1 /* SPDX-License-Identifier: GPL-2.0+ */
3 * Read-Copy Update mechanism for mutual exclusion
5 * Copyright IBM Corporation, 2001
7 * Author: Dipankar Sarma <dipankar@in.ibm.com>
9 * Based on the original work by Paul McKenney <paulmck@vnet.ibm.com>
10 * and inputs from Rusty Russell, Andrea Arcangeli and Andi Kleen.
12 * http://www.rdrop.com/users/paulmck/paper/rclockpdcsproof.pdf
13 * http://lse.sourceforge.net/locking/rclock_OLS.2001.05.01c.sc.pdf (OLS2001)
15 * For detailed explanation of Read-Copy Update mechanism see -
16 * http://lse.sourceforge.net/locking/rcupdate.html
20 #ifndef __LINUX_RCUPDATE_H
21 #define __LINUX_RCUPDATE_H
23 #include <linux/types.h>
24 #include <linux/compiler.h>
25 #include <linux/atomic.h>
26 #include <linux/irqflags.h>
27 #include <linux/preempt.h>
28 #include <linux/bottom_half.h>
29 #include <linux/lockdep.h>
30 #include <asm/processor.h>
31 #include <linux/cpumask.h>
33 #define ULONG_CMP_GE(a, b) (ULONG_MAX / 2 >= (a) - (b))
34 #define ULONG_CMP_LT(a, b) (ULONG_MAX / 2 < (a) - (b))
35 #define ulong2long(a) (*(long *)(&(a)))
36 #define USHORT_CMP_GE(a, b) (USHRT_MAX / 2 >= (unsigned short)((a) - (b)))
37 #define USHORT_CMP_LT(a, b) (USHRT_MAX / 2 < (unsigned short)((a) - (b)))
39 /* Exported common interfaces */
40 void call_rcu(struct rcu_head *head, rcu_callback_t func);
41 void rcu_barrier_tasks(void);
42 void rcu_barrier_tasks_rude(void);
43 void synchronize_rcu(void);
45 #ifdef CONFIG_PREEMPT_RCU
47 void __rcu_read_lock(void);
48 void __rcu_read_unlock(void);
51 * Defined as a macro as it is a very low level header included from
52 * areas that don't even know about current. This gives the rcu_read_lock()
53 * nesting depth, but makes sense only if CONFIG_PREEMPT_RCU -- in other
54 * types of kernel builds, the rcu_read_lock() nesting depth is unknowable.
56 #define rcu_preempt_depth() (current->rcu_read_lock_nesting)
58 #else /* #ifdef CONFIG_PREEMPT_RCU */
60 #ifdef CONFIG_TINY_RCU
61 #define rcu_read_unlock_strict() do { } while (0)
63 void rcu_read_unlock_strict(void);
66 static inline void __rcu_read_lock(void)
71 static inline void __rcu_read_unlock(void)
74 rcu_read_unlock_strict();
77 static inline int rcu_preempt_depth(void)
82 #endif /* #else #ifdef CONFIG_PREEMPT_RCU */
84 /* Internal to kernel */
86 extern int rcu_scheduler_active __read_mostly;
87 void rcu_sched_clock_irq(int user);
88 void rcu_report_dead(unsigned int cpu);
89 void rcutree_migrate_callbacks(int cpu);
91 #ifdef CONFIG_TASKS_RCU_GENERIC
92 void rcu_init_tasks_generic(void);
94 static inline void rcu_init_tasks_generic(void) { }
97 #ifdef CONFIG_RCU_STALL_COMMON
98 void rcu_sysrq_start(void);
99 void rcu_sysrq_end(void);
100 #else /* #ifdef CONFIG_RCU_STALL_COMMON */
101 static inline void rcu_sysrq_start(void) { }
102 static inline void rcu_sysrq_end(void) { }
103 #endif /* #else #ifdef CONFIG_RCU_STALL_COMMON */
105 #ifdef CONFIG_NO_HZ_FULL
106 void rcu_user_enter(void);
107 void rcu_user_exit(void);
109 static inline void rcu_user_enter(void) { }
110 static inline void rcu_user_exit(void) { }
111 #endif /* CONFIG_NO_HZ_FULL */
113 #ifdef CONFIG_RCU_NOCB_CPU
114 void rcu_init_nohz(void);
115 int rcu_nocb_cpu_offload(int cpu);
116 int rcu_nocb_cpu_deoffload(int cpu);
117 void rcu_nocb_flush_deferred_wakeup(void);
118 #else /* #ifdef CONFIG_RCU_NOCB_CPU */
119 static inline void rcu_init_nohz(void) { }
120 static inline int rcu_nocb_cpu_offload(int cpu) { return -EINVAL; }
121 static inline int rcu_nocb_cpu_deoffload(int cpu) { return 0; }
122 static inline void rcu_nocb_flush_deferred_wakeup(void) { }
123 #endif /* #else #ifdef CONFIG_RCU_NOCB_CPU */
126 * RCU_NONIDLE - Indicate idle-loop code that needs RCU readers
127 * @a: Code that RCU needs to pay attention to.
