4 * Copyright (C) 2008-2009, Thomas Gleixner <tglx@linutronix.de>
5 * Copyright (C) 2008-2011, Red Hat, Inc., Ingo Molnar
6 * Copyright (C) 2008-2011, Red Hat, Inc., Peter Zijlstra
8 * Data type definitions, declarations, prototypes.
10 * Started by: Thomas Gleixner and Ingo Molnar
12 * For licencing details see kernel-base/COPYING
14 #ifndef _LINUX_PERF_EVENT_H
15 #define _LINUX_PERF_EVENT_H
17 #include <uapi/linux/perf_event.h>
18 #include <uapi/linux/bpf_perf_event.h>
21 * Kernel-internal data types and definitions:
24 #ifdef CONFIG_PERF_EVENTS
25 # include <asm/perf_event.h>
26 # include <asm/local64.h>
29 struct perf_guest_info_callbacks {
30 int (*is_in_guest)(void);
31 int (*is_user_mode)(void);
32 unsigned long (*get_guest_ip)(void);
33 void (*handle_intel_pt_intr)(void);
36 #ifdef CONFIG_HAVE_HW_BREAKPOINT
37 #include <asm/hw_breakpoint.h>
40 #include <linux/list.h>
41 #include <linux/mutex.h>
42 #include <linux/rculist.h>
43 #include <linux/rcupdate.h>
44 #include <linux/spinlock.h>
45 #include <linux/hrtimer.h>
47 #include <linux/pid_namespace.h>
48 #include <linux/workqueue.h>
49 #include <linux/ftrace.h>
50 #include <linux/cpu.h>
51 #include <linux/irq_work.h>
52 #include <linux/static_key.h>
53 #include <linux/jump_label_ratelimit.h>
54 #include <linux/atomic.h>
55 #include <linux/sysfs.h>
56 #include <linux/perf_regs.h>
57 #include <linux/cgroup.h>
58 #include <linux/refcount.h>
59 #include <linux/security.h>
60 #include <asm/local.h>
62 struct perf_callchain_entry {
64 __u64 ip[]; /* /proc/sys/kernel/perf_event_max_stack */
67 struct perf_callchain_entry_ctx {
68 struct perf_callchain_entry *entry;
75 typedef unsigned long (*perf_copy_f)(void *dst, const void *src,
76 unsigned long off, unsigned long len);
78 struct perf_raw_frag {
80 struct perf_raw_frag *next;
88 struct perf_raw_record {
89 struct perf_raw_frag frag;
94 * branch stack layout:
95 * nr: number of taken branches stored in entries[]
96 * hw_idx: The low level index of raw branch records
97 * for the most recent branch.
98 * -1ULL means invalid/unknown.
100 * Note that nr can vary from sample to sample
101 * branches (to, from) are stored from most recent
102 * to least recent, i.e., entries[0] contains the most
104 * The entries[] is an abstraction of raw branch records,
105 * which may not be stored in age order in HW, e.g. Intel LBR.
106 * The hw_idx is to expose the low level index of raw
107 * branch record for the most recent branch aka entries[0].
108 * The hw_idx index is between -1 (unknown) and max depth,
109 * which can be retrieved in /sys/devices/cpu/caps/branches.
110 * For the architectures whose raw branch records are
111 * already stored in age order, the hw_idx should be 0.
113 struct perf_branch_stack {
116 struct perf_branch_entry entries[];
122 * extra PMU register associated with an event
124 struct hw_perf_event_extra {
125 u64 config; /* register value */
126 unsigned int reg; /* register address or index */
127 int alloc; /* extra register already allocated */
128 int idx; /* index in shared_regs->regs[] */
132 * struct hw_perf_event - performance event hardware details:
134 struct hw_perf_event {
135 #ifdef CONFIG_PERF_EVENTS
137 struct { /* hardware */
140 unsigned long config_base;
141 unsigned long event_base;
142 int event_base_rdpmc;
147 struct hw_perf_event_extra extra_reg;
148 struct hw_perf_event_extra branch_reg;
150 struct { /* software */
151 struct hrtimer hrtimer;
153 struct { /* tracepoint */
154 /* for tp_event->class */
155 struct list_head tp_list;
157 struct { /* amd_power */
161 #ifdef CONFIG_HAVE_HW_BREAKPOINT
162 struct { /* breakpoint */
164 * Crufty hack to avoid the chicken and egg
165 * problem hw_breakpoint has with context
166 * creation and event initalization.
168 struct arch_hw_breakpoint info;
169 struct list_head bp_list;
172 struct { /* amd_iommu */
181 * If the event is a per task event, this will point to the task in
182 * question. See the comment in perf_event_alloc().
184 struct task_struct *target;
187 * PMU would store hardware filter configuration
192 /* Last sync'ed generation of filters */
193 unsigned long addr_filters_gen;
196 * hw_perf_event::state flags; used to track the PERF_EF_* state.
198 #define PERF_HES_STOPPED 0x01 /* the counter is stopped */
199 #define PERF_HES_UPTODATE 0x02 /* event->count up-to-date */
200 #define PERF_HES_ARCH 0x04
205 * The last observed hardware counter value, updated with a
206 * local64_cmpxchg() such that pmu::read() can be called nested.
208 local64_t prev_count;
211 * The period to start the next sample with.
216 struct { /* Sampling */
218 * The period we started this sample with.
223 * However much is left of the current period;
224 * note that this is a full 64bit value and
225 * allows for generation of periods longer
226 * than hardware might allow.
228 local64_t period_left;
230 struct { /* Topdown events counting for context switch */
237 * State for throttling the event, see __perf_event_overflow() and
238 * perf_adjust_freq_unthr_context().
244 * State for freq target events, see __perf_event_overflow() and
245 * perf_adjust_freq_unthr_context().
