x86/entry/ia32: Ensure s32 is sign extended to s64
[platform/kernel/linux-starfive.git] / include / linux / perf_event.h
1 /*
2  * Performance events:
3  *
4  *    Copyright (C) 2008-2009, Thomas Gleixner <tglx@linutronix.de>
5  *    Copyright (C) 2008-2011, Red Hat, Inc., Ingo Molnar
6  *    Copyright (C) 2008-2011, Red Hat, Inc., Peter Zijlstra
7  *
8  * Data type definitions, declarations, prototypes.
9  *
10  *    Started by: Thomas Gleixner and Ingo Molnar
11  *
12  * For licencing details see kernel-base/COPYING
13  */
14 #ifndef _LINUX_PERF_EVENT_H
15 #define _LINUX_PERF_EVENT_H
16
17 #include <uapi/linux/perf_event.h>
18 #include <uapi/linux/bpf_perf_event.h>
19
20 /*
21  * Kernel-internal data types and definitions:
22  */
23
24 #ifdef CONFIG_PERF_EVENTS
25 # include <asm/perf_event.h>
26 # include <asm/local64.h>
27 #endif
28
29 #define PERF_GUEST_ACTIVE       0x01
30 #define PERF_GUEST_USER 0x02
31
32 struct perf_guest_info_callbacks {
33         unsigned int                    (*state)(void);
34         unsigned long                   (*get_ip)(void);
35         unsigned int                    (*handle_intel_pt_intr)(void);
36 };
37
38 #ifdef CONFIG_HAVE_HW_BREAKPOINT
39 #include <linux/rhashtable-types.h>
40 #include <asm/hw_breakpoint.h>
41 #endif
42
43 #include <linux/list.h>
44 #include <linux/mutex.h>
45 #include <linux/rculist.h>
46 #include <linux/rcupdate.h>
47 #include <linux/spinlock.h>
48 #include <linux/hrtimer.h>
49 #include <linux/fs.h>
50 #include <linux/pid_namespace.h>
51 #include <linux/workqueue.h>
52 #include <linux/ftrace.h>
53 #include <linux/cpu.h>
54 #include <linux/irq_work.h>
55 #include <linux/static_key.h>
56 #include <linux/jump_label_ratelimit.h>
57 #include <linux/atomic.h>
58 #include <linux/sysfs.h>
59 #include <linux/perf_regs.h>
60 #include <linux/cgroup.h>
61 #include <linux/refcount.h>
62 #include <linux/security.h>
63 #include <linux/static_call.h>
64 #include <linux/lockdep.h>
65 #include <asm/local.h>
66
67 struct perf_callchain_entry {
68         __u64                           nr;
69         __u64                           ip[]; /* /proc/sys/kernel/perf_event_max_stack */
70 };
71
72 struct perf_callchain_entry_ctx {
73         struct perf_callchain_entry *entry;
74         u32                         max_stack;
75         u32                         nr;
76         short                       contexts;
77         bool                        contexts_maxed;
78 };
79
80 typedef unsigned long (*perf_copy_f)(void *dst, const void *src,
81                                      unsigned long off, unsigned long len);
82
83 struct perf_raw_frag {
84         union {
85                 struct perf_raw_frag    *next;
86                 unsigned long           pad;
87         };
88         perf_copy_f                     copy;
89         void                            *data;
90         u32                             size;
91 } __packed;
92
93 struct perf_raw_record {
94         struct perf_raw_frag            frag;
95         u32                             size;
96 };
97
98 static __always_inline bool perf_raw_frag_last(const struct perf_raw_frag *frag)
99 {
100         return frag->pad < sizeof(u64);
101 }
102
103 /*
104  * branch stack layout:
105  *  nr: number of taken branches stored in entries[]
106  *  hw_idx: The low level index of raw branch records
107  *          for the most recent branch.
108  *          -1ULL means invalid/unknown.
109  *
110  * Note that nr can vary from sample to sample
111  * branches (to, from) are stored from most recent
112  * to least recent, i.e., entries[0] contains the most
113  * recent branch.
114  * The entries[] is an abstraction of raw branch records,
115  * which may not be stored in age order in HW, e.g. Intel LBR.
116  * The hw_idx is to expose the low level index of raw
117  * branch record for the most recent branch aka entries[0].
118  * The hw_idx index is between -1 (unknown) and max depth,
119  * which can be retrieved in /sys/devices/cpu/caps/branches.
120  * For the architectures whose raw branch records are
121  * already stored in age order, the hw_idx should be 0.
122  */
123 struct perf_branch_stack {
124         __u64                           nr;
125         __u64                           hw_idx;
126         struct perf_branch_entry        entries[];
127 };
128
129 struct task_struct;
130
131 /*
132  * extra PMU register associated with an event
133  */
134 struct hw_perf_event_extra {
135         u64             config; /* register value */
136         unsigned int    reg;    /* register address or index */
137         int             alloc;  /* extra register already allocated */
138         int             idx;    /* index in shared_regs->regs[] */
139 };
140
141 /**
142  * hw_perf_event::flag values
143  *
144  * PERF_EVENT_FLAG_ARCH bits are reserved for architecture-specific
145  * usage.
146  */
147 #define PERF_EVENT_FLAG_ARCH                    0x000fffff
148 #define PERF_EVENT_FLAG_USER_READ_CNT           0x80000000
149
150 static_assert((PERF_EVENT_FLAG_USER_READ_CNT & PERF_EVENT_FLAG_ARCH) == 0);
151
152 /**
153  * struct hw_perf_event - performance event hardware details:
154  */
155 struct hw_perf_event {
156 #ifdef CONFIG_PERF_EVENTS
157         union {
158                 struct { /* hardware */
159                         u64             config;
160                         u64             last_tag;
161                         unsigned long   config_base;
162                         unsigned long   event_base;
163                         int             event_base_rdpmc;
164                         int             idx;
165                         int             last_cpu;
166                         int             flags;
167
168                         struct hw_perf_event_extra extra_reg;
169                         struct hw_perf_event_extra branch_reg;
170                 };
171                 struct { /* software */
172                         struct hrtimer  hrtimer;
173                 };
174                 struct { /* tracepoint */
175                         /* for tp_event->class */
176                         struct list_head        tp_list;
177                 };
178                 struct { /* amd_power */
179                         u64     pwr_acc;
180                         u64     ptsc;
181                 };
182 #ifdef CONFIG_HAVE_HW_BREAKPOINT
183                 struct { /* breakpoint */
184                         /*
185                          * Crufty hack to avoid the chicken and egg
186                          * problem hw_breakpoint has with context
187                          * creation and event initalization.
188                          */
189                         struct arch_hw_breakpoint       info;
190                         struct rhlist_head              bp_list;
191                 };
192 #endif
193                 struct { /* amd_iommu */
194                         u8      iommu_bank;
195                         u8      iommu_cntr;
196                         u16     padding;
197                         u64     conf;
198                         u64     conf1;
199                 };
200         };
201         /*
202          * If the event is a per task event, this will point to the task in
203          * question. See the comment in perf_event_alloc().
204          */
205         struct task_struct              *target;
206
207         /*
208          * PMU would store hardware filter configuration
209          * here.
210          */
211         void                            *addr_filters;
212
213         /* Last sync'ed generation of filters */
214         unsigned long                   addr_filters_gen;
215
216 /*
217  * hw_perf_event::state flags; used to track the PERF_EF_* state.
218  */
219 #define PERF_HES_STOPPED        0x01 /* the counter is stopped */
220 #define PERF_HES_UPTODATE       0x02 /* event->count up-to-date */
221 #define PERF_HES_ARCH           0x04
222
223         int                             state;
224
225         /*
226          * The last observed hardware counter value, updated with a
227          * local64_cmpxchg() such that pmu::read() can be called nested.
228          */
229         local64_t                       prev_count;
230
231         /*
232          * The period to start the next sample with.
233          */
234         u64                             sample_period;
235
236         union {
237                 struct { /* Sampling */
238                         /*
239                          * The period we started this sample with.
240                          */
241                         u64                             last_period;
242
243                         /*
244                          * However much is left of the current period;
245                          * note that this is a full 64bit value and
246                          * allows for generation of periods longer
247                          * than hardware might allow.
248                          */
249                         local64_t                       period_left;
250                 };
251                 struct { /* Topdown events counting for context switch */
252                         u64                             saved_metric;
253                         u64                             saved_slots;
254                 };
255         };
256
257         /*
258          * State for throttling the event, see __perf_event_overflow() and
259          * perf_adjust_freq_unthr_context().
260          */
261         u64                             interrupts_seq;
262         u64                             interrupts;
263
264         /*
265          * State for freq target events, see __perf_event_overflow() and
266          * perf_adjust_freq_unthr_context().