129 * RCU read-side critical sections are forbidden in the inner idle loop,
130 * that is, between the rcu_idle_enter() and the rcu_idle_exit() -- RCU
131 * will happily ignore any such read-side critical sections. However,
132 * things like powertop need tracepoints in the inner idle loop.
134 * This macro provides the way out: RCU_NONIDLE(do_something_with_RCU())
135 * will tell RCU that it needs to pay attention, invoke its argument
136 * (in this example, calling the do_something_with_RCU() function),
137 * and then tell RCU to go back to ignoring this CPU. It is permissible
138 * to nest RCU_NONIDLE() wrappers, but not indefinitely (but the limit is
139 * on the order of a million or so, even on 32-bit systems). It is
140 * not legal to block within RCU_NONIDLE(), nor is it permissible to
141 * transfer control either into or out of RCU_NONIDLE()'s statement.
143 #define RCU_NONIDLE(a) \
145 rcu_irq_enter_irqson(); \
146 do { a; } while (0); \
147 rcu_irq_exit_irqson(); \
151 * Note a quasi-voluntary context switch for RCU-tasks's benefit.
152 * This is a macro rather than an inline function to avoid #include hell.
154 #ifdef CONFIG_TASKS_RCU_GENERIC
156 # ifdef CONFIG_TASKS_RCU
157 # define rcu_tasks_classic_qs(t, preempt) \
159 if (!(preempt) && READ_ONCE((t)->rcu_tasks_holdout)) \
160 WRITE_ONCE((t)->rcu_tasks_holdout, false); \
162 void call_rcu_tasks(struct rcu_head *head, rcu_callback_t func);
163 void synchronize_rcu_tasks(void);
165 # define rcu_tasks_classic_qs(t, preempt) do { } while (0)
166 # define call_rcu_tasks call_rcu
167 # define synchronize_rcu_tasks synchronize_rcu
170 # ifdef CONFIG_TASKS_RCU_TRACE
171 # define rcu_tasks_trace_qs(t) \
173 if (!likely(READ_ONCE((t)->trc_reader_checked)) && \
174 !unlikely(READ_ONCE((t)->trc_reader_nesting))) { \
175 smp_store_release(&(t)->trc_reader_checked, true); \
176 smp_mb(); /* Readers partitioned by store. */ \
180 # define rcu_tasks_trace_qs(t) do { } while (0)
183 #define rcu_tasks_qs(t, preempt) \
185 rcu_tasks_classic_qs((t), (preempt)); \
186 rcu_tasks_trace_qs((t)); \
189 # ifdef CONFIG_TASKS_RUDE_RCU
190 void call_rcu_tasks_rude(struct rcu_head *head, rcu_callback_t func);
191 void synchronize_rcu_tasks_rude(void);
194 #define rcu_note_voluntary_context_switch(t) rcu_tasks_qs(t, false)
195 void exit_tasks_rcu_start(void);
196 void exit_tasks_rcu_finish(void);
197 #else /* #ifdef CONFIG_TASKS_RCU_GENERIC */
198 #define rcu_tasks_qs(t, preempt) do { } while (0)
199 #define rcu_note_voluntary_context_switch(t) do { } while (0)
200 #define call_rcu_tasks call_rcu
201 #define synchronize_rcu_tasks synchronize_rcu
202 static inline void exit_tasks_rcu_start(void) { }
203 static inline void exit_tasks_rcu_finish(void) { }
204 #endif /* #else #ifdef CONFIG_TASKS_RCU_GENERIC */
207 * cond_resched_tasks_rcu_qs - Report potential quiescent states to RCU
209 * This macro resembles cond_resched(), except that it is defined to
210 * report potential quiescent states to RCU-tasks even if the cond_resched()
211 * machinery were to be shut off, as some advocate for PREEMPTION kernels.
213 #define cond_resched_tasks_rcu_qs() \
215 rcu_tasks_qs(current, false); \
220 * Infrastructure to implement the synchronize_() primitives in
221 * TREE_RCU and rcu_barrier_() primitives in TINY_RCU.
224 #if defined(CONFIG_TREE_RCU)
225 #include <linux/rcutree.h>
226 #elif defined(CONFIG_TINY_RCU)
227 #include <linux/rcutiny.h>
229 #error "Unknown RCU implementation specified to kernel configuration"
233 * The init_rcu_head_on_stack() and destroy_rcu_head_on_stack() calls
234 * are needed for dynamic initialization and destruction of rcu_head
235 * on the stack, and init_rcu_head()/destroy_rcu_head() are needed for
236 * dynamic initialization and destruction of statically allocated rcu_head
237 * structures. However, rcu_head structures allocated dynamically in the
238 * heap don't need any initialization.
