minmax: deduplicate __unconst_integer_typeof()
[platform/kernel/linux-starfive.git] / include / linux / ptr_ring.h
1 /* SPDX-License-Identifier: GPL-2.0-or-later */
2 /*
3  *      Definitions for the 'struct ptr_ring' datastructure.
4  *
5  *      Author:
6  *              Michael S. Tsirkin <mst@redhat.com>
7  *
8  *      Copyright (C) 2016 Red Hat, Inc.
9  *
10  *      This is a limited-size FIFO maintaining pointers in FIFO order, with
11  *      one CPU producing entries and another consuming entries from a FIFO.
12  *
13  *      This implementation tries to minimize cache-contention when there is a
14  *      single producer and a single consumer CPU.
15  */
16
17 #ifndef _LINUX_PTR_RING_H
18 #define _LINUX_PTR_RING_H 1
19
20 #ifdef __KERNEL__
21 #include <linux/spinlock.h>
22 #include <linux/cache.h>
23 #include <linux/types.h>
24 #include <linux/compiler.h>
25 #include <linux/slab.h>
26 #include <linux/mm.h>
27 #include <asm/errno.h>
28 #endif
29
30 struct ptr_ring {
31         int producer ____cacheline_aligned_in_smp;
32         spinlock_t producer_lock;
33         int consumer_head ____cacheline_aligned_in_smp; /* next valid entry */
34         int consumer_tail; /* next entry to invalidate */
35         spinlock_t consumer_lock;
36         /* Shared consumer/producer data */
37         /* Read-only by both the producer and the consumer */
38         int size ____cacheline_aligned_in_smp; /* max entries in queue */
39         int batch; /* number of entries to consume in a batch */
40         void **queue;
41 };
42
43 /* Note: callers invoking this in a loop must use a compiler barrier,
44  * for example cpu_relax().
45  *
46  * NB: this is unlike __ptr_ring_empty in that callers must hold producer_lock:
47  * see e.g. ptr_ring_full.
48  */
49 static inline bool __ptr_ring_full(struct ptr_ring *r)
50 {
51         return r->queue[r->producer];
52 }
53
54 static inline bool ptr_ring_full(struct ptr_ring *r)
55 {
56         bool ret;
57
58         spin_lock(&r->producer_lock);
59         ret = __ptr_ring_full(r);
60         spin_unlock(&r->producer_lock);
61
62         return ret;
63 }
64
65 static inline bool ptr_ring_full_irq(struct ptr_ring *r)
66 {
67         bool ret;
68
69         spin_lock_irq(&r->producer_lock);
70         ret = __ptr_ring_full(r);
71         spin_unlock_irq(&r->producer_lock);
72
73         return ret;
74 }
75
76 static inline bool ptr_ring_full_any(struct ptr_ring *r)
77 {
78         unsigned long flags;
79         bool ret;
80
81         spin_lock_irqsave(&r->producer_lock, flags);
82         ret = __ptr_ring_full(r);
83         spin_unlock_irqrestore(&r->producer_lock, flags);
84
85         return ret;
86 }
87
88 static inline bool ptr_ring_full_bh(struct ptr_ring *r)
89 {
90         bool ret;
91
92         spin_lock_bh(&r->producer_lock);
93         ret = __ptr_ring_full(r);
94         spin_unlock_bh(&r->producer_lock);
95
96         return ret;
97 }
98
99 /* Note: callers invoking this in a loop must use a compiler barrier,
100  * for example cpu_relax(). Callers must hold producer_lock.
101  * Callers are responsible for making sure pointer that is being queued
102  * points to a valid data.
