1 #ifndef _LINUX_PTRACE_H
2 #define _LINUX_PTRACE_H
4 /* structs and defines to help the user use the ptrace system call. */
6 /* has the defines to get at the registers. */
8 #define PTRACE_TRACEME 0
9 #define PTRACE_PEEKTEXT 1
10 #define PTRACE_PEEKDATA 2
11 #define PTRACE_PEEKUSR 3
12 #define PTRACE_POKETEXT 4
13 #define PTRACE_POKEDATA 5
14 #define PTRACE_POKEUSR 6
17 #define PTRACE_SINGLESTEP 9
19 #define PTRACE_ATTACH 16
20 #define PTRACE_DETACH 17
22 #define PTRACE_SYSCALL 24
24 /* 0x4200-0x4300 are reserved for architecture-independent additions. */
25 #define PTRACE_SETOPTIONS 0x4200
26 #define PTRACE_GETEVENTMSG 0x4201
27 #define PTRACE_GETSIGINFO 0x4202
28 #define PTRACE_SETSIGINFO 0x4203
31 * Generic ptrace interface that exports the architecture specific regsets
32 * using the corresponding NT_* types (which are also used in the core dump).
33 * Please note that the NT_PRSTATUS note type in a core dump contains a full
34 * 'struct elf_prstatus'. But the user_regset for NT_PRSTATUS contains just the
35 * elf_gregset_t that is the pr_reg field of 'struct elf_prstatus'. For all the
36 * other user_regset flavors, the user_regset layout and the ELF core dump note
37 * payload are exactly the same layout.
39 * This interface usage is as follows:
40 * struct iovec iov = { buf, len};
42 * ret = ptrace(PTRACE_GETREGSET/PTRACE_SETREGSET, pid, NT_XXX_TYPE, &iov);
44 * On the successful completion, iov.len will be updated by the kernel,
45 * specifying how much the kernel has written/read to/from the user's iov.buf.
47 #define PTRACE_GETREGSET 0x4204
48 #define PTRACE_SETREGSET 0x4205
50 /* options set using PTRACE_SETOPTIONS */
51 #define PTRACE_O_TRACESYSGOOD 0x00000001
52 #define PTRACE_O_TRACEFORK 0x00000002
53 #define PTRACE_O_TRACEVFORK 0x00000004
54 #define PTRACE_O_TRACECLONE 0x00000008
55 #define PTRACE_O_TRACEEXEC 0x00000010
56 #define PTRACE_O_TRACEVFORKDONE 0x00000020
57 #define PTRACE_O_TRACEEXIT 0x00000040
59 #define PTRACE_O_MASK 0x0000007f
61 /* Wait extended result codes for the above trace options. */
62 #define PTRACE_EVENT_FORK 1
63 #define PTRACE_EVENT_VFORK 2
64 #define PTRACE_EVENT_CLONE 3
65 #define PTRACE_EVENT_EXEC 4
66 #define PTRACE_EVENT_VFORK_DONE 5
67 #define PTRACE_EVENT_EXIT 6
69 #include <asm/ptrace.h>
75 * The owner ship rules for task->ptrace which holds the ptrace
76 * flags is simple. When a task is running it owns it's task->ptrace
77 * flags. When the a task is stopped the ptracer owns task->ptrace.