267          */
268         u64                             freq_time_stamp;
269         u64                             freq_count_stamp;
270 #endif
271 };
272
273 struct perf_event;
274 struct perf_event_pmu_context;
275
276 /*
277  * Common implementation detail of pmu::{start,commit,cancel}_txn
278  */
279 #define PERF_PMU_TXN_ADD  0x1           /* txn to add/schedule event on PMU */
280 #define PERF_PMU_TXN_READ 0x2           /* txn to read event group from PMU */
281
282 /**
283  * pmu::capabilities flags
284  */
285 #define PERF_PMU_CAP_NO_INTERRUPT               0x0001
286 #define PERF_PMU_CAP_NO_NMI                     0x0002
287 #define PERF_PMU_CAP_AUX_NO_SG                  0x0004
288 #define PERF_PMU_CAP_EXTENDED_REGS              0x0008
289 #define PERF_PMU_CAP_EXCLUSIVE                  0x0010
290 #define PERF_PMU_CAP_ITRACE                     0x0020
291 #define PERF_PMU_CAP_NO_EXCLUDE                 0x0040
292 #define PERF_PMU_CAP_AUX_OUTPUT                 0x0080
293 #define PERF_PMU_CAP_EXTENDED_HW_TYPE           0x0100
294
295 struct perf_output_handle;
296
297 #define PMU_NULL_DEV    ((void *)(~0UL))
298
299 /**
300  * struct pmu - generic performance monitoring unit
301  */
302 struct pmu {
303         struct list_head                entry;
304
305         struct module                   *module;
306         struct device                   *dev;
307         struct device                   *parent;
308         const struct attribute_group    **attr_groups;
309         const struct attribute_group    **attr_update;
310         const char                      *name;
311         int                             type;
312
313         /*
314          * various common per-pmu feature flags
315          */
316         int                             capabilities;
317
318         int __percpu                    *pmu_disable_count;
319         struct perf_cpu_pmu_context __percpu *cpu_pmu_context;
320         atomic_t                        exclusive_cnt; /* < 0: cpu; > 0: tsk */
321         int                             task_ctx_nr;
322         int                             hrtimer_interval_ms;
323
324         /* number of address filters this PMU can do */
325         unsigned int                    nr_addr_filters;
326
327         /*
328          * Fully disable/enable this PMU, can be used to protect from the PMI
329          * as well as for lazy/batch writing of the MSRs.
330          */
331         void (*pmu_enable)              (struct pmu *pmu); /* optional */
332         void (*pmu_disable)             (struct pmu *pmu); /* optional */
333
334         /*
335          * Try and initialize the event for this PMU.
336          *
337          * Returns:
338          *  -ENOENT     -- @event is not for this PMU
339          *
340          *  -ENODEV     -- @event is for this PMU but PMU not present
341          *  -EBUSY      -- @event is for this PMU but PMU temporarily unavailable
342          *  -EINVAL     -- @event is for this PMU but @event is not valid
343          *  -EOPNOTSUPP -- @event is for this PMU, @event is valid, but not supported
344          *  -EACCES     -- @event is for this PMU, @event is valid, but no privileges
345          *
346          *  0           -- @event is for this PMU and valid
347          *
348          * Other error return values are allowed.
349          */
350         int (*event_init)               (struct perf_event *event);
351
352         /*
353          * Notification that the event was mapped or unmapped.  Called
354          * in the context of the mapping task.
355          */
356         void (*event_mapped)            (struct perf_event *event, struct mm_struct *mm); /* optional */
357         void (*event_unmapped)          (struct perf_event *event, struct mm_struct *mm); /* optional */
358
359         /*
360          * Flags for ->add()/->del()/ ->start()/->stop(). There are
361          * matching hw_perf_event::state flags.
362          */
363 #define PERF_EF_START   0x01            /* start the counter when adding    */
364 #define PERF_EF_RELOAD  0x02            /* reload the counter when starting */
365 #define PERF_EF_UPDATE  0x04            /* update the counter when stopping */
366
367         /*
368          * Adds/Removes a counter to/from the PMU, can be done inside a
369          * transaction, see the ->*_txn() methods.
370          *
371          * The add/del callbacks will reserve all hardware resources required
372          * to service the event, this includes any counter constraint
373          * scheduling etc.
374          *
375          * Called with IRQs disabled and the PMU disabled on the CPU the event
376          * is on.
377          *
378          * ->add() called without PERF_EF_START should result in the same state
379          *  as ->add() followed by ->stop().
380          *
381          * ->del() must always PERF_EF_UPDATE stop an event. If it calls
382          *  ->stop() that must deal with already being stopped without
383          *  PERF_EF_UPDATE.
384          */
385         int  (*add)                     (struct perf_event *event, int flags);
386         void (*del)                     (struct perf_event *event, int flags);
387
388         /*
389          * Starts/Stops a counter present on the PMU.
390          *
391          * The PMI handler should stop the counter when perf_event_overflow()
392          * returns !0. ->start() will be used to continue.
393          *
394          * Also used to change the sample period.
395          *
396          * Called with IRQs disabled and the PMU disabled on the CPU the event
397          * is on -- will be called from NMI context with the PMU generates
398          * NMIs.
399          *
400          * ->stop() with PERF_EF_UPDATE will read the counter and update
401          *  period/count values like ->read() would.
402          *
403          * ->start() with PERF_EF_RELOAD will reprogram the counter
404          *  value, must be preceded by a ->stop() with PERF_EF_UPDATE.
405          */
406         void (*start)                   (struct perf_event *event, int flags);
407         void (*stop)                    (struct perf_event *event, int flags);
408
409         /*
410          * Updates the counter value of the event.
411          *
412          * For sampling capable PMUs this will also update the software period
413          * hw_perf_event::period_left field.
414          */
415         void (*read)                    (struct perf_event *event);
416
417         /*
418          * Group events scheduling is treated as a transaction, add
419          * group events as a whole and perform one schedulability test.
420          * If the test fails, roll back the whole group
421          *
422          * Start the transaction, after this ->add() doesn't need to
423          * do schedulability tests.
424          *
425          * Optional.
426          */
427         void (*start_txn)               (struct pmu *pmu, unsigned int txn_flags);
428         /*
429          * If ->start_txn() disabled the ->add() schedulability test
430          * then ->commit_txn() is required to perform one. On success
431          * the transaction is closed. On error the transaction is kept
432          * open until ->cancel_txn() is called.
433          *
434          * Optional.
435          */
436         int  (*commit_txn)              (struct pmu *pmu);
437         /*
438          * Will cancel the transaction, assumes ->del() is called
439          * for each successful ->add() during the transaction.
440          *
441          * Optional.
442          */
443         void (*cancel_txn)              (struct pmu *pmu);
444
445         /*
446          * Will return the value for perf_event_mmap_page::index for this event,
447          * if no implementation is provided it will default to 0 (see
448          * perf_event_idx_default).
449          */
450         int (*event_idx)                (struct perf_event *event); /*optional */
451
452         /*
453          * context-switches callback
454          */
455         void (*sched_task)              (struct perf_event_pmu_context *pmu_ctx,
456                                         bool sched_in);
457
458         /*
459          * Kmem cache of PMU specific data
460          */
461         struct kmem_cache               *task_ctx_cache;
462
463         /*
464          * PMU specific parts of task perf event context (i.e. ctx->task_ctx_data)
465          * can be synchronized using this function. See Intel LBR callstack support
466          * implementation and Perf core context switch handling callbacks for usage
467          * examples.
468          */
469         void (*swap_task_ctx)           (struct perf_event_pmu_context *prev_epc,
470                                          struct perf_event_pmu_context *next_epc);
471                                         /* optional */
472
473         /*
474          * Set up pmu-private data structures for an AUX area
475          */
476         void *(*setup_aux)              (struct perf_event *event, void **pages,
477                                          int nr_pages, bool overwrite);
478                                         /* optional */
479
480         /*
481          * Free pmu-private AUX data structures
482          */
483         void (*free_aux)                (void *aux); /* optional */
484
485         /*
486          * Take a snapshot of the AUX buffer without touching the event
487          * state, so that preempting ->start()/->stop() callbacks does
488          * not interfere with their logic. Called in PMI context.
489          *
490          * Returns the size of AUX data copied to the output handle.
491          *
492          * Optional.
493          */
494         long (*snapshot_aux)            (struct perf_event *event,
495                                          struct perf_output_handle *handle,
496                                          unsigned long size);
497
498         /*
499          * Validate address range filters: make sure the HW supports the
500          * requested configuration and number of filters; return 0 if the
501          * supplied filters are valid, -errno otherwise.
502          *
503          * Runs in the context of the ioctl()ing process and is not serialized
504          * with the rest of the PMU callbacks.
505          */
506         int (*addr_filters_validate)    (struct list_head *filters);
507                                         /* optional */
508
509         /*
510          * Synchronize address range filter configuration:
511          * translate hw-agnostic filters into hardware configuration in
512          * event::hw::addr_filters.
513          *
514          * Runs as a part of filter sync sequence that is done in ->start()
515          * callback by calling perf_event_addr_filters_sync().
516          *
517          * May (and should) traverse event::addr_filters::list, for which its
518          * caller provides necessary serialization.
519          */
520         void (*addr_filters_sync)       (struct perf_event *event);
521                                         /* optional */
522
523         /*
524          * Check if event can be used for aux_output purposes for
525          * events of this PMU.
526          *
527          * Runs from perf_event_open(). Should return 0 for "no match"
528          * or non-zero for "match".