103  */
104 static inline int __ptr_ring_produce(struct ptr_ring *r, void *ptr)
105 {
106         if (unlikely(!r->size) || r->queue[r->producer])
107                 return -ENOSPC;
108
109         /* Make sure the pointer we are storing points to a valid data. */
110         /* Pairs with the dependency ordering in __ptr_ring_consume. */
111         smp_wmb();
112
113         WRITE_ONCE(r->queue[r->producer++], ptr);
114         if (unlikely(r->producer >= r->size))
115                 r->producer = 0;
116         return 0;
117 }
118
119 /*
120  * Note: resize (below) nests producer lock within consumer lock, so if you
121  * consume in interrupt or BH context, you must disable interrupts/BH when
122  * calling this.
123  */
124 static inline int ptr_ring_produce(struct ptr_ring *r, void *ptr)
125 {
126         int ret;
127
128         spin_lock(&r->producer_lock);
129         ret = __ptr_ring_produce(r, ptr);
130         spin_unlock(&r->producer_lock);
131
132         return ret;
133 }
134
135 static inline int ptr_ring_produce_irq(struct ptr_ring *r, void *ptr)
136 {
137         int ret;
138
139         spin_lock_irq(&r->producer_lock);
140         ret = __ptr_ring_produce(r, ptr);
141         spin_unlock_irq(&r->producer_lock);
142
143         return ret;
144 }
145
146 static inline int ptr_ring_produce_any(struct ptr_ring *r, void *ptr)
147 {
148         unsigned long flags;
149         int ret;
150
151         spin_lock_irqsave(&r->producer_lock, flags);
152         ret = __ptr_ring_produce(r, ptr);
153         spin_unlock_irqrestore(&r->producer_lock, flags);
154
155         return ret;
156 }
157
158 static inline int ptr_ring_produce_bh(struct ptr_ring *r, void *ptr)
159 {
160         int ret;
161
162         spin_lock_bh(&r->producer_lock);
163         ret = __ptr_ring_produce(r, ptr);
164         spin_unlock_bh(&r->producer_lock);
165
166         return ret;
167 }
168
169 static inline void *__ptr_ring_peek(struct ptr_ring *r)
170 {
171         if (likely(r->size))
172                 return READ_ONCE(r->queue[r->consumer_head]);
173         return NULL;
174 }
175
176 /*
177  * Test ring empty status without taking any locks.
178  *
179  * NB: This is only safe to call if ring is never resized.
180  *
181  * However, if some other CPU consumes ring entries at the same time, the value
182  * returned is not guaranteed to be correct.
183  *
184  * In this case - to avoid incorrectly detecting the ring
185  * as empty - the CPU consuming the ring entries is responsible
186  * for either consuming all ring entries until the ring is empty,
187  * or synchronizing with some other CPU and causing it to
188  * re-test __ptr_ring_empty and/or consume the ring enteries
189  * after the synchronization point.
190  *
191  * Note: callers invoking this in a loop must use a compiler barrier,
192  * for example cpu_relax().
193  */
194 static inline bool __ptr_ring_empty(struct ptr_ring *r)
195 {
196         if (likely(r->size))
197                 return !r->queue[READ_ONCE(r->consumer_head)];
198         return true;
199 }
200
201 static inline bool ptr_ring_empty(struct ptr_ring *r)
202 {
203         bool ret;
204
205         spin_lock(&r->consumer_lock);
206         ret = __ptr_ring_empty(r);
207         spin_unlock(&r->consumer_lock);
208
209         return ret;
210 }
211
212 static inline bool ptr_ring_empty_irq(struct ptr_ring *r)
213 {
214         bool ret;
215
216         spin_lock_irq(&r->consumer_lock);
217         ret = __ptr_ring_empty(r);
218         spin_unlock_irq(&r->consumer_lock);
219
220         return ret;
221 }
222
223 static inline bool ptr_ring_empty_any(struct ptr_ring *r)
224 {
225         unsigned long flags;
226         bool ret;
227
228         spin_lock_irqsave(&r->consumer_lock, flags);
229         ret = __ptr_ring_empty(r);
230         spin_unlock_irqrestore(&r->consumer_lock, flags);
231
232         return ret;
233 }
234
235 static inline bool ptr_ring_empty_bh(struct ptr_ring *r)
236 {
237         bool ret;
238
239         spin_lock_bh(&r->consumer_lock);
240         ret = __ptr_ring_empty(r);
241         spin_unlock_bh(&r->consumer_lock);
242
243         return ret;
244 }
245
246 /* Must only be called after __ptr_ring_peek returned !NULL */
247 static inline void __ptr_ring_discard_one(struct ptr_ring *r)
248 {
249         /* Fundamentally, what we want to do is update consumer
250          * index and zero out the entry so producer can reuse it.
