker grace period.
133 * @head: structure to be used for queueing the RCU updates.
134 * @func: actual callback function to be invoked after the grace period
136 * The callback function will be invoked some time after a full grace
137 * period elapses, in other words after all currently executing RCU
138 * read-side critical sections have completed. call_rcu_bh() assumes
139 * that the read-side critical sections end on completion of a softirq
140 * handler. This means that read-side critical sections in process
141 * context must not be interrupted by softirqs. This interface is to be
142 * used when most of the read-side critical sections are in softirq context.
143 * RCU read-side critical sections are delimited by :
144 * - rcu_read_lock() and rcu_read_unlock(), if in interrupt context.
146 * - rcu_read_lock_bh() and rcu_read_unlock_bh(), if in process context.
147 * These may be nested.
149 * See the description of call_rcu() for more detailed information on
150 * memory ordering guarantees.
152 extern void call_rcu_bh(struct rcu_head *head,
153 void (*func)(struct rcu_head *head));
156 * call_rcu_sched() - Queue an RCU for invocation after sched grace period.
157 * @head: structure to be used for queueing the RCU updates.
158 * @func: actual callback function to be invoked after the grace period
160 * The callback function will be invoked some time after a full grace
161 * period elapses, in other words after all currently executing RCU
162 * read-side critical sections have completed. call_rcu_sched() assumes
163 * that the read-side critical sections end on enabling of preemption
164 * or on voluntary preemption.
165 * RCU read-side critical sections are delimited by :
166 * - rcu_read_lock_sched() and rcu_read_unlock_sched(),
168 * anything that disables preemption.
169 * These may be nested.
171 * See the description of call_rcu() for more detailed information on
172 * memory ordering guarantees.
174 extern void call_rcu_sched(struct rcu_head *head,
175 void (*func)(struct rcu_head *rcu));
177 extern void synchronize_sched(void);
179 #ifdef CONFIG_PREEMPT_RCU
181 extern void __rcu_read_lock(void);
182 extern void __rcu_read_unlock(void);
183 extern void rcu_read_unlock_special(struct task_struct *t);
184 void synchronize_rcu(void);
187 * Defined as a macro as it is a very low level header included from
188 * areas that don't even know about current. This gives the rcu_read_lock()
189 * nesting depth, but makes sense only if CONFIG_PREEMPT_RCU -- in other
190 * types of kernel builds, the rcu_read_lock() nesting depth is unknowable.
192 #define rcu_preempt_depth() (current->rcu_read_lock_nesting)
194 #else /* #ifdef CONFIG_PREEMPT_RCU */
196 static inline void __rcu_read_lock(void)
201 static inline void __rcu_read_unlock(void)
206 static inline void synchronize_rcu(void)
211 static inline int rcu_preempt_depth(void)
216 #endif /* #else #ifdef CONFIG_PREEMPT_RCU */
218 /* Internal to kernel */
219 extern void rcu_init(void);
220 extern void rcu_sched_qs(int cpu);
221 extern void rcu_bh_qs(int cpu);
222 extern void rcu_check_callbacks(int cpu, int user);
223 struct notifier_block;
224 extern void rcu_idle_enter(void);
225 extern void rcu_idle_exit(void);
226 extern void rcu_irq_enter(void);
227 extern void rcu_irq_exit(void);
229 #ifdef CONFIG_RCU_USER_QS
230 extern void rcu_user_enter(void);
231 extern void rcu_user_exit(void);
233 static inline void rcu_user_enter(void) { }
234 static inline void rcu_user_exit(void) { }
235 static inline void rcu_user_hooks_switch(struct task_struct *prev,
236 struct task_struct *next) { }
237 #endif /* CONFIG_RCU_USER_QS */
240 * RCU_NONIDLE - Indicate idle-loop code that needs RCU readers
241 * @a: Code that RCU needs to pay attention to.
243 * RCU, RCU-bh, and RCU-sched read-side critical sections are forbidden
244 * in the inner idle loop, that is, between the rcu_idle_enter() and
245 * the rcu_idle_exit() -- RCU will happily ignore any such read-side
246 * critical sections. However, things like powertop need tracepoints
247 * in the inner idle loop.