529          */
530         int (*aux_output_match)         (struct perf_event *event);
531                                         /* optional */
532
533         /*
534          * Skip programming this PMU on the given CPU. Typically needed for
535          * big.LITTLE things.
536          */
537         bool (*filter)                  (struct pmu *pmu, int cpu); /* optional */
538
539         /*
540          * Check period value for PERF_EVENT_IOC_PERIOD ioctl.
541          */
542         int (*check_period)             (struct perf_event *event, u64 value); /* optional */
543 };
544
545 enum perf_addr_filter_action_t {
546         PERF_ADDR_FILTER_ACTION_STOP = 0,
547         PERF_ADDR_FILTER_ACTION_START,
548         PERF_ADDR_FILTER_ACTION_FILTER,
549 };
550
551 /**
552  * struct perf_addr_filter - address range filter definition
553  * @entry:      event's filter list linkage
554  * @path:       object file's path for file-based filters
555  * @offset:     filter range offset
556  * @size:       filter range size (size==0 means single address trigger)
557  * @action:     filter/start/stop
558  *
559  * This is a hardware-agnostic filter configuration as specified by the user.
560  */
561 struct perf_addr_filter {
562         struct list_head        entry;
563         struct path             path;
564         unsigned long           offset;
565         unsigned long           size;
566         enum perf_addr_filter_action_t  action;
567 };
568
569 /**
570  * struct perf_addr_filters_head - container for address range filters
571  * @list:       list of filters for this event
572  * @lock:       spinlock that serializes accesses to the @list and event's
573  *              (and its children's) filter generations.
574  * @nr_file_filters:    number of file-based filters
575  *
576  * A child event will use parent's @list (and therefore @lock), so they are
577  * bundled together; see perf_event_addr_filters().
578  */
579 struct perf_addr_filters_head {
580         struct list_head        list;
581         raw_spinlock_t          lock;
582         unsigned int            nr_file_filters;
583 };
584
585 struct perf_addr_filter_range {
586         unsigned long           start;
587         unsigned long           size;
588 };
589
590 /**
591  * enum perf_event_state - the states of an event:
592  */
593 enum perf_event_state {
594         PERF_EVENT_STATE_DEAD           = -4,
595         PERF_EVENT_STATE_EXIT           = -3,
596         PERF_EVENT_STATE_ERROR          = -2,
597         PERF_EVENT_STATE_OFF            = -1,
598         PERF_EVENT_STATE_INACTIVE       =  0,
599         PERF_EVENT_STATE_ACTIVE         =  1,
600 };
601
602 struct file;
603 struct perf_sample_data;
604
605 typedef void (*perf_overflow_handler_t)(struct perf_event *,
606                                         struct perf_sample_data *,
607                                         struct pt_regs *regs);
608
609 /*
610  * Event capabilities. For event_caps and groups caps.
611  *
612  * PERF_EV_CAP_SOFTWARE: Is a software event.
613  * PERF_EV_CAP_READ_ACTIVE_PKG: A CPU event (or cgroup event) that can be read
614  * from any CPU in the package where it is active.
615  * PERF_EV_CAP_SIBLING: An event with this flag must be a group sibling and
616  * cannot be a group leader. If an event with this flag is detached from the
617  * group it is scheduled out and moved into an unrecoverable ERROR state.
618  */
619 #define PERF_EV_CAP_SOFTWARE            BIT(0)
620 #define PERF_EV_CAP_READ_ACTIVE_PKG     BIT(1)
621 #define PERF_EV_CAP_SIBLING             BIT(2)
622
623 #define SWEVENT_HLIST_BITS              8
624 #define SWEVENT_HLIST_SIZE              (1 << SWEVENT_HLIST_BITS)
625
626 struct swevent_hlist {
627         struct hlist_head               heads[SWEVENT_HLIST_SIZE];
628         struct rcu_head                 rcu_head;
629 };
630
631 #define PERF_ATTACH_CONTEXT     0x01
632 #define PERF_ATTACH_GROUP       0x02
633 #define PERF_ATTACH_TASK        0x04
634 #define PERF_ATTACH_TASK_DATA   0x08
635 #define PERF_ATTACH_ITRACE      0x10
636 #define PERF_ATTACH_SCHED_CB    0x20
637 #define PERF_ATTACH_CHILD       0x40
638
639 struct bpf_prog;
640 struct perf_cgroup;
641 struct perf_buffer;
642
643 struct pmu_event_list {
644         raw_spinlock_t          lock;
645         struct list_head        list;
646 };
647
648 /*
649  * event->sibling_list is modified whole holding both ctx->lock and ctx->mutex
650  * as such iteration must hold either lock. However, since ctx->lock is an IRQ
651  * safe lock, and is only held by the CPU doing the modification, having IRQs
652  * disabled is sufficient since it will hold-off the IPIs.
653  */
654 #ifdef CONFIG_PROVE_LOCKING
655 #define lockdep_assert_event_ctx(event)                         \
656         WARN_ON_ONCE(__lockdep_enabled &&                       \
657                      (this_cpu_read(hardirqs_enabled) &&        \
658                       lockdep_is_held(&(event)->ctx->mutex) != LOCK_STATE_HELD))
659 #else
660 #define lockdep_assert_event_ctx(event)
661 #endif
662
663 #define for_each_sibling_event(sibling, event)                  \
664         lockdep_assert_event_ctx(event);                        \
665         if ((event)->group_leader == (event))                   \
666                 list_for_each_entry((sibling), &(event)->sibling_list, sibling_list)
667
668 /**
669  * struct perf_event - performance event kernel representation:
670  */
671 struct perf_event {
672 #ifdef CONFIG_PERF_EVENTS
673         /*
674          * entry onto perf_event_context::event_list;
675          *   modifications require ctx->lock
676          *   RCU safe iterations.
677          */
678         struct list_head                event_entry;
679
680         /*
681          * Locked for modification by both ctx->mutex and ctx->lock; holding
682          * either sufficies for read.
683          */
684         struct list_head                sibling_list;
685         struct list_head                active_list;
686         /*
687          * Node on the pinned or flexible tree located at the event context;
688          */
689         struct rb_node                  group_node;
690         u64                             group_index;
691         /*
692          * We need storage to track the entries in perf_pmu_migrate_context; we
693          * cannot use the event_entry because of RCU and we want to keep the
694          * group in tact which avoids us using the other two entries.
695          */
696         struct list_head                migrate_entry;
697
698         struct hlist_node               hlist_entry;
699         struct list_head                active_entry;
700         int                             nr_siblings;
701
702         /* Not serialized. Only written during event initialization. */
703         int                             event_caps;
704         /* The cumulative AND of all event_caps for events in this group. */
705         int                             group_caps;
706
707         unsigned int                    group_generation;
708         struct perf_event               *group_leader;
709         /*
710          * event->pmu will always point to pmu in which this event belongs.
711          * Whereas event->pmu_ctx->pmu may point to other pmu when group of
712          * different pmu events is created.
713          */
714         struct pmu                      *pmu;
715         void                            *pmu_private;
716
717         enum perf_event_state           state;
718         unsigned int                    attach_state;
719         local64_t                       count;
720         atomic64_t                      child_count;
721
722         /*
723          * These are the total time in nanoseconds that the event
724          * has been enabled (i.e. eligible to run, and the task has
725          * been scheduled in, if this is a per-task event)
726          * and running (scheduled onto the CPU), respectively.
727          */
728         u64                             total_time_enabled;
729         u64                             total_time_running;
730         u64                             tstamp;
731
732         struct perf_event_attr          attr;
733         u16                             header_size;
734         u16                             id_header_size;
735         u16                             read_size;
736         struct hw_perf_event            hw;
737
738         struct perf_event_context       *ctx;
739         /*
740          * event->pmu_ctx points to perf_event_pmu_context in which the event
741          * is added. This pmu_ctx can be of other pmu for sw event when that
742          * sw event is part of a group which also contains non-sw events.
743          */
744         struct perf_event_pmu_context   *pmu_ctx;
745         atomic_long_t                   refcount;
746
747         /*
748          * These accumulate total time (in nanoseconds) that children
749          * events have been enabled and running, respectively.