240 #ifdef CONFIG_DEBUG_OBJECTS_RCU_HEAD
241 void init_rcu_head(struct rcu_head *head);
242 void destroy_rcu_head(struct rcu_head *head);
243 void init_rcu_head_on_stack(struct rcu_head *head);
244 void destroy_rcu_head_on_stack(struct rcu_head *head);
245 #else /* !CONFIG_DEBUG_OBJECTS_RCU_HEAD */
246 static inline void init_rcu_head(struct rcu_head *head) { }
247 static inline void destroy_rcu_head(struct rcu_head *head) { }
248 static inline void init_rcu_head_on_stack(struct rcu_head *head) { }
249 static inline void destroy_rcu_head_on_stack(struct rcu_head *head) { }
250 #endif /* #else !CONFIG_DEBUG_OBJECTS_RCU_HEAD */
252 #if defined(CONFIG_HOTPLUG_CPU) && defined(CONFIG_PROVE_RCU)
253 bool rcu_lockdep_current_cpu_online(void);
254 #else /* #if defined(CONFIG_HOTPLUG_CPU) && defined(CONFIG_PROVE_RCU) */
255 static inline bool rcu_lockdep_current_cpu_online(void) { return true; }
256 #endif /* #else #if defined(CONFIG_HOTPLUG_CPU) && defined(CONFIG_PROVE_RCU) */
258 extern struct lockdep_map rcu_lock_map;
259 extern struct lockdep_map rcu_bh_lock_map;
260 extern struct lockdep_map rcu_sched_lock_map;
261 extern struct lockdep_map rcu_callback_map;
263 #ifdef CONFIG_DEBUG_LOCK_ALLOC
265 static inline void rcu_lock_acquire(struct lockdep_map *map)
267 lock_acquire(map, 0, 0, 2, 0, NULL, _THIS_IP_);
270 static inline void rcu_lock_release(struct lockdep_map *map)
272 lock_release(map, _THIS_IP_);
275 int debug_lockdep_rcu_enabled(void);
276 int rcu_read_lock_held(void);
277 int rcu_read_lock_bh_held(void);
278 int rcu_read_lock_sched_held(void);
279 int rcu_read_lock_any_held(void);
281 #else /* #ifdef CONFIG_DEBUG_LOCK_ALLOC */
283 # define rcu_lock_acquire(a) do { } while (0)
284 # define rcu_lock_release(a) do { } while (0)
286 static inline int rcu_read_lock_held(void)
291 static inline int rcu_read_lock_bh_held(void)
296 static inline int rcu_read_lock_sched_held(void)
298 return !preemptible();
301 static inline int rcu_read_lock_any_held(void)
303 return !preemptible();
306 #endif /* #else #ifdef CONFIG_DEBUG_LOCK_ALLOC */
308 #ifdef CONFIG_PROVE_RCU
311 * RCU_LOCKDEP_WARN - emit lockdep splat if specified condition is met
312 * @c: condition to check
313 * @s: informative message
315 #define RCU_LOCKDEP_WARN(c, s) \
317 static bool __section(".data.unlikely") __warned; \
318 if (debug_lockdep_rcu_enabled() && !__warned && (c)) { \
320 lockdep_rcu_suspicious(__FILE__, __LINE__, s); \
324 #if defined(CONFIG_PROVE_RCU) && !defined(CONFIG_PREEMPT_RCU)
325 static inline void rcu_preempt_sleep_check(void)
327 RCU_LOCKDEP_WARN(lock_is_held(&rcu_lock_map),
328 "Illegal context switch in RCU read-side critical section");
330 #else /* #ifdef CONFIG_PROVE_RCU */
331 static inline void rcu_preempt_sleep_check(void) { }
332 #endif /* #else #ifdef CONFIG_PROVE_RCU */
334 #define rcu_sleep_check() \
336 rcu_preempt_sleep_check(); \
337 RCU_LOCKDEP_WARN(lock_is_held(&rcu_bh_lock_map), \
338 "Illegal context switch in RCU-bh read-side critical section"); \
339 RCU_LOCKDEP_WARN(lock_is_held(&rcu_sched_lock_map), \
340 "Illegal context switch in RCU-sched read-side critical section"); \
343 #else /* #ifdef CONFIG_PROVE_RCU */
345 #define RCU_LOCKDEP_WARN(c, s) do { } while (0 && (c))
346 #define rcu_sleep_check() do { } while (0)
348 #endif /* #else #ifdef CONFIG_PROVE_RCU */
351 * Helper functions for rcu_dereference_check(), rcu_dereference_protected()
352 * and rcu_assign_pointer(). Some of these could be folded into their
353 * callers, but they are left separate in order to ease introduction of
354 * multiple pointers markings to match different RCU implementations
355 * (e.g., __srcu), should this make sense in the future.
