ACPI: SRAT: report non-volatile memory in debug
[platform/adaptation/renesas_rcar/renesas_kernel.git] / include / linux / perf_event.h
1 /*
2  * Performance events:
3  *
4  *    Copyright (C) 2008-2009, Thomas Gleixner <tglx@linutronix.de>
5  *    Copyright (C) 2008-2011, Red Hat, Inc., Ingo Molnar
6  *    Copyright (C) 2008-2011, Red Hat, Inc., Peter Zijlstra
7  *
8  * Data type definitions, declarations, prototypes.
9  *
10  *    Started by: Thomas Gleixner and Ingo Molnar
11  *
12  * For licencing details see kernel-base/COPYING
13  */
14 #ifndef _LINUX_PERF_EVENT_H
15 #define _LINUX_PERF_EVENT_H
16
17 #include <uapi/linux/perf_event.h>
18
19 /*
20  * Kernel-internal data types and definitions:
21  */
22
23 #ifdef CONFIG_PERF_EVENTS
24 # include <linux/cgroup.h>
25 # include <asm/perf_event.h>
26 # include <asm/local64.h>
27 #endif
28
29 struct perf_guest_info_callbacks {
30         int                             (*is_in_guest)(void);
31         int                             (*is_user_mode)(void);
32         unsigned long                   (*get_guest_ip)(void);
33 };
34
35 #ifdef CONFIG_HAVE_HW_BREAKPOINT
36 #include <asm/hw_breakpoint.h>
37 #endif
38
39 #include <linux/list.h>
40 #include <linux/mutex.h>
41 #include <linux/rculist.h>
42 #include <linux/rcupdate.h>
43 #include <linux/spinlock.h>
44 #include <linux/hrtimer.h>
45 #include <linux/fs.h>
46 #include <linux/pid_namespace.h>
47 #include <linux/workqueue.h>
48 #include <linux/ftrace.h>
49 #include <linux/cpu.h>
50 #include <linux/irq_work.h>
51 #include <linux/static_key.h>
52 #include <linux/atomic.h>
53 #include <linux/sysfs.h>
54 #include <linux/perf_regs.h>
55 #include <asm/local.h>
56
57 struct perf_callchain_entry {
58         __u64                           nr;
59         __u64                           ip[PERF_MAX_STACK_DEPTH];
60 };
61
62 struct perf_raw_record {
63         u32                             size;
64         void                            *data;
65 };
66
67 /*
68  * single taken branch record layout:
69  *
70  *      from: source instruction (may not always be a branch insn)
71  *        to: branch target
72  *   mispred: branch target was mispredicted
73  * predicted: branch target was predicted
74  *
75  * support for mispred, predicted is optional. In case it
76  * is not supported mispred = predicted = 0.
77  */
78 struct perf_branch_entry {
79         __u64   from;
80         __u64   to;
81         __u64   mispred:1,  /* target mispredicted */
82                 predicted:1,/* target predicted */
83                 reserved:62;
84 };
85
86 /*
87  * branch stack layout:
88  *  nr: number of taken branches stored in entries[]
89  *
90  * Note that nr can vary from sample to sample
91  * branches (to, from) are stored from most recent
92  * to least recent, i.e., entries[0] contains the most
93  * recent branch.
94  */
95 struct perf_branch_stack {
96         __u64                           nr;
97         struct perf_branch_entry        entries[0];
98 };
99
100 struct perf_regs_user {
101         __u64           abi;
102         struct pt_regs  *regs;
103 };
104
105 struct task_struct;
106
107 /*
108  * extra PMU register associated with an event
109  */
110 struct hw_perf_event_extra {
111         u64             config; /* register value */
112         unsigned int    reg;    /* register address or index */
113         int             alloc;  /* extra register already allocated */
114         int             idx;    /* index in shared_regs->regs[] */
115 };
116
117 /**
118  * struct hw_perf_event - performance event hardware details:
119  */
120 struct hw_perf_event {
121 #ifdef CONFIG_PERF_EVENTS
122         union {
123                 struct { /* hardware */
124                         u64             config;
125                         u64             last_tag;
126                         unsigned long   config_base;
127                         unsigned long   event_base;
128                         int             event_base_rdpmc;
129                         int             idx;
130                         int             last_cpu;
131
132                         struct hw_perf_event_extra extra_reg;
133                         struct hw_perf_event_extra branch_reg;
134                 };
135                 struct { /* software */
136                         struct hrtimer  hrtimer;
137                 };
138 #ifdef CONFIG_HAVE_HW_BREAKPOINT
139                 struct { /* breakpoint */
140                         struct arch_hw_breakpoint       info;
141                         struct list_head                bp_list;
142                         /*
143                          * Crufty hack to avoid the chicken and egg
144                          * problem hw_breakpoint has with context
145                          * creation and event initalization.