251          * Doing it naively at each consume would be as simple as:
252          *       consumer = r->consumer;
253          *       r->queue[consumer++] = NULL;
254          *       if (unlikely(consumer >= r->size))
255          *               consumer = 0;
256          *       r->consumer = consumer;
257          * but that is suboptimal when the ring is full as producer is writing
258          * out new entries in the same cache line.  Defer these updates until a
259          * batch of entries has been consumed.
260          */
261         /* Note: we must keep consumer_head valid at all times for __ptr_ring_empty
262          * to work correctly.
263          */
264         int consumer_head = r->consumer_head;
265         int head = consumer_head++;
266
267         /* Once we have processed enough entries invalidate them in
268          * the ring all at once so producer can reuse their space in the ring.
269          * We also do this when we reach end of the ring - not mandatory
270          * but helps keep the implementation simple.
271          */
272         if (unlikely(consumer_head - r->consumer_tail >= r->batch ||
273                      consumer_head >= r->size)) {
274                 /* Zero out entries in the reverse order: this way we touch the
275                  * cache line that producer might currently be reading the last;
276                  * producer won't make progress and touch other cache lines
277                  * besides the first one until we write out all entries.
278                  */
279                 while (likely(head >= r->consumer_tail))
280                         r->queue[head--] = NULL;
281                 r->consumer_tail = consumer_head;
282         }
283         if (unlikely(consumer_head >= r->size)) {
284                 consumer_head = 0;
285                 r->consumer_tail = 0;
286         }
287         /* matching READ_ONCE in __ptr_ring_empty for lockless tests */
288         WRITE_ONCE(r->consumer_head, consumer_head);
289 }
290
291 static inline void *__ptr_ring_consume(struct ptr_ring *r)
292 {
293         void *ptr;
294
295         /* The READ_ONCE in __ptr_ring_peek guarantees that anyone
296          * accessing data through the pointer is up to date. Pairs
297          * with smp_wmb in __ptr_ring_produce.
298          */
299         ptr = __ptr_ring_peek(r);
300         if (ptr)
301                 __ptr_ring_discard_one(r);
302
303         return ptr;
304 }
305
306 static inline int __ptr_ring_consume_batched(struct ptr_ring *r,
307                                              void **array, int n)
308 {
309         void *ptr;
310         int i;
311
312         for (i = 0; i < n; i++) {
313                 ptr = __ptr_ring_consume(r);
314                 if (!ptr)
315                         break;
316                 array[i] = ptr;
317         }
318
319         return i;
320 }
321
322 /*
323  * Note: resize (below) nests producer lock within consumer lock, so if you
324  * call this in interrupt or BH context, you must disable interrupts/BH when
325  * producing.