248 u64 freq_count_stamp;
255 * Common implementation detail of pmu::{start,commit,cancel}_txn
257 #define PERF_PMU_TXN_ADD 0x1 /* txn to add/schedule event on PMU */
258 #define PERF_PMU_TXN_READ 0x2 /* txn to read event group from PMU */
261 * pmu::capabilities flags
263 #define PERF_PMU_CAP_NO_INTERRUPT 0x0001
264 #define PERF_PMU_CAP_NO_NMI 0x0002
265 #define PERF_PMU_CAP_AUX_NO_SG 0x0004
266 #define PERF_PMU_CAP_EXTENDED_REGS 0x0008
267 #define PERF_PMU_CAP_EXCLUSIVE 0x0010
268 #define PERF_PMU_CAP_ITRACE 0x0020
269 #define PERF_PMU_CAP_HETEROGENEOUS_CPUS 0x0040
270 #define PERF_PMU_CAP_NO_EXCLUDE 0x0080
271 #define PERF_PMU_CAP_AUX_OUTPUT 0x0100
272 #define PERF_PMU_CAP_EXTENDED_HW_TYPE 0x0200
274 struct perf_output_handle;
277 * struct pmu - generic performance monitoring unit
280 struct list_head entry;
282 struct module *module;
284 const struct attribute_group **attr_groups;
285 const struct attribute_group **attr_update;
290 * various common per-pmu feature flags
294 int __percpu *pmu_disable_count;
295 struct perf_cpu_context __percpu *pmu_cpu_context;
296 atomic_t exclusive_cnt; /* < 0: cpu; > 0: tsk */
298 int hrtimer_interval_ms;
300 /* number of address filters this PMU can do */
301 unsigned int nr_addr_filters;
304 * Fully disable/enable this PMU, can be used to protect from the PMI
305 * as well as for lazy/batch writing of the MSRs.
307 void (*pmu_enable) (struct pmu *pmu); /* optional */
308 void (*pmu_disable) (struct pmu *pmu); /* optional */
311 * Try and initialize the event for this PMU.
314 * -ENOENT -- @event is not for this PMU
316 * -ENODEV -- @event is for this PMU but PMU not present
317 * -EBUSY -- @event is for this PMU but PMU temporarily unavailable
318 * -EINVAL -- @event is for this PMU but @event is not valid
319 * -EOPNOTSUPP -- @event is for this PMU, @event is valid, but not supported
320 * -EACCES -- @event is for this PMU, @event is valid, but no privileges
322 * 0 -- @event is for this PMU and valid
324 * Other error return values are allowed.
326 int (*event_init) (struct perf_event *event);
329 * Notification that the event was mapped or unmapped. Called
330 * in the context of the mapping task.
332 void (*event_mapped) (struct perf_event *event, struct mm_struct *mm); /* optional */
333 void (*event_unmapped) (struct perf_event *event, struct mm_struct *mm); /* optional */
336 * Flags for ->add()/->del()/ ->start()/->stop(). There are
337 * matching hw_perf_event::state flags.
339 #define PERF_EF_START 0x01 /* start the counter when adding */
340 #define PERF_EF_RELOAD 0x02 /* reload the counter when starting */
341 #define PERF_EF_UPDATE 0x04 /* update the counter when stopping */
344 * Adds/Removes a counter to/from the PMU, can be done inside a
345 * transaction, see the ->*_txn() methods.
347 * The add/del callbacks will reserve all hardware resources required
348 * to service the event, this includes any counter constraint
351 * Called with IRQs disabled and the PMU disabled on the CPU the event
354 * ->add() called without PERF_EF_START should result in the same state
355 * as ->add() followed by ->stop().
357 * ->del() must always PERF_EF_UPDATE stop an event. If it calls
358 * ->stop() that must deal with already being stopped without
361 int (*add) (struct perf_event *event, int flags);
362 void (*del) (struct perf_event *event, int flags);
365 * Starts/Stops a counter present on the PMU.
367 * The PMI handler should stop the counter when perf_event_overflow()
368 * returns !0. ->start() will be used to continue.
370 * Also used to change the sample period.
372 * Called with IRQs disabled and the PMU disabled on the CPU the event
373 * is on -- will be called from NMI context with the PMU generates
376 * ->stop() with PERF_EF_UPDATE will read the counter and update
377 * period/count values like ->read() would.
379 * ->start() with PERF_EF_RELOAD will reprogram the counter
380 * value, must be preceded by a ->stop() with PERF_EF_UPDATE.
382 void (*start) (struct perf_event *event, int flags);
383 void (*stop) (struct perf_event *event, int flags);
386 * Updates the counter value of the event.
388 * For sampling capable PMUs this will also update the software period
389 * hw_perf_event::period_left field.
391 void (*read) (struct perf_event *event);
394 * Group events scheduling is treated as a transaction, add
395 * group events as a whole and perform one schedulability test.
396 * If the test fails, roll back the whole group
398 * Start the transaction, after this ->add() doesn't need to
399 * do schedulability tests.
403 void (*start_txn) (struct pmu *pmu, unsigned int txn_flags);
405 * If ->start_txn() disabled the ->add() schedulability test
406 * then ->commit_txn() is required to perform one. On success
407 * the transaction is closed. On error the transaction is kept
408 * open until ->cancel_txn() is called.
412 int (*commit_txn) (struct pmu *pmu);
414 * Will cancel the transaction, assumes ->del() is called
415 * for each successful ->add() during the transaction.
419 void (*cancel_txn) (struct pmu *pmu);
422 * Will return the value for perf_event_mmap_page::index for this event,
423 * if no implementation is provided it will default to: event->hw.idx + 1.
425 int (*event_idx) (struct perf_event *event); /*optional */
428 * context-switches callback
430 void (*sched_task) (struct perf_event_context *ctx,
434 * Kmem cache of PMU specific data
436 struct kmem_cache *task_ctx_cache;
439 * PMU specific parts of task perf event context (i.e. ctx->task_ctx_data)
440 * can be synchronized using this function. See Intel LBR callstack support
441 * implementation and Perf core context switch handling callbacks for usage
444 void (*swap_task_ctx) (struct perf_event_context *prev,
445 struct perf_event_context *next);
449 * Set up pmu-private data structures for an AUX area
451 void *(*setup_aux) (struct perf_event *event, void **pages,
452 int nr_pages, bool overwrite);
456 * Free pmu-private AUX data structures
458 void (*free_aux) (void *aux); /* optional */
461 * Take a snapshot of the AUX buffer without touching the event
462 * state, so that preempting ->start()/->stop() callbacks does
463 * not interfere with their logic. Called in PMI context.