249 * This macro provides the way out: RCU_NONIDLE(do_something_with_RCU())
250 * will tell RCU that it needs to pay attending, invoke its argument
251 * (in this example, a call to the do_something_with_RCU() function),
252 * and then tell RCU to go back to ignoring this CPU. It is permissible
253 * to nest RCU_NONIDLE() wrappers, but the nesting level is currently
254 * quite limited. If deeper nesting is required, it will be necessary
255 * to adjust DYNTICK_TASK_NESTING_VALUE accordingly.
257 #define RCU_NONIDLE(a) \
260 do { a; } while (0); \
265 * Infrastructure to implement the synchronize_() primitives in
266 * TREE_RCU and rcu_barrier_() primitives in TINY_RCU.
269 typedef void call_rcu_func_t(struct rcu_head *head,
270 void (*func)(struct rcu_head *head));
271 void wait_rcu_gp(call_rcu_func_t crf);
273 #if defined(CONFIG_TREE_RCU) || defined(CONFIG_TREE_PREEMPT_RCU)
274 #include <linux/rcutree.h>
275 #elif defined(CONFIG_TINY_RCU)
276 #include <linux/rcutiny.h>
278 #error "Unknown RCU implementation specified to kernel configuration"
282 * init_rcu_head_on_stack()/destroy_rcu_head_on_stack() are needed for dynamic
283 * initialization and destruction of rcu_head on the stack. rcu_head structures
284 * allocated dynamically in the heap or defined statically don't need any
287 #ifdef CONFIG_DEBUG_OBJECTS_RCU_HEAD
288 extern void init_rcu_head_on_stack(struct rcu_head *head);
289 extern void destroy_rcu_head_on_stack(struct rcu_head *head);
290 #else /* !CONFIG_DEBUG_OBJECTS_RCU_HEAD */
291 static inline void init_rcu_head_on_stack(struct rcu_head *head)
295 static inline void destroy_rcu_head_on_stack(struct rcu_head *head)
298 #endif /* #else !CONFIG_DEBUG_OBJECTS_RCU_HEAD */
300 #if defined(CONFIG_DEBUG_LOCK_ALLOC) || defined(CONFIG_SMP)
301 extern int rcu_is_cpu_idle(void);
302 #endif /* #if defined(CONFIG_DEBUG_LOCK_ALLOC) || defined(CONFIG_SMP) */
304 #if defined(CONFIG_HOTPLUG_CPU) && defined(CONFIG_PROVE_RCU)
305 bool rcu_lockdep_current_cpu_online(void);
306 #else /* #if defined(CONFIG_HOTPLUG_CPU) && defined(CONFIG_PROVE_RCU) */
307 static inline bool rcu_lockdep_current_cpu_online(void)
311 #endif /* #else #if defined(CONFIG_HOTPLUG_CPU) && defined(CONFIG_PROVE_RCU) */
313 #ifdef CONFIG_DEBUG_LOCK_ALLOC
315 static inline void rcu_lock_acquire(struct lockdep_map *map)
317 lock_acquire(map, 0, 0, 2, 1, NULL, _THIS_IP_);
320 static inline void rcu_lock_release(struct lockdep_map *map)
322 lock_release(map, 1, _THIS_IP_);
325 extern struct lockdep_map rcu_lock_map;
326 extern struct lockdep_map rcu_bh_lock_map;
327 extern struct lockdep_map rcu_sched_lock_map;
328 extern int debug_lockdep_rcu_enabled(void);
331 * rcu_read_lock_held() - might we be in RCU read-side critical section?
333 * If CONFIG_DEBUG_LOCK_ALLOC is selected, returns nonzero iff in an RCU
334 * read-side critical section. In absence of CONFIG_DEBUG_LOCK_ALLOC,
335 * this assumes we are in an RCU read-side critical section unless it can
336 * prove otherwise. This is useful for debug checks in functions that
337 * require that they be called within an RCU read-side critical section.
339 * Checks debug_lockdep_rcu_enabled() to prevent false positives during boot
340 * and while lockdep is disabled.
342 * Note that rcu_read_lock() and the matching rcu_read_unlock() must
343 * occur in the same context, for example, it is illegal to invoke
344 * rcu_read_unlock() in process context if the matching rcu_read_lock()
345 * was invoked from within an irq handler.
347 * Note that rcu_read_lock() is disallowed if the CPU is either idle or
348 * offline from an RCU perspective, so check for those as well.
350 static inline int rcu_read_lock_held(void)
352 if (!debug_lockdep_rcu_enabled())
354 if (rcu_is_cpu_idle())
356 if (!rcu_lockdep_current_cpu_online())
358 return lock_is_held(&rcu_lock_map);
362 * rcu_read_lock_bh_held() is defined out of line to avoid #include-file
365 extern int rcu_read_lock_bh_held(void);
368 * rcu_read_lock_sched_held() - might we be in RCU-sched read-side critical section?