80 #define PT_PTRACED 0x00000001
81 #define PT_DTRACE 0x00000002 /* delayed trace (used on m68k, i386) */
82 #define PT_TRACESYSGOOD 0x00000004
83 #define PT_PTRACE_CAP 0x00000008 /* ptracer can follow suid-exec */
84 #define PT_TRACE_FORK 0x00000010
85 #define PT_TRACE_VFORK 0x00000020
86 #define PT_TRACE_CLONE 0x00000040
87 #define PT_TRACE_EXEC 0x00000080
88 #define PT_TRACE_VFORK_DONE 0x00000100
89 #define PT_TRACE_EXIT 0x00000200
91 #define PT_TRACE_MASK 0x000003f4
93 /* single stepping state bits (used on ARM and PA-RISC) */
94 #define PT_SINGLESTEP_BIT 31
95 #define PT_SINGLESTEP (1<<PT_SINGLESTEP_BIT)
96 #define PT_BLOCKSTEP_BIT 30
97 #define PT_BLOCKSTEP (1<<PT_BLOCKSTEP_BIT)
99 #include <linux/compiler.h> /* For unlikely. */
100 #include <linux/sched.h> /* For struct task_struct. */
103 extern long arch_ptrace(struct task_struct *child, long request,
104 unsigned long addr, unsigned long data);
105 extern int ptrace_traceme(void);
106 extern int ptrace_readdata(struct task_struct *tsk, unsigned long src, char __user *dst, int len);
107 extern int ptrace_writedata(struct task_struct *tsk, char __user *src, unsigned long dst, int len);
108 extern int ptrace_attach(struct task_struct *tsk);
109 extern int ptrace_detach(struct task_struct *, unsigned int);
110 extern void ptrace_disable(struct task_struct *);
111 extern int ptrace_check_attach(struct task_struct *task, int kill);
112 extern int ptrace_request(struct task_struct *child, long request,
113 unsigned long addr, unsigned long data);
114 extern void ptrace_notify(int exit_code);
115 extern void __ptrace_link(struct task_struct *child,
116 struct task_struct *new_parent);
117 extern void __ptrace_unlink(struct task_struct *child);
118 extern void exit_ptrace(struct task_struct *tracer);
119 #define PTRACE_MODE_READ 1
120 #define PTRACE_MODE_ATTACH 2
121 /* Returns 0 on success, -errno on denial. */
122 extern int __ptrace_may_access(struct task_struct *task, unsigned int mode);
123 /* Returns true on success, false on denial. */
124 extern bool ptrace_may_access(struct task_struct *task, unsigned int mode);
126 static inline int ptrace_reparented(struct task_struct *child)
128 return child->real_parent != child->parent;
131 static inline void ptrace_unlink(struct task_struct *child)
133 if (unlikely(child->ptrace))
134 __ptrace_unlink(child);
137 int generic_ptrace_peekdata(struct task_struct *tsk, unsigned long addr,
139 int generic_ptrace_pokedata(struct task_struct *tsk, unsigned long addr,
143 * task_ptrace - return %PT_* flags that apply to a task
144 * @task: pointer to &task_struct in question
146 * Returns the %PT_* flags that apply to @task.
148 static inline int task_ptrace(struct task_struct *task)
154 * ptrace_event - possibly stop for a ptrace event notification
155 * @mask: %PT_* bit to check in @current->ptrace
156 * @event: %PTRACE_EVENT_* value to report if @mask is set
157 * @message: value for %PTRACE_GETEVENTMSG to return
159 * This checks the @mask bit to see if ptrace wants stops for this event.
160 * If so we stop, reporting @event and @message to the ptrace parent.
162 * Returns nonzero if we did a ptrace notification, zero if not.
164 * Called without locks.
166 static inline int ptrace_event(int mask, int event, unsigned long message)
168 if (mask && likely(!(current->ptrace & mask)))
170 current->ptrace_message = message;
171 ptrace_notify((event << 8) | SIGTRAP);
176 * ptrace_init_task - initialize ptrace state for a new child
177 * @child: new child task
178 * @ptrace: true if child should be ptrace'd by parent's tracer
180 * This is called immediately after adding @child to its parent's children
181 * list. @ptrace is false in the normal case, and true to ptrace @child.
183 * Called with current's siglock and write_lock_irq(&tasklist_lock) held.
185 static inline void ptrace_init_task(struct task_struct *child, bool ptrace)
187 INIT_LIST_HEAD(&child->ptrace_entry);
188 INIT_LIST_HEAD(&child->ptraced);
189 child->parent = child->real_parent;
191 if (unlikely(ptrace) && (current->ptrace & PT_PTRACED)) {
192 child->ptrace = current->ptrace;
193 __ptrace_link(child, current->parent);
198 * ptrace_release_task - final ptrace-related cleanup of a zombie being reaped
199 * @task: task in %EXIT_DEAD state
201 * Called with write_lock(&tasklist_lock) held.
203 static inline void ptrace_release_task(struct task_struct *task)
205 BUG_ON(!list_empty(&task->ptraced));
207 BUG_ON(!list_empty(&task->ptrace_entry));
210 #ifndef force_successful_syscall_return
212 * System call handlers that, upon successful completion, need to return a
213 * negative value should call force_successful_syscall_return() right before
214 * returning. On architectures where the syscall convention provides for a
215 * separate error flag (e.g., alpha, ia64, ppc{,64}, sparc{,64}, possibly
216 * others), this macro can be used to ensure that the error flag will not get
217 * set. On architectures which do not support a separate error flag, the macro
218 * is a no-op and the spurious error condition needs to be filtered out by some
219 * other means (e.g., in user-level, by passing an extra argument to the
220 * syscall handler, or something along those lines).
222 #define force_successful_syscall_return() do { } while (0)
226 * <asm/ptrace.h> should define the following things inside #ifdef __KERNEL__.
228 * These do-nothing inlines are used when the arch does not
229 * implement single-step. The kerneldoc comments are here
230 * to document the interface for all arch definitions.
