usb: uas: add support for more quirk flags
[platform/kernel/linux-rpi.git] / include / linux / ptr_ring.h
1 /*
2  *      Definitions for the 'struct ptr_ring' datastructure.
3  *
4  *      Author:
5  *              Michael S. Tsirkin <mst@redhat.com>
6  *
7  *      Copyright (C) 2016 Red Hat, Inc.
8  *
9  *      This program is free software; you can redistribute it and/or modify it
10  *      under the terms of the GNU General Public License as published by the
11  *      Free Software Foundation; either version 2 of the License, or (at your
12  *      option) any later version.
13  *
14  *      This is a limited-size FIFO maintaining pointers in FIFO order, with
15  *      one CPU producing entries and another consuming entries from a FIFO.
16  *
17  *      This implementation tries to minimize cache-contention when there is a
18  *      single producer and a single consumer CPU.
19  */
20
21 #ifndef _LINUX_PTR_RING_H
22 #define _LINUX_PTR_RING_H 1
23
24 #ifdef __KERNEL__
25 #include <linux/spinlock.h>
26 #include <linux/cache.h>
27 #include <linux/types.h>
28 #include <linux/compiler.h>
29 #include <linux/cache.h>
30 #include <linux/slab.h>
31 #include <asm/errno.h>
32 #endif
33
34 struct ptr_ring {
35         int producer ____cacheline_aligned_in_smp;
36         spinlock_t producer_lock;
37         int consumer_head ____cacheline_aligned_in_smp; /* next valid entry */
38         int consumer_tail; /* next entry to invalidate */
39         spinlock_t consumer_lock;
40         /* Shared consumer/producer data */
41         /* Read-only by both the producer and the consumer */
42         int size ____cacheline_aligned_in_smp; /* max entries in queue */
43         int batch; /* number of entries to consume in a batch */
44         void **queue;
45 };
46
47 /* Note: callers invoking this in a loop must use a compiler barrier,
48  * for example cpu_relax().
49  *
50  * NB: this is unlike __ptr_ring_empty in that callers must hold producer_lock:
51  * see e.g. ptr_ring_full.
52  */
53 static inline bool __ptr_ring_full(struct ptr_ring *r)
54 {
55         return r->queue[r->producer];
56 }
57
58 static inline bool ptr_ring_full(struct ptr_ring *r)
59 {
60         bool ret;
61
62         spin_lock(&r->producer_lock);
63         ret = __ptr_ring_full(r);
64         spin_unlock(&r->producer_lock);
65
66         return ret;
67 }
68
69 static inline bool ptr_ring_full_irq(struct ptr_ring *r)
70 {
71         bool ret;
72
73         spin_lock_irq(&r->producer_lock);
74         ret = __ptr_ring_full(r);
75         spin_unlock_irq(&r->producer_lock);
76
77         return ret;
78 }
79
80 static inline bool ptr_ring_full_any(struct ptr_ring *r)
81 {
82         unsigned long flags;
83         bool ret;
84
85         spin_lock_irqsave(&r->producer_lock, flags);
86         ret = __ptr_ring_full(r);
87         spin_unlock_irqrestore(&r->producer_lock, flags);
88
89         return ret;
90 }
91
92 static inline bool ptr_ring_full_bh(struct ptr_ring *r)
93 {
94         bool ret;
95
96         spin_lock_bh(&r->producer_lock);
97         ret = __ptr_ring_full(r);
98         spin_unlock_bh(&r->producer_lock);
99
100         return ret;
101 }
102
103 /* Note: callers invoking this in a loop must use a compiler barrier,
104  * for example cpu_relax(). Callers must hold producer_lock.
105  * Callers are responsible for making sure pointer that is being queued
106  * points to a valid data.