370 * If CONFIG_DEBUG_LOCK_ALLOC is selected, returns nonzero iff in an
371 * RCU-sched read-side critical section. In absence of
372 * CONFIG_DEBUG_LOCK_ALLOC, this assumes we are in an RCU-sched read-side
373 * critical section unless it can prove otherwise. Note that disabling
374 * of preemption (including disabling irqs) counts as an RCU-sched
375 * read-side critical section. This is useful for debug checks in functions
376 * that required that they be called within an RCU-sched read-side
379 * Check debug_lockdep_rcu_enabled() to prevent false positives during boot
380 * and while lockdep is disabled.
382 * Note that if the CPU is in the idle loop from an RCU point of
383 * view (ie: that we are in the section between rcu_idle_enter() and
384 * rcu_idle_exit()) then rcu_read_lock_held() returns false even if the CPU
385 * did an rcu_read_lock(). The reason for this is that RCU ignores CPUs
386 * that are in such a section, considering these as in extended quiescent
387 * state, so such a CPU is effectively never in an RCU read-side critical
388 * section regardless of what RCU primitives it invokes. This state of
389 * affairs is required --- we need to keep an RCU-free window in idle
390 * where the CPU may possibly enter into low power mode. This way we can
391 * notice an extended quiescent state to other CPUs that started a grace
392 * period. Otherwise we would delay any grace period as long as we run in
395 * Similarly, we avoid claiming an SRCU read lock held if the current
398 #ifdef CONFIG_PREEMPT_COUNT
399 static inline int rcu_read_lock_sched_held(void)
401 int lockdep_opinion = 0;
403 if (!debug_lockdep_rcu_enabled())
405 if (rcu_is_cpu_idle())
407 if (!rcu_lockdep_current_cpu_online())
410 lockdep_opinion = lock_is_held(&rcu_sched_lock_map);
411 return lockdep_opinion || preempt_count() != 0 || irqs_disabled();
413 #else /* #ifdef CONFIG_PREEMPT_COUNT */
414 static inline int rcu_read_lock_sched_held(void)
418 #endif /* #else #ifdef CONFIG_PREEMPT_COUNT */
420 #else /* #ifdef CONFIG_DEBUG_LOCK_ALLOC */
422 # define rcu_lock_acquire(a) do { } while (0)
423 # define rcu_lock_release(a) do { } while (0)
425 static inline int rcu_read_lock_held(void)
430 static inline int rcu_read_lock_bh_held(void)
435 #ifdef CONFIG_PREEMPT_COUNT
436 static inline int rcu_read_lock_sched_held(void)
438 return preempt_count() != 0 || irqs_disabled();
440 #else /* #ifdef CONFIG_PREEMPT_COUNT */
441 static inline int rcu_read_lock_sched_held(void)
445 #endif /* #else #ifdef CONFIG_PREEMPT_COUNT */
447 #endif /* #else #ifdef CONFIG_DEBUG_LOCK_ALLOC */
449 #ifdef CONFIG_PROVE_RCU
451 extern int rcu_my_thread_group_empty(void);
454 * rcu_lockdep_assert - emit lockdep splat if specified condition not met
455 * @c: condition to check
456 * @s: informative message
458 #define rcu_lockdep_assert(c, s) \
460 static bool __section(.data.unlikely) __warned; \
461 if (debug_lockdep_rcu_enabled() && !__warned && !(c)) { \
463 lockdep_rcu_suspicious(__FILE__, __LINE__, s); \
467 #if defined(CONFIG_PROVE_RCU) && !defined(CONFIG_PREEMPT_RCU)
468 static inline void rcu_preempt_sleep_check(void)
470 rcu_lockdep_assert(!lock_is_held(&rcu_lock_map),
471 "Illegal context switch in RCU read-side critical section");
473 #else /* #ifdef CONFIG_PROVE_RCU */
474 static inline void rcu_preempt_sleep_check(void)
477 #endif /* #else #ifdef CONFIG_PROVE_RCU */
479 #define rcu_sleep_check() \
481 rcu_preempt_sleep_check(); \
482 rcu_lockdep_assert(!lock_is_held(&rcu_bh_lock_map), \
483 "Illegal context switch in RCU-bh" \
484 " read-side critical section"); \
485 rcu_lockdep_assert(!lock_is_held(&rcu_sched_lock_map), \
486 "Illegal context switch in RCU-sched"\
487 " read-side critical section"); \
490 #else /* #ifdef CONFIG_PROVE_RCU */