233 #ifndef arch_has_single_step
235 * arch_has_single_step - does this CPU support user-mode single-step?
237 * If this is defined, then there must be function declarations or
238 * inlines for user_enable_single_step() and user_disable_single_step().
239 * arch_has_single_step() should evaluate to nonzero iff the machine
240 * supports instruction single-step for user mode.
241 * It can be a constant or it can test a CPU feature bit.
243 #define arch_has_single_step() (0)
246 * user_enable_single_step - single-step in user-mode task
247 * @task: either current or a task stopped in %TASK_TRACED
249 * This can only be called when arch_has_single_step() has returned nonzero.
250 * Set @task so that when it returns to user mode, it will trap after the
251 * next single instruction executes. If arch_has_block_step() is defined,
252 * this must clear the effects of user_enable_block_step() too.
254 static inline void user_enable_single_step(struct task_struct *task)
256 BUG(); /* This can never be called. */
260 * user_disable_single_step - cancel user-mode single-step
261 * @task: either current or a task stopped in %TASK_TRACED
263 * Clear @task of the effects of user_enable_single_step() and
264 * user_enable_block_step(). This can be called whether or not either
265 * of those was ever called on @task, and even if arch_has_single_step()
268 static inline void user_disable_single_step(struct task_struct *task)
272 extern void user_enable_single_step(struct task_struct *);
273 extern void user_disable_single_step(struct task_struct *);
274 #endif /* arch_has_single_step */
276 #ifndef arch_has_block_step
278 * arch_has_block_step - does this CPU support user-mode block-step?
280 * If this is defined, then there must be a function declaration or inline
281 * for user_enable_block_step(), and arch_has_single_step() must be defined
282 * too. arch_has_block_step() should evaluate to nonzero iff the machine
283 * supports step-until-branch for user mode. It can be a constant or it
284 * can test a CPU feature bit.
286 #define arch_has_block_step() (0)
289 * user_enable_block_step - step until branch in user-mode task
290 * @task: either current or a task stopped in %TASK_TRACED
292 * This can only be called when arch_has_block_step() has returned nonzero,
293 * and will never be called when single-instruction stepping is being used.
294 * Set @task so that when it returns to user mode, it will trap after the
295 * next branch or trap taken.
297 static inline void user_enable_block_step(struct task_struct *task)
299 BUG(); /* This can never be called. */
302 extern void user_enable_block_step(struct task_struct *);
303 #endif /* arch_has_block_step */
305 #ifdef ARCH_HAS_USER_SINGLE_STEP_INFO
306 extern void user_single_step_siginfo(struct task_struct *tsk,
307 struct pt_regs *regs, siginfo_t *info);
309 static inline void user_single_step_siginfo(struct task_struct *tsk,
310 struct pt_regs *regs, siginfo_t *info)
312 memset(info, 0, sizeof(*info));
313 info->si_signo = SIGTRAP;
317 #ifndef arch_ptrace_stop_needed
319 * arch_ptrace_stop_needed - Decide whether arch_ptrace_stop() should be called
320 * @code: current->exit_code value ptrace will stop with
321 * @info: siginfo_t pointer (or %NULL) for signal ptrace will stop with
323 * This is called with the siglock held, to decide whether or not it's
324 * necessary to release the siglock and call arch_ptrace_stop() with the
325 * same @code and @info arguments. It can be defined to a constant if
326 * arch_ptrace_stop() is never required, or always is. On machines where
327 * this makes sense, it should be defined to a quick test to optimize out
328 * calling arch_ptrace_stop() when it would be superfluous. For example,
329 * if the thread has not been back to user mode since the last stop, the
330 * thread state might indicate that nothing needs to be done.
332 #define arch_ptrace_stop_needed(code, info) (0)
335 #ifndef arch_ptrace_stop
337 * arch_ptrace_stop - Do machine-specific work before stopping for ptrace
338 * @code: current->exit_code value ptrace will stop with
339 * @info: siginfo_t pointer (or %NULL) for signal ptrace will stop with
341 * This is called with no locks held when arch_ptrace_stop_needed() has
342 * just returned nonzero. It is allowed to block, e.g. for user memory
343 * access. The arch can have machine-specific work to be done before
344 * ptrace stops. On ia64, register backing store gets written back to user
345 * memory here. Since this can be costly (requires dropping the siglock),
346 * we only do it when the arch requires it for this particular stop, as
347 * indicated by arch_ptrace_stop_needed().
349 #define arch_ptrace_stop(code, info) do { } while (0)
352 extern int task_current_syscall(struct task_struct *target, long *callno,
353 unsigned long args[6], unsigned int maxargs,
354 unsigned long *sp, unsigned long *pc);