750          */
751         atomic64_t                      child_total_time_enabled;
752         atomic64_t                      child_total_time_running;
753
754         /*
755          * Protect attach/detach and child_list:
756          */
757         struct mutex                    child_mutex;
758         struct list_head                child_list;
759         struct perf_event               *parent;
760
761         int                             oncpu;
762         int                             cpu;
763
764         struct list_head                owner_entry;
765         struct task_struct              *owner;
766
767         /* mmap bits */
768         struct mutex                    mmap_mutex;
769         atomic_t                        mmap_count;
770
771         struct perf_buffer              *rb;
772         struct list_head                rb_entry;
773         unsigned long                   rcu_batches;
774         int                             rcu_pending;
775
776         /* poll related */
777         wait_queue_head_t               waitq;
778         struct fasync_struct            *fasync;
779
780         /* delayed work for NMIs and such */
781         unsigned int                    pending_wakeup;
782         unsigned int                    pending_kill;
783         unsigned int                    pending_disable;
784         unsigned int                    pending_sigtrap;
785         unsigned long                   pending_addr;   /* SIGTRAP */
786         struct irq_work                 pending_irq;
787         struct callback_head            pending_task;
788         unsigned int                    pending_work;
789
790         atomic_t                        event_limit;
791
792         /* address range filters */
793         struct perf_addr_filters_head   addr_filters;
794         /* vma address array for file-based filders */
795         struct perf_addr_filter_range   *addr_filter_ranges;
796         unsigned long                   addr_filters_gen;
797
798         /* for aux_output events */
799         struct perf_event               *aux_event;
800
801         void (*destroy)(struct perf_event *);
802         struct rcu_head                 rcu_head;
803
804         struct pid_namespace            *ns;
805         u64                             id;
806
807         atomic64_t                      lost_samples;
808
809         u64                             (*clock)(void);
810         perf_overflow_handler_t         overflow_handler;
811         void                            *overflow_handler_context;
812 #ifdef CONFIG_BPF_SYSCALL
813         perf_overflow_handler_t         orig_overflow_handler;
814         struct bpf_prog                 *prog;
815         u64                             bpf_cookie;
816 #endif
817
818 #ifdef CONFIG_EVENT_TRACING
819         struct trace_event_call         *tp_event;
820         struct event_filter             *filter;
821 #ifdef CONFIG_FUNCTION_TRACER
822         struct ftrace_ops               ftrace_ops;
823 #endif
824 #endif
825
826 #ifdef CONFIG_CGROUP_PERF
827         struct perf_cgroup              *cgrp; /* cgroup event is attach to */
828 #endif
829
830 #ifdef CONFIG_SECURITY
831         void *security;
832 #endif
833         struct list_head                sb_list;
834
835         /*
836          * Certain events gets forwarded to another pmu internally by over-
837          * writing kernel copy of event->attr.type without user being aware
838          * of it. event->orig_type contains original 'type' requested by
839          * user.
840          */
841         __u32                           orig_type;
842 #endif /* CONFIG_PERF_EVENTS */
843 };
844
845 /*
846  *           ,-----------------------[1:n]------------------------.
847  *           V                                                    V
848  * perf_event_context <-[1:n]-> perf_event_pmu_context <-[1:n]- perf_event
849  *                                        |                       |
850  *                                        `--[n:1]-> pmu <-[1:n]--'
851  *
852  *
853  * struct perf_event_pmu_context  lifetime is refcount based and RCU freed
854  * (similar to perf_event_context). Locking is as if it were a member of
855  * perf_event_context; specifically:
856  *
857  *   modification, both: ctx->mutex && ctx->lock
858  *   reading, either:    ctx->mutex || ctx->lock
859  *
860  * There is one exception to this; namely put_pmu_ctx() isn't always called
861  * with ctx->mutex held; this means that as long as we can guarantee the epc
862  * has events the above rules hold.
863  *
864  * Specificially, sys_perf_event_open()'s group_leader case depends on
865  * ctx->mutex pinning the configuration. Since we hold a reference on
866  * group_leader (through the filedesc) it can't go away, therefore it's
867  * associated pmu_ctx must exist and cannot change due to ctx->mutex.
868  *
869  * perf_event holds a refcount on perf_event_context
870  * perf_event holds a refcount on perf_event_pmu_context
871  */
872 struct perf_event_pmu_context {
873         struct pmu                      *pmu;
874         struct perf_event_context       *ctx;
875
876         struct list_head                pmu_ctx_entry;
877
878         struct list_head                pinned_active;
879         struct list_head                flexible_active;
880
881         /* Used to avoid freeing per-cpu perf_event_pmu_context */
882         unsigned int                    embedded : 1;
883
884         unsigned int                    nr_events;
885         unsigned int                    nr_cgroups;
886
887         atomic_t                        refcount; /* event <-> epc */
888         struct rcu_head                 rcu_head;
889
890         void                            *task_ctx_data; /* pmu specific data */
891         /*
892          * Set when one or more (plausibly active) event can't be scheduled
893          * due to pmu overcommit or pmu constraints, except tolerant to
894          * events not necessary to be active due to scheduling constraints,
895          * such as cgroups.
896          */
897         int                             rotate_necessary;
898 };
899
900 struct perf_event_groups {
901         struct rb_root  tree;
902         u64             index;
903 };
904
905
906 /**
907  * struct perf_event_context - event context structure
908  *
909  * Used as a container for task events and CPU events as well:
910  */
911 struct perf_event_context {
912         /*
913          * Protect the states of the events in the list,
914          * nr_active, and the list:
915          */
916         raw_spinlock_t                  lock;
917         /*
918          * Protect the list of events.  Locking either mutex or lock
919          * is sufficient to ensure the list doesn't change; to change
920          * the list you need to lock both the mutex and the spinlock.
921          */
922         struct mutex                    mutex;
923
924         struct list_head                pmu_ctx_list;
925         struct perf_event_groups        pinned_groups;
926         struct perf_event_groups        flexible_groups;
927         struct list_head                event_list;
928
929         int                             nr_events;
930         int                             nr_user;
931         int                             is_active;
932
933         int                             nr_task_data;
934         int                             nr_stat;
935         int                             nr_freq;
936         int                             rotate_disable;
937
938         refcount_t                      refcount; /* event <-> ctx */
939         struct task_struct              *task;
940
941         /*
942          * Context clock, runs when context enabled.
943          */
944         u64                             time;
945         u64                             timestamp;
946         u64                             timeoffset;
947
948         /*
949          * These fields let us detect when two contexts have both
950          * been cloned (inherited) from a common ancestor.
951          */
952         struct perf_event_context       *parent_ctx;
953         u64                             parent_gen;
954         u64                             generation;
955         int                             pin_count;
956 #ifdef CONFIG_CGROUP_PERF
957         int                             nr_cgroups;      /* cgroup evts */
958 #endif
959         struct rcu_head                 rcu_head;
960
961         /*
962          * Sum (event->pending_sigtrap + event->pending_work)
963          *
964          * The SIGTRAP is targeted at ctx->task, as such it won't do changing
965          * that until the signal is delivered.
966          */
967         local_t                         nr_pending;
968 };
969
970 /*
971  * Number of contexts where an event can trigger:
972  *      task, softirq, hardirq, nmi.
973  */
974 #define PERF_NR_CONTEXTS        4
975
976 struct perf_cpu_pmu_context {
977         struct perf_event_pmu_context   epc;
978         struct perf_event_pmu_context   *task_epc;
979
980         struct list_head                sched_cb_entry;
981         int                             sched_cb_usage;
982
983         int                             active_oncpu;
984         int                             exclusive;
985
986         raw_spinlock_t                  hrtimer_lock;
987         struct hrtimer                  hrtimer;
988         ktime_t                         hrtimer_interval;
989         unsigned int                    hrtimer_active;
990 };
991
992 /**
993  * struct perf_event_cpu_context - per cpu event context structure
994  */
995 struct perf_cpu_context {
996         struct perf_event_context       ctx;
997         struct perf_event_context       *task_ctx;
998         int                             online;
999
1000 #ifdef CONFIG_CGROUP_PERF
1001         struct perf_cgroup              *cgrp;
1002 #endif
1003
1004         /*
1005          * Per-CPU storage for iterators used in visit_groups_merge. The default
1006          * storage is of size 2 to hold the CPU and any CPU event iterators.
1007          */
1008         int                             heap_size;
1009         struct perf_event               **heap;
1010         struct perf_event               *heap_default[2];
1011 };
1012
1013 struct perf_output_handle {
1014         struct perf_event               *event;
1015         struct perf_buffer              *rb;
1016         unsigned long                   wakeup;
1017         unsigned long                   size;
1018         u64                             aux_flags;
1019         union {
1020                 void                    *addr;
1021                 unsigned long           head;
1022         };
1023         int                             page;
1024 };
1025
1026 struct bpf_perf_event_data_kern {
1027         bpf_user_pt_regs_t *regs;
1028         struct perf_sample_data *data;
1029         struct perf_event *event;
1030 };
1031
1032 #ifdef CONFIG_CGROUP_PERF
1033
1034 /*
1035  * perf_cgroup_info keeps track of time_enabled for a cgroup.
1036  * This is a per-cpu dynamically allocated data structure.
1037  */
1038 struct perf_cgroup_info {
1039         u64                             time;
1040         u64                             timestamp;
1041         u64                             timeoffset;
1042         int                             active;
1043 };
1044
1045 struct perf_cgroup {
1046         struct cgroup_subsys_state      css;
1047         struct perf_cgroup_info __percpu *info;
1048 };
1049
1050 /*
1051  * Must ensure cgroup is pinned (css_get) before calling
1052  * this function. In other words, we cannot call this function
1053  * if there is no cgroup event for the current CPU context.