492 #define rcu_lockdep_assert(c, s) do { } while (0)
493 #define rcu_sleep_check() do { } while (0)
495 #endif /* #else #ifdef CONFIG_PROVE_RCU */
498 * Helper functions for rcu_dereference_check(), rcu_dereference_protected()
499 * and rcu_assign_pointer(). Some of these could be folded into their
500 * callers, but they are left separate in order to ease introduction of
501 * multiple flavors of pointers to match the multiple flavors of RCU
502 * (e.g., __rcu_bh, * __rcu_sched, and __srcu), should this make sense in
507 #define rcu_dereference_sparse(p, space) \
508 ((void)(((typeof(*p) space *)p) == p))
509 #else /* #ifdef __CHECKER__ */
510 #define rcu_dereference_sparse(p, space)
511 #endif /* #else #ifdef __CHECKER__ */
513 #define __rcu_access_pointer(p, space) \
515 typeof(*p) *_________p1 = (typeof(*p)*__force )ACCESS_ONCE(p); \
516 rcu_dereference_sparse(p, space); \
517 ((typeof(*p) __force __kernel *)(_________p1)); \
519 #define __rcu_dereference_check(p, c, space) \
521 typeof(*p) *_________p1 = (typeof(*p)*__force )ACCESS_ONCE(p); \
522 rcu_lockdep_assert(c, "suspicious rcu_dereference_check()" \
524 rcu_dereference_sparse(p, space); \
525 smp_read_barrier_depends(); \
526 ((typeof(*p) __force __kernel *)(_________p1)); \
528 #define __rcu_dereference_protected(p, c, space) \
530 rcu_lockdep_assert(c, "suspicious rcu_dereference_protected()" \
532 rcu_dereference_sparse(p, space); \
533 ((typeof(*p) __force __kernel *)(p)); \
536 #define __rcu_access_index(p, space) \
538 typeof(p) _________p1 = ACCESS_ONCE(p); \
539 rcu_dereference_sparse(p, space); \
542 #define __rcu_dereference_index_check(p, c) \
544 typeof(p) _________p1 = ACCESS_ONCE(p); \
545 rcu_lockdep_assert(c, \
546 "suspicious rcu_dereference_index_check()" \
548 smp_read_barrier_depends(); \
551 #define __rcu_assign_pointer(p, v, space) \
554 (p) = (typeof(*v) __force space *)(v); \
559 * rcu_access_pointer() - fetch RCU pointer with no dereferencing
560 * @p: The pointer to read
562 * Return the value of the specified RCU-protected pointer, but omit the
563 * smp_read_barrier_depends() and keep the ACCESS_ONCE(). This is useful
564 * when the value of this pointer is accessed, but the pointer is not
565 * dereferenced, for example, when testing an RCU-protected pointer against
566 * NULL. Although rcu_access_pointer() may also be used in cases where
567 * update-side locks prevent the value of the pointer from changing, you
568 * should instead use rcu_dereference_protected() for this use case.
570 * It is also permissible to use rcu_access_pointer() when read-side
571 * access to the pointer was removed at least one grace period ago, as
572 * is the case in the context of the RCU callback that is freeing up
573 * the data, or after a synchronize_rcu() returns. This can be useful
574 * when tearing down multi-linked structures after a grace period
577 #define rcu_access_pointer(p) __rcu_access_pointer((p), __rcu)
580 * rcu_dereference_check() - rcu_dereference with debug checking
581 * @p: The pointer to read, prior to dereferencing
582 * @c: The conditions under which the dereference will take place
584 * Do an rcu_dereference(), but check that the conditions under which the
585 * dereference will take place are correct. Typically the conditions
586 * indicate the various locking conditions that should be held at that
587 * point. The check should return true if the conditions are satisfied.
588 * An implicit check for being in an RCU read-side critical section
589 * (rcu_read_lock()) is included.
593 * bar = rcu_dereference_check(foo->bar, lockdep_is_held(&foo->lock));
595 * could be used to indicate to lockdep that foo->bar may only be dereferenced
596 * if either rcu_read_lock() is held, or that the lock required to replace
597 * the bar struct at foo->bar is held.