107  */
108 static inline int __ptr_ring_produce(struct ptr_ring *r, void *ptr)
109 {
110         if (unlikely(!r->size) || r->queue[r->producer])
111                 return -ENOSPC;
112
113         /* Make sure the pointer we are storing points to a valid data. */
114         /* Pairs with smp_read_barrier_depends in __ptr_ring_consume. */
115         smp_wmb();
116
117         WRITE_ONCE(r->queue[r->producer++], ptr);
118         if (unlikely(r->producer >= r->size))
119                 r->producer = 0;
120         return 0;
121 }
122
123 /*
124  * Note: resize (below) nests producer lock within consumer lock, so if you
125  * consume in interrupt or BH context, you must disable interrupts/BH when
126  * calling this.
127  */
128 static inline int ptr_ring_produce(struct ptr_ring *r, void *ptr)
129 {
130         int ret;
131
132         spin_lock(&r->producer_lock);
133         ret = __ptr_ring_produce(r, ptr);
134         spin_unlock(&r->producer_lock);
135
136         return ret;
137 }
138
139 static inline int ptr_ring_produce_irq(struct ptr_ring *r, void *ptr)
140 {
141         int ret;
142
143         spin_lock_irq(&r->producer_lock);
144         ret = __ptr_ring_produce(r, ptr);
145         spin_unlock_irq(&r->producer_lock);
146
147         return ret;
148 }
149
150 static inline int ptr_ring_produce_any(struct ptr_ring *r, void *ptr)
151 {
152         unsigned long flags;
153         int ret;
154
155         spin_lock_irqsave(&r->producer_lock, flags);
156         ret = __ptr_ring_produce(r, ptr);
157         spin_unlock_irqrestore(&r->producer_lock, flags);
158
159         return ret;
160 }
161
162 static inline int ptr_ring_produce_bh(struct ptr_ring *r, void *ptr)
163 {
164         int ret;
165
166         spin_lock_bh(&r->producer_lock);
167         ret = __ptr_ring_produce(r, ptr);
168         spin_unlock_bh(&r->producer_lock);
169
170         return ret;
171 }
172
173 static inline void *__ptr_ring_peek(struct ptr_ring *r)
174 {
175         if (likely(r->size))
176                 return READ_ONCE(r->queue[r->consumer_head]);
177         return NULL;
178 }
179
180 /*
181  * Test ring empty status without taking any locks.
182  *
183  * NB: This is only safe to call if ring is never resized.
184  *
185  * However, if some other CPU consumes ring entries at the same time, the value
186  * returned is not guaranteed to be correct.
187  *
188  * In this case - to avoid incorrectly detecting the ring
189  * as empty - the CPU consuming the ring entries is responsible
190  * for either consuming all ring entries until the ring is empty,
191  * or synchronizing with some other CPU and causing it to
192  * re-test __ptr_ring_empty and/or consume the ring enteries
193  * after the synchronization point.
194  *
195  * Note: callers invoking this in a loop must use a compiler barrier,
196  * for example cpu_relax().
197  */
198 static inline bool __ptr_ring_empty(struct ptr_ring *r)
199 {
200         if (likely(r->size))
201                 return !r->queue[READ_ONCE(r->consumer_head)];
202         return true;
203 }
204
205 static inline bool ptr_ring_empty(struct ptr_ring *r)
206 {
207         bool ret;
208
209         spin_lock(&r->consumer_lock);
210         ret = __ptr_ring_empty(r);
211         spin_unlock(&r->consumer_lock);
212
213         return ret;
214 }
215
216 static inline bool ptr_ring_empty_irq(struct ptr_ring *r)
217 {
218         bool ret;
219
220         spin_lock_irq(&r->consumer_lock);
221         ret = __ptr_ring_empty(r);
222         spin_unlock_irq(&r->consumer_lock);
223
224         return ret;
225 }
226
227 static inline bool ptr_ring_empty_any(struct ptr_ring *r)
228 {
229         unsigned long flags;
230         bool ret;
231
232         spin_lock_irqsave(&r->consumer_lock, flags);
233         ret = __ptr_ring_empty(r);
234         spin_unlock_irqrestore(&r->consumer_lock, flags);
235
236         return ret;
237 }
238
239 static inline bool ptr_ring_empty_bh(struct ptr_ring *r)
240 {
241         bool ret;
242
243         spin_lock_bh(&r->consumer_lock);
244         ret = __ptr_ring_empty(r);
245         spin_unlock_bh(&r->consumer_lock);
246
247         return ret;
248 }
249
250 /* Must only be called after __ptr_ring_peek returned !NULL */
251 static inline void __ptr_ring_discard_one(struct ptr_ring *r)
252 {
253         /* Fundamentally, what we want to do is update consumer
254          * index and zero out the entry so producer can reuse it.