465 * Returns the size of AUX data copied to the output handle.
469 long (*snapshot_aux) (struct perf_event *event,
470 struct perf_output_handle *handle,
474 * Validate address range filters: make sure the HW supports the
475 * requested configuration and number of filters; return 0 if the
476 * supplied filters are valid, -errno otherwise.
478 * Runs in the context of the ioctl()ing process and is not serialized
479 * with the rest of the PMU callbacks.
481 int (*addr_filters_validate) (struct list_head *filters);
485 * Synchronize address range filter configuration:
486 * translate hw-agnostic filters into hardware configuration in
487 * event::hw::addr_filters.
489 * Runs as a part of filter sync sequence that is done in ->start()
490 * callback by calling perf_event_addr_filters_sync().
492 * May (and should) traverse event::addr_filters::list, for which its
493 * caller provides necessary serialization.
495 void (*addr_filters_sync) (struct perf_event *event);
499 * Check if event can be used for aux_output purposes for
500 * events of this PMU.
502 * Runs from perf_event_open(). Should return 0 for "no match"
503 * or non-zero for "match".
505 int (*aux_output_match) (struct perf_event *event);
509 * Filter events for PMU-specific reasons.
511 int (*filter_match) (struct perf_event *event); /* optional */
514 * Check period value for PERF_EVENT_IOC_PERIOD ioctl.
516 int (*check_period) (struct perf_event *event, u64 value); /* optional */
519 enum perf_addr_filter_action_t {
520 PERF_ADDR_FILTER_ACTION_STOP = 0,
521 PERF_ADDR_FILTER_ACTION_START,
522 PERF_ADDR_FILTER_ACTION_FILTER,
526 * struct perf_addr_filter - address range filter definition
527 * @entry: event's filter list linkage
528 * @path: object file's path for file-based filters
529 * @offset: filter range offset
530 * @size: filter range size (size==0 means single address trigger)
531 * @action: filter/start/stop
533 * This is a hardware-agnostic filter configuration as specified by the user.
535 struct perf_addr_filter {
536 struct list_head entry;
538 unsigned long offset;
540 enum perf_addr_filter_action_t action;
544 * struct perf_addr_filters_head - container for address range filters
545 * @list: list of filters for this event
546 * @lock: spinlock that serializes accesses to the @list and event's
547 * (and its children's) filter generations.
548 * @nr_file_filters: number of file-based filters
550 * A child event will use parent's @list (and therefore @lock), so they are
551 * bundled together; see perf_event_addr_filters().
553 struct perf_addr_filters_head {
554 struct list_head list;
556 unsigned int nr_file_filters;
559 struct perf_addr_filter_range {
565 * enum perf_event_state - the states of an event:
567 enum perf_event_state {
568 PERF_EVENT_STATE_DEAD = -4,
569 PERF_EVENT_STATE_EXIT = -3,
570 PERF_EVENT_STATE_ERROR = -2,
571 PERF_EVENT_STATE_OFF = -1,
572 PERF_EVENT_STATE_INACTIVE = 0,
573 PERF_EVENT_STATE_ACTIVE = 1,
577 struct perf_sample_data;
579 typedef void (*perf_overflow_handler_t)(struct perf_event *,
580 struct perf_sample_data *,
581 struct pt_regs *regs);
584 * Event capabilities. For event_caps and groups caps.
586 * PERF_EV_CAP_SOFTWARE: Is a software event.
587 * PERF_EV_CAP_READ_ACTIVE_PKG: A CPU event (or cgroup event) that can be read
588 * from any CPU in the package where it is active.
589 * PERF_EV_CAP_SIBLING: An event with this flag must be a group sibling and
590 * cannot be a group leader. If an event with this flag is detached from the
591 * group it is scheduled out and moved into an unrecoverable ERROR state.
593 #define PERF_EV_CAP_SOFTWARE BIT(0)
594 #define PERF_EV_CAP_READ_ACTIVE_PKG BIT(1)
595 #define PERF_EV_CAP_SIBLING BIT(2)
597 #define SWEVENT_HLIST_BITS 8
598 #define SWEVENT_HLIST_SIZE (1 << SWEVENT_HLIST_BITS)
600 struct swevent_hlist {
601 struct hlist_head heads[SWEVENT_HLIST_SIZE];
602 struct rcu_head rcu_head;
605 #define PERF_ATTACH_CONTEXT 0x01
606 #define PERF_ATTACH_GROUP 0x02
607 #define PERF_ATTACH_TASK 0x04
608 #define PERF_ATTACH_TASK_DATA 0x08
609 #define PERF_ATTACH_ITRACE 0x10
610 #define PERF_ATTACH_SCHED_CB 0x20
611 #define PERF_ATTACH_CHILD 0x40
616 struct pmu_event_list {
618 struct list_head list;
621 #define for_each_sibling_event(sibling, event) \
622 if ((event)->group_leader == (event)) \
623 list_for_each_entry((sibling), &(event)->sibling_list, sibling_list)
626 * struct perf_event - performance event kernel representation:
629 #ifdef CONFIG_PERF_EVENTS
631 * entry onto perf_event_context::event_list;
632 * modifications require ctx->lock
633 * RCU safe iterations.
635 struct list_head event_entry;
638 * Locked for modification by both ctx->mutex and ctx->lock; holding
639 * either sufficies for read.
641 struct list_head sibling_list;
642 struct list_head active_list;
644 * Node on the pinned or flexible tree located at the event context;
646 struct rb_node group_node;
649 * We need storage to track the entries in perf_pmu_migrate_context; we
650 * cannot use the event_entry because of RCU and we want to keep the
651 * group in tact which avoids us using the other two entries.
653 struct list_head migrate_entry;
655 struct hlist_node hlist_entry;
656 struct list_head active_entry;
659 /* Not serialized. Only written during event initialization. */
661 /* The cumulative AND of all event_caps for events in this group. */
664 struct perf_event *group_leader;
668 enum perf_event_state state;
669 unsigned int attach_state;
671 atomic64_t child_count;
674 * These are the total time in nanoseconds that the event
675 * has been enabled (i.e. eligible to run, and the task has
676 * been scheduled in, if this is a per-task event)
677 * and running (scheduled onto the CPU), respectively.