599 * Note that the list of conditions may also include indications of when a lock
600 * need not be held, for example during initialisation or destruction of the
603 * bar = rcu_dereference_check(foo->bar, lockdep_is_held(&foo->lock) ||
604 * atomic_read(&foo->usage) == 0);
606 * Inserts memory barriers on architectures that require them
607 * (currently only the Alpha), prevents the compiler from refetching
608 * (and from merging fetches), and, more importantly, documents exactly
609 * which pointers are protected by RCU and checks that the pointer is
610 * annotated as __rcu.
612 #define rcu_dereference_check(p, c) \
613 __rcu_dereference_check((p), rcu_read_lock_held() || (c), __rcu)
616 * rcu_dereference_bh_check() - rcu_dereference_bh with debug checking
617 * @p: The pointer to read, prior to dereferencing
618 * @c: The conditions under which the dereference will take place
620 * This is the RCU-bh counterpart to rcu_dereference_check().
622 #define rcu_dereference_bh_check(p, c) \
623 __rcu_dereference_check((p), rcu_read_lock_bh_held() || (c), __rcu)
626 * rcu_dereference_sched_check() - rcu_dereference_sched with debug checking
627 * @p: The pointer to read, prior to dereferencing
628 * @c: The conditions under which the dereference will take place
630 * This is the RCU-sched counterpart to rcu_dereference_check().
632 #define rcu_dereference_sched_check(p, c) \
633 __rcu_dereference_check((p), rcu_read_lock_sched_held() || (c), \
636 #define rcu_dereference_raw(p) rcu_dereference_check(p, 1) /*@@@ needed? @@@*/
639 * The tracing infrastructure traces RCU (we want that), but unfortunately
640 * some of the RCU checks causes tracing to lock up the system.
642 * The tracing version of rcu_dereference_raw() must not call
643 * rcu_read_lock_held().
645 #define rcu_dereference_raw_notrace(p) __rcu_dereference_check((p), 1, __rcu)
648 * rcu_access_index() - fetch RCU index with no dereferencing
649 * @p: The index to read
651 * Return the value of the specified RCU-protected index, but omit the
652 * smp_read_barrier_depends() and keep the ACCESS_ONCE(). This is useful
653 * when the value of this index is accessed, but the index is not
654 * dereferenced, for example, when testing an RCU-protected index against
655 * -1. Although rcu_access_index() may also be used in cases where
656 * update-side locks prevent the value of the index from changing, you
657 * should instead use rcu_dereference_index_protected() for this use case.
659 #define rcu_access_index(p) __rcu_access_index((p), __rcu)
662 * rcu_dereference_index_check() - rcu_dereference for indices with debug checking
663 * @p: The pointer to read, prior to dereferencing
664 * @c: The conditions under which the dereference will take place
666 * Similar to rcu_dereference_check(), but omits the sparse checking.
667 * This allows rcu_dereference_index_check() to be used on integers,
668 * which can then be used as array indices. Attempting to use
669 * rcu_dereference_check() on an integer will give compiler warnings
670 * because the sparse address-space mechanism relies on dereferencing
671 * the RCU-protected pointer. Dereferencing integers is not something
672 * that even gcc will put up with.
674 * Note that this function does not implicitly check for RCU read-side
675 * critical sections. If this function gains lots of uses, it might
676 * make sense to provide versions for each flavor of RCU, but it does
677 * not make sense as of early 2010.
679 #define rcu_dereference_index_check(p, c) \
680 __rcu_dereference_index_check((p), (c))
683 * rcu_dereference_protected() - fetch RCU pointer when updates prevented
684 * @p: The pointer to read, prior to dereferencing
685 * @c: The conditions under which the dereference will take place
687 * Return the value of the specified RCU-protected pointer, but omit
688 * both the smp_read_barrier_depends() and the ACCESS_ONCE(). This
689 * is useful in cases where update-side locks prevent the value of the
690 * pointer from changing. Please note that this primitive does -not-
691 * prevent the compiler from repeating this reference or combining it
692 * with other references, so it should not be used without protection
693 * of appropriate locks.
695 * This function is only for update-side use. Using this function
696 * when protected only by rcu_read_lock() will result in infrequent
697 * but very ugly failures.
699 #define rcu_dereference_protected(p, c) \
700 __rcu_dereference_protected((p), (c), __rcu)
704 * rcu_dereference() - fetch RCU-protected pointer for dereferencing
705 * @p: The pointer to read, prior to dereferencing
707 * This is a simple wrapper around rcu_dereference_check().