255          * Doing it naively at each consume would be as simple as:
256          *       consumer = r->consumer;
257          *       r->queue[consumer++] = NULL;
258          *       if (unlikely(consumer >= r->size))
259          *               consumer = 0;
260          *       r->consumer = consumer;
261          * but that is suboptimal when the ring is full as producer is writing
262          * out new entries in the same cache line.  Defer these updates until a
263          * batch of entries has been consumed.
264          */
265         /* Note: we must keep consumer_head valid at all times for __ptr_ring_empty
266          * to work correctly.
267          */
268         int consumer_head = r->consumer_head;
269         int head = consumer_head++;
270
271         /* Once we have processed enough entries invalidate them in
272          * the ring all at once so producer can reuse their space in the ring.
273          * We also do this when we reach end of the ring - not mandatory
274          * but helps keep the implementation simple.
275          */
276         if (unlikely(consumer_head - r->consumer_tail >= r->batch ||
277                      consumer_head >= r->size)) {
278                 /* Zero out entries in the reverse order: this way we touch the
279                  * cache line that producer might currently be reading the last;
280                  * producer won't make progress and touch other cache lines
281                  * besides the first one until we write out all entries.
282                  */
283                 while (likely(head >= r->consumer_tail))
284                         r->queue[head--] = NULL;
285                 r->consumer_tail = consumer_head;
286         }
287         if (unlikely(consumer_head >= r->size)) {
288                 consumer_head = 0;
289                 r->consumer_tail = 0;
290         }
291         /* matching READ_ONCE in __ptr_ring_empty for lockless tests */
292         WRITE_ONCE(r->consumer_head, consumer_head);
293 }
294
295 static inline void *__ptr_ring_consume(struct ptr_ring *r)
296 {
297         void *ptr;
298
299         /* The READ_ONCE in __ptr_ring_peek guarantees that anyone
300          * accessing data through the pointer is up to date. Pairs
301          * with smp_wmb in __ptr_ring_produce.
302          */
303         ptr = __ptr_ring_peek(r);
304         if (ptr)
305                 __ptr_ring_discard_one(r);
306
307         return ptr;
308 }
309
310 static inline int __ptr_ring_consume_batched(struct ptr_ring *r,
311                                              void **array, int n)
312 {
313         void *ptr;
314         int i;
315
316         for (i = 0; i < n; i++) {
317                 ptr = __ptr_ring_consume(r);
318                 if (!ptr)
319                         break;
320                 array[i] = ptr;
321         }
322
323         return i;
324 }
325
326 /*
327  * Note: resize (below) nests producer lock within consumer lock, so if you
328  * call this in interrupt or BH context, you must disable interrupts/BH when
329  * producing.