359 #define rcu_check_sparse(p, space) \
360 ((void)(((typeof(*p) space *)p) == p))
361 #else /* #ifdef __CHECKER__ */
362 #define rcu_check_sparse(p, space)
363 #endif /* #else #ifdef __CHECKER__ */
365 #define __rcu_access_pointer(p, space) \
367 typeof(*p) *_________p1 = (typeof(*p) *__force)READ_ONCE(p); \
368 rcu_check_sparse(p, space); \
369 ((typeof(*p) __force __kernel *)(_________p1)); \
371 #define __rcu_dereference_check(p, c, space) \
373 /* Dependency order vs. p above. */ \
374 typeof(*p) *________p1 = (typeof(*p) *__force)READ_ONCE(p); \
375 RCU_LOCKDEP_WARN(!(c), "suspicious rcu_dereference_check() usage"); \
376 rcu_check_sparse(p, space); \
377 ((typeof(*p) __force __kernel *)(________p1)); \
379 #define __rcu_dereference_protected(p, c, space) \
381 RCU_LOCKDEP_WARN(!(c), "suspicious rcu_dereference_protected() usage"); \
382 rcu_check_sparse(p, space); \
383 ((typeof(*p) __force __kernel *)(p)); \
385 #define rcu_dereference_raw(p) \
387 /* Dependency order vs. p above. */ \
388 typeof(p) ________p1 = READ_ONCE(p); \
389 ((typeof(*p) __force __kernel *)(________p1)); \
393 * RCU_INITIALIZER() - statically initialize an RCU-protected global variable
394 * @v: The value to statically initialize with.
396 #define RCU_INITIALIZER(v) (typeof(*(v)) __force __rcu *)(v)
399 * rcu_assign_pointer() - assign to RCU-protected pointer
400 * @p: pointer to assign to
401 * @v: value to assign (publish)
403 * Assigns the specified value to the specified RCU-protected
404 * pointer, ensuring that any concurrent RCU readers will see
405 * any prior initialization.
407 * Inserts memory barriers on architectures that require them
408 * (which is most of them), and also prevents the compiler from
409 * reordering the code that initializes the structure after the pointer
410 * assignment. More importantly, this call documents which pointers
411 * will be dereferenced by RCU read-side code.
413 * In some special cases, you may use RCU_INIT_POINTER() instead
414 * of rcu_assign_pointer(). RCU_INIT_POINTER() is a bit faster due
415 * to the fact that it does not constrain either the CPU or the compiler.
416 * That said, using RCU_INIT_POINTER() when you should have used
417 * rcu_assign_pointer() is a very bad thing that results in
418 * impossible-to-diagnose memory corruption. So please be careful.
419 * See the RCU_INIT_POINTER() comment header for details.
421 * Note that rcu_assign_pointer() evaluates each of its arguments only
422 * once, appearances notwithstanding. One of the "extra" evaluations
423 * is in typeof() and the other visible only to sparse (__CHECKER__),
424 * neither of which actually execute the argument. As with most cpp
425 * macros, this execute-arguments-only-once property is important, so
426 * please be careful when making changes to rcu_assign_pointer() and the
427 * other macros that it invokes.
429 #define rcu_assign_pointer(p, v) \
431 uintptr_t _r_a_p__v = (uintptr_t)(v); \
432 rcu_check_sparse(p, __rcu); \
434 if (__builtin_constant_p(v) && (_r_a_p__v) == (uintptr_t)NULL) \
435 WRITE_ONCE((p), (typeof(p))(_r_a_p__v)); \
437 smp_store_release(&p, RCU_INITIALIZER((typeof(p))_r_a_p__v)); \
441 * rcu_replace_pointer() - replace an RCU pointer, returning its old value
442 * @rcu_ptr: RCU pointer, whose old value is returned
443 * @ptr: regular pointer
444 * @c: the lockdep conditions under which the dereference will take place
446 * Perform a replacement, where @rcu_ptr is an RCU-annotated
447 * pointer and @c is the lockdep argument that is passed to the
448 * rcu_dereference_protected() call used to read that pointer. The old
449 * value of @rcu_ptr is returned, and @rcu_ptr is set to @ptr.
451 #define rcu_replace_pointer(rcu_ptr, ptr, c) \
453 typeof(ptr) __tmp = rcu_dereference_protected((rcu_ptr), (c)); \
454 rcu_assign_pointer((rcu_ptr), (ptr)); \
459 * rcu_access_pointer() - fetch RCU pointer with no dereferencing
460 * @p: The pointer to read
462 * Return the value of the specified RCU-protected pointer, but omit the
463 * lockdep checks for being in an RCU read-side critical section. This is
464 * useful when the value of this pointer is accessed, but the pointer is
465 * not dereferenced, for example, when testing an RCU-protected pointer
466 * against NULL. Although rcu_access_pointer() may also be used in cases
467 * where update-side locks prevent the value of the pointer from changing,
468 * you should instead use rcu_dereference_protected() for this use case.
470 * It is also permissible to use rcu_access_pointer() when read-side
471 * access to the pointer was removed at least one grace period ago, as
472 * is the case in the context of the RCU callback that is freeing up
473 * the data, or after a synchronize_rcu() returns. This can be useful
474 * when tearing down multi-linked structures after a grace period
477 #define rcu_access_pointer(p) __rcu_access_pointer((p), __rcu)
480 * rcu_dereference_check() - rcu_dereference with debug checking
481 * @p: The pointer to read, prior to dereferencing
482 * @c: The conditions under which the dereference will take place
484 * Do an rcu_dereference(), but check that the conditions under which the
485 * dereference will take place are correct. Typically the conditions
486 * indicate the various locking conditions that should be held at that
487 * point. The check should return true if the conditions are satisfied.