709 #define rcu_dereference(p) rcu_dereference_check(p, 0)
712 * rcu_dereference_bh() - fetch an RCU-bh-protected pointer for dereferencing
713 * @p: The pointer to read, prior to dereferencing
715 * Makes rcu_dereference_check() do the dirty work.
717 #define rcu_dereference_bh(p) rcu_dereference_bh_check(p, 0)
720 * rcu_dereference_sched() - fetch RCU-sched-protected pointer for dereferencing
721 * @p: The pointer to read, prior to dereferencing
723 * Makes rcu_dereference_check() do the dirty work.
725 #define rcu_dereference_sched(p) rcu_dereference_sched_check(p, 0)
728 * rcu_read_lock() - mark the beginning of an RCU read-side critical section
730 * When synchronize_rcu() is invoked on one CPU while other CPUs
731 * are within RCU read-side critical sections, then the
732 * synchronize_rcu() is guaranteed to block until after all the other
733 * CPUs exit their critical sections. Similarly, if call_rcu() is invoked
734 * on one CPU while other CPUs are within RCU read-side critical
735 * sections, invocation of the corresponding RCU callback is deferred
736 * until after the all the other CPUs exit their critical sections.
738 * Note, however, that RCU callbacks are permitted to run concurrently
739 * with new RCU read-side critical sections. One way that this can happen
740 * is via the following sequence of events: (1) CPU 0 enters an RCU
741 * read-side critical section, (2) CPU 1 invokes call_rcu() to register
742 * an RCU callback, (3) CPU 0 exits the RCU read-side critical section,
743 * (4) CPU 2 enters a RCU read-side critical section, (5) the RCU
744 * callback is invoked. This is legal, because the RCU read-side critical
745 * section that was running concurrently with the call_rcu() (and which
746 * therefore might be referencing something that the corresponding RCU
747 * callback would free up) has completed before the corresponding
748 * RCU callback is invoked.
750 * RCU read-side critical sections may be nested. Any deferred actions
751 * will be deferred until the outermost RCU read-side critical section
754 * You can avoid reading and understanding the next paragraph by
755 * following this rule: don't put anything in an rcu_read_lock() RCU
756 * read-side critical section that would block in a !PREEMPT kernel.
757 * But if you want the full story, read on!
759 * In non-preemptible RCU implementations (TREE_RCU and TINY_RCU), it
760 * is illegal to block while in an RCU read-side critical section. In
761 * preemptible RCU implementations (TREE_PREEMPT_RCU and TINY_PREEMPT_RCU)
762 * in CONFIG_PREEMPT kernel builds, RCU read-side critical sections may
763 * be preempted, but explicit blocking is illegal. Finally, in preemptible
764 * RCU implementations in real-time (with -rt patchset) kernel builds,
765 * RCU read-side critical sections may be preempted and they may also
766 * block, but only when acquiring spinlocks that are subject to priority
769 static inline void rcu_read_lock(void)
773 rcu_lock_acquire(&rcu_lock_map);
774 rcu_lockdep_assert(!rcu_is_cpu_idle(),
775 "rcu_read_lock() used illegally while idle");
779 * So where is rcu_write_lock()? It does not exist, as there is no
780 * way for writers to lock out RCU readers. This is a feature, not
781 * a bug -- this property is what provides RCU's performance benefits.
782 * Of course, writers must coordinate with each other. The normal
783 * spinlock primitives work well for this, but any other technique may be
784 * used as well. RCU does not care how the writers keep out of each
785 * others' way, as long as they do so.
789 * rcu_read_unlock() - marks the end of an RCU read-side critical section.
791 * See rcu_read_lock() for more information.
793 static inline void rcu_read_unlock(void)
795 rcu_lockdep_assert(!rcu_is_cpu_idle(),
796 "rcu_read_unlock() used illegally while idle");
797 rcu_lock_release(&rcu_lock_map);
803 * rcu_read_lock_bh() - mark the beginning of an RCU-bh critical section
805 * This is equivalent of rcu_read_lock(), but to be used when updates
806 * are being done using call_rcu_bh() or synchronize_rcu_bh(). Since
807 * both call_rcu_bh() and synchronize_rcu_bh() consider completion of a
808 * softirq handler to be a quiescent state, a process in RCU read-side
809 * critical section must be protected by disabling softirqs. Read-side
810 * critical sections in interrupt context can use just rcu_read_lock(),
811 * though this should at least be commented to avoid confusing people
814 * Note that rcu_read_lock_bh() and the matching rcu_read_unlock_bh()
815 * must occur in the same context, for example, it is illegal to invoke
816 * rcu_read_unlock_bh() from one task if the matching rcu_read_lock_bh()
817 * was invoked from some other task.
