1 /* SPDX-License-Identifier: GPL-2.0 */
5 #include <linux/rculist.h>
6 #include <linux/wait.h>
7 #include <linux/refcount.h>
21 * A struct pid is the kernel's internal notion of a process identifier.
22 * It refers to individual tasks, process groups, and sessions. While
23 * there are processes attached to it the struct pid lives in a hash
24 * table, so it and then the processes that it refers to can be found
25 * quickly from the numeric pid value. The attached processes may be
26 * quickly accessed by following pointers from struct pid.
28 * Storing pid_t values in the kernel and referring to them later has a
29 * problem. The process originally with that pid may have exited and the
30 * pid allocator wrapped, and another process could have come along
31 * and been assigned that pid.
33 * Referring to user space processes by holding a reference to struct
34 * task_struct has a problem. When the user space process exits
35 * the now useless task_struct is still kept. A task_struct plus a
36 * stack consumes around 10K of low kernel memory. More precisely
37 * this is THREAD_SIZE + sizeof(struct task_struct). By comparison
38 * a struct pid is about 64 bytes.
40 * Holding a reference to struct pid solves both of these problems.
41 * It is small so holding a reference does not consume a lot of
42 * resources, and since a new struct pid is allocated when the numeric pid
43 * value is reused (when pids wrap around) we don't mistakenly refer to new
49 * struct upid is used to get the id of the struct pid, as it is
50 * seen in particular namespace. Later the struct pid is found with
51 * find_pid_ns() using the int nr and struct pid_namespace *ns.
56 struct pid_namespace *ns;
64 /* lists of tasks that use this pid */
65 struct hlist_head tasks[PIDTYPE_MAX];
66 struct hlist_head inodes;
67 /* wait queue for pidfd notifications */
68 wait_queue_head_t wait_pidfd;
70 struct upid numbers[1];
73 extern struct pid init_struct_pid;
75 extern const struct file_operations pidfd_fops;
79 extern struct pid *pidfd_pid(const struct file *file);
80 struct pid *pidfd_get_pid(unsigned int fd, unsigned int *flags);
81 struct task_struct *pidfd_get_task(int pidfd, unsigned int *flags);
82 int pidfd_create(struct pid *pid, unsigned int flags);
83 int pidfd_prepare(struct pid *pid, unsigned int flags, struct file **ret);
85 static inline struct pid *get_pid(struct pid *pid)
88 refcount_inc(&pid->count);
92 extern void put_pid(struct pid *pid);
93 extern struct task_struct *pid_task(struct pid *pid, enum pid_type);
94 static inline bool pid_has_task(struct pid *pid, enum pid_type type)
96 return !hlist_empty(&pid->tasks[type]);
98 extern struct task_struct *get_pid_task(struct pid *pid, enum pid_type);
100 extern struct pid *get_task_pid(struct task_struct *task, enum pid_type type);
103 * these helpers must be called with the tasklist_lock write-held.
105 extern void attach_pid(struct task_struct *task, enum pid_type);
106 extern void detach_pid(struct task_struct *task, enum pid_type);
107 extern void change_pid(struct task_struct *task, enum pid_type,
109 extern void exchange_tids(struct task_struct *task, struct task_struct *old);
110 extern void transfer_pid(struct task_struct *old, struct task_struct *new,
113 struct pid_namespace;
114 extern struct pid_namespace init_pid_ns;
117 extern int pid_max_min, pid_max_max;
120 * look up a PID in the hash table. Must be called with the tasklist_lock
121 * or rcu_read_lock() held.
123 * find_pid_ns() finds the pid in the namespace specified
124 * find_vpid() finds the pid by its virtual id, i.e. in the current namespace
126 * see also find_task_by_vpid() set in include/linux/sched.h
128 extern struct pid *find_pid_ns(int nr, struct pid_namespace *ns);
129 extern struct pid *find_vpid(int nr);
132 * Lookup a PID in the hash table, and return with it's count elevated.
134 extern struct pid *find_get_pid(int nr);
135 extern struct pid *find_ge_pid(int nr, struct pid_namespace *);
137 extern struct pid *alloc_pid(struct pid_namespace *ns, pid_t *set_tid,
138 size_t set_tid_size);
139 extern void free_pid(struct pid *pid);
140 extern void disable_pid_allocation(struct pid_namespace *ns);
143 * ns_of_pid() returns the pid namespace in which the specified pid was
147 * ns_of_pid() is expected to be called for a process (task) that has
148 * an attached 'struct pid' (see attach_pid(), detach_pid()) i.e @pid
149 * is expected to be non-NULL. If @pid is NULL, caller should handle
150 * the resulting NULL pid-ns.
152 static inline struct pid_namespace *ns_of_pid(struct pid *pid)
154 struct pid_namespace *ns = NULL;
156 ns = pid->numbers[pid->level].ns;
161 * is_child_reaper returns true if the pid is the init process
162 * of the current namespace. As this one could be checked before
163 * pid_ns->child_reaper is assigned in copy_process, we check
164 * with the pid number.
166 static inline bool is_child_reaper(struct pid *pid)
168 return pid->numbers[pid->level].nr == 1;
172 * the helpers to get the pid's id seen from different namespaces
174 * pid_nr() : global id, i.e. the id seen from the init namespace;
175 * pid_vnr() : virtual id, i.e. the id seen from the pid namespace of
177 * pid_nr_ns() : id seen from the ns specified.
179 * see also task_xid_nr() etc in include/linux/sched.h
182 static inline pid_t pid_nr(struct pid *pid)
186 nr = pid->numbers[0].nr;
190 pid_t pid_nr_ns(struct pid *pid, struct pid_namespace *ns);
191 pid_t pid_vnr(struct pid *pid);
193 #define do_each_pid_task(pid, type, task) \
196 hlist_for_each_entry_rcu((task), \
197 &(pid)->tasks[type], pid_links[type]) {
200 * Both old and new leaders may be attached to
201 * the same pid in the middle of de_thread().
203 #define while_each_pid_task(pid, type, task) \
204 if (type == PIDTYPE_PID) \
209 #define do_each_pid_thread(pid, type, task) \
210 do_each_pid_task(pid, type, task) { \
211 struct task_struct *tg___ = task; \
212 for_each_thread(tg___, task) {
214 #define while_each_pid_thread(pid, type, task) \
217 } while_each_pid_task(pid, type, task)
218 #endif /* _LINUX_PID_H */