488 * An implicit check for being in an RCU read-side critical section
489 * (rcu_read_lock()) is included.
493 * bar = rcu_dereference_check(foo->bar, lockdep_is_held(&foo->lock));
495 * could be used to indicate to lockdep that foo->bar may only be dereferenced
496 * if either rcu_read_lock() is held, or that the lock required to replace
497 * the bar struct at foo->bar is held.
499 * Note that the list of conditions may also include indications of when a lock
500 * need not be held, for example during initialisation or destruction of the
503 * bar = rcu_dereference_check(foo->bar, lockdep_is_held(&foo->lock) ||
504 * atomic_read(&foo->usage) == 0);
506 * Inserts memory barriers on architectures that require them
507 * (currently only the Alpha), prevents the compiler from refetching
508 * (and from merging fetches), and, more importantly, documents exactly
509 * which pointers are protected by RCU and checks that the pointer is
510 * annotated as __rcu.
512 #define rcu_dereference_check(p, c) \
513 __rcu_dereference_check((p), (c) || rcu_read_lock_held(), __rcu)
516 * rcu_dereference_bh_check() - rcu_dereference_bh with debug checking
517 * @p: The pointer to read, prior to dereferencing
518 * @c: The conditions under which the dereference will take place
520 * This is the RCU-bh counterpart to rcu_dereference_check().
522 #define rcu_dereference_bh_check(p, c) \
523 __rcu_dereference_check((p), (c) || rcu_read_lock_bh_held(), __rcu)
526 * rcu_dereference_sched_check() - rcu_dereference_sched with debug checking
527 * @p: The pointer to read, prior to dereferencing
528 * @c: The conditions under which the dereference will take place
530 * This is the RCU-sched counterpart to rcu_dereference_check().
532 #define rcu_dereference_sched_check(p, c) \
533 __rcu_dereference_check((p), (c) || rcu_read_lock_sched_held(), \
537 * The tracing infrastructure traces RCU (we want that), but unfortunately
538 * some of the RCU checks causes tracing to lock up the system.
540 * The no-tracing version of rcu_dereference_raw() must not call
541 * rcu_read_lock_held().
543 #define rcu_dereference_raw_check(p) __rcu_dereference_check((p), 1, __rcu)
546 * rcu_dereference_protected() - fetch RCU pointer when updates prevented
547 * @p: The pointer to read, prior to dereferencing
548 * @c: The conditions under which the dereference will take place
550 * Return the value of the specified RCU-protected pointer, but omit
551 * the READ_ONCE(). This is useful in cases where update-side locks
552 * prevent the value of the pointer from changing. Please note that this
553 * primitive does *not* prevent the compiler from repeating this reference
554 * or combining it with other references, so it should not be used without
555 * protection of appropriate locks.
557 * This function is only for update-side use. Using this function
558 * when protected only by rcu_read_lock() will result in infrequent
559 * but very ugly failures.
561 #define rcu_dereference_protected(p, c) \
562 __rcu_dereference_protected((p), (c), __rcu)
566 * rcu_dereference() - fetch RCU-protected pointer for dereferencing
567 * @p: The pointer to read, prior to dereferencing
569 * This is a simple wrapper around rcu_dereference_check().
571 #define rcu_dereference(p) rcu_dereference_check(p, 0)
574 * rcu_dereference_bh() - fetch an RCU-bh-protected pointer for dereferencing
575 * @p: The pointer to read, prior to dereferencing
577 * Makes rcu_dereference_check() do the dirty work.
579 #define rcu_dereference_bh(p) rcu_dereference_bh_check(p, 0)
582 * rcu_dereference_sched() - fetch RCU-sched-protected pointer for dereferencing
583 * @p: The pointer to read, prior to dereferencing
585 * Makes rcu_dereference_check() do the dirty work.
587 #define rcu_dereference_sched(p) rcu_dereference_sched_check(p, 0)
590 * rcu_pointer_handoff() - Hand off a pointer from RCU to other mechanism
591 * @p: The pointer to hand off
593 * This is simply an identity function, but it documents where a pointer
594 * is handed off from RCU to some other synchronization mechanism, for
595 * example, reference counting or locking. In C11, it would map to
596 * kill_dependency(). It could be used as follows::
599 * p = rcu_dereference(gp);
600 * long_lived = is_long_lived(p);
602 * if (!atomic_inc_not_zero(p->refcnt))
603 * long_lived = false;
605 * p = rcu_pointer_handoff(p);
609 #define rcu_pointer_handoff(p) (p)
612 * rcu_read_lock() - mark the beginning of an RCU read-side critical section
614 * When synchronize_rcu() is invoked on one CPU while other CPUs
615 * are within RCU read-side critical sections, then the
616 * synchronize_rcu() is guaranteed to block until after all the other
617 * CPUs exit their critical sections. Similarly, if call_rcu() is invoked
618 * on one CPU while other CPUs are within RCU read-side critical
619 * sections, invocation of the corresponding RCU callback is deferred
620 * until after the all the other CPUs exit their critical sections.