326  */
327 static inline void *ptr_ring_consume(struct ptr_ring *r)
328 {
329         void *ptr;
330
331         spin_lock(&r->consumer_lock);
332         ptr = __ptr_ring_consume(r);
333         spin_unlock(&r->consumer_lock);
334
335         return ptr;
336 }
337
338 static inline void *ptr_ring_consume_irq(struct ptr_ring *r)
339 {
340         void *ptr;
341
342         spin_lock_irq(&r->consumer_lock);
343         ptr = __ptr_ring_consume(r);
344         spin_unlock_irq(&r->consumer_lock);
345
346         return ptr;
347 }
348
349 static inline void *ptr_ring_consume_any(struct ptr_ring *r)
350 {
351         unsigned long flags;
352         void *ptr;
353
354         spin_lock_irqsave(&r->consumer_lock, flags);
355         ptr = __ptr_ring_consume(r);
356         spin_unlock_irqrestore(&r->consumer_lock, flags);
357
358         return ptr;
359 }
360
361 static inline void *ptr_ring_consume_bh(struct ptr_ring *r)
362 {
363         void *ptr;
364
365         spin_lock_bh(&r->consumer_lock);
366         ptr = __ptr_ring_consume(r);
367         spin_unlock_bh(&r->consumer_lock);
368
369         return ptr;
370 }
371
372 static inline int ptr_ring_consume_batched(struct ptr_ring *r,
373                                            void **array, int n)
374 {
375         int ret;
376
377         spin_lock(&r->consumer_lock);
378         ret = __ptr_ring_consume_batched(r, array, n);
379         spin_unlock(&r->consumer_lock);
380
381         return ret;
382 }
383
384 static inline int ptr_ring_consume_batched_irq(struct ptr_ring *r,
385                                                void **array, int n)
386 {
387         int ret;
388
389         spin_lock_irq(&r->consumer_lock);
390         ret = __ptr_ring_consume_batched(r, array, n);
391         spin_unlock_irq(&r->consumer_lock);
392
393         return ret;
394 }
395
396 static inline int ptr_ring_consume_batched_any(struct ptr_ring *r,
397                                                void **array, int n)
398 {
399         unsigned long flags;
400         int ret;
401
402         spin_lock_irqsave(&r->consumer_lock, flags);
403         ret = __ptr_ring_consume_batched(r, array, n);
404         spin_unlock_irqrestore(&r->consumer_lock, flags);
405
406         return ret;
407 }
408
409 static inline int ptr_ring_consume_batched_bh(struct ptr_ring *r,
410                                               void **array, int n)
411 {
412         int ret;
413
414         spin_lock_bh(&r->consumer_lock);
415         ret = __ptr_ring_consume_batched(r, array, n);
416         spin_unlock_bh(&r->consumer_lock);
417
418         return ret;
419 }
420
421 /* Cast to structure type and call a function without discarding from FIFO.
422  * Function must return a value.
423  * Callers must take consumer_lock.
424  */
425 #define __PTR_RING_PEEK_CALL(r, f) ((f)(__ptr_ring_peek(r)))
426
427 #define PTR_RING_PEEK_CALL(r, f) ({ \
428         typeof((f)(NULL)) __PTR_RING_PEEK_CALL_v; \
429         \
430         spin_lock(&(r)->consumer_lock); \
431         __PTR_RING_PEEK_CALL_v = __PTR_RING_PEEK_CALL(r, f); \
432         spin_unlock(&(r)->consumer_lock); \
433         __PTR_RING_PEEK_CALL_v; \
434 })
435
436 #define PTR_RING_PEEK_CALL_IRQ(r, f) ({ \
437         typeof((f)(NULL)) __PTR_RING_PEEK_CALL_v; \
438         \
439         spin_lock_irq(&(r)->consumer_lock); \
440         __PTR_RING_PEEK_CALL_v = __PTR_RING_PEEK_CALL(r, f); \
441         spin_unlock_irq(&(r)->consumer_lock); \
442         __PTR_RING_PEEK_CALL_v; \
443 })
444
445 #define PTR_RING_PEEK_CALL_BH(r, f) ({ \
446         typeof((f)(NULL)) __PTR_RING_PEEK_CALL_v; \
447         \
448         spin_lock_bh(&(r)->consumer_lock); \
449         __PTR_RING_PEEK_CALL_v = __PTR_RING_PEEK_CALL(r, f); \
450         spin_unlock_bh(&(r)->consumer_lock); \
451         __PTR_RING_PEEK_CALL_v; \
452 })
453
454 #define PTR_RING_PEEK_CALL_ANY(r, f) ({ \
455         typeof((f)(NULL)) __PTR_RING_PEEK_CALL_v; \
456         unsigned long __PTR_RING_PEEK_CALL_f;\
457         \
458         spin_lock_irqsave(&(r)->consumer_lock, __PTR_RING_PEEK_CALL_f); \
459         __PTR_RING_PEEK_CALL_v = __PTR_RING_PEEK_CALL(r, f); \
460         spin_unlock_irqrestore(&(r)->consumer_lock, __PTR_RING_PEEK_CALL_f); \
461         __PTR_RING_PEEK_CALL_v; \
462 })
463
464 /* Not all gfp_t flags (besides GFP_KERNEL) are allowed. See
465  * documentation for vmalloc for which of them are legal.