819 static inline void rcu_read_lock_bh(void)
823 rcu_lock_acquire(&rcu_bh_lock_map);
824 rcu_lockdep_assert(!rcu_is_cpu_idle(),
825 "rcu_read_lock_bh() used illegally while idle");
829 * rcu_read_unlock_bh - marks the end of a softirq-only RCU critical section
831 * See rcu_read_lock_bh() for more information.
833 static inline void rcu_read_unlock_bh(void)
835 rcu_lockdep_assert(!rcu_is_cpu_idle(),
836 "rcu_read_unlock_bh() used illegally while idle");
837 rcu_lock_release(&rcu_bh_lock_map);
843 * rcu_read_lock_sched() - mark the beginning of a RCU-sched critical section
845 * This is equivalent of rcu_read_lock(), but to be used when updates
846 * are being done using call_rcu_sched() or synchronize_rcu_sched().
847 * Read-side critical sections can also be introduced by anything that
848 * disables preemption, including local_irq_disable() and friends.
850 * Note that rcu_read_lock_sched() and the matching rcu_read_unlock_sched()
851 * must occur in the same context, for example, it is illegal to invoke
852 * rcu_read_unlock_sched() from process context if the matching
853 * rcu_read_lock_sched() was invoked from an NMI handler.
855 static inline void rcu_read_lock_sched(void)
858 __acquire(RCU_SCHED);
859 rcu_lock_acquire(&rcu_sched_lock_map);
860 rcu_lockdep_assert(!rcu_is_cpu_idle(),
861 "rcu_read_lock_sched() used illegally while idle");
864 /* Used by lockdep and tracing: cannot be traced, cannot call lockdep. */
865 static inline notrace void rcu_read_lock_sched_notrace(void)
867 preempt_disable_notrace();
868 __acquire(RCU_SCHED);
872 * rcu_read_unlock_sched - marks the end of a RCU-classic critical section
874 * See rcu_read_lock_sched for more information.
876 static inline void rcu_read_unlock_sched(void)
878 rcu_lockdep_assert(!rcu_is_cpu_idle(),
879 "rcu_read_unlock_sched() used illegally while idle");
880 rcu_lock_release(&rcu_sched_lock_map);
881 __release(RCU_SCHED);
885 /* Used by lockdep and tracing: cannot be traced, cannot call lockdep. */
886 static inline notrace void rcu_read_unlock_sched_notrace(void)
888 __release(RCU_SCHED);
889 preempt_enable_notrace();
893 * rcu_assign_pointer() - assign to RCU-protected pointer
894 * @p: pointer to assign to
895 * @v: value to assign (publish)
897 * Assigns the specified value to the specified RCU-protected
898 * pointer, ensuring that any concurrent RCU readers will see
899 * any prior initialization.
901 * Inserts memory barriers on architectures that require them
902 * (which is most of them), and also prevents the compiler from
903 * reordering the code that initializes the structure after the pointer
904 * assignment. More importantly, this call documents which pointers
905 * will be dereferenced by RCU read-side code.
907 * In some special cases, you may use RCU_INIT_POINTER() instead
908 * of rcu_assign_pointer(). RCU_INIT_POINTER() is a bit faster due
909 * to the fact that it does not constrain either the CPU or the compiler.
910 * That said, using RCU_INIT_POINTER() when you should have used
911 * rcu_assign_pointer() is a very bad thing that results in
912 * impossible-to-diagnose memory corruption. So please be careful.
913 * See the RCU_INIT_POINTER() comment header for details.
915 #define rcu_assign_pointer(p, v) \
916 __rcu_assign_pointer((p), (v), __rcu)
919 * RCU_INIT_POINTER() - initialize an RCU protected pointer
921 * Initialize an RCU-protected pointer in special cases where readers
922 * do not need ordering constraints on the CPU or the compiler. These
925 * 1. This use of RCU_INIT_POINTER() is NULLing out the pointer -or-
926 * 2. The caller has taken whatever steps are required to prevent
927 * RCU readers from concurrently accessing this pointer -or-
928 * 3. The referenced data structure has already been exposed to
929 * readers either at compile time or via rcu_assign_pointer() -and-
930 * a. You have not made -any- reader-visible changes to
931 * this structure since then -or-
932 * b. It is OK for readers accessing this structure from its
933 * new location to see the old state of the structure. (For
934 * example, the changes were to statistical counters or to
935 * other state where exact synchronization is not required.)