622 * Note, however, that RCU callbacks are permitted to run concurrently
623 * with new RCU read-side critical sections. One way that this can happen
624 * is via the following sequence of events: (1) CPU 0 enters an RCU
625 * read-side critical section, (2) CPU 1 invokes call_rcu() to register
626 * an RCU callback, (3) CPU 0 exits the RCU read-side critical section,
627 * (4) CPU 2 enters a RCU read-side critical section, (5) the RCU
628 * callback is invoked. This is legal, because the RCU read-side critical
629 * section that was running concurrently with the call_rcu() (and which
630 * therefore might be referencing something that the corresponding RCU
631 * callback would free up) has completed before the corresponding
632 * RCU callback is invoked.
634 * RCU read-side critical sections may be nested. Any deferred actions
635 * will be deferred until the outermost RCU read-side critical section
638 * You can avoid reading and understanding the next paragraph by
639 * following this rule: don't put anything in an rcu_read_lock() RCU
640 * read-side critical section that would block in a !PREEMPTION kernel.
641 * But if you want the full story, read on!
643 * In non-preemptible RCU implementations (pure TREE_RCU and TINY_RCU),
644 * it is illegal to block while in an RCU read-side critical section.
645 * In preemptible RCU implementations (PREEMPT_RCU) in CONFIG_PREEMPTION
646 * kernel builds, RCU read-side critical sections may be preempted,
647 * but explicit blocking is illegal. Finally, in preemptible RCU
648 * implementations in real-time (with -rt patchset) kernel builds, RCU
649 * read-side critical sections may be preempted and they may also block, but
650 * only when acquiring spinlocks that are subject to priority inheritance.
652 static __always_inline void rcu_read_lock(void)
656 rcu_lock_acquire(&rcu_lock_map);
657 RCU_LOCKDEP_WARN(!rcu_is_watching(),
658 "rcu_read_lock() used illegally while idle");
662 * So where is rcu_write_lock()? It does not exist, as there is no
663 * way for writers to lock out RCU readers. This is a feature, not
664 * a bug -- this property is what provides RCU's performance benefits.
665 * Of course, writers must coordinate with each other. The normal
666 * spinlock primitives work well for this, but any other technique may be
667 * used as well. RCU does not care how the writers keep out of each
668 * others' way, as long as they do so.
672 * rcu_read_unlock() - marks the end of an RCU read-side critical section.
674 * In most situations, rcu_read_unlock() is immune from deadlock.
675 * However, in kernels built with CONFIG_RCU_BOOST, rcu_read_unlock()
676 * is responsible for deboosting, which it does via rt_mutex_unlock().
677 * Unfortunately, this function acquires the scheduler's runqueue and
678 * priority-inheritance spinlocks. This means that deadlock could result
679 * if the caller of rcu_read_unlock() already holds one of these locks or
680 * any lock that is ever acquired while holding them.
682 * That said, RCU readers are never priority boosted unless they were
683 * preempted. Therefore, one way to avoid deadlock is to make sure
684 * that preemption never happens within any RCU read-side critical
685 * section whose outermost rcu_read_unlock() is called with one of
686 * rt_mutex_unlock()'s locks held. Such preemption can be avoided in
687 * a number of ways, for example, by invoking preempt_disable() before
688 * critical section's outermost rcu_read_lock().
690 * Given that the set of locks acquired by rt_mutex_unlock() might change
691 * at any time, a somewhat more future-proofed approach is to make sure
692 * that that preemption never happens within any RCU read-side critical
693 * section whose outermost rcu_read_unlock() is called with irqs disabled.
694 * This approach relies on the fact that rt_mutex_unlock() currently only
695 * acquires irq-disabled locks.
697 * The second of these two approaches is best in most situations,
698 * however, the first approach can also be useful, at least to those
699 * developers willing to keep abreast of the set of locks acquired by
702 * See rcu_read_lock() for more information.
704 static inline void rcu_read_unlock(void)
706 RCU_LOCKDEP_WARN(!rcu_is_watching(),
707 "rcu_read_unlock() used illegally while idle");
710 rcu_lock_release(&rcu_lock_map); /* Keep acq info for rls diags. */
714 * rcu_read_lock_bh() - mark the beginning of an RCU-bh critical section
716 * This is equivalent of rcu_read_lock(), but also disables softirqs.
717 * Note that anything else that disables softirqs can also serve as
718 * an RCU read-side critical section.
720 * Note that rcu_read_lock_bh() and the matching rcu_read_unlock_bh()
721 * must occur in the same context, for example, it is illegal to invoke
722 * rcu_read_unlock_bh() from one task if the matching rcu_read_lock_bh()
723 * was invoked from some other task.
725 static inline void rcu_read_lock_bh(void)
729 rcu_lock_acquire(&rcu_bh_lock_map);
730 RCU_LOCKDEP_WARN(!rcu_is_watching(),
731 "rcu_read_lock_bh() used illegally while idle");
735 * rcu_read_unlock_bh() - marks the end of a softirq-only RCU critical section
737 * See rcu_read_lock_bh() for more information.