330  */
331 static inline void *ptr_ring_consume(struct ptr_ring *r)
332 {
333         void *ptr;
334
335         spin_lock(&r->consumer_lock);
336         ptr = __ptr_ring_consume(r);
337         spin_unlock(&r->consumer_lock);
338
339         return ptr;
340 }
341
342 static inline void *ptr_ring_consume_irq(struct ptr_ring *r)
343 {
344         void *ptr;
345
346         spin_lock_irq(&r->consumer_lock);
347         ptr = __ptr_ring_consume(r);
348         spin_unlock_irq(&r->consumer_lock);
349
350         return ptr;
351 }
352
353 static inline void *ptr_ring_consume_any(struct ptr_ring *r)
354 {
355         unsigned long flags;
356         void *ptr;
357
358         spin_lock_irqsave(&r->consumer_lock, flags);
359         ptr = __ptr_ring_consume(r);
360         spin_unlock_irqrestore(&r->consumer_lock, flags);
361
362         return ptr;
363 }
364
365 static inline void *ptr_ring_consume_bh(struct ptr_ring *r)
366 {
367         void *ptr;
368
369         spin_lock_bh(&r->consumer_lock);
370         ptr = __ptr_ring_consume(r);
371         spin_unlock_bh(&r->consumer_lock);
372
373         return ptr;
374 }
375
376 static inline int ptr_ring_consume_batched(struct ptr_ring *r,
377                                            void **array, int n)
378 {
379         int ret;
380
381         spin_lock(&r->consumer_lock);
382         ret = __ptr_ring_consume_batched(r, array, n);
383         spin_unlock(&r->consumer_lock);
384
385         return ret;
386 }
387
388 static inline int ptr_ring_consume_batched_irq(struct ptr_ring *r,
389                                                void **array, int n)
390 {
391         int ret;
392
393         spin_lock_irq(&r->consumer_lock);
394         ret = __ptr_ring_consume_batched(r, array, n);
395         spin_unlock_irq(&r->consumer_lock);
396
397         return ret;
398 }
399
400 static inline int ptr_ring_consume_batched_any(struct ptr_ring *r,
401                                                void **array, int n)
402 {
403         unsigned long flags;
404         int ret;
405
406         spin_lock_irqsave(&r->consumer_lock, flags);
407         ret = __ptr_ring_consume_batched(r, array, n);
408         spin_unlock_irqrestore(&r->consumer_lock, flags);
409
410         return ret;
411 }
412
413 static inline int ptr_ring_consume_batched_bh(struct ptr_ring *r,
414                                               void **array, int n)
415 {
416         int ret;
417
418         spin_lock_bh(&r->consumer_lock);
419         ret = __ptr_ring_consume_batched(r, array, n);
420         spin_unlock_bh(&r->consumer_lock);
421
422         return ret;
423 }
424
425 /* Cast to structure type and call a function without discarding from FIFO.
426  * Function must return a value.
427  * Callers must take consumer_lock.
428  */
429 #define __PTR_RING_PEEK_CALL(r, f) ((f)(__ptr_ring_peek(r)))
430
431 #define PTR_RING_PEEK_CALL(r, f) ({ \
432         typeof((f)(NULL)) __PTR_RING_PEEK_CALL_v; \
433         \
434         spin_lock(&(r)->consumer_lock); \
435         __PTR_RING_PEEK_CALL_v = __PTR_RING_PEEK_CALL(r, f); \
436         spin_unlock(&(r)->consumer_lock); \
437         __PTR_RING_PEEK_CALL_v; \
438 })
439
440 #define PTR_RING_PEEK_CALL_IRQ(r, f) ({ \
441         typeof((f)(NULL)) __PTR_RING_PEEK_CALL_v; \
442         \
443         spin_lock_irq(&(r)->consumer_lock); \
444         __PTR_RING_PEEK_CALL_v = __PTR_RING_PEEK_CALL(r, f); \
445         spin_unlock_irq(&(r)->consumer_lock); \
446         __PTR_RING_PEEK_CALL_v; \
447 })
448
449 #define PTR_RING_PEEK_CALL_BH(r, f) ({ \
450         typeof((f)(NULL)) __PTR_RING_PEEK_CALL_v; \
451         \
452         spin_lock_bh(&(r)->consumer_lock); \
453         __PTR_RING_PEEK_CALL_v = __PTR_RING_PEEK_CALL(r, f); \
454         spin_unlock_bh(&(r)->consumer_lock); \
455         __PTR_RING_PEEK_CALL_v; \
456 })
457
458 #define PTR_RING_PEEK_CALL_ANY(r, f) ({ \
459         typeof((f)(NULL)) __PTR_RING_PEEK_CALL_v; \
460         unsigned long __PTR_RING_PEEK_CALL_f;\
461         \
462         spin_lock_irqsave(&(r)->consumer_lock, __PTR_RING_PEEK_CALL_f); \
463         __PTR_RING_PEEK_CALL_v = __PTR_RING_PEEK_CALL(r, f); \
464         spin_unlock_irqrestore(&(r)->consumer_lock, __PTR_RING_PEEK_CALL_f); \
465         __PTR_RING_PEEK_CALL_v; \
466 })
467
468 /* Not all gfp_t flags (besides GFP_KERNEL) are allowed. See
469  * documentation for vmalloc for which of them are legal.