1054  */
1055 static inline struct perf_cgroup *
1056 perf_cgroup_from_task(struct task_struct *task, struct perf_event_context *ctx)
1057 {
1058         return container_of(task_css_check(task, perf_event_cgrp_id,
1059                                            ctx ? lockdep_is_held(&ctx->lock)
1060                                                : true),
1061                             struct perf_cgroup, css);
1062 }
1063 #endif /* CONFIG_CGROUP_PERF */
1064
1065 #ifdef CONFIG_PERF_EVENTS
1066
1067 extern struct perf_event_context *perf_cpu_task_ctx(void);
1068
1069 extern void *perf_aux_output_begin(struct perf_output_handle *handle,
1070                                    struct perf_event *event);
1071 extern void perf_aux_output_end(struct perf_output_handle *handle,
1072                                 unsigned long size);
1073 extern int perf_aux_output_skip(struct perf_output_handle *handle,
1074                                 unsigned long size);
1075 extern void *perf_get_aux(struct perf_output_handle *handle);
1076 extern void perf_aux_output_flag(struct perf_output_handle *handle, u64 flags);
1077 extern void perf_event_itrace_started(struct perf_event *event);
1078
1079 extern int perf_pmu_register(struct pmu *pmu, const char *name, int type);
1080 extern void perf_pmu_unregister(struct pmu *pmu);
1081
1082 extern void __perf_event_task_sched_in(struct task_struct *prev,
1083                                        struct task_struct *task);
1084 extern void __perf_event_task_sched_out(struct task_struct *prev,
1085                                         struct task_struct *next);
1086 extern int perf_event_init_task(struct task_struct *child, u64 clone_flags);
1087 extern void perf_event_exit_task(struct task_struct *child);
1088 extern void perf_event_free_task(struct task_struct *task);
1089 extern void perf_event_delayed_put(struct task_struct *task);
1090 extern struct file *perf_event_get(unsigned int fd);
1091 extern const struct perf_event *perf_get_event(struct file *file);
1092 extern const struct perf_event_attr *perf_event_attrs(struct perf_event *event);
1093 extern void perf_event_print_debug(void);
1094 extern void perf_pmu_disable(struct pmu *pmu);
1095 extern void perf_pmu_enable(struct pmu *pmu);
1096 extern void perf_sched_cb_dec(struct pmu *pmu);
1097 extern void perf_sched_cb_inc(struct pmu *pmu);
1098 extern int perf_event_task_disable(void);
1099 extern int perf_event_task_enable(void);
1100
1101 extern void perf_pmu_resched(struct pmu *pmu);
1102
1103 extern int perf_event_refresh(struct perf_event *event, int refresh);
1104 extern void perf_event_update_userpage(struct perf_event *event);
1105 extern int perf_event_release_kernel(struct perf_event *event);
1106 extern struct perf_event *
1107 perf_event_create_kernel_counter(struct perf_event_attr *attr,
1108                                 int cpu,
1109                                 struct task_struct *task,
1110                                 perf_overflow_handler_t callback,
1111                                 void *context);
1112 extern void perf_pmu_migrate_context(struct pmu *pmu,
1113                                 int src_cpu, int dst_cpu);
1114 int perf_event_read_local(struct perf_event *event, u64 *value,
1115                           u64 *enabled, u64 *running);
1116 extern u64 perf_event_read_value(struct perf_event *event,
1117                                  u64 *enabled, u64 *running);
1118
1119 extern struct perf_callchain_entry *perf_callchain(struct perf_event *event, struct pt_regs *regs);
1120
1121 static inline bool branch_sample_no_flags(const struct perf_event *event)
1122 {
1123         return event->attr.branch_sample_type & PERF_SAMPLE_BRANCH_NO_FLAGS;
1124 }
1125
1126 static inline bool branch_sample_no_cycles(const struct perf_event *event)
1127 {
1128         return event->attr.branch_sample_type & PERF_SAMPLE_BRANCH_NO_CYCLES;
1129 }
1130
1131 static inline bool branch_sample_type(const struct perf_event *event)
1132 {
1133         return event->attr.branch_sample_type & PERF_SAMPLE_BRANCH_TYPE_SAVE;
1134 }
1135
1136 static inline bool branch_sample_hw_index(const struct perf_event *event)
1137 {
1138         return event->attr.branch_sample_type & PERF_SAMPLE_BRANCH_HW_INDEX;
1139 }
1140
1141 static inline bool branch_sample_priv(const struct perf_event *event)
1142 {
1143         return event->attr.branch_sample_type & PERF_SAMPLE_BRANCH_PRIV_SAVE;
1144 }
1145
1146
1147 struct perf_sample_data {
1148         /*
1149          * Fields set by perf_sample_data_init() unconditionally,
1150          * group so as to minimize the cachelines touched.
1151          */
1152         u64                             sample_flags;
1153         u64                             period;
1154         u64                             dyn_size;
1155
1156         /*
1157          * Fields commonly set by __perf_event_header__init_id(),
1158          * group so as to minimize the cachelines touched.
1159          */
1160         u64                             type;
1161         struct {
1162                 u32     pid;
1163                 u32     tid;
1164         }                               tid_entry;
1165         u64                             time;
1166         u64                             id;
1167         struct {
1168                 u32     cpu;
1169                 u32     reserved;
1170         }                               cpu_entry;
1171
1172         /*
1173          * The other fields, optionally {set,used} by
1174          * perf_{prepare,output}_sample().
1175          */
1176         u64                             ip;
1177         struct perf_callchain_entry     *callchain;
1178         struct perf_raw_record          *raw;
1179         struct perf_branch_stack        *br_stack;
1180         union perf_sample_weight        weight;
1181         union  perf_mem_data_src        data_src;
1182         u64                             txn;
1183
1184         struct perf_regs                regs_user;
1185         struct perf_regs                regs_intr;
1186         u64                             stack_user_size;
1187
1188         u64                             stream_id;
1189         u64                             cgroup;
1190         u64                             addr;
1191         u64                             phys_addr;
1192         u64                             data_page_size;
1193         u64                             code_page_size;
1194         u64                             aux_size;
1195 } ____cacheline_aligned;
1196
1197 /* default value for data source */
1198 #define PERF_MEM_NA (PERF_MEM_S(OP, NA)   |\
1199                     PERF_MEM_S(LVL, NA)   |\
1200                     PERF_MEM_S(SNOOP, NA) |\
1201                     PERF_MEM_S(LOCK, NA)  |\
1202                     PERF_MEM_S(TLB, NA)   |\
1203                     PERF_MEM_S(LVLNUM, NA))
1204
1205 static inline void perf_sample_data_init(struct perf_sample_data *data,
1206                                          u64 addr, u64 period)
1207 {
1208         /* remaining struct members initialized in perf_prepare_sample() */
1209         data->sample_flags = PERF_SAMPLE_PERIOD;
1210         data->period = period;
1211         data->dyn_size = 0;
1212
1213         if (addr) {
1214                 data->addr = addr;
1215                 data->sample_flags |= PERF_SAMPLE_ADDR;
1216         }
1217 }
1218
1219 static inline void perf_sample_save_callchain(struct perf_sample_data *data,
1220                                               struct perf_event *event,
1221                                               struct pt_regs *regs)
1222 {
1223         int size = 1;
1224
1225         data->callchain = perf_callchain(event, regs);
1226         size += data->callchain->nr;
1227
1228         data->dyn_size += size * sizeof(u64);
1229         data->sample_flags |= PERF_SAMPLE_CALLCHAIN;
1230 }
1231
1232 static inline void perf_sample_save_raw_data(struct perf_sample_data *data,
1233                                              struct perf_raw_record *raw)
1234 {
1235         struct perf_raw_frag *frag = &raw->frag;
1236         u32 sum = 0;
1237         int size;
1238
1239         do {
1240                 sum += frag->size;
1241                 if (perf_raw_frag_last(frag))
1242                         break;
1243                 frag = frag->next;
1244         } while (1);
1245
1246         size = round_up(sum + sizeof(u32), sizeof(u64));
1247         raw->size = size - sizeof(u32);
1248         frag->pad = raw->size - sum;
1249
1250         data->raw = raw;
1251         data->dyn_size += size;
1252         data->sample_flags |= PERF_SAMPLE_RAW;
1253 }
1254
1255 static inline void perf_sample_save_brstack(struct perf_sample_data *data,
1256                                             struct perf_event *event,
1257                                             struct perf_branch_stack *brs)
1258 {
1259         int size = sizeof(u64); /* nr */
1260
1261         if (branch_sample_hw_index(event))
1262                 size += sizeof(u64);
1263         size += brs->nr * sizeof(struct perf_branch_entry);
1264
1265         data->br_stack = brs;
1266         data->dyn_size += size;
1267         data->sample_flags |= PERF_SAMPLE_BRANCH_STACK;
1268 }
1269
1270 static inline u32 perf_sample_data_size(struct perf_sample_data *data,
1271                                         struct perf_event *event)
1272 {
1273         u32 size = sizeof(struct perf_event_header);
1274
1275         size += event->header_size + event->id_header_size;
1276         size += data->dyn_size;
1277
1278         return size;
1279 }
1280
1281 /*
1282  * Clear all bitfields in the perf_branch_entry.
1283  * The to and from fields are not cleared because they are
1284  * systematically modified by caller.