739 static inline void rcu_read_unlock_bh(void)
741 RCU_LOCKDEP_WARN(!rcu_is_watching(),
742 "rcu_read_unlock_bh() used illegally while idle");
743 rcu_lock_release(&rcu_bh_lock_map);
749 * rcu_read_lock_sched() - mark the beginning of a RCU-sched critical section
751 * This is equivalent of rcu_read_lock(), but disables preemption.
752 * Read-side critical sections can also be introduced by anything else
753 * that disables preemption, including local_irq_disable() and friends.
755 * Note that rcu_read_lock_sched() and the matching rcu_read_unlock_sched()
756 * must occur in the same context, for example, it is illegal to invoke
757 * rcu_read_unlock_sched() from process context if the matching
758 * rcu_read_lock_sched() was invoked from an NMI handler.
760 static inline void rcu_read_lock_sched(void)
763 __acquire(RCU_SCHED);
764 rcu_lock_acquire(&rcu_sched_lock_map);
765 RCU_LOCKDEP_WARN(!rcu_is_watching(),
766 "rcu_read_lock_sched() used illegally while idle");
769 /* Used by lockdep and tracing: cannot be traced, cannot call lockdep. */
770 static inline notrace void rcu_read_lock_sched_notrace(void)
772 preempt_disable_notrace();
773 __acquire(RCU_SCHED);
777 * rcu_read_unlock_sched() - marks the end of a RCU-classic critical section
779 * See rcu_read_lock_sched() for more information.
781 static inline void rcu_read_unlock_sched(void)
783 RCU_LOCKDEP_WARN(!rcu_is_watching(),
784 "rcu_read_unlock_sched() used illegally while idle");
785 rcu_lock_release(&rcu_sched_lock_map);
786 __release(RCU_SCHED);
790 /* Used by lockdep and tracing: cannot be traced, cannot call lockdep. */
791 static inline notrace void rcu_read_unlock_sched_notrace(void)
793 __release(RCU_SCHED);
794 preempt_enable_notrace();
798 * RCU_INIT_POINTER() - initialize an RCU protected pointer
799 * @p: The pointer to be initialized.
800 * @v: The value to initialized the pointer to.
802 * Initialize an RCU-protected pointer in special cases where readers
803 * do not need ordering constraints on the CPU or the compiler. These
806 * 1. This use of RCU_INIT_POINTER() is NULLing out the pointer *or*
807 * 2. The caller has taken whatever steps are required to prevent
808 * RCU readers from concurrently accessing this pointer *or*
809 * 3. The referenced data structure has already been exposed to
810 * readers either at compile time or via rcu_assign_pointer() *and*
812 * a. You have not made *any* reader-visible changes to
813 * this structure since then *or*
814 * b. It is OK for readers accessing this structure from its
815 * new location to see the old state of the structure. (For
816 * example, the changes were to statistical counters or to
817 * other state where exact synchronization is not required.)
819 * Failure to follow these rules governing use of RCU_INIT_POINTER() will
820 * result in impossible-to-diagnose memory corruption. As in the structures
821 * will look OK in crash dumps, but any concurrent RCU readers might
822 * see pre-initialized values of the referenced data structure. So
823 * please be very careful how you use RCU_INIT_POINTER()!!!
825 * If you are creating an RCU-protected linked structure that is accessed
826 * by a single external-to-structure RCU-protected pointer, then you may
827 * use RCU_INIT_POINTER() to initialize the internal RCU-protected
828 * pointers, but you must use rcu_assign_pointer() to initialize the
829 * external-to-structure pointer *after* you have completely initialized
830 * the reader-accessible portions of the linked structure.
832 * Note that unlike rcu_assign_pointer(), RCU_INIT_POINTER() provides no
833 * ordering guarantees for either the CPU or the compiler.
835 #define RCU_INIT_POINTER(p, v) \
837 rcu_check_sparse(p, __rcu); \
838 WRITE_ONCE(p, RCU_INITIALIZER(v)); \
842 * RCU_POINTER_INITIALIZER() - statically initialize an RCU protected pointer
843 * @p: The pointer to be initialized.
844 * @v: The value to initialized the pointer to.
846 * GCC-style initialization for an RCU-protected pointer in a structure field.
848 #define RCU_POINTER_INITIALIZER(p, v) \
849 .p = RCU_INITIALIZER(v)
852 * Does the specified offset indicate that the corresponding rcu_head
853 * structure can be handled by kvfree_rcu()?
855 #define __is_kvfree_rcu_offset(offset) ((offset) < 4096)
858 * kfree_rcu() - kfree an object after a grace period.
859 * @ptr: pointer to kfree for both single- and double-argument invocations.
860 * @rhf: the name of the struct rcu_head within the type of @ptr,
861 * but only for double-argument invocations.
863 * Many rcu callbacks functions just call kfree() on the base structure.
864 * These functions are trivial, but their size adds up, and furthermore
865 * when they are used in a kernel module, that module must invoke the
866 * high-latency rcu_barrier() function at module-unload time.