466  */
467 static inline void **__ptr_ring_init_queue_alloc(unsigned int size, gfp_t gfp)
468 {
469         if (size > KMALLOC_MAX_SIZE / sizeof(void *))
470                 return NULL;
471         return kvmalloc_array(size, sizeof(void *), gfp | __GFP_ZERO);
472 }
473
474 static inline void __ptr_ring_set_size(struct ptr_ring *r, int size)
475 {
476         r->size = size;
477         r->batch = SMP_CACHE_BYTES * 2 / sizeof(*(r->queue));
478         /* We need to set batch at least to 1 to make logic
479          * in __ptr_ring_discard_one work correctly.
480          * Batching too much (because ring is small) would cause a lot of
481          * burstiness. Needs tuning, for now disable batching.
482          */
483         if (r->batch > r->size / 2 || !r->batch)
484                 r->batch = 1;
485 }
486
487 static inline int ptr_ring_init(struct ptr_ring *r, int size, gfp_t gfp)
488 {
489         r->queue = __ptr_ring_init_queue_alloc(size, gfp);
490         if (!r->queue)
491                 return -ENOMEM;
492
493         __ptr_ring_set_size(r, size);
494         r->producer = r->consumer_head = r->consumer_tail = 0;
495         spin_lock_init(&r->producer_lock);
496         spin_lock_init(&r->consumer_lock);
497
498         return 0;
499 }
500
501 /*
502  * Return entries into ring. Destroy entries that don't fit.
503  *
504  * Note: this is expected to be a rare slow path operation.
505  *
506  * Note: producer lock is nested within consumer lock, so if you
507  * resize you must make sure all uses nest correctly.
508  * In particular if you consume ring in interrupt or BH context, you must
509  * disable interrupts/BH when doing so.
510  */
511 static inline void ptr_ring_unconsume(struct ptr_ring *r, void **batch, int n,
512                                       void (*destroy)(void *))
513 {
514         unsigned long flags;
515         int head;
516
517         spin_lock_irqsave(&r->consumer_lock, flags);
518         spin_lock(&r->producer_lock);
519
520         if (!r->size)
521                 goto done;
522
523         /*
524          * Clean out buffered entries (for simplicity). This way following code
525          * can test entries for NULL and if not assume they are valid.
526          */
527         head = r->consumer_head - 1;
528         while (likely(head >= r->consumer_tail))
529                 r->queue[head--] = NULL;
530         r->consumer_tail = r->consumer_head;
531
532         /*
533          * Go over entries in batch, start moving head back and copy entries.
534          * Stop when we run into previously unconsumed entries.