1285  */
1286 static inline void perf_clear_branch_entry_bitfields(struct perf_branch_entry *br)
1287 {
1288         br->mispred = 0;
1289         br->predicted = 0;
1290         br->in_tx = 0;
1291         br->abort = 0;
1292         br->cycles = 0;
1293         br->type = 0;
1294         br->spec = PERF_BR_SPEC_NA;
1295         br->reserved = 0;
1296 }
1297
1298 extern void perf_output_sample(struct perf_output_handle *handle,
1299                                struct perf_event_header *header,
1300                                struct perf_sample_data *data,
1301                                struct perf_event *event);
1302 extern void perf_prepare_sample(struct perf_sample_data *data,
1303                                 struct perf_event *event,
1304                                 struct pt_regs *regs);
1305 extern void perf_prepare_header(struct perf_event_header *header,
1306                                 struct perf_sample_data *data,
1307                                 struct perf_event *event,
1308                                 struct pt_regs *regs);
1309
1310 extern int perf_event_overflow(struct perf_event *event,
1311                                  struct perf_sample_data *data,
1312                                  struct pt_regs *regs);
1313
1314 extern void perf_event_output_forward(struct perf_event *event,
1315                                      struct perf_sample_data *data,
1316                                      struct pt_regs *regs);
1317 extern void perf_event_output_backward(struct perf_event *event,
1318                                        struct perf_sample_data *data,
1319                                        struct pt_regs *regs);
1320 extern int perf_event_output(struct perf_event *event,
1321                              struct perf_sample_data *data,
1322                              struct pt_regs *regs);
1323
1324 static inline bool
1325 __is_default_overflow_handler(perf_overflow_handler_t overflow_handler)
1326 {
1327         if (likely(overflow_handler == perf_event_output_forward))
1328                 return true;
1329         if (unlikely(overflow_handler == perf_event_output_backward))
1330                 return true;
1331         return false;
1332 }
1333
1334 #define is_default_overflow_handler(event) \
1335         __is_default_overflow_handler((event)->overflow_handler)
1336
1337 #ifdef CONFIG_BPF_SYSCALL
1338 static inline bool uses_default_overflow_handler(struct perf_event *event)
1339 {
1340         if (likely(is_default_overflow_handler(event)))
1341                 return true;
1342
1343         return __is_default_overflow_handler(event->orig_overflow_handler);
1344 }
1345 #else
1346 #define uses_default_overflow_handler(event) \
1347         is_default_overflow_handler(event)
1348 #endif
1349
1350 extern void
1351 perf_event_header__init_id(struct perf_event_header *header,
1352                            struct perf_sample_data *data,
1353                            struct perf_event *event);
1354 extern void
1355 perf_event__output_id_sample(struct perf_event *event,
1356                              struct perf_output_handle *handle,
1357                              struct perf_sample_data *sample);
1358
1359 extern void
1360 perf_log_lost_samples(struct perf_event *event, u64 lost);
1361
1362 static inline bool event_has_any_exclude_flag(struct perf_event *event)
1363 {
1364         struct perf_event_attr *attr = &event->attr;
1365
1366         return attr->exclude_idle || attr->exclude_user ||
1367                attr->exclude_kernel || attr->exclude_hv ||
1368                attr->exclude_guest || attr->exclude_host;
1369 }
1370
1371 static inline bool is_sampling_event(struct perf_event *event)
1372 {
1373         return event->attr.sample_period != 0;
1374 }
1375
1376 /*
1377  * Return 1 for a software event, 0 for a hardware event
1378  */
1379 static inline int is_software_event(struct perf_event *event)
1380 {
1381         return event->event_caps & PERF_EV_CAP_SOFTWARE;
1382 }
1383
1384 /*
1385  * Return 1 for event in sw context, 0 for event in hw context
1386  */
1387 static inline int in_software_context(struct perf_event *event)
1388 {
1389         return event->pmu_ctx->pmu->task_ctx_nr == perf_sw_context;
1390 }
1391
1392 static inline int is_exclusive_pmu(struct pmu *pmu)
1393 {
1394         return pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE;
1395 }
1396
1397 extern struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX];
1398
1399 extern void ___perf_sw_event(u32, u64, struct pt_regs *, u64);
1400 extern void __perf_sw_event(u32, u64, struct pt_regs *, u64);
1401
1402 #ifndef perf_arch_fetch_caller_regs
1403 static inline void perf_arch_fetch_caller_regs(struct pt_regs *regs, unsigned long ip) { }
1404 #endif
1405
1406 /*
1407  * When generating a perf sample in-line, instead of from an interrupt /
1408  * exception, we lack a pt_regs. This is typically used from software events
1409  * like: SW_CONTEXT_SWITCHES, SW_MIGRATIONS and the tie-in with tracepoints.
1410  *
1411  * We typically don't need a full set, but (for x86) do require:
1412  * - ip for PERF_SAMPLE_IP
1413  * - cs for user_mode() tests
1414  * - sp for PERF_SAMPLE_CALLCHAIN
1415  * - eflags for MISC bits and CALLCHAIN (see: perf_hw_regs())
1416  *
1417  * NOTE: assumes @regs is otherwise already 0 filled; this is important for
1418  * things like PERF_SAMPLE_REGS_INTR.
1419  */
1420 static inline void perf_fetch_caller_regs(struct pt_regs *regs)
1421 {
1422         perf_arch_fetch_caller_regs(regs, CALLER_ADDR0);
1423 }
1424
1425 static __always_inline void
1426 perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
1427 {
1428         if (static_key_false(&perf_swevent_enabled[event_id]))
1429                 __perf_sw_event(event_id, nr, regs, addr);
1430 }
1431
1432 DECLARE_PER_CPU(struct pt_regs, __perf_regs[4]);
1433
1434 /*
1435  * 'Special' version for the scheduler, it hard assumes no recursion,
1436  * which is guaranteed by us not actually scheduling inside other swevents
1437  * because those disable preemption.
1438  */
1439 static __always_inline void __perf_sw_event_sched(u32 event_id, u64 nr, u64 addr)
1440 {
1441         struct pt_regs *regs = this_cpu_ptr(&__perf_regs[0]);
1442
1443         perf_fetch_caller_regs(regs);
1444         ___perf_sw_event(event_id, nr, regs, addr);
1445 }
1446
1447 extern struct static_key_false perf_sched_events;
1448
1449 static __always_inline bool __perf_sw_enabled(int swevt)
1450 {
1451         return static_key_false(&perf_swevent_enabled[swevt]);
1452 }
1453
1454 static inline void perf_event_task_migrate(struct task_struct *task)
1455 {
1456         if (__perf_sw_enabled(PERF_COUNT_SW_CPU_MIGRATIONS))
1457                 task->sched_migrated = 1;
1458 }
1459
1460 static inline void perf_event_task_sched_in(struct task_struct *prev,
1461                                             struct task_struct *task)
1462 {
1463         if (static_branch_unlikely(&perf_sched_events))
1464                 __perf_event_task_sched_in(prev, task);
1465
1466         if (__perf_sw_enabled(PERF_COUNT_SW_CPU_MIGRATIONS) &&
1467             task->sched_migrated) {
1468                 __perf_sw_event_sched(PERF_COUNT_SW_CPU_MIGRATIONS, 1, 0);
1469                 task->sched_migrated = 0;
1470         }
1471 }
1472
1473 static inline void perf_event_task_sched_out(struct task_struct *prev,
1474                                              struct task_struct *next)
1475 {
1476         if (__perf_sw_enabled(PERF_COUNT_SW_CONTEXT_SWITCHES))
1477                 __perf_sw_event_sched(PERF_COUNT_SW_CONTEXT_SWITCHES, 1, 0);
1478
1479 #ifdef CONFIG_CGROUP_PERF
1480         if (__perf_sw_enabled(PERF_COUNT_SW_CGROUP_SWITCHES) &&
1481             perf_cgroup_from_task(prev, NULL) !=
1482             perf_cgroup_from_task(next, NULL))
1483                 __perf_sw_event_sched(PERF_COUNT_SW_CGROUP_SWITCHES, 1, 0);
1484 #endif
1485
1486         if (static_branch_unlikely(&perf_sched_events))
1487                 __perf_event_task_sched_out(prev, next);
1488 }
1489
1490 extern void perf_event_mmap(struct vm_area_struct *vma);
1491
1492 extern void perf_event_ksymbol(u16 ksym_type, u64 addr, u32 len,
1493                                bool unregister, const char *sym);
1494 extern void perf_event_bpf_event(struct bpf_prog *prog,
1495                                  enum perf_bpf_event_type type,
1496                                  u16 flags);
1497
1498 #ifdef CONFIG_GUEST_PERF_EVENTS
1499 extern struct perf_guest_info_callbacks __rcu *perf_guest_cbs;
1500
1501 DECLARE_STATIC_CALL(__perf_guest_state, *perf_guest_cbs->state);
1502 DECLARE_STATIC_CALL(__perf_guest_get_ip, *perf_guest_cbs->get_ip);
1503 DECLARE_STATIC_CALL(__perf_guest_handle_intel_pt_intr, *perf_guest_cbs->handle_intel_pt_intr);
1504
1505 static inline unsigned int perf_guest_state(void)
1506 {
1507         return static_call(__perf_guest_state)();
1508 }
1509 static inline unsigned long perf_guest_get_ip(void)
1510 {
1511         return static_call(__perf_guest_get_ip)();
1512 }
1513 static inline unsigned int perf_guest_handle_intel_pt_intr(void)
1514 {
1515         return static_call(__perf_guest_handle_intel_pt_intr)();
1516 }
1517 extern void perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs);