868 * The kfree_rcu() function handles this issue. Rather than encoding a
869 * function address in the embedded rcu_head structure, kfree_rcu() instead
870 * encodes the offset of the rcu_head structure within the base structure.
871 * Because the functions are not allowed in the low-order 4096 bytes of
872 * kernel virtual memory, offsets up to 4095 bytes can be accommodated.
873 * If the offset is larger than 4095 bytes, a compile-time error will
874 * be generated in kvfree_rcu_arg_2(). If this error is triggered, you can
875 * either fall back to use of call_rcu() or rearrange the structure to
876 * position the rcu_head structure into the first 4096 bytes.
878 * Note that the allowable offset might decrease in the future, for example,
879 * to allow something like kmem_cache_free_rcu().
881 * The BUILD_BUG_ON check must not involve any function calls, hence the
882 * checks are done in macros here.
884 #define kfree_rcu kvfree_rcu
887 * kvfree_rcu() - kvfree an object after a grace period.
889 * This macro consists of one or two arguments and it is
890 * based on whether an object is head-less or not. If it
891 * has a head then a semantic stays the same as it used
894 * kvfree_rcu(ptr, rhf);
896 * where @ptr is a pointer to kvfree(), @rhf is the name
897 * of the rcu_head structure within the type of @ptr.
899 * When it comes to head-less variant, only one argument
900 * is passed and that is just a pointer which has to be
901 * freed after a grace period. Therefore the semantic is
905 * where @ptr is a pointer to kvfree().
907 * Please note, head-less way of freeing is permitted to
908 * use from a context that has to follow might_sleep()
909 * annotation. Otherwise, please switch and embed the
910 * rcu_head structure within the type of @ptr.
912 #define kvfree_rcu(...) KVFREE_GET_MACRO(__VA_ARGS__, \
913 kvfree_rcu_arg_2, kvfree_rcu_arg_1)(__VA_ARGS__)
915 #define KVFREE_GET_MACRO(_1, _2, NAME, ...) NAME
916 #define kvfree_rcu_arg_2(ptr, rhf) \
918 typeof (ptr) ___p = (ptr); \
921 BUILD_BUG_ON(!__is_kvfree_rcu_offset(offsetof(typeof(*(ptr)), rhf))); \
922 kvfree_call_rcu(&((___p)->rhf), (rcu_callback_t)(unsigned long) \
923 (offsetof(typeof(*(ptr)), rhf))); \
927 #define kvfree_rcu_arg_1(ptr) \
929 typeof(ptr) ___p = (ptr); \
932 kvfree_call_rcu(NULL, (rcu_callback_t) (___p)); \
936 * Place this after a lock-acquisition primitive to guarantee that
937 * an UNLOCK+LOCK pair acts as a full barrier. This guarantee applies
938 * if the UNLOCK and LOCK are executed by the same CPU or if the
939 * UNLOCK and LOCK operate on the same lock variable.
941 #ifdef CONFIG_ARCH_WEAK_RELEASE_ACQUIRE
942 #define smp_mb__after_unlock_lock() smp_mb() /* Full ordering for lock. */
943 #else /* #ifdef CONFIG_ARCH_WEAK_RELEASE_ACQUIRE */
944 #define smp_mb__after_unlock_lock() do { } while (0)
945 #endif /* #else #ifdef CONFIG_ARCH_WEAK_RELEASE_ACQUIRE */
948 /* Has the specified rcu_head structure been handed to call_rcu()? */
951 * rcu_head_init - Initialize rcu_head for rcu_head_after_call_rcu()
952 * @rhp: The rcu_head structure to initialize.
954 * If you intend to invoke rcu_head_after_call_rcu() to test whether a
955 * given rcu_head structure has already been passed to call_rcu(), then
956 * you must also invoke this rcu_head_init() function on it just after
957 * allocating that structure. Calls to this function must not race with
958 * calls to call_rcu(), rcu_head_after_call_rcu(), or callback invocation.
960 static inline void rcu_head_init(struct rcu_head *rhp)
962 rhp->func = (rcu_callback_t)~0L;
966 * rcu_head_after_call_rcu() - Has this rcu_head been passed to call_rcu()?
967 * @rhp: The rcu_head structure to test.
968 * @f: The function passed to call_rcu() along with @rhp.
970 * Returns @true if the @rhp has been passed to call_rcu() with @func,
971 * and @false otherwise. Emits a warning in any other case, including
972 * the case where @rhp has already been invoked after a grace period.
973 * Calls to this function must not race with callback invocation. One way
974 * to avoid such races is to enclose the call to rcu_head_after_call_rcu()
975 * in an RCU read-side critical section that includes a read-side fetch
976 * of the pointer to the structure containing @rhp.
979 rcu_head_after_call_rcu(struct rcu_head *rhp, rcu_callback_t f)
981 rcu_callback_t func = READ_ONCE(rhp->func);
985 WARN_ON_ONCE(func != (rcu_callback_t)~0L);
989 /* kernel/ksysfs.c definitions */
990 extern int rcu_expedited;
991 extern int rcu_normal;
993 #endif /* __LINUX_RCUPDATE_H */