146                          */
147                         struct task_struct              *bp_target;
148                 };
149 #endif
150         };
151         int                             state;
152         local64_t                       prev_count;
153         u64                             sample_period;
154         u64                             last_period;
155         local64_t                       period_left;
156         u64                             interrupts_seq;
157         u64                             interrupts;
158
159         u64                             freq_time_stamp;
160         u64                             freq_count_stamp;
161 #endif
162 };
163
164 /*
165  * hw_perf_event::state flags
166  */
167 #define PERF_HES_STOPPED        0x01 /* the counter is stopped */
168 #define PERF_HES_UPTODATE       0x02 /* event->count up-to-date */
169 #define PERF_HES_ARCH           0x04
170
171 struct perf_event;
172
173 /*
174  * Common implementation detail of pmu::{start,commit,cancel}_txn
175  */
176 #define PERF_EVENT_TXN 0x1
177
178 /**
179  * struct pmu - generic performance monitoring unit
180  */
181 struct pmu {
182         struct list_head                entry;
183
184         struct device                   *dev;
185         const struct attribute_group    **attr_groups;
186         char                            *name;
187         int                             type;
188
189         int * __percpu                  pmu_disable_count;
190         struct perf_cpu_context * __percpu pmu_cpu_context;
191         int                             task_ctx_nr;
192
193         /*
194          * Fully disable/enable this PMU, can be used to protect from the PMI
195          * as well as for lazy/batch writing of the MSRs.
196          */
197         void (*pmu_enable)              (struct pmu *pmu); /* optional */
198         void (*pmu_disable)             (struct pmu *pmu); /* optional */
199
200         /*
201          * Try and initialize the event for this PMU.
202          * Should return -ENOENT when the @event doesn't match this PMU.
203          */
204         int (*event_init)               (struct perf_event *event);
205
206 #define PERF_EF_START   0x01            /* start the counter when adding    */
207 #define PERF_EF_RELOAD  0x02            /* reload the counter when starting */
208 #define PERF_EF_UPDATE  0x04            /* update the counter when stopping */
209
210         /*
211          * Adds/Removes a counter to/from the PMU, can be done inside
212          * a transaction, see the ->*_txn() methods.
213          */
214         int  (*add)                     (struct perf_event *event, int flags);
215         void (*del)                     (struct perf_event *event, int flags);
216
217         /*
218          * Starts/Stops a counter present on the PMU. The PMI handler
219          * should stop the counter when perf_event_overflow() returns
220          * !0. ->start() will be used to continue.
221          */
222         void (*start)                   (struct perf_event *event, int flags);
223         void (*stop)                    (struct perf_event *event, int flags);
224
225         /*
226          * Updates the counter value of the event.
227          */
228         void (*read)                    (struct perf_event *event);
229
230         /*
231          * Group events scheduling is treated as a transaction, add
232          * group events as a whole and perform one schedulability test.
233          * If the test fails, roll back the whole group
234          *
235          * Start the transaction, after this ->add() doesn't need to
236          * do schedulability tests.
237          */
238         void (*start_txn)               (struct pmu *pmu); /* optional */
239         /*
240          * If ->start_txn() disabled the ->add() schedulability test
241          * then ->commit_txn() is required to perform one. On success
242          * the transaction is closed. On error the transaction is kept
243          * open until ->cancel_txn() is called.
244          */
245         int  (*commit_txn)              (struct pmu *pmu); /* optional */
246         /*
247          * Will cancel the transaction, assumes ->del() is called
248          * for each successful ->add() during the transaction.
249          */
250         void (*cancel_txn)              (struct pmu *pmu); /* optional */
251
252         /*
253          * Will return the value for perf_event_mmap_page::index for this event,
254          * if no implementation is provided it will default to: event->hw.idx + 1.
255          */
256         int (*event_idx)                (struct perf_event *event); /*optional */
257
258         /*
259          * flush branch stack on context-switches (needed in cpu-wide mode)
260          */
261         void (*flush_branch_stack)      (void);
262 };
263
264 /**
265  * enum perf_event_active_state - the states of a event
266  */
267 enum perf_event_active_state {
268         PERF_EVENT_STATE_ERROR          = -2,
269         PERF_EVENT_STATE_OFF            = -1,
270         PERF_EVENT_STATE_INACTIVE       =  0,
271         PERF_EVENT_STATE_ACTIVE         =  1,
272 };
273
274 struct file;
275 struct perf_sample_data;
276
277 typedef void (*perf_overflow_handler_t)(struct perf_event *,
278                                         struct perf_sample_data *,
279                                         struct pt_regs *regs);
280
281 enum perf_group_flag {
282         PERF_GROUP_SOFTWARE             = 0x