679 u64 total_time_enabled;
680 u64 total_time_running;
684 * timestamp shadows the actual context timing but it can
685 * be safely used in NMI interrupt context. It reflects the
686 * context time as it was when the event was last scheduled in.
688 * ctx_time already accounts for ctx->timestamp. Therefore to
689 * compute ctx_time for a sample, simply add perf_clock().
693 struct perf_event_attr attr;
697 struct hw_perf_event hw;
699 struct perf_event_context *ctx;
700 atomic_long_t refcount;
703 * These accumulate total time (in nanoseconds) that children
704 * events have been enabled and running, respectively.
706 atomic64_t child_total_time_enabled;
707 atomic64_t child_total_time_running;
710 * Protect attach/detach and child_list:
712 struct mutex child_mutex;
713 struct list_head child_list;
714 struct perf_event *parent;
719 struct list_head owner_entry;
720 struct task_struct *owner;
723 struct mutex mmap_mutex;
726 struct perf_buffer *rb;
727 struct list_head rb_entry;
728 unsigned long rcu_batches;
732 wait_queue_head_t waitq;
733 struct fasync_struct *fasync;
735 /* delayed work for NMIs and such */
739 unsigned long pending_addr; /* SIGTRAP */
740 struct irq_work pending;
742 atomic_t event_limit;
744 /* address range filters */
745 struct perf_addr_filters_head addr_filters;
746 /* vma address array for file-based filders */
747 struct perf_addr_filter_range *addr_filter_ranges;
748 unsigned long addr_filters_gen;
750 /* for aux_output events */
751 struct perf_event *aux_event;
753 void (*destroy)(struct perf_event *);
754 struct rcu_head rcu_head;
756 struct pid_namespace *ns;
760 perf_overflow_handler_t overflow_handler;
761 void *overflow_handler_context;
762 #ifdef CONFIG_BPF_SYSCALL
763 perf_overflow_handler_t orig_overflow_handler;
764 struct bpf_prog *prog;
768 #ifdef CONFIG_EVENT_TRACING
769 struct trace_event_call *tp_event;
770 struct event_filter *filter;
771 #ifdef CONFIG_FUNCTION_TRACER
772 struct ftrace_ops ftrace_ops;
776 #ifdef CONFIG_CGROUP_PERF
777 struct perf_cgroup *cgrp; /* cgroup event is attach to */
780 #ifdef CONFIG_SECURITY
783 struct list_head sb_list;
784 #endif /* CONFIG_PERF_EVENTS */
788 struct perf_event_groups {
794 * struct perf_event_context - event context structure
796 * Used as a container for task events and CPU events as well:
798 struct perf_event_context {
801 * Protect the states of the events in the list,
802 * nr_active, and the list:
806 * Protect the list of events. Locking either mutex or lock
807 * is sufficient to ensure the list doesn't change; to change
808 * the list you need to lock both the mutex and the spinlock.
812 struct list_head active_ctx_list;
813 struct perf_event_groups pinned_groups;
814 struct perf_event_groups flexible_groups;
815 struct list_head event_list;
817 struct list_head pinned_active;
818 struct list_head flexible_active;
827 * Set when nr_events != nr_active, except tolerant to events not
828 * necessary to be active due to scheduling constraints, such as cgroups.
830 int rotate_necessary;
832 struct task_struct *task;
835 * Context clock, runs when context enabled.
841 * These fields let us detect when two contexts have both
842 * been cloned (inherited) from a common ancestor.
844 struct perf_event_context *parent_ctx;
848 #ifdef CONFIG_CGROUP_PERF
849 int nr_cgroups; /* cgroup evts */
851 void *task_ctx_data; /* pmu specific data */
852 struct rcu_head rcu_head;
856 * Number of contexts where an event can trigger:
857 * task, softirq, hardirq, nmi.
859 #define PERF_NR_CONTEXTS 4
862 * struct perf_event_cpu_context - per cpu event context structure
864 struct perf_cpu_context {
865 struct perf_event_context ctx;
866 struct perf_event_context *task_ctx;
870 raw_spinlock_t hrtimer_lock;
871 struct hrtimer hrtimer;
872 ktime_t hrtimer_interval;
873 unsigned int hrtimer_active;
875 #ifdef CONFIG_CGROUP_PERF
876 struct perf_cgroup *cgrp;
877 struct list_head cgrp_cpuctx_entry;
880 struct list_head sched_cb_entry;
885 * Per-CPU storage for iterators used in visit_groups_merge. The default
886 * storage is of size 2 to hold the CPU and any CPU event iterators.
889 struct perf_event **heap;
890 struct perf_event *heap_default[2];
893 struct perf_output_handle {
894 struct perf_event *event;
895 struct perf_buffer *rb;
896 unsigned long wakeup;
906 struct bpf_perf_event_data_kern {
907 bpf_user_pt_regs_t *regs;
908 struct perf_sample_data *data;
909 struct perf_event *event;
912 #ifdef CONFIG_CGROUP_PERF
915 * perf_cgroup_info keeps track of time_enabled for a cgroup.
916 * This is a per-cpu dynamically allocated data structure.
918 struct perf_cgroup_info {
924 struct cgroup_subsys_state css;
925 struct perf_cgroup_info __percpu *info;
929 * Must ensure cgroup is pinned (css_get) before calling
930 * this function. In other words, we cannot call this function
931 * if there is no cgroup event for the current CPU context.