535          */
536         while (n) {
537                 head = r->consumer_head - 1;
538                 if (head < 0)
539                         head = r->size - 1;
540                 if (r->queue[head]) {
541                         /* This batch entry will have to be destroyed. */
542                         goto done;
543                 }
544                 r->queue[head] = batch[--n];
545                 r->consumer_tail = head;
546                 /* matching READ_ONCE in __ptr_ring_empty for lockless tests */
547                 WRITE_ONCE(r->consumer_head, head);
548         }
549
550 done:
551         /* Destroy all entries left in the batch. */
552         while (n)
553                 destroy(batch[--n]);
554         spin_unlock(&r->producer_lock);
555         spin_unlock_irqrestore(&r->consumer_lock, flags);
556 }
557
558 static inline void **__ptr_ring_swap_queue(struct ptr_ring *r, void **queue,
559                                            int size, gfp_t gfp,
560                                            void (*destroy)(void *))
561 {
562         int producer = 0;
563         void **old;
564         void *ptr;
565
566         while ((ptr = __ptr_ring_consume(r)))
567                 if (producer < size)
568                         queue[producer++] = ptr;
569                 else if (destroy)
570                         destroy(ptr);
571
572         if (producer >= size)
573                 producer = 0;
574         __ptr_ring_set_size(r, size);
575         r->producer = producer;
576         r->consumer_head = 0;
577         r->consumer_tail = 0;
578         old = r->queue;
579         r->queue = queue;
580
581         return old;
582 }
583
584 /*
585  * Note: producer lock is nested within consumer lock, so if you
586  * resize you must make sure all uses nest correctly.
587  * In particular if you consume ring in interrupt or BH context, you must
588  * disable interrupts/BH when doing so.
589  */
590 static inline int ptr_ring_resize(struct ptr_ring *r, int size, gfp_t gfp,
591                                   void (*destroy)(void *))
592 {
593         unsigned long flags;
594         void **queue = __ptr_ring_init_queue_alloc(size, gfp);
595         void **old;
596
597         if (!queue)
598                 return -ENOMEM;
599
600         spin_lock_irqsave(&(r)->consumer_lock, flags);
601         spin_lock(&(r)->producer_lock);
602
603         old = __ptr_ring_swap_queue(r, queue, size, gfp, destroy);
604
605         spin_unlock(&(r)->producer_lock);
606         spin_unlock_irqrestore(&(r)->consumer_lock, flags);
607
608         kvfree(old);
609
610         return 0;
611 }
612
613 /*
614  * Note: producer lock is nested within consumer lock, so if you
615  * resize you must make sure all uses nest correctly.
616  * In particular if you consume ring in interrupt or BH context, you must
617  * disable interrupts/BH when doing so.
618  */
619 static inline int ptr_ring_resize_multiple(struct ptr_ring **rings,
620                                            unsigned int nrings,
621                                            int size,
622                                            gfp_t gfp, void (*destroy)(void *))
623 {
624         unsigned long flags;
625         void ***queues;
626         int i;
627
628         queues = kmalloc_array(nrings, sizeof(*queues), gfp);
629         if (!queues)
630                 goto noqueues;
631
632         for (i = 0; i < nrings; ++i) {
633                 queues[i] = __ptr_ring_init_queue_alloc(size, gfp);
634                 if (!queues[i])
635                         goto nomem;
636         }
637
638         for (i = 0; i < nrings; ++i) {
639                 spin_lock_irqsave(&(rings[i])->consumer_lock, flags);
640                 spin_lock(&(rings[i])->producer_lock);
641                 queues[i] = __ptr_ring_swap_queue(rings[i], queues[i],
642                                                   size, gfp, destroy);
643                 spin_unlock(&(rings[i])->producer_lock);
644                 spin_unlock_irqrestore(&(rings[i])->consumer_lock, flags);
645         }
646
647         for (i = 0; i < nrings; ++i)
648                 kvfree(queues[i]);
649
650         kfree(queues);
651
652         return 0;
653
654 nomem:
655         while (--i >= 0)
656                 kvfree(queues[i]);
657
658         kfree(queues);
659
660 noqueues:
661         return -ENOMEM;
662 }
663
664 static inline void ptr_ring_cleanup(struct ptr_ring *r, void (*destroy)(void *))
665 {
666         void *ptr;
667
668         if (destroy)
669                 while ((ptr = ptr_ring_consume(r)))
670                         destroy(ptr);
671         kvfree(r->queue);
672 }
673
674 #endif /* _LINUX_PTR_RING_H  */