470  */
471 static inline void **__ptr_ring_init_queue_alloc(unsigned int size, gfp_t gfp)
472 {
473         if (size > KMALLOC_MAX_SIZE / sizeof(void *))
474                 return NULL;
475         return kvmalloc_array(size, sizeof(void *), gfp | __GFP_ZERO);
476 }
477
478 static inline void __ptr_ring_set_size(struct ptr_ring *r, int size)
479 {
480         r->size = size;
481         r->batch = SMP_CACHE_BYTES * 2 / sizeof(*(r->queue));
482         /* We need to set batch at least to 1 to make logic
483          * in __ptr_ring_discard_one work correctly.
484          * Batching too much (because ring is small) would cause a lot of
485          * burstiness. Needs tuning, for now disable batching.
486          */
487         if (r->batch > r->size / 2 || !r->batch)
488                 r->batch = 1;
489 }
490
491 static inline int ptr_ring_init(struct ptr_ring *r, int size, gfp_t gfp)
492 {
493         r->queue = __ptr_ring_init_queue_alloc(size, gfp);
494         if (!r->queue)
495                 return -ENOMEM;
496
497         __ptr_ring_set_size(r, size);
498         r->producer = r->consumer_head = r->consumer_tail = 0;
499         spin_lock_init(&r->producer_lock);
500         spin_lock_init(&r->consumer_lock);
501
502         return 0;
503 }
504
505 /*
506  * Return entries into ring. Destroy entries that don't fit.
507  *
508  * Note: this is expected to be a rare slow path operation.
509  *
510  * Note: producer lock is nested within consumer lock, so if you
511  * resize you must make sure all uses nest correctly.
512  * In particular if you consume ring in interrupt or BH context, you must
513  * disable interrupts/BH when doing so.
514  */
515 static inline void ptr_ring_unconsume(struct ptr_ring *r, void **batch, int n,
516                                       void (*destroy)(void *))
517 {
518         unsigned long flags;
519         int head;
520
521         spin_lock_irqsave(&r->consumer_lock, flags);
522         spin_lock(&r->producer_lock);
523
524         if (!r->size)
525                 goto done;
526
527         /*
528          * Clean out buffered entries (for simplicity). This way following code
529          * can test entries for NULL and if not assume they are valid.
530          */
531         head = r->consumer_head - 1;
532         while (likely(head >= r->consumer_tail))
533                 r->queue[head--] = NULL;
534         r->consumer_tail = r->consumer_head;
535
536         /*
537          * Go over entries in batch, start moving head back and copy entries.
538          * Stop when we run into previously unconsumed entries.