933 static inline struct perf_cgroup *
934 perf_cgroup_from_task(struct task_struct *task, struct perf_event_context *ctx)
936 return container_of(task_css_check(task, perf_event_cgrp_id,
937 ctx ? lockdep_is_held(&ctx->lock)
939 struct perf_cgroup, css);
941 #endif /* CONFIG_CGROUP_PERF */
943 #ifdef CONFIG_PERF_EVENTS
945 extern void *perf_aux_output_begin(struct perf_output_handle *handle,
946 struct perf_event *event);
947 extern void perf_aux_output_end(struct perf_output_handle *handle,
949 extern int perf_aux_output_skip(struct perf_output_handle *handle,
951 extern void *perf_get_aux(struct perf_output_handle *handle);
952 extern void perf_aux_output_flag(struct perf_output_handle *handle, u64 flags);
953 extern void perf_event_itrace_started(struct perf_event *event);
955 extern int perf_pmu_register(struct pmu *pmu, const char *name, int type);
956 extern void perf_pmu_unregister(struct pmu *pmu);
958 extern void __perf_event_task_sched_in(struct task_struct *prev,
959 struct task_struct *task);
960 extern void __perf_event_task_sched_out(struct task_struct *prev,
961 struct task_struct *next);
962 extern int perf_event_init_task(struct task_struct *child, u64 clone_flags);
963 extern void perf_event_exit_task(struct task_struct *child);
964 extern void perf_event_free_task(struct task_struct *task);
965 extern void perf_event_delayed_put(struct task_struct *task);
966 extern struct file *perf_event_get(unsigned int fd);
967 extern const struct perf_event *perf_get_event(struct file *file);
968 extern const struct perf_event_attr *perf_event_attrs(struct perf_event *event);
969 extern void perf_event_print_debug(void);
970 extern void perf_pmu_disable(struct pmu *pmu);
971 extern void perf_pmu_enable(struct pmu *pmu);
972 extern void perf_sched_cb_dec(struct pmu *pmu);
973 extern void perf_sched_cb_inc(struct pmu *pmu);
974 extern int perf_event_task_disable(void);
975 extern int perf_event_task_enable(void);
977 extern void perf_pmu_resched(struct pmu *pmu);
979 extern int perf_event_refresh(struct perf_event *event, int refresh);
980 extern void perf_event_update_userpage(struct perf_event *event);
981 extern int perf_event_release_kernel(struct perf_event *event);
982 extern struct perf_event *
983 perf_event_create_kernel_counter(struct perf_event_attr *attr,
985 struct task_struct *task,
986 perf_overflow_handler_t callback,
988 extern void perf_pmu_migrate_context(struct pmu *pmu,
989 int src_cpu, int dst_cpu);
990 int perf_event_read_local(struct perf_event *event, u64 *value,
991 u64 *enabled, u64 *running);
992 extern u64 perf_event_read_value(struct perf_event *event,
993 u64 *enabled, u64 *running);
996 struct perf_sample_data {
998 * Fields set by perf_sample_data_init(), group so as to
999 * minimize the cachelines touched.
1002 struct perf_raw_record *raw;
1003 struct perf_branch_stack *br_stack;
1005 union perf_sample_weight weight;
1007 union perf_mem_data_src data_src;
1010 * The other fields, optionally {set,used} by
1011 * perf_{prepare,output}_sample().
1026 struct perf_callchain_entry *callchain;
1029 struct perf_regs regs_user;
1030 struct perf_regs regs_intr;
1031 u64 stack_user_size;
1037 } ____cacheline_aligned;
1039 /* default value for data source */
1040 #define PERF_MEM_NA (PERF_MEM_S(OP, NA) |\
1041 PERF_MEM_S(LVL, NA) |\
1042 PERF_MEM_S(SNOOP, NA) |\
1043 PERF_MEM_S(LOCK, NA) |\
1044 PERF_MEM_S(TLB, NA))
1046 static inline void perf_sample_data_init(struct perf_sample_data *data,
1047 u64 addr, u64 period)
1049 /* remaining struct members initialized in perf_prepare_sample() */
1052 data->br_stack = NULL;
1053 data->period = period;
1054 data->weight.full = 0;
1055 data->data_src.val = PERF_MEM_NA;
1059 extern void perf_output_sample(struct perf_output_handle *handle,
1060 struct perf_event_header *header,
1061 struct perf_sample_data *data,
1062 struct perf_event *event);
1063 extern void perf_prepare_sample(struct perf_event_header *header,
1064 struct perf_sample_data *data,
1065 struct perf_event *event,
1066 struct pt_regs *regs);
1068 extern int perf_event_overflow(struct perf_event *event,
1069 struct perf_sample_data *data,
1070 struct pt_regs *regs);
1072 extern void perf_event_output_forward(struct perf_event *event,
1073 struct perf_sample_data *data,
1074 struct pt_regs *regs);
1075 extern void perf_event_output_backward(struct perf_event *event,
1076 struct perf_sample_data *data,
1077 struct pt_regs *regs);
1078 extern int perf_event_output(struct perf_event *event,
1079 struct perf_sample_data *data,
1080 struct pt_regs *regs);
1083 is_default_overflow_handler(struct perf_event *event)
1085 if (likely(event->overflow_handler == perf_event_output_forward))
1087 if (unlikely(event->overflow_handler == perf_event_output_backward))
1093 perf_event_header__init_id(struct perf_event_header *header,
1094 struct perf_sample_data *data,
1095 struct perf_event *event);
1097 perf_event__output_id_sample(struct perf_event *event,
1098 struct perf_output_handle *handle,
1099 struct perf_sample_data *sample);
1102 perf_log_lost_samples(struct perf_event *event, u64 lost);
1104 static inline bool event_has_any_exclude_flag(struct perf_event *event)
1106 struct perf_event_attr *attr = &event->attr;
1108 return attr->exclude_idle || attr->exclude_user ||
1109 attr->exclude_kernel || attr->exclude_hv ||
1110 attr->exclude_guest || attr->exclude_host;
1113 static inline bool is_sampling_event(struct perf_event *event)
1115 return event->attr.sample_period != 0;
1119 * Return 1 for a software event, 0 for a hardware event
1121 static inline int is_software_event(struct perf_event *event)
1123 return event->event_caps & PERF_EV_CAP_SOFTWARE;
1127 * Return 1 for event in sw context, 0 for event in hw context
1129 static inline int in_software_context(struct perf_event *event)
1131 return event->ctx->pmu->task_ctx_nr == perf_sw_context;
1134 static inline int is_exclusive_pmu(struct pmu *pmu)
1136 return pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE;
1139 extern struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX];
1141 extern void ___perf_sw_event(u32, u64, struct pt_regs *, u64);
1142 extern void __perf_sw_event(u32, u64, struct pt_regs *, u64);
1144 #ifndef perf_arch_fetch_caller_regs
1145 static inline void perf_arch_fetch_caller_regs(struct pt_regs *regs, unsigned long ip) { }
1149 * When generating a perf sample in-line, instead of from an interrupt /
1150 * exception, we lack a pt_regs. This is typically used from software events
1151 * like: SW_CONTEXT_SWITCHES, SW_MIGRATIONS and the tie-in with tracepoints.
1153 * We typically don't need a full set, but (for x86) do require:
1154 * - ip for PERF_SAMPLE_IP
1155 * - cs for user_mode() tests
1156 * - sp for PERF_SAMPLE_CALLCHAIN
1157 * - eflags for MISC bits and CALLCHAIN (see: perf_hw_regs())
1159 * NOTE: assumes @regs is otherwise already 0 filled; this is important for
1160 * things like PERF_SAMPLE_REGS_INTR.
1162 static inline void perf_fetch_caller_regs(struct pt_regs *regs)
1164 perf_arch_fetch_caller_regs(regs, CALLER_ADDR0);
1167 static __always_inline void
1168 perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
1170 if (static_key_false(&perf_swevent_enabled[event_id]))
1171 __perf_sw_event(event_id, nr, regs, addr);
1174 DECLARE_PER_CPU(struct pt_regs, __perf_regs[4]);
1177 * 'Special' version for the scheduler, it hard assumes no recursion,
1178 * which is guaranteed by us not actually scheduling inside other swevents
1179 * because those disable preemption.
1181 static __always_inline void __perf_sw_event_sched(u32 event_id, u64 nr, u64 addr)
1183 struct pt_regs *regs = this_cpu_ptr(&__perf_regs[0]);
1185 perf_fetch_caller_regs(regs);
1186 ___perf_sw_event(event_id, nr, regs, addr);
1189 extern struct static_key_false perf_sched_events;
1191 static __always_inline bool __perf_sw_enabled(int swevt)
1193 return static_key_false(&perf_swevent_enabled[swevt]);
1196 static inline void perf_event_task_migrate(struct task_struct *task)
1198 if (__perf_sw_enabled(PERF_COUNT_SW_CPU_MIGRATIONS))
1199 task->sched_migrated = 1;
1202 static inline void perf_event_task_sched_in(struct task_struct *prev,
1203 struct task_struct *task)
1205 if (static_branch_unlikely(&perf_sched_events))
1206 __perf_event_task_sched_in(prev, task);
1208 if (__perf_sw_enabled(PERF_COUNT_SW_CPU_MIGRATIONS) &&
1209 task->sched_migrated) {
1210 __perf_sw_event_sched(PERF_COUNT_SW_CPU_MIGRATIONS, 1, 0);
1211 task->sched_migrated = 0;
1215 static inline void perf_event_task_sched_out(struct task_struct *prev,
1216 struct task_struct *next)
1218 if (__perf_sw_enabled(PERF_COUNT_SW_CONTEXT_SWITCHES))
1219 __perf_sw_event_sched(PERF_COUNT_SW_CONTEXT_SWITCHES, 1, 0);
1221 #ifdef CONFIG_CGROUP_PERF
1222 if (__perf_sw_enabled(PERF_COUNT_SW_CGROUP_SWITCHES) &&
1223 perf_cgroup_from_task(prev, NULL) !=
1224 perf_cgroup_from_task(next, NULL))
1225 __perf_sw_event_sched(PERF_COUNT_SW_CGROUP_SWITCHES, 1, 0);
1228 if (static_branch_unlikely(&perf_sched_events))
1229 __perf_event_task_sched_out(prev, next);
1232 extern void perf_event_mmap(struct vm_area_struct *vma);
1234 extern void perf_event_ksymbol(u16 ksym_type, u64 addr, u32 len,
1235 bool unregister, const char *sym);
1236 extern void perf_event_bpf_event(struct bpf_prog *prog,
1237 enum perf_bpf_event_type type,
1240 extern struct perf_guest_info_callbacks *perf_guest_cbs;
1241 extern int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *callbacks);
1242 extern int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *callbacks);
1244 extern void perf_event_exec(void);
1245 extern void perf_event_comm(struct task_struct *tsk, bool exec);
1246 extern void perf_event_namespaces(struct task_struct *tsk);
1247 extern void perf_event_fork(struct task_struct *tsk);
1248 extern void perf_event_text_poke(const void *addr,
1249 const void *old_bytes, size_t old_len,
1250 const void *new_bytes, size_t new_len);
1253 DECLARE_PER_CPU(struct perf_callchain_entry, perf_callchain_entry);
1255 extern void perf_callchain_user(struct perf_callchain_entry_ctx *entry, struct pt_regs *regs);
1256 extern void perf_callchain_kernel(struct perf_callchain_entry_ctx *entry, struct pt_regs *regs);
1257 extern struct perf_callchain_entry *
1258 get_perf_callchain(struct pt_regs *regs, u32 init_nr, bool kernel, bool user,
1259 u32 max_stack, bool crosstask, bool add_mark);
1260 extern struct perf_callchain_entry *perf_callchain(struct perf_event *event, struct pt_regs *regs);
1261 extern int get_callchain_buffers(int max_stack);
1262 extern void put_callchain_buffers(void);
1263 extern struct perf_callchain_entry *get_callchain_entry(int *rctx);
1264 extern void put_callchain_entry(int rctx);
1266 extern int sysctl_perf_event_max_stack;
1267 extern int sysctl_perf_event_max_contexts_per_stack;
1269 static inline int perf_callchain_store_context(struct perf_callchain_entry_ctx *ctx, u64 ip)
1271 if (ctx->contexts < sysctl_perf_event_max_contexts_per_stack) {
1272 struct perf_callchain_entry *entry = ctx->entry;
1273 entry->ip[entry->nr++] = ip;
1277 ctx->contexts_maxed = true;
1278 return -1; /* no more room, stop walking the stack */
1282 static inline int perf_callchain_store(struct perf_callchain_entry_ctx *ctx, u64 ip)
1284 if (ctx->nr < ctx->max_stack && !ctx->contexts_maxed) {
1285 struct perf_callchain_entry *entry = ctx->entry;
1286 entry->ip[entry->nr++] = ip;
1290 return -1; /* no more room, stop walking the stack */
1294 extern int sysctl_perf_event_paranoid;
1295 extern int sysctl_perf_event_mlock;
1296 extern int sysctl_perf_event_sample_rate;
1297 extern int sysctl_perf_cpu_time_max_percent;
1299 extern void perf_sample_event_took(u64 sample_len_ns);
1301 int perf_proc_update_handler(struct ctl_table *table, int write,
1302 void *buffer, size_t *lenp, loff_t *ppos);
1303 int perf_cpu_time_max_percent_handler(struct ctl_table *table, int write,
1304 void *buffer, size_t *lenp, loff_t *ppos);
1305 int perf_event_max_stack_handler(struct ctl_table *table, int write,
1306 void *buffer, size_t *lenp, loff_t *ppos);
1308 /* Access to perf_event_open(2) syscall. */
1309 #define PERF_SECURITY_OPEN 0
1311 /* Finer grained perf_event_open(2) access control. */
1312 #define PERF_SECURITY_CPU 1
1313 #define PERF_SECURITY_KERNEL 2
1314 #define PERF_SECURITY_TRACEPOINT 3
1316 static inline int perf_is_paranoid(void)
1318 return sysctl_perf_event_paranoid > -1;
1321 static inline int perf_allow_kernel(struct perf_event_attr *attr)
1323 if (sysctl_perf_event_paranoid > 1 && !perfmon_capable())
1326 return security_perf_event_open(attr, PERF_SECURITY_KERNEL);
1329 static inline int perf_allow_cpu(struct perf_event_attr *attr)
1331 if (sysctl_perf_event_paranoid > 0 && !perfmon_capable())
1334 return security_perf_event_open(attr, PERF_SECURITY_CPU);
1337 static inline int perf_allow_tracepoint(struct perf_event_attr *attr)
1339 if (sysctl_perf_event_paranoid > -1 && !perfmon_capable())
1342 return security_perf_event_open(attr, PERF_SECURITY_TRACEPOINT);
1345 extern void perf_event_init(void);
1346 extern void perf_tp_event(u16 event_type, u64 count, void *record,
1347 int entry_size, struct pt_regs *regs,
1348 struct hlist_head *head, int rctx,
1349 struct task_struct *task);
1350 extern void perf_bp_event(struct perf_event *event, void *data);
1352 #ifndef perf_misc_flags
1353 # define perf_misc_flags(regs) \
1354 (user_mode(regs) ? PERF_RECORD_MISC_USER : PERF_RECORD_MISC_KERNEL)
1355 # define perf_instruction_pointer(regs) instruction_pointer(regs)
1357 #ifndef perf_arch_bpf_user_pt_regs
1358 # define perf_arch_bpf_user_pt_regs(regs) regs
1361 static inline bool has_branch_stack(struct perf_event *event)
1363 return event->attr.sample_type & PERF_SAMPLE_BRANCH_STACK;
1366 static inline bool needs_branch_stack(struct perf_event *event)
1368 return event->attr.branch_sample_type != 0;
1371 static inline bool has_aux(struct perf_event *event)
1373 return event->pmu->setup_aux;
1376 static inline bool is_write_backward(struct perf_event *event)
1378 return !!event->attr.write_backward;
1381 static inline bool has_addr_filter(struct perf_event *event)
1383 return event->pmu->nr_addr_filters;
1387 * An inherited event uses parent's filters
1389 static inline struct perf_addr_filters_head *
1390 perf_event_addr_filters(struct perf_event *event)
1392 struct perf_addr_filters_head *ifh = &event->addr_filters;
1395 ifh = &event->parent->addr_filters;
1400 extern void perf_event_addr_filters_sync(struct perf_event *event);
1402 extern int perf_output_begin(struct perf_output_handle *handle,
1403 struct perf_sample_data *data,
1404 struct perf_event *event, unsigned int size);
1405 extern int perf_output_begin_forward(struct perf_output_handle *handle,
1406 struct perf_sample_data *data,
1407 struct perf_event *event,
1409 extern int perf_output_begin_backward(struct perf_output_handle *handle,
1410 struct perf_sample_data *data,
1411 struct perf_event *event,
1414 extern void perf_output_end(struct perf_output_handle *handle);
1415 extern unsigned int perf_output_copy(struct perf_output_handle *handle,
1416 const void *buf, unsigned int len);
1417 extern unsigned int perf_output_skip(struct perf_output_handle *handle,
1419 extern long perf_output_copy_aux(struct perf_output_handle *aux_handle,
1420 struct perf_output_handle *handle,
1421 unsigned long from, unsigned long to);
1422 extern int perf_swevent_get_recursion_context(void);
1423 extern void perf_swevent_put_recursion_context(int rctx);
1424 extern u64 perf_swevent_set_period(struct perf_event *event);
1425 extern void perf_event_enable(struct perf_event *event);
1426 extern void perf_event_disable(struct perf_event *event);
1427 extern void perf_event_disable_local(struct perf_event *event);
1428 extern void perf_event_disable_inatomic(struct perf_event *event);
1429 extern void perf_event_task_tick(void);
1430 extern int perf_event_account_interrupt(struct perf_event *event);
1431 extern int perf_event_period(struct perf_event *event, u64 value);
1432 extern u64 perf_event_pause(struct perf_event *event, bool reset);
1433 #else /* !CONFIG_PERF_EVENTS: */
1434 static inline void *
1435 perf_aux_output_begin(struct perf_output_handle *handle,
1436 struct perf_event *event) { return NULL; }
1438 perf_aux_output_end(struct perf_output_handle *handle, unsigned long size)
1441 perf_aux_output_skip(struct perf_output_handle *handle,
1442 unsigned long size) { return -EINVAL; }
1443 static inline void *
1444 perf_get_aux(struct perf_output_handle *handle) { return NULL; }
1446 perf_event_task_migrate(struct task_struct *task) { }
1448 perf_event_task_sched_in(struct task_struct *prev,
1449 struct task_struct *task) { }
1451 perf_event_task_sched_out(struct task_struct *prev,
1452 struct task_struct *next) { }
1453 static inline int perf_event_init_task(struct task_struct *child,
1454 u64 clone_flags) { return 0; }
1455 static inline void perf_event_exit_task(struct task_struct *child) { }
1456 static inline void perf_event_free_task(struct task_struct *task) { }
1457 static inline void perf_event_delayed_put(struct task_struct *task) { }
1458 static inline struct file *perf_event_get(unsigned int fd) { return ERR_PTR(-EINVAL); }
1459 static inline const struct perf_event *perf_get_event(struct file *file)
1461 return ERR_PTR(-EINVAL);
1463 static inline const struct perf_event_attr *perf_event_attrs(struct perf_event *event)
1465 return ERR_PTR(-EINVAL);
1467 static inline int perf_event_read_local(struct perf_event *event, u64 *value,
1468 u64 *enabled, u64 *running)
1472 static inline void perf_event_print_debug(void) { }
1473 static inline int perf_event_task_disable(void) { return -EINVAL; }
1474 static inline int perf_event_task_enable(void) { return -EINVAL; }
1475 static inline int perf_event_refresh(struct perf_event *event, int refresh)
1481 perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr) { }
1483 perf_bp_event(struct perf_event *event, void *data) { }
1485 static inline int perf_register_guest_info_callbacks
1486 (struct perf_guest_info_callbacks *callbacks) { return 0; }
1487 static inline int perf_unregister_guest_info_callbacks
1488 (struct perf_guest_info_callbacks *callbacks) { return 0; }
1490 static inline void perf_event_mmap(struct vm_area_struct *vma) { }
1492 typedef int (perf_ksymbol_get_name_f)(char *name, int name_len, void *data);
1493 static inline void perf_event_ksymbol(u16 ksym_type, u64 addr, u32 len,
1494 bool unregister, const char *sym) { }
1495 static inline void perf_event_bpf_event(struct bpf_prog *prog,
1496 enum perf_bpf_event_type type,
1498 static inline void perf_event_exec(void) { }
1499 static inline void perf_event_comm(struct task_struct *tsk, bool exec) { }
1500 static inline void perf_event_namespaces(struct task_struct *tsk) { }
1501 static inline void perf_event_fork(struct task_struct *tsk) { }
1502 static inline void perf_event_text_poke(const void *addr,
1503 const void *old_bytes,
1505 const void *new_bytes,
1507 static inline void perf_event_init(void) { }
1508 static inline int perf_swevent_get_recursion_context(void) { return -1; }
1509 static inline void perf_swevent_put_recursion_context(int rctx) { }
1510 static inline u64 perf_swevent_set_period(struct perf_event *event) { return 0; }
1511 static inline void perf_event_enable(struct perf_event *event) { }
1512 static inline void perf_event_disable(struct perf_event *event) { }
1513 static inline int __perf_event_disable(void *info) { return -1; }
1514 static inline void perf_event_task_tick(void) { }
1515 static inline int perf_event_release_kernel(struct perf_event *event) { return 0; }
1516 static inline int perf_event_period(struct perf_event *event, u64 value)
1520 static inline u64 perf_event_pause(struct perf_event *event, bool reset)
1526 #if defined(CONFIG_PERF_EVENTS) && defined(CONFIG_CPU_SUP_INTEL)
1527 extern void perf_restore_debug_store(void);
1529 static inline void perf_restore_debug_store(void) { }
1532 static __always_inline bool perf_raw_frag_last(const struct perf_raw_frag *frag)
1534 return frag->pad < sizeof(u64);
1537 #define perf_output_put(handle, x) perf_output_copy((handle), &(x), sizeof(x))
1539 struct perf_pmu_events_attr {
1540 struct device_attribute attr;
1542 const char *event_str;
1545 struct perf_pmu_events_ht_attr {
1546 struct device_attribute attr;
1548 const char *event_str_ht;
1549 const char *event_str_noht;
1552 struct perf_pmu_events_hybrid_attr {
1553 struct device_attribute attr;
1555 const char *event_str;
1559 struct perf_pmu_format_hybrid_attr {
1560 struct device_attribute attr;
1564 ssize_t perf_event_sysfs_show(struct device *dev, struct device_attribute *attr,
1567 #define PMU_EVENT_ATTR(_name, _var, _id, _show) \
1568 static struct perf_pmu_events_attr _var = { \
1569 .attr = __ATTR(_name, 0444, _show, NULL), \
1573 #define PMU_EVENT_ATTR_STRING(_name, _var, _str) \
1574 static struct perf_pmu_events_attr _var = { \
1575 .attr = __ATTR(_name, 0444, perf_event_sysfs_show, NULL), \
1577 .event_str = _str, \
1580 #define PMU_EVENT_ATTR_ID(_name, _show, _id) \
1581 (&((struct perf_pmu_events_attr[]) { \
1582 { .attr = __ATTR(_name, 0444, _show, NULL), \
1586 #define PMU_FORMAT_ATTR(_name, _format) \
1588 _name##_show(struct device *dev, \
1589 struct device_attribute *attr, \
1592 BUILD_BUG_ON(sizeof(_format) >= PAGE_SIZE); \
1593 return sprintf(page, _format "\n"); \
1596 static struct device_attribute format_attr_##_name = __ATTR_RO(_name)
1598 /* Performance counter hotplug functions */
1599 #ifdef CONFIG_PERF_EVENTS
1600 int perf_event_init_cpu(unsigned int cpu);
1601 int perf_event_exit_cpu(unsigned int cpu);
1603 #define perf_event_init_cpu NULL
1604 #define perf_event_exit_cpu NULL
1607 extern void __weak arch_perf_update_userpage(struct perf_event *event,
1608 struct perf_event_mmap_page *userpg,
1612 extern __weak u64 arch_perf_get_page_size(struct mm_struct *mm, unsigned long addr);
1615 #endif /* _LINUX_PERF_EVENT_H */