1518 extern void perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs);
1519 #else
1520 static inline unsigned int perf_guest_state(void)                { return 0; }
1521 static inline unsigned long perf_guest_get_ip(void)              { return 0; }
1522 static inline unsigned int perf_guest_handle_intel_pt_intr(void) { return 0; }
1523 #endif /* CONFIG_GUEST_PERF_EVENTS */
1524
1525 extern void perf_event_exec(void);
1526 extern void perf_event_comm(struct task_struct *tsk, bool exec);
1527 extern void perf_event_namespaces(struct task_struct *tsk);
1528 extern void perf_event_fork(struct task_struct *tsk);
1529 extern void perf_event_text_poke(const void *addr,
1530                                  const void *old_bytes, size_t old_len,
1531                                  const void *new_bytes, size_t new_len);
1532
1533 /* Callchains */
1534 DECLARE_PER_CPU(struct perf_callchain_entry, perf_callchain_entry);
1535
1536 extern void perf_callchain_user(struct perf_callchain_entry_ctx *entry, struct pt_regs *regs);
1537 extern void perf_callchain_kernel(struct perf_callchain_entry_ctx *entry, struct pt_regs *regs);
1538 extern struct perf_callchain_entry *
1539 get_perf_callchain(struct pt_regs *regs, u32 init_nr, bool kernel, bool user,
1540                    u32 max_stack, bool crosstask, bool add_mark);
1541 extern int get_callchain_buffers(int max_stack);
1542 extern void put_callchain_buffers(void);
1543 extern struct perf_callchain_entry *get_callchain_entry(int *rctx);
1544 extern void put_callchain_entry(int rctx);
1545
1546 extern int sysctl_perf_event_max_stack;
1547 extern int sysctl_perf_event_max_contexts_per_stack;
1548
1549 static inline int perf_callchain_store_context(struct perf_callchain_entry_ctx *ctx, u64 ip)
1550 {
1551         if (ctx->contexts < sysctl_perf_event_max_contexts_per_stack) {
1552                 struct perf_callchain_entry *entry = ctx->entry;
1553                 entry->ip[entry->nr++] = ip;
1554                 ++ctx->contexts;
1555                 return 0;
1556         } else {
1557                 ctx->contexts_maxed = true;
1558                 return -1; /* no more room, stop walking the stack */
1559         }
1560 }
1561
1562 static inline int perf_callchain_store(struct perf_callchain_entry_ctx *ctx, u64 ip)
1563 {
1564         if (ctx->nr < ctx->max_stack && !ctx->contexts_maxed) {
1565                 struct perf_callchain_entry *entry = ctx->entry;
1566                 entry->ip[entry->nr++] = ip;
1567                 ++ctx->nr;
1568                 return 0;
1569         } else {
1570                 return -1; /* no more room, stop walking the stack */
1571         }
1572 }
1573
1574 extern int sysctl_perf_event_paranoid;
1575 extern int sysctl_perf_event_mlock;
1576 extern int sysctl_perf_event_sample_rate;
1577 extern int sysctl_perf_cpu_time_max_percent;
1578
1579 extern void perf_sample_event_took(u64 sample_len_ns);
1580
1581 int perf_proc_update_handler(struct ctl_table *table, int write,
1582                 void *buffer, size_t *lenp, loff_t *ppos);
1583 int perf_cpu_time_max_percent_handler(struct ctl_table *table, int write,
1584                 void *buffer, size_t *lenp, loff_t *ppos);
1585 int perf_event_max_stack_handler(struct ctl_table *table, int write,
1586                 void *buffer, size_t *lenp, loff_t *ppos);
1587
1588 /* Access to perf_event_open(2) syscall. */
1589 #define PERF_SECURITY_OPEN              0
1590
1591 /* Finer grained perf_event_open(2) access control. */
1592 #define PERF_SECURITY_CPU               1
1593 #define PERF_SECURITY_KERNEL            2
1594 #define PERF_SECURITY_TRACEPOINT        3
1595
1596 static inline int perf_is_paranoid(void)
1597 {
1598         return sysctl_perf_event_paranoid > -1;
1599 }
1600
1601 static inline int perf_allow_kernel(struct perf_event_attr *attr)
1602 {
1603         if (sysctl_perf_event_paranoid > 1 && !perfmon_capable())
1604                 return -EACCES;
1605
1606         return security_perf_event_open(attr, PERF_SECURITY_KERNEL);
1607 }
1608
1609 static inline int perf_allow_cpu(struct perf_event_attr *attr)
1610 {
1611         if (sysctl_perf_event_paranoid > 0 && !perfmon_capable())
1612                 return -EACCES;
1613
1614         return security_perf_event_open(attr, PERF_SECURITY_CPU);
1615 }
1616
1617 static inline int perf_allow_tracepoint(struct perf_event_attr *attr)
1618 {
1619         if (sysctl_perf_event_paranoid > -1 && !perfmon_capable())
1620                 return -EPERM;
1621
1622         return security_perf_event_open(attr, PERF_SECURITY_TRACEPOINT);
1623 }
1624
1625 extern void perf_event_init(void);
1626 extern void perf_tp_event(u16 event_type, u64 count, void *record,
1627                           int entry_size, struct pt_regs *regs,
1628                           struct hlist_head *head, int rctx,
1629                           struct task_struct *task);
1630 extern void perf_bp_event(struct perf_event *event, void *data);
1631
1632 #ifndef perf_misc_flags
1633 # define perf_misc_flags(regs) \
1634                 (user_mode(regs) ? PERF_RECORD_MISC_USER : PERF_RECORD_MISC_KERNEL)
1635 # define perf_instruction_pointer(regs) instruction_pointer(regs)
1636 #endif
1637 #ifndef perf_arch_bpf_user_pt_regs
1638 # define perf_arch_bpf_user_pt_regs(regs) regs
1639 #endif
1640
1641 static inline bool has_branch_stack(struct perf_event *event)
1642 {
1643         return event->attr.sample_type & PERF_SAMPLE_BRANCH_STACK;
1644 }
1645
1646 static inline bool needs_branch_stack(struct perf_event *event)
1647 {
1648         return event->attr.branch_sample_type != 0;
1649 }
1650
1651 static inline bool has_aux(struct perf_event *event)
1652 {
1653         return event->pmu->setup_aux;
1654 }
1655
1656 static inline bool is_write_backward(struct perf_event *event)
1657 {
1658         return !!event->attr.write_backward;
1659 }
1660
1661 static inline bool has_addr_filter(struct perf_event *event)
1662 {
1663         return event->pmu->nr_addr_filters;
1664 }
1665
1666 /*
1667  * An inherited event uses parent's filters
1668  */
1669 static inline struct perf_addr_filters_head *
1670 perf_event_addr_filters(struct perf_event *event)
1671 {
1672         struct perf_addr_filters_head *ifh = &event->addr_filters;
1673
1674         if (event->parent)
1675                 ifh = &event->parent->addr_filters;
1676
1677         return ifh;
1678 }
1679
1680 extern void perf_event_addr_filters_sync(struct perf_event *event);
1681 extern void perf_report_aux_output_id(struct perf_event *event, u64 hw_id);
1682
1683 extern int perf_output_begin(struct perf_output_handle *handle,
1684                              struct perf_sample_data *data,
1685                              struct perf_event *event, unsigned int size);
1686 extern int perf_output_begin_forward(struct perf_output_handle *handle,
1687                                      struct perf_sample_data *data,
1688                                      struct perf_event *event,
1689                                      unsigned int size);
1690 extern int perf_output_begin_backward(struct perf_output_handle *handle,
1691                                       struct perf_sample_data *data,
1692                                       struct perf_event *event,
1693                                       unsigned int size);
1694
1695 extern void perf_output_end(struct perf_output_handle *handle);
1696 extern unsigned int perf_output_copy(struct perf_output_handle *handle,
1697                              const void *buf, unsigned int len);
1698 extern unsigned int perf_output_skip(struct perf_output_handle *handle,
1699                                      unsigned int len);
1700 extern long perf_output_copy_aux(struct perf_output_handle *aux_handle,
1701                                  struct perf_output_handle *handle,
1702                                  unsigned long from, unsigned long to);
1703 extern int perf_swevent_get_recursion_context(void);
1704 extern void perf_swevent_put_recursion_context(int rctx);
1705 extern u64 perf_swevent_set_period(struct perf_event *event);
1706 extern void perf_event_enable(struct perf_event *event);
1707 extern void perf_event_disable(struct perf_event *event);
1708 extern void perf_event_disable_local(struct perf_event *event);
1709 extern void perf_event_disable_inatomic(struct perf_event *event);
1710 extern void perf_event_task_tick(void);
1711 extern int perf_event_account_interrupt(struct perf_event *event);
1712 extern int perf_event_period(struct perf_event *event, u64 value);
1713 extern u64 perf_event_pause(struct perf_event *event, bool reset);
1714 #else /* !CONFIG_PERF_EVENTS: */
1715 static inline void *
1716 perf_aux_output_begin(struct perf_output_handle *handle,
1717                       struct perf_event *event)                         { return NULL; }
1718 static inline void
1719 perf_aux_output_end(struct perf_output_handle *handle, unsigned long size)
1720                                                                         { }
1721 static inline int
1722 perf_aux_output_skip(struct perf_output_handle *handle,
1723                      unsigned long size)                                { return -EINVAL; }
1724 static inline void *
1725 perf_get_aux(struct perf_output_handle *handle)                         { return NULL; }
1726 static inline void