937 * Failure to follow these rules governing use of RCU_INIT_POINTER() will
938 * result in impossible-to-diagnose memory corruption. As in the structures
939 * will look OK in crash dumps, but any concurrent RCU readers might
940 * see pre-initialized values of the referenced data structure. So
941 * please be very careful how you use RCU_INIT_POINTER()!!!
943 * If you are creating an RCU-protected linked structure that is accessed
944 * by a single external-to-structure RCU-protected pointer, then you may
945 * use RCU_INIT_POINTER() to initialize the internal RCU-protected
946 * pointers, but you must use rcu_assign_pointer() to initialize the
947 * external-to-structure pointer -after- you have completely initialized
948 * the reader-accessible portions of the linked structure.
950 #define RCU_INIT_POINTER(p, v) \
952 p = (typeof(*v) __force __rcu *)(v); \
956 * RCU_POINTER_INITIALIZER() - statically initialize an RCU protected pointer
958 * GCC-style initialization for an RCU-protected pointer in a structure field.
960 #define RCU_POINTER_INITIALIZER(p, v) \
961 .p = (typeof(*v) __force __rcu *)(v)
964 * Does the specified offset indicate that the corresponding rcu_head
965 * structure can be handled by kfree_rcu()?
967 #define __is_kfree_rcu_offset(offset) ((offset) < 4096)
970 * Helper macro for kfree_rcu() to prevent argument-expansion eyestrain.
972 #define __kfree_rcu(head, offset) \
974 BUILD_BUG_ON(!__is_kfree_rcu_offset(offset)); \
975 kfree_call_rcu(head, (void (*)(struct rcu_head *))(unsigned long)(offset)); \
979 * kfree_rcu() - kfree an object after a grace period.
980 * @ptr: pointer to kfree
981 * @rcu_head: the name of the struct rcu_head within the type of @ptr.
983 * Many rcu callbacks functions just call kfree() on the base structure.
984 * These functions are trivial, but their size adds up, and furthermore
985 * when they are used in a kernel module, that module must invoke the
986 * high-latency rcu_barrier() function at module-unload time.
988 * The kfree_rcu() function handles this issue. Rather than encoding a
989 * function address in the embedded rcu_head structure, kfree_rcu() instead
990 * encodes the offset of the rcu_head structure within the base structure.
991 * Because the functions are not allowed in the low-order 4096 bytes of
992 * kernel virtual memory, offsets up to 4095 bytes can be accommodated.
993 * If the offset is larger than 4095 bytes, a compile-time error will
994 * be generated in __kfree_rcu(). If this error is triggered, you can
995 * either fall back to use of call_rcu() or rearrange the structure to
996 * position the rcu_head structure into the first 4096 bytes.
998 * Note that the allowable offset might decrease in the future, for example,
999 * to allow something like kmem_cache_free_rcu().
1001 * The BUILD_BUG_ON check must not involve any function calls, hence the
1002 * checks are done in macros here.
1004 #define kfree_rcu(ptr, rcu_head) \
1005 __kfree_rcu(&((ptr)->rcu_head), offsetof(typeof(*(ptr)), rcu_head))
1007 #ifdef CONFIG_RCU_NOCB_CPU
1008 extern bool rcu_is_nocb_cpu(int cpu);
1010 static inline bool rcu_is_nocb_cpu(int cpu) { return false; }
1011 #endif /* #else #ifdef CONFIG_RCU_NOCB_CPU */
1014 /* Only for use by adaptive-ticks code. */
1015 #ifdef CONFIG_NO_HZ_FULL_SYSIDLE
1016 extern bool rcu_sys_is_idle(void);
1017 extern void rcu_sysidle_force_exit(void);
1018 #else /* #ifdef CONFIG_NO_HZ_FULL_SYSIDLE */
1020 static inline bool rcu_sys_is_idle(void)
1025 static inline void rcu_sysidle_force_exit(void)
1029 #endif /* #else #ifdef CONFIG_NO_HZ_FULL_SYSIDLE */
1032 #endif /* __LINUX_RCUPDATE_H */