539          */
540         while (n) {
541                 head = r->consumer_head - 1;
542                 if (head < 0)
543                         head = r->size - 1;
544                 if (r->queue[head]) {
545                         /* This batch entry will have to be destroyed. */
546                         goto done;
547                 }
548                 r->queue[head] = batch[--n];
549                 r->consumer_tail = head;
550                 /* matching READ_ONCE in __ptr_ring_empty for lockless tests */
551                 WRITE_ONCE(r->consumer_head, head);
552         }
553
554 done:
555         /* Destroy all entries left in the batch. */
556         while (n)
557                 destroy(batch[--n]);
558         spin_unlock(&r->producer_lock);
559         spin_unlock_irqrestore(&r->consumer_lock, flags);
560 }
561
562 static inline void **__ptr_ring_swap_queue(struct ptr_ring *r, void **queue,
563                                            int size, gfp_t gfp,
564                                            void (*destroy)(void *))
565 {
566         int producer = 0;
567         void **old;
568         void *ptr;
569
570         while ((ptr = __ptr_ring_consume(r)))
571                 if (producer < size)
572                         queue[producer++] = ptr;
573                 else if (destroy)
574                         destroy(ptr);
575
576         __ptr_ring_set_size(r, size);
577         r->producer = producer;
578         r->consumer_head = 0;
579         r->consumer_tail = 0;
580         old = r->queue;
581         r->queue = queue;
582
583         return old;
584 }
585
586 /*
587  * Note: producer lock is nested within consumer lock, so if you
588  * resize you must make sure all uses nest correctly.
589  * In particular if you consume ring in interrupt or BH context, you must
590  * disable interrupts/BH when doing so.
591  */
592 static inline int ptr_ring_resize(struct ptr_ring *r, int size, gfp_t gfp,
593                                   void (*destroy)(void *))
594 {
595         unsigned long flags;
596         void **queue = __ptr_ring_init_queue_alloc(size, gfp);
597         void **old;
598
599         if (!queue)
600                 return -ENOMEM;
601
602         spin_lock_irqsave(&(r)->consumer_lock, flags);
603         spin_lock(&(r)->producer_lock);
604
605         old = __ptr_ring_swap_queue(r, queue, size, gfp, destroy);
606
607         spin_unlock(&(r)->producer_lock);
608         spin_unlock_irqrestore(&(r)->consumer_lock, flags);
609
610         kvfree(old);
611
612         return 0;
613 }
614
615 /*
616  * Note: producer lock is nested within consumer lock, so if you
617  * resize you must make sure all uses nest correctly.
618  * In particular if you consume ring in interrupt or BH context, you must
619  * disable interrupts/BH when doing so.
620  */
621 static inline int ptr_ring_resize_multiple(struct ptr_ring **rings,
622                                            unsigned int nrings,
623                                            int size,
624                                            gfp_t gfp, void (*destroy)(void *))
625 {
626         unsigned long flags;
627         void ***queues;
628         int i;
629
630         queues = kmalloc_array(nrings, sizeof(*queues), gfp);
631         if (!queues)
632                 goto noqueues;
633
634         for (i = 0; i < nrings; ++i) {
635                 queues[i] = __ptr_ring_init_queue_alloc(size, gfp);
636                 if (!queues[i])
637                         goto nomem;
638         }
639
640         for (i = 0; i < nrings; ++i) {
641                 spin_lock_irqsave(&(rings[i])->consumer_lock, flags);
642                 spin_lock(&(rings[i])->producer_lock);
643                 queues[i] = __ptr_ring_swap_queue(rings[i], queues[i],
644                                                   size, gfp, destroy);
645                 spin_unlock(&(rings[i])->producer_lock);
646                 spin_unlock_irqrestore(&(rings[i])->consumer_lock, flags);
647         }
648
649         for (i = 0; i < nrings; ++i)
650                 kvfree(queues[i]);
651
652         kfree(queues);
653
654         return 0;
655
656 nomem:
657         while (--i >= 0)
658                 kvfree(queues[i]);
659
660         kfree(queues);
661
662 noqueues:
663         return -ENOMEM;
664 }
665
666 static inline void ptr_ring_cleanup(struct ptr_ring *r, void (*destroy)(void *))
667 {
668         void *ptr;
669
670         if (destroy)
671                 while ((ptr = ptr_ring_consume(r)))
672                         destroy(ptr);
673         kvfree(r->queue);
674 }
675
676 #endif /* _LINUX_PTR_RING_H  */