1727 perf_event_task_migrate(struct task_struct *task)                       { }
1728 static inline void
1729 perf_event_task_sched_in(struct task_struct *prev,
1730                          struct task_struct *task)                      { }
1731 static inline void
1732 perf_event_task_sched_out(struct task_struct *prev,
1733                           struct task_struct *next)                     { }
1734 static inline int perf_event_init_task(struct task_struct *child,
1735                                        u64 clone_flags)                 { return 0; }
1736 static inline void perf_event_exit_task(struct task_struct *child)      { }
1737 static inline void perf_event_free_task(struct task_struct *task)       { }
1738 static inline void perf_event_delayed_put(struct task_struct *task)     { }
1739 static inline struct file *perf_event_get(unsigned int fd)      { return ERR_PTR(-EINVAL); }
1740 static inline const struct perf_event *perf_get_event(struct file *file)
1741 {
1742         return ERR_PTR(-EINVAL);
1743 }
1744 static inline const struct perf_event_attr *perf_event_attrs(struct perf_event *event)
1745 {
1746         return ERR_PTR(-EINVAL);
1747 }
1748 static inline int perf_event_read_local(struct perf_event *event, u64 *value,
1749                                         u64 *enabled, u64 *running)
1750 {
1751         return -EINVAL;
1752 }
1753 static inline void perf_event_print_debug(void)                         { }
1754 static inline int perf_event_task_disable(void)                         { return -EINVAL; }
1755 static inline int perf_event_task_enable(void)                          { return -EINVAL; }
1756 static inline int perf_event_refresh(struct perf_event *event, int refresh)
1757 {
1758         return -EINVAL;
1759 }
1760
1761 static inline void
1762 perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)     { }
1763 static inline void
1764 perf_bp_event(struct perf_event *event, void *data)                     { }
1765
1766 static inline void perf_event_mmap(struct vm_area_struct *vma)          { }
1767
1768 typedef int (perf_ksymbol_get_name_f)(char *name, int name_len, void *data);
1769 static inline void perf_event_ksymbol(u16 ksym_type, u64 addr, u32 len,
1770                                       bool unregister, const char *sym) { }
1771 static inline void perf_event_bpf_event(struct bpf_prog *prog,
1772                                         enum perf_bpf_event_type type,
1773                                         u16 flags)                      { }
1774 static inline void perf_event_exec(void)                                { }
1775 static inline void perf_event_comm(struct task_struct *tsk, bool exec)  { }
1776 static inline void perf_event_namespaces(struct task_struct *tsk)       { }
1777 static inline void perf_event_fork(struct task_struct *tsk)             { }
1778 static inline void perf_event_text_poke(const void *addr,
1779                                         const void *old_bytes,
1780                                         size_t old_len,
1781                                         const void *new_bytes,
1782                                         size_t new_len)                 { }
1783 static inline void perf_event_init(void)                                { }
1784 static inline int  perf_swevent_get_recursion_context(void)             { return -1; }
1785 static inline void perf_swevent_put_recursion_context(int rctx)         { }
1786 static inline u64 perf_swevent_set_period(struct perf_event *event)     { return 0; }
1787 static inline void perf_event_enable(struct perf_event *event)          { }
1788 static inline void perf_event_disable(struct perf_event *event)         { }
1789 static inline int __perf_event_disable(void *info)                      { return -1; }
1790 static inline void perf_event_task_tick(void)                           { }
1791 static inline int perf_event_release_kernel(struct perf_event *event)   { return 0; }
1792 static inline int perf_event_period(struct perf_event *event, u64 value)
1793 {
1794         return -EINVAL;
1795 }
1796 static inline u64 perf_event_pause(struct perf_event *event, bool reset)
1797 {
1798         return 0;
1799 }
1800 #endif
1801
1802 #if defined(CONFIG_PERF_EVENTS) && defined(CONFIG_CPU_SUP_INTEL)
1803 extern void perf_restore_debug_store(void);
1804 #else
1805 static inline void perf_restore_debug_store(void)                       { }
1806 #endif
1807
1808 #define perf_output_put(handle, x) perf_output_copy((handle), &(x), sizeof(x))
1809
1810 struct perf_pmu_events_attr {
1811         struct device_attribute attr;
1812         u64 id;
1813         const char *event_str;
1814 };
1815
1816 struct perf_pmu_events_ht_attr {
1817         struct device_attribute                 attr;
1818         u64                                     id;
1819         const char                              *event_str_ht;
1820         const char                              *event_str_noht;
1821 };
1822
1823 struct perf_pmu_events_hybrid_attr {
1824         struct device_attribute                 attr;
1825         u64                                     id;
1826         const char                              *event_str;
1827         u64                                     pmu_type;
1828 };
1829
1830 struct perf_pmu_format_hybrid_attr {
1831         struct device_attribute                 attr;
1832         u64                                     pmu_type;
1833 };
1834
1835 ssize_t perf_event_sysfs_show(struct device *dev, struct device_attribute *attr,
1836                               char *page);
1837
1838 #define PMU_EVENT_ATTR(_name, _var, _id, _show)                         \
1839 static struct perf_pmu_events_attr _var = {                             \
1840         .attr = __ATTR(_name, 0444, _show, NULL),                       \
1841         .id   =  _id,                                                   \
1842 };
1843
1844 #define PMU_EVENT_ATTR_STRING(_name, _var, _str)                            \
1845 static struct perf_pmu_events_attr _var = {                                 \
1846         .attr           = __ATTR(_name, 0444, perf_event_sysfs_show, NULL), \
1847         .id             = 0,                                                \
1848         .event_str      = _str,                                             \
1849 };
1850
1851 #define PMU_EVENT_ATTR_ID(_name, _show, _id)                            \
1852         (&((struct perf_pmu_events_attr[]) {                            \
1853                 { .attr = __ATTR(_name, 0444, _show, NULL),             \
1854                   .id = _id, }                                          \
1855         })[0].attr.attr)
1856
1857 #define PMU_FORMAT_ATTR_SHOW(_name, _format)                            \
1858 static ssize_t                                                          \
1859 _name##_show(struct device *dev,                                        \
1860                                struct device_attribute *attr,           \
1861                                char *page)                              \
1862 {                                                                       \
1863         BUILD_BUG_ON(sizeof(_format) >= PAGE_SIZE);                     \
1864         return sprintf(page, _format "\n");                             \
1865 }                                                                       \
1866
1867 #define PMU_FORMAT_ATTR(_name, _format)                                 \
1868         PMU_FORMAT_ATTR_SHOW(_name, _format)                            \
1869                                                                         \
1870 static struct device_attribute format_attr_##_name = __ATTR_RO(_name)
1871
1872 /* Performance counter hotplug functions */
1873 #ifdef CONFIG_PERF_EVENTS
1874 int perf_event_init_cpu(unsigned int cpu);
1875 int perf_event_exit_cpu(unsigned int cpu);
1876 #else
1877 #define perf_event_init_cpu     NULL
1878 #define perf_event_exit_cpu     NULL
1879 #endif
1880
1881 extern void arch_perf_update_userpage(struct perf_event *event,
1882                                       struct perf_event_mmap_page *userpg,
1883                                       u64 now);
1884
1885 /*
1886  * Snapshot branch stack on software events.
1887  *
1888  * Branch stack can be very useful in understanding software events. For
1889  * example, when a long function, e.g. sys_perf_event_open, returns an
1890  * errno, it is not obvious why the function failed. Branch stack could
1891  * provide very helpful information in this type of scenarios.
1892  *
1893  * On software event, it is necessary to stop the hardware branch recorder
1894  * fast. Otherwise, the hardware register/buffer will be flushed with
1895  * entries of the triggering event. Therefore, static call is used to
1896  * stop the hardware recorder.
1897  */
1898
1899 /*
1900  * cnt is the number of entries allocated for entries.
1901  * Return number of entries copied to .
1902  */
1903 typedef int (perf_snapshot_branch_stack_t)(struct perf_branch_entry *entries,
1904                                            unsigned int cnt);
1905 DECLARE_STATIC_CALL(perf_snapshot_branch_stack, perf_snapshot_branch_stack_t);
1906
1907 #ifndef PERF_NEEDS_LOPWR_CB
1908 static inline void perf_lopwr_cb(bool mode)
1909 {
1910 }
1911 #endif
1912
1913 #endif /* _LINUX_PERF_EVENT_H */