Merge branches 'atags', 'cache-l2x0', 'clkdev', 'fixes', 'integrator', 'misc', 'opcod...
[platform/adaptation/renesas_rcar/renesas_kernel.git] / include / linux / perf_event.h
1 /*
2  * Performance events:
3  *
4  *    Copyright (C) 2008-2009, Thomas Gleixner <tglx@linutronix.de>
5  *    Copyright (C) 2008-2011, Red Hat, Inc., Ingo Molnar
6  *    Copyright (C) 2008-2011, Red Hat, Inc., Peter Zijlstra
7  *
8  * Data type definitions, declarations, prototypes.
9  *
10  *    Started by: Thomas Gleixner and Ingo Molnar
11  *
12  * For licencing details see kernel-base/COPYING
13  */
14 #ifndef _LINUX_PERF_EVENT_H
15 #define _LINUX_PERF_EVENT_H
16
17 #include <linux/types.h>
18 #include <linux/ioctl.h>
19 #include <asm/byteorder.h>
20
21 /*
22  * User-space ABI bits:
23  */
24
25 /*
26  * attr.type
27  */
28 enum perf_type_id {
29         PERF_TYPE_HARDWARE                      = 0,
30         PERF_TYPE_SOFTWARE                      = 1,
31         PERF_TYPE_TRACEPOINT                    = 2,
32         PERF_TYPE_HW_CACHE                      = 3,
33         PERF_TYPE_RAW                           = 4,
34         PERF_TYPE_BREAKPOINT                    = 5,
35
36         PERF_TYPE_MAX,                          /* non-ABI */
37 };
38
39 /*
40  * Generalized performance event event_id types, used by the
41  * attr.event_id parameter of the sys_perf_event_open()
42  * syscall:
43  */
44 enum perf_hw_id {
45         /*
46          * Common hardware events, generalized by the kernel:
47          */
48         PERF_COUNT_HW_CPU_CYCLES                = 0,
49         PERF_COUNT_HW_INSTRUCTIONS              = 1,
50         PERF_COUNT_HW_CACHE_REFERENCES          = 2,
51         PERF_COUNT_HW_CACHE_MISSES              = 3,
52         PERF_COUNT_HW_BRANCH_INSTRUCTIONS       = 4,
53         PERF_COUNT_HW_BRANCH_MISSES             = 5,
54         PERF_COUNT_HW_BUS_CYCLES                = 6,
55         PERF_COUNT_HW_STALLED_CYCLES_FRONTEND   = 7,
56         PERF_COUNT_HW_STALLED_CYCLES_BACKEND    = 8,
57         PERF_COUNT_HW_REF_CPU_CYCLES            = 9,
58
59         PERF_COUNT_HW_MAX,                      /* non-ABI */
60 };
61
62 /*
63  * Generalized hardware cache events:
64  *
65  *       { L1-D, L1-I, LLC, ITLB, DTLB, BPU, NODE } x
66  *       { read, write, prefetch } x
67  *       { accesses, misses }
68  */
69 enum perf_hw_cache_id {
70         PERF_COUNT_HW_CACHE_L1D                 = 0,
71         PERF_COUNT_HW_CACHE_L1I                 = 1,
72         PERF_COUNT_HW_CACHE_LL                  = 2,
73         PERF_COUNT_HW_CACHE_DTLB                = 3,
74         PERF_COUNT_HW_CACHE_ITLB                = 4,
75         PERF_COUNT_HW_CACHE_BPU                 = 5,
76         PERF_COUNT_HW_CACHE_NODE                = 6,
77
78         PERF_COUNT_HW_CACHE_MAX,                /* non-ABI */
79 };
80
81 enum perf_hw_cache_op_id {
82         PERF_COUNT_HW_CACHE_OP_READ             = 0,
83         PERF_COUNT_HW_CACHE_OP_WRITE            = 1,
84         PERF_COUNT_HW_CACHE_OP_PREFETCH         = 2,
85
86         PERF_COUNT_HW_CACHE_OP_MAX,             /* non-ABI */
87 };
88
89 enum perf_hw_cache_op_result_id {
90         PERF_COUNT_HW_CACHE_RESULT_ACCESS       = 0,
91         PERF_COUNT_HW_CACHE_RESULT_MISS         = 1,
92
93         PERF_COUNT_HW_CACHE_RESULT_MAX,         /* non-ABI */
94 };
95
96 /*
97  * Special "software" events provided by the kernel, even if the hardware
98  * does not support performance events. These events measure various
99  * physical and sw events of the kernel (and allow the profiling of them as
100  * well):
101  */
102 enum perf_sw_ids {
103         PERF_COUNT_SW_CPU_CLOCK                 = 0,
104         PERF_COUNT_SW_TASK_CLOCK                = 1,
105         PERF_COUNT_SW_PAGE_FAULTS               = 2,
106         PERF_COUNT_SW_CONTEXT_SWITCHES          = 3,
107         PERF_COUNT_SW_CPU_MIGRATIONS            = 4,
108         PERF_COUNT_SW_PAGE_FAULTS_MIN           = 5,
109         PERF_COUNT_SW_PAGE_FAULTS_MAJ           = 6,
110         PERF_COUNT_SW_ALIGNMENT_FAULTS          = 7,
111         PERF_COUNT_SW_EMULATION_FAULTS          = 8,
112
113         PERF_COUNT_SW_MAX,                      /* non-ABI */
114 };
115
116 /*
117  * Bits that can be set in attr.sample_type to request information
118  * in the overflow packets.
119  */
120 enum perf_event_sample_format {
121         PERF_SAMPLE_IP                          = 1U << 0,
122         PERF_SAMPLE_TID                         = 1U << 1,
123         PERF_SAMPLE_TIME                        = 1U << 2,
124         PERF_SAMPLE_ADDR                        = 1U << 3,
125         PERF_SAMPLE_READ                        = 1U << 4,
126         PERF_SAMPLE_CALLCHAIN                   = 1U << 5,
127         PERF_SAMPLE_ID                          = 1U << 6,
128         PERF_SAMPLE_CPU                         = 1U << 7,
129         PERF_SAMPLE_PERIOD                      = 1U << 8,
130         PERF_SAMPLE_STREAM_ID                   = 1U << 9,
131         PERF_SAMPLE_RAW                         = 1U << 10,
132         PERF_SAMPLE_BRANCH_STACK                = 1U << 11,
133
134         PERF_SAMPLE_MAX = 1U << 12,             /* non-ABI */
135 };
136
137 /*
138  * values to program into branch_sample_type when PERF_SAMPLE_BRANCH is set
139  *
140  * If the user does not pass priv level information via branch_sample_type,
141  * the kernel uses the event's priv level. Branch and event priv levels do
142  * not have to match. Branch priv level is checked for permissions.
143  *
144  * The branch types can be combined, however BRANCH_ANY covers all types
145  * of branches and therefore it supersedes all the other types.
146  */
147 enum perf_branch_sample_type {
148         PERF_SAMPLE_BRANCH_USER         = 1U << 0, /* user branches */
149         PERF_SAMPLE_BRANCH_KERNEL       = 1U << 1, /* kernel branches */
150         PERF_SAMPLE_BRANCH_HV           = 1U << 2, /* hypervisor branches */
151
152         PERF_SAMPLE_BRANCH_ANY          = 1U << 3, /* any branch types */
153         PERF_SAMPLE_BRANCH_ANY_CALL     = 1U << 4, /* any call branch */
154         PERF_SAMPLE_BRANCH_ANY_RETURN   = 1U << 5, /* any return branch */
155         PERF_SAMPLE_BRANCH_IND_CALL     = 1U << 6, /* indirect calls */
156
157         PERF_SAMPLE_BRANCH_MAX          = 1U << 7, /* non-ABI */
158 };
159
160 #define PERF_SAMPLE_BRANCH_PLM_ALL \
161         (PERF_SAMPLE_BRANCH_USER|\
162          PERF_SAMPLE_BRANCH_KERNEL|\
163          PERF_SAMPLE_BRANCH_HV)
164
165 /*
166  * The format of the data returned by read() on a perf event fd,
167  * as specified by attr.read_format:
168  *
169  * struct read_format {
170  *      { u64           value;
171  *        { u64         time_enabled; } && PERF_FORMAT_TOTAL_TIME_ENABLED
172  *        { u64         time_running; } && PERF_FORMAT_TOTAL_TIME_RUNNING
173  *        { u64         id;           } && PERF_FORMAT_ID
174  *      } && !PERF_FORMAT_GROUP
175  *
176  *      { u64           nr;
177  *        { u64         time_enabled; } && PERF_FORMAT_TOTAL_TIME_ENABLED
178  *        { u64         time_running; } && PERF_FORMAT_TOTAL_TIME_RUNNING
179  *        { u64         value;
180  *          { u64       id;           } && PERF_FORMAT_ID
181  *        }             cntr[nr];
182  *      } && PERF_FORMAT_GROUP
183  * };
184  */
185 enum perf_event_read_format {
186         PERF_FORMAT_TOTAL_TIME_ENABLED          = 1U << 0,
187         PERF_FORMAT_TOTAL_TIME_RUNNING          = 1U << 1,
188         PERF_FORMAT_ID                          = 1U << 2,
189         PERF_FORMAT_GROUP                       = 1U << 3,
190
191         PERF_FORMAT_MAX = 1U << 4,              /* non-ABI */
192 };
193
194 #define PERF_ATTR_SIZE_VER0     64      /* sizeof first published struct */
195 #define PERF_ATTR_SIZE_VER1     72      /* add: config2 */
196 #define PERF_ATTR_SIZE_VER2     80      /* add: branch_sample_type */
197
198 /*
199  * Hardware event_id to monitor via a performance monitoring event:
200  */
201 struct perf_event_attr {
202
203         /*
204          * Major type: hardware/software/tracepoint/etc.
205          */
206         __u32                   type;
207
208         /*
209          * Size of the attr structure, for fwd/bwd compat.
210          */
211         __u32                   size;
212
213         /*
214          * Type specific configuration information.
215          */
216         __u64                   config;
217
218         union {
219                 __u64           sample_period;
220                 __u64           sample_freq;
221         };
222
223         __u64                   sample_type;
224         __u64                   read_format;
225
226         __u64                   disabled       :  1, /* off by default        */
227                                 inherit        :  1, /* children inherit it   */
228                                 pinned         :  1, /* must always be on PMU */
229                                 exclusive      :  1, /* only group on PMU     */
230                                 exclude_user   :  1, /* don't count user      */
231                                 exclude_kernel :  1, /* ditto kernel          */
232                                 exclude_hv     :  1, /* ditto hypervisor      */
233                                 exclude_idle   :  1, /* don't count when idle */
234                                 mmap           :  1, /* include mmap data     */
235                                 comm           :  1, /* include comm data     */
236                                 freq           :  1, /* use freq, not period  */
237                                 inherit_stat   :  1, /* per task counts       */
238                                 enable_on_exec :  1, /* next exec enables     */
239                                 task           :  1, /* trace fork/exit       */
240                                 watermark      :  1, /* wakeup_watermark      */
241                                 /*
242                                  * precise_ip:
243                                  *
244                                  *  0 - SAMPLE_IP can have arbitrary skid
245                                  *  1 - SAMPLE_IP must have constant skid
246                                  *  2 - SAMPLE_IP requested to have 0 skid
247                                  *  3 - SAMPLE_IP must have 0 skid
248                                  *
249                                  *  See also PERF_RECORD_MISC_EXACT_IP
250                                  */
251                                 precise_ip     :  2, /* skid constraint       */
252                                 mmap_data      :  1, /* non-exec mmap data    */
253                                 sample_id_all  :  1, /* sample_type all events */
254
255                                 exclude_host   :  1, /* don't count in host   */
256                                 exclude_guest  :  1, /* don't count in guest  */
257
258                                 __reserved_1   : 43;
259
260         union {
261                 __u32           wakeup_events;    /* wakeup every n events */
262                 __u32           wakeup_watermark; /* bytes before wakeup   */
263         };
264
265         __u32                   bp_type;
266         union {
267                 __u64           bp_addr;
268                 __u64           config1; /* extension of config */
269         };
270         union {
271                 __u64           bp_len;
272                 __u64           config2; /* extension of config1 */
273         };
274         __u64   branch_sample_type; /* enum branch_sample_type */
275 };
276
277 #define perf_flags(attr)        (*(&(attr)->read_format + 1))
278
279 /*
280  * Ioctls that can be done on a perf event fd:
281  */
282 #define PERF_EVENT_IOC_ENABLE           _IO ('$', 0)
283 #define PERF_EVENT_IOC_DISABLE          _IO ('$', 1)
284 #define PERF_EVENT_IOC_REFRESH          _IO ('$', 2)
285 #define PERF_EVENT_IOC_RESET            _IO ('$', 3)
286 #define PERF_EVENT_IOC_PERIOD           _IOW('$', 4, __u64)
287 #define PERF_EVENT_IOC_SET_OUTPUT       _IO ('$', 5)
288 #define PERF_EVENT_IOC_SET_FILTER       _IOW('$', 6, char *)
289
290 enum perf_event_ioc_flags {
291         PERF_IOC_FLAG_GROUP             = 1U << 0,
292 };
293
294 /*
295  * Structure of the page that can be mapped via mmap
296  */
297 struct perf_event_mmap_page {
298         __u32   version;                /* version number of this structure */
299         __u32   compat_version;         /* lowest version this is compat with */
300
301         /*
302          * Bits needed to read the hw events in user-space.
303          *
304          *   u32 seq, time_mult, time_shift, idx, width;
305          *   u64 count, enabled, running;
306          *   u64 cyc, time_offset;
307          *   s64 pmc = 0;
308          *
309          *   do {
310          *     seq = pc->lock;
311          *     barrier()
312          *
313          *     enabled = pc->time_enabled;
314          *     running = pc->time_running;
315          *
316          *     if (pc->cap_usr_time && enabled != running) {
317          *       cyc = rdtsc();
318          *       time_offset = pc->time_offset;
319          *       time_mult   = pc->time_mult;
320          *       time_shift  = pc->time_shift;
321          *     }
322          *
323          *     idx = pc->index;
324          *     count = pc->offset;
325          *     if (pc->cap_usr_rdpmc && idx) {
326          *       width = pc->pmc_width;
327          *       pmc = rdpmc(idx - 1);
328          *     }
329          *
330          *     barrier();
331          *   } while (pc->lock != seq);
332          *
333          * NOTE: for obvious reason this only works on self-monitoring
334          *       processes.
335          */
336         __u32   lock;                   /* seqlock for synchronization */
337         __u32   index;                  /* hardware event identifier */
338         __s64   offset;                 /* add to hardware event value */
339         __u64   time_enabled;           /* time event active */
340         __u64   time_running;           /* time event on cpu */
341         union {
342                 __u64   capabilities;
343                 __u64   cap_usr_time  : 1,
344                         cap_usr_rdpmc : 1,
345                         cap_____res   : 62;
346         };
347
348         /*
349          * If cap_usr_rdpmc this field provides the bit-width of the value
350          * read using the rdpmc() or equivalent instruction. This can be used
351          * to sign extend the result like:
352          *
353          *   pmc <<= 64 - width;
354          *   pmc >>= 64 - width; // signed shift right
355          *   count += pmc;
356          */
357         __u16   pmc_width;
358
359         /*
360          * If cap_usr_time the below fields can be used to compute the time
361          * delta since time_enabled (in ns) using rdtsc or similar.
362          *
363          *   u64 quot, rem;
364          *   u64 delta;
365          *
366          *   quot = (cyc >> time_shift);
367          *   rem = cyc & ((1 << time_shift) - 1);
368          *   delta = time_offset + quot * time_mult +
369          *              ((rem * time_mult) >> time_shift);
370          *
371          * Where time_offset,time_mult,time_shift and cyc are read in the
372          * seqcount loop described above. This delta can then be added to
373          * enabled and possible running (if idx), improving the scaling:
374          *
375          *   enabled += delta;
376          *   if (idx)
377          *     running += delta;
378          *
379          *   quot = count / running;
380          *   rem  = count % running;
381          *   count = quot * enabled + (rem * enabled) / running;
382          */
383         __u16   time_shift;
384         __u32   time_mult;
385         __u64   time_offset;
386
387                 /*
388                  * Hole for extension of the self monitor capabilities
389                  */
390
391         __u64   __reserved[120];        /* align to 1k */
392
393         /*
394          * Control data for the mmap() data buffer.
395          *
396          * User-space reading the @data_head value should issue an rmb(), on
397          * SMP capable platforms, after reading this value -- see
398          * perf_event_wakeup().
399          *
400          * When the mapping is PROT_WRITE the @data_tail value should be
401          * written by userspace to reflect the last read data. In this case
402          * the kernel will not over-write unread data.
403          */
404         __u64   data_head;              /* head in the data section */
405         __u64   data_tail;              /* user-space written tail */
406 };
407
408 #define PERF_RECORD_MISC_CPUMODE_MASK           (7 << 0)
409 #define PERF_RECORD_MISC_CPUMODE_UNKNOWN        (0 << 0)
410 #define PERF_RECORD_MISC_KERNEL                 (1 << 0)
411 #define PERF_RECORD_MISC_USER                   (2 << 0)
412 #define PERF_RECORD_MISC_HYPERVISOR             (3 << 0)
413 #define PERF_RECORD_MISC_GUEST_KERNEL           (4 << 0)
414 #define PERF_RECORD_MISC_GUEST_USER             (5 << 0)
415
416 /*
417  * Indicates that the content of PERF_SAMPLE_IP points to
418  * the actual instruction that triggered the event. See also
419  * perf_event_attr::precise_ip.
420  */
421 #define PERF_RECORD_MISC_EXACT_IP               (1 << 14)
422 /*
423  * Reserve the last bit to indicate some extended misc field
424  */
425 #define PERF_RECORD_MISC_EXT_RESERVED           (1 << 15)
426
427 struct perf_event_header {
428         __u32   type;
429         __u16   misc;
430         __u16   size;
431 };
432
433 enum perf_event_type {
434
435         /*
436          * If perf_event_attr.sample_id_all is set then all event types will
437          * have the sample_type selected fields related to where/when
438          * (identity) an event took place (TID, TIME, ID, CPU, STREAM_ID)
439          * described in PERF_RECORD_SAMPLE below, it will be stashed just after
440          * the perf_event_header and the fields already present for the existing
441          * fields, i.e. at the end of the payload. That way a newer perf.data
442          * file will be supported by older perf tools, with these new optional
443          * fields being ignored.
444          *
445          * The MMAP events record the PROT_EXEC mappings so that we can
446          * correlate userspace IPs to code. They have the following structure:
447          *
448          * struct {
449          *      struct perf_event_header        header;
450          *
451          *      u32                             pid, tid;
452          *      u64                             addr;
453          *      u64                             len;
454          *      u64                             pgoff;
455          *      char                            filename[];
456          * };
457          */
458         PERF_RECORD_MMAP                        = 1,
459
460         /*
461          * struct {
462          *      struct perf_event_header        header;
463          *      u64                             id;
464          *      u64                             lost;
465          * };
466          */
467         PERF_RECORD_LOST                        = 2,
468
469         /*
470          * struct {
471          *      struct perf_event_header        header;
472          *
473          *      u32                             pid, tid;
474          *      char                            comm[];
475          * };
476          */
477         PERF_RECORD_COMM                        = 3,
478
479         /*
480          * struct {
481          *      struct perf_event_header        header;
482          *      u32                             pid, ppid;
483          *      u32                             tid, ptid;
484          *      u64                             time;
485          * };
486          */
487         PERF_RECORD_EXIT                        = 4,
488
489         /*
490          * struct {
491          *      struct perf_event_header        header;
492          *      u64                             time;
493          *      u64                             id;
494          *      u64                             stream_id;
495          * };
496          */
497         PERF_RECORD_THROTTLE                    = 5,
498         PERF_RECORD_UNTHROTTLE                  = 6,
499
500         /*
501          * struct {
502          *      struct perf_event_header        header;
503          *      u32                             pid, ppid;
504          *      u32                             tid, ptid;
505          *      u64                             time;
506          * };
507          */
508         PERF_RECORD_FORK                        = 7,
509
510         /*
511          * struct {
512          *      struct perf_event_header        header;
513          *      u32                             pid, tid;
514          *
515          *      struct read_format              values;
516          * };
517          */
518         PERF_RECORD_READ                        = 8,
519
520         /*
521          * struct {
522          *      struct perf_event_header        header;
523          *
524          *      { u64                   ip;       } && PERF_SAMPLE_IP
525          *      { u32                   pid, tid; } && PERF_SAMPLE_TID
526          *      { u64                   time;     } && PERF_SAMPLE_TIME
527          *      { u64                   addr;     } && PERF_SAMPLE_ADDR
528          *      { u64                   id;       } && PERF_SAMPLE_ID
529          *      { u64                   stream_id;} && PERF_SAMPLE_STREAM_ID
530          *      { u32                   cpu, res; } && PERF_SAMPLE_CPU
531          *      { u64                   period;   } && PERF_SAMPLE_PERIOD
532          *
533          *      { struct read_format    values;   } && PERF_SAMPLE_READ
534          *
535          *      { u64                   nr,
536          *        u64                   ips[nr];  } && PERF_SAMPLE_CALLCHAIN
537          *
538          *      #
539          *      # The RAW record below is opaque data wrt the ABI
540          *      #
541          *      # That is, the ABI doesn't make any promises wrt to
542          *      # the stability of its content, it may vary depending
543          *      # on event, hardware, kernel version and phase of
544          *      # the moon.
545          *      #
546          *      # In other words, PERF_SAMPLE_RAW contents are not an ABI.
547          *      #
548          *
549          *      { u32                   size;
550          *        char                  data[size];}&& PERF_SAMPLE_RAW
551          *
552          *      { u64 from, to, flags } lbr[nr];} && PERF_SAMPLE_BRANCH_STACK
553          * };
554          */
555         PERF_RECORD_SAMPLE                      = 9,
556
557         PERF_RECORD_MAX,                        /* non-ABI */
558 };
559
560 #define PERF_MAX_STACK_DEPTH            127
561
562 enum perf_callchain_context {
563         PERF_CONTEXT_HV                 = (__u64)-32,
564         PERF_CONTEXT_KERNEL             = (__u64)-128,
565         PERF_CONTEXT_USER               = (__u64)-512,
566
567         PERF_CONTEXT_GUEST              = (__u64)-2048,
568         PERF_CONTEXT_GUEST_KERNEL       = (__u64)-2176,
569         PERF_CONTEXT_GUEST_USER         = (__u64)-2560,
570
571         PERF_CONTEXT_MAX                = (__u64)-4095,
572 };
573
574 #define PERF_FLAG_FD_NO_GROUP           (1U << 0)
575 #define PERF_FLAG_FD_OUTPUT             (1U << 1)
576 #define PERF_FLAG_PID_CGROUP            (1U << 2) /* pid=cgroup id, per-cpu mode only */
577
578 #ifdef __KERNEL__
579 /*
580  * Kernel-internal data types and definitions:
581  */
582
583 #ifdef CONFIG_PERF_EVENTS
584 # include <linux/cgroup.h>
585 # include <asm/perf_event.h>
586 # include <asm/local64.h>
587 #endif
588
589 struct perf_guest_info_callbacks {
590         int                             (*is_in_guest)(void);
591         int                             (*is_user_mode)(void);
592         unsigned long                   (*get_guest_ip)(void);
593 };
594
595 #ifdef CONFIG_HAVE_HW_BREAKPOINT
596 #include <asm/hw_breakpoint.h>
597 #endif
598
599 #include <linux/list.h>
600 #include <linux/mutex.h>
601 #include <linux/rculist.h>
602 #include <linux/rcupdate.h>
603 #include <linux/spinlock.h>
604 #include <linux/hrtimer.h>
605 #include <linux/fs.h>
606 #include <linux/pid_namespace.h>
607 #include <linux/workqueue.h>
608 #include <linux/ftrace.h>
609 #include <linux/cpu.h>
610 #include <linux/irq_work.h>
611 #include <linux/static_key.h>
612 #include <linux/atomic.h>
613 #include <linux/sysfs.h>
614 #include <asm/local.h>
615
616 struct perf_callchain_entry {
617         __u64                           nr;
618         __u64                           ip[PERF_MAX_STACK_DEPTH];
619 };
620
621 struct perf_raw_record {
622         u32                             size;
623         void                            *data;
624 };
625
626 /*
627  * single taken branch record layout:
628  *
629  *      from: source instruction (may not always be a branch insn)
630  *        to: branch target
631  *   mispred: branch target was mispredicted
632  * predicted: branch target was predicted
633  *
634  * support for mispred, predicted is optional. In case it
635  * is not supported mispred = predicted = 0.
636  */
637 struct perf_branch_entry {
638         __u64   from;
639         __u64   to;
640         __u64   mispred:1,  /* target mispredicted */
641                 predicted:1,/* target predicted */
642                 reserved:62;
643 };
644
645 /*
646  * branch stack layout:
647  *  nr: number of taken branches stored in entries[]
648  *
649  * Note that nr can vary from sample to sample
650  * branches (to, from) are stored from most recent
651  * to least recent, i.e., entries[0] contains the most
652  * recent branch.
653  */
654 struct perf_branch_stack {
655         __u64                           nr;
656         struct perf_branch_entry        entries[0];
657 };
658
659 struct task_struct;
660
661 /*
662  * extra PMU register associated with an event
663  */
664 struct hw_perf_event_extra {
665         u64             config; /* register value */
666         unsigned int    reg;    /* register address or index */
667         int             alloc;  /* extra register already allocated */
668         int             idx;    /* index in shared_regs->regs[] */
669 };
670
671 /**
672  * struct hw_perf_event - performance event hardware details:
673  */
674 struct hw_perf_event {
675 #ifdef CONFIG_PERF_EVENTS
676         union {
677                 struct { /* hardware */
678                         u64             config;
679                         u64             last_tag;
680                         unsigned long   config_base;
681                         unsigned long   event_base;
682                         int             event_base_rdpmc;
683                         int             idx;
684                         int             last_cpu;
685
686                         struct hw_perf_event_extra extra_reg;
687                         struct hw_perf_event_extra branch_reg;
688                 };
689                 struct { /* software */
690                         struct hrtimer  hrtimer;
691                 };
692 #ifdef CONFIG_HAVE_HW_BREAKPOINT
693                 struct { /* breakpoint */
694                         struct arch_hw_breakpoint       info;
695                         struct list_head                bp_list;
696                         /*
697                          * Crufty hack to avoid the chicken and egg
698                          * problem hw_breakpoint has with context
699                          * creation and event initalization.
700                          */
701                         struct task_struct              *bp_target;
702                 };
703 #endif
704         };
705         int                             state;
706         local64_t                       prev_count;
707         u64                             sample_period;
708         u64                             last_period;
709         local64_t                       period_left;
710         u64                             interrupts_seq;
711         u64                             interrupts;
712
713         u64                             freq_time_stamp;
714         u64                             freq_count_stamp;
715 #endif
716 };
717
718 /*
719  * hw_perf_event::state flags
720  */
721 #define PERF_HES_STOPPED        0x01 /* the counter is stopped */
722 #define PERF_HES_UPTODATE       0x02 /* event->count up-to-date */
723 #define PERF_HES_ARCH           0x04
724
725 struct perf_event;
726
727 /*
728  * Common implementation detail of pmu::{start,commit,cancel}_txn
729  */
730 #define PERF_EVENT_TXN 0x1
731
732 /**
733  * struct pmu - generic performance monitoring unit
734  */
735 struct pmu {
736         struct list_head                entry;
737
738         struct device                   *dev;
739         const struct attribute_group    **attr_groups;
740         char                            *name;
741         int                             type;
742
743         int * __percpu                  pmu_disable_count;
744         struct perf_cpu_context * __percpu pmu_cpu_context;
745         int                             task_ctx_nr;
746
747         /*
748          * Fully disable/enable this PMU, can be used to protect from the PMI
749          * as well as for lazy/batch writing of the MSRs.
750          */
751         void (*pmu_enable)              (struct pmu *pmu); /* optional */
752         void (*pmu_disable)             (struct pmu *pmu); /* optional */
753
754         /*
755          * Try and initialize the event for this PMU.
756          * Should return -ENOENT when the @event doesn't match this PMU.
757          */
758         int (*event_init)               (struct perf_event *event);
759
760 #define PERF_EF_START   0x01            /* start the counter when adding    */
761 #define PERF_EF_RELOAD  0x02            /* reload the counter when starting */
762 #define PERF_EF_UPDATE  0x04            /* update the counter when stopping */
763
764         /*
765          * Adds/Removes a counter to/from the PMU, can be done inside
766          * a transaction, see the ->*_txn() methods.
767          */
768         int  (*add)                     (struct perf_event *event, int flags);
769         void (*del)                     (struct perf_event *event, int flags);
770
771         /*
772          * Starts/Stops a counter present on the PMU. The PMI handler
773          * should stop the counter when perf_event_overflow() returns
774          * !0. ->start() will be used to continue.
775          */
776         void (*start)                   (struct perf_event *event, int flags);
777         void (*stop)                    (struct perf_event *event, int flags);
778
779         /*
780          * Updates the counter value of the event.
781          */
782         void (*read)                    (struct perf_event *event);
783
784         /*
785          * Group events scheduling is treated as a transaction, add
786          * group events as a whole and perform one schedulability test.
787          * If the test fails, roll back the whole group
788          *
789          * Start the transaction, after this ->add() doesn't need to
790          * do schedulability tests.
791          */
792         void (*start_txn)               (struct pmu *pmu); /* optional */
793         /*
794          * If ->start_txn() disabled the ->add() schedulability test
795          * then ->commit_txn() is required to perform one. On success
796          * the transaction is closed. On error the transaction is kept
797          * open until ->cancel_txn() is called.
798          */
799         int  (*commit_txn)              (struct pmu *pmu); /* optional */
800         /*
801          * Will cancel the transaction, assumes ->del() is called
802          * for each successful ->add() during the transaction.
803          */
804         void (*cancel_txn)              (struct pmu *pmu); /* optional */
805
806         /*
807          * Will return the value for perf_event_mmap_page::index for this event,
808          * if no implementation is provided it will default to: event->hw.idx + 1.
809          */
810         int (*event_idx)                (struct perf_event *event); /*optional */
811
812         /*
813          * flush branch stack on context-switches (needed in cpu-wide mode)
814          */
815         void (*flush_branch_stack)      (void);
816 };
817
818 /**
819  * enum perf_event_active_state - the states of a event
820  */
821 enum perf_event_active_state {
822         PERF_EVENT_STATE_ERROR          = -2,
823         PERF_EVENT_STATE_OFF            = -1,
824         PERF_EVENT_STATE_INACTIVE       =  0,
825         PERF_EVENT_STATE_ACTIVE         =  1,
826 };
827
828 struct file;
829 struct perf_sample_data;
830
831 typedef void (*perf_overflow_handler_t)(struct perf_event *,
832                                         struct perf_sample_data *,
833                                         struct pt_regs *regs);
834
835 enum perf_group_flag {
836         PERF_GROUP_SOFTWARE             = 0x1,
837 };
838
839 #define SWEVENT_HLIST_BITS              8
840 #define SWEVENT_HLIST_SIZE              (1 << SWEVENT_HLIST_BITS)
841
842 struct swevent_hlist {
843         struct hlist_head               heads[SWEVENT_HLIST_SIZE];
844         struct rcu_head                 rcu_head;
845 };
846
847 #define PERF_ATTACH_CONTEXT     0x01
848 #define PERF_ATTACH_GROUP       0x02
849 #define PERF_ATTACH_TASK        0x04
850
851 #ifdef CONFIG_CGROUP_PERF
852 /*
853  * perf_cgroup_info keeps track of time_enabled for a cgroup.
854  * This is a per-cpu dynamically allocated data structure.
855  */
856 struct perf_cgroup_info {
857         u64                             time;
858         u64                             timestamp;
859 };
860
861 struct perf_cgroup {
862         struct                          cgroup_subsys_state css;
863         struct                          perf_cgroup_info *info; /* timing info, one per cpu */
864 };
865 #endif
866
867 struct ring_buffer;
868
869 /**
870  * struct perf_event - performance event kernel representation:
871  */
872 struct perf_event {
873 #ifdef CONFIG_PERF_EVENTS
874         struct list_head                group_entry;
875         struct list_head                event_entry;
876         struct list_head                sibling_list;
877         struct hlist_node               hlist_entry;
878         int                             nr_siblings;
879         int                             group_flags;
880         struct perf_event               *group_leader;
881         struct pmu                      *pmu;
882
883         enum perf_event_active_state    state;
884         unsigned int                    attach_state;
885         local64_t                       count;
886         atomic64_t                      child_count;
887
888         /*
889          * These are the total time in nanoseconds that the event
890          * has been enabled (i.e. eligible to run, and the task has
891          * been scheduled in, if this is a per-task event)
892          * and running (scheduled onto the CPU), respectively.
893          *
894          * They are computed from tstamp_enabled, tstamp_running and
895          * tstamp_stopped when the event is in INACTIVE or ACTIVE state.
896          */
897         u64                             total_time_enabled;
898         u64                             total_time_running;
899
900         /*
901          * These are timestamps used for computing total_time_enabled
902          * and total_time_running when the event is in INACTIVE or
903          * ACTIVE state, measured in nanoseconds from an arbitrary point
904          * in time.
905          * tstamp_enabled: the notional time when the event was enabled
906          * tstamp_running: the notional time when the event was scheduled on
907          * tstamp_stopped: in INACTIVE state, the notional time when the
908          *      event was scheduled off.
909          */
910         u64                             tstamp_enabled;
911         u64                             tstamp_running;
912         u64                             tstamp_stopped;
913
914         /*
915          * timestamp shadows the actual context timing but it can
916          * be safely used in NMI interrupt context. It reflects the
917          * context time as it was when the event was last scheduled in.
918          *
919          * ctx_time already accounts for ctx->timestamp. Therefore to
920          * compute ctx_time for a sample, simply add perf_clock().
921          */
922         u64                             shadow_ctx_time;
923
924         struct perf_event_attr          attr;
925         u16                             header_size;
926         u16                             id_header_size;
927         u16                             read_size;
928         struct hw_perf_event            hw;
929
930         struct perf_event_context       *ctx;
931         atomic_long_t                   refcount;
932
933         /*
934          * These accumulate total time (in nanoseconds) that children
935          * events have been enabled and running, respectively.
936          */
937         atomic64_t                      child_total_time_enabled;
938         atomic64_t                      child_total_time_running;
939
940         /*
941          * Protect attach/detach and child_list:
942          */
943         struct mutex                    child_mutex;
944         struct list_head                child_list;
945         struct perf_event               *parent;
946
947         int                             oncpu;
948         int                             cpu;
949
950         struct list_head                owner_entry;
951         struct task_struct              *owner;
952
953         /* mmap bits */
954         struct mutex                    mmap_mutex;
955         atomic_t                        mmap_count;
956         int                             mmap_locked;
957         struct user_struct              *mmap_user;
958         struct ring_buffer              *rb;
959         struct list_head                rb_entry;
960
961         /* poll related */
962         wait_queue_head_t               waitq;
963         struct fasync_struct            *fasync;
964
965         /* delayed work for NMIs and such */
966         int                             pending_wakeup;
967         int                             pending_kill;
968         int                             pending_disable;
969         struct irq_work                 pending;
970
971         atomic_t                        event_limit;
972
973         void (*destroy)(struct perf_event *);
974         struct rcu_head                 rcu_head;
975
976         struct pid_namespace            *ns;
977         u64                             id;
978
979         perf_overflow_handler_t         overflow_handler;
980         void                            *overflow_handler_context;
981
982 #ifdef CONFIG_EVENT_TRACING
983         struct ftrace_event_call        *tp_event;
984         struct event_filter             *filter;
985 #ifdef CONFIG_FUNCTION_TRACER
986         struct ftrace_ops               ftrace_ops;
987 #endif
988 #endif
989
990 #ifdef CONFIG_CGROUP_PERF
991         struct perf_cgroup              *cgrp; /* cgroup event is attach to */
992         int                             cgrp_defer_enabled;
993 #endif
994
995 #endif /* CONFIG_PERF_EVENTS */
996 };
997
998 enum perf_event_context_type {
999         task_context,
1000         cpu_context,
1001 };
1002
1003 /**
1004  * struct perf_event_context - event context structure
1005  *
1006  * Used as a container for task events and CPU events as well:
1007  */
1008 struct perf_event_context {
1009         struct pmu                      *pmu;
1010         enum perf_event_context_type    type;
1011         /*
1012          * Protect the states of the events in the list,
1013          * nr_active, and the list:
1014          */
1015         raw_spinlock_t                  lock;
1016         /*
1017          * Protect the list of events.  Locking either mutex or lock
1018          * is sufficient to ensure the list doesn't change; to change
1019          * the list you need to lock both the mutex and the spinlock.
1020          */
1021         struct mutex                    mutex;
1022
1023         struct list_head                pinned_groups;
1024         struct list_head                flexible_groups;
1025         struct list_head                event_list;
1026         int                             nr_events;
1027         int                             nr_active;
1028         int                             is_active;
1029         int                             nr_stat;
1030         int                             nr_freq;
1031         int                             rotate_disable;
1032         atomic_t                        refcount;
1033         struct task_struct              *task;
1034
1035         /*
1036          * Context clock, runs when context enabled.
1037          */
1038         u64                             time;
1039         u64                             timestamp;
1040
1041         /*
1042          * These fields let us detect when two contexts have both
1043          * been cloned (inherited) from a common ancestor.
1044          */
1045         struct perf_event_context       *parent_ctx;
1046         u64                             parent_gen;
1047         u64                             generation;
1048         int                             pin_count;
1049         int                             nr_cgroups;      /* cgroup evts */
1050         int                             nr_branch_stack; /* branch_stack evt */
1051         struct rcu_head                 rcu_head;
1052 };
1053
1054 /*
1055  * Number of contexts where an event can trigger:
1056  *      task, softirq, hardirq, nmi.
1057  */
1058 #define PERF_NR_CONTEXTS        4
1059
1060 /**
1061  * struct perf_event_cpu_context - per cpu event context structure
1062  */
1063 struct perf_cpu_context {
1064         struct perf_event_context       ctx;
1065         struct perf_event_context       *task_ctx;
1066         int                             active_oncpu;
1067         int                             exclusive;
1068         struct list_head                rotation_list;
1069         int                             jiffies_interval;
1070         struct pmu                      *active_pmu;
1071         struct perf_cgroup              *cgrp;
1072 };
1073
1074 struct perf_output_handle {
1075         struct perf_event               *event;
1076         struct ring_buffer              *rb;
1077         unsigned long                   wakeup;
1078         unsigned long                   size;
1079         void                            *addr;
1080         int                             page;
1081 };
1082
1083 #ifdef CONFIG_PERF_EVENTS
1084
1085 extern int perf_pmu_register(struct pmu *pmu, char *name, int type);
1086 extern void perf_pmu_unregister(struct pmu *pmu);
1087
1088 extern int perf_num_counters(void);
1089 extern const char *perf_pmu_name(void);
1090 extern void __perf_event_task_sched_in(struct task_struct *prev,
1091                                        struct task_struct *task);
1092 extern void __perf_event_task_sched_out(struct task_struct *prev,
1093                                         struct task_struct *next);
1094 extern int perf_event_init_task(struct task_struct *child);
1095 extern void perf_event_exit_task(struct task_struct *child);
1096 extern void perf_event_free_task(struct task_struct *task);
1097 extern void perf_event_delayed_put(struct task_struct *task);
1098 extern void perf_event_print_debug(void);
1099 extern void perf_pmu_disable(struct pmu *pmu);
1100 extern void perf_pmu_enable(struct pmu *pmu);
1101 extern int perf_event_task_disable(void);
1102 extern int perf_event_task_enable(void);
1103 extern int perf_event_refresh(struct perf_event *event, int refresh);
1104 extern void perf_event_update_userpage(struct perf_event *event);
1105 extern int perf_event_release_kernel(struct perf_event *event);
1106 extern struct perf_event *
1107 perf_event_create_kernel_counter(struct perf_event_attr *attr,
1108                                 int cpu,
1109                                 struct task_struct *task,
1110                                 perf_overflow_handler_t callback,
1111                                 void *context);
1112 extern void perf_pmu_migrate_context(struct pmu *pmu,
1113                                 int src_cpu, int dst_cpu);
1114 extern u64 perf_event_read_value(struct perf_event *event,
1115                                  u64 *enabled, u64 *running);
1116
1117
1118 struct perf_sample_data {
1119         u64                             type;
1120
1121         u64                             ip;
1122         struct {
1123                 u32     pid;
1124                 u32     tid;
1125         }                               tid_entry;
1126         u64                             time;
1127         u64                             addr;
1128         u64                             id;
1129         u64                             stream_id;
1130         struct {
1131                 u32     cpu;
1132                 u32     reserved;
1133         }                               cpu_entry;
1134         u64                             period;
1135         struct perf_callchain_entry     *callchain;
1136         struct perf_raw_record          *raw;
1137         struct perf_branch_stack        *br_stack;
1138 };
1139
1140 static inline void perf_sample_data_init(struct perf_sample_data *data,
1141                                          u64 addr, u64 period)
1142 {
1143         /* remaining struct members initialized in perf_prepare_sample() */
1144         data->addr = addr;
1145         data->raw  = NULL;
1146         data->br_stack = NULL;
1147         data->period    = period;
1148 }
1149
1150 extern void perf_output_sample(struct perf_output_handle *handle,
1151                                struct perf_event_header *header,
1152                                struct perf_sample_data *data,
1153                                struct perf_event *event);
1154 extern void perf_prepare_sample(struct perf_event_header *header,
1155                                 struct perf_sample_data *data,
1156                                 struct perf_event *event,
1157                                 struct pt_regs *regs);
1158
1159 extern int perf_event_overflow(struct perf_event *event,
1160                                  struct perf_sample_data *data,
1161                                  struct pt_regs *regs);
1162
1163 static inline bool is_sampling_event(struct perf_event *event)
1164 {
1165         return event->attr.sample_period != 0;
1166 }
1167
1168 /*
1169  * Return 1 for a software event, 0 for a hardware event
1170  */
1171 static inline int is_software_event(struct perf_event *event)
1172 {
1173         return event->pmu->task_ctx_nr == perf_sw_context;
1174 }
1175
1176 extern struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX];
1177
1178 extern void __perf_sw_event(u32, u64, struct pt_regs *, u64);
1179
1180 #ifndef perf_arch_fetch_caller_regs
1181 static inline void perf_arch_fetch_caller_regs(struct pt_regs *regs, unsigned long ip) { }
1182 #endif
1183
1184 /*
1185  * Take a snapshot of the regs. Skip ip and frame pointer to
1186  * the nth caller. We only need a few of the regs:
1187  * - ip for PERF_SAMPLE_IP
1188  * - cs for user_mode() tests
1189  * - bp for callchains
1190  * - eflags, for future purposes, just in case
1191  */
1192 static inline void perf_fetch_caller_regs(struct pt_regs *regs)
1193 {
1194         memset(regs, 0, sizeof(*regs));
1195
1196         perf_arch_fetch_caller_regs(regs, CALLER_ADDR0);
1197 }
1198
1199 static __always_inline void
1200 perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
1201 {
1202         struct pt_regs hot_regs;
1203
1204         if (static_key_false(&perf_swevent_enabled[event_id])) {
1205                 if (!regs) {
1206                         perf_fetch_caller_regs(&hot_regs);
1207                         regs = &hot_regs;
1208                 }
1209                 __perf_sw_event(event_id, nr, regs, addr);
1210         }
1211 }
1212
1213 extern struct static_key_deferred perf_sched_events;
1214
1215 static inline void perf_event_task_sched_in(struct task_struct *prev,
1216                                             struct task_struct *task)
1217 {
1218         if (static_key_false(&perf_sched_events.key))
1219                 __perf_event_task_sched_in(prev, task);
1220 }
1221
1222 static inline void perf_event_task_sched_out(struct task_struct *prev,
1223                                              struct task_struct *next)
1224 {
1225         perf_sw_event(PERF_COUNT_SW_CONTEXT_SWITCHES, 1, NULL, 0);
1226
1227         if (static_key_false(&perf_sched_events.key))
1228                 __perf_event_task_sched_out(prev, next);
1229 }
1230
1231 extern void perf_event_mmap(struct vm_area_struct *vma);
1232 extern struct perf_guest_info_callbacks *perf_guest_cbs;
1233 extern int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *callbacks);
1234 extern int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *callbacks);
1235
1236 extern void perf_event_comm(struct task_struct *tsk);
1237 extern void perf_event_fork(struct task_struct *tsk);
1238
1239 /* Callchains */
1240 DECLARE_PER_CPU(struct perf_callchain_entry, perf_callchain_entry);
1241
1242 extern void perf_callchain_user(struct perf_callchain_entry *entry, struct pt_regs *regs);
1243 extern void perf_callchain_kernel(struct perf_callchain_entry *entry, struct pt_regs *regs);
1244
1245 static inline void perf_callchain_store(struct perf_callchain_entry *entry, u64 ip)
1246 {
1247         if (entry->nr < PERF_MAX_STACK_DEPTH)
1248                 entry->ip[entry->nr++] = ip;
1249 }
1250
1251 extern int sysctl_perf_event_paranoid;
1252 extern int sysctl_perf_event_mlock;
1253 extern int sysctl_perf_event_sample_rate;
1254
1255 extern int perf_proc_update_handler(struct ctl_table *table, int write,
1256                 void __user *buffer, size_t *lenp,
1257                 loff_t *ppos);
1258
1259 static inline bool perf_paranoid_tracepoint_raw(void)
1260 {
1261         return sysctl_perf_event_paranoid > -1;
1262 }
1263
1264 static inline bool perf_paranoid_cpu(void)
1265 {
1266         return sysctl_perf_event_paranoid > 0;
1267 }
1268
1269 static inline bool perf_paranoid_kernel(void)
1270 {
1271         return sysctl_perf_event_paranoid > 1;
1272 }
1273
1274 extern void perf_event_init(void);
1275 extern void perf_tp_event(u64 addr, u64 count, void *record,
1276                           int entry_size, struct pt_regs *regs,
1277                           struct hlist_head *head, int rctx,
1278                           struct task_struct *task);
1279 extern void perf_bp_event(struct perf_event *event, void *data);
1280
1281 #ifndef perf_misc_flags
1282 # define perf_misc_flags(regs) \
1283                 (user_mode(regs) ? PERF_RECORD_MISC_USER : PERF_RECORD_MISC_KERNEL)
1284 # define perf_instruction_pointer(regs) instruction_pointer(regs)
1285 #endif
1286
1287 static inline bool has_branch_stack(struct perf_event *event)
1288 {
1289         return event->attr.sample_type & PERF_SAMPLE_BRANCH_STACK;
1290 }
1291
1292 extern int perf_output_begin(struct perf_output_handle *handle,
1293                              struct perf_event *event, unsigned int size);
1294 extern void perf_output_end(struct perf_output_handle *handle);
1295 extern void perf_output_copy(struct perf_output_handle *handle,
1296                              const void *buf, unsigned int len);
1297 extern int perf_swevent_get_recursion_context(void);
1298 extern void perf_swevent_put_recursion_context(int rctx);
1299 extern void perf_event_enable(struct perf_event *event);
1300 extern void perf_event_disable(struct perf_event *event);
1301 extern int __perf_event_disable(void *info);
1302 extern void perf_event_task_tick(void);
1303 #else
1304 static inline void
1305 perf_event_task_sched_in(struct task_struct *prev,
1306                          struct task_struct *task)                      { }
1307 static inline void
1308 perf_event_task_sched_out(struct task_struct *prev,
1309                           struct task_struct *next)                     { }
1310 static inline int perf_event_init_task(struct task_struct *child)       { return 0; }
1311 static inline void perf_event_exit_task(struct task_struct *child)      { }
1312 static inline void perf_event_free_task(struct task_struct *task)       { }
1313 static inline void perf_event_delayed_put(struct task_struct *task)     { }
1314 static inline void perf_event_print_debug(void)                         { }
1315 static inline int perf_event_task_disable(void)                         { return -EINVAL; }
1316 static inline int perf_event_task_enable(void)                          { return -EINVAL; }
1317 static inline int perf_event_refresh(struct perf_event *event, int refresh)
1318 {
1319         return -EINVAL;
1320 }
1321
1322 static inline void
1323 perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)     { }
1324 static inline void
1325 perf_bp_event(struct perf_event *event, void *data)                     { }
1326
1327 static inline int perf_register_guest_info_callbacks
1328 (struct perf_guest_info_callbacks *callbacks)                           { return 0; }
1329 static inline int perf_unregister_guest_info_callbacks
1330 (struct perf_guest_info_callbacks *callbacks)                           { return 0; }
1331
1332 static inline void perf_event_mmap(struct vm_area_struct *vma)          { }
1333 static inline void perf_event_comm(struct task_struct *tsk)             { }
1334 static inline void perf_event_fork(struct task_struct *tsk)             { }
1335 static inline void perf_event_init(void)                                { }
1336 static inline int  perf_swevent_get_recursion_context(void)             { return -1; }
1337 static inline void perf_swevent_put_recursion_context(int rctx)         { }
1338 static inline void perf_event_enable(struct perf_event *event)          { }
1339 static inline void perf_event_disable(struct perf_event *event)         { }
1340 static inline int __perf_event_disable(void *info)                      { return -1; }
1341 static inline void perf_event_task_tick(void)                           { }
1342 #endif
1343
1344 #define perf_output_put(handle, x) perf_output_copy((handle), &(x), sizeof(x))
1345
1346 /*
1347  * This has to have a higher priority than migration_notifier in sched.c.
1348  */
1349 #define perf_cpu_notifier(fn)                                           \
1350 do {                                                                    \
1351         static struct notifier_block fn##_nb __cpuinitdata =            \
1352                 { .notifier_call = fn, .priority = CPU_PRI_PERF };      \
1353         fn(&fn##_nb, (unsigned long)CPU_UP_PREPARE,                     \
1354                 (void *)(unsigned long)smp_processor_id());             \
1355         fn(&fn##_nb, (unsigned long)CPU_STARTING,                       \
1356                 (void *)(unsigned long)smp_processor_id());             \
1357         fn(&fn##_nb, (unsigned long)CPU_ONLINE,                         \
1358                 (void *)(unsigned long)smp_processor_id());             \
1359         register_cpu_notifier(&fn##_nb);                                \
1360 } while (0)
1361
1362
1363 #define PMU_FORMAT_ATTR(_name, _format)                                 \
1364 static ssize_t                                                          \
1365 _name##_show(struct device *dev,                                        \
1366                                struct device_attribute *attr,           \
1367                                char *page)                              \
1368 {                                                                       \
1369         BUILD_BUG_ON(sizeof(_format) >= PAGE_SIZE);                     \
1370         return sprintf(page, _format "\n");                             \
1371 }                                                                       \
1372                                                                         \
1373 static struct device_attribute format_attr_##_name = __ATTR_RO(_name)
1374
1375 #endif /* __KERNEL__ */
1376 #endif /* _LINUX_PERF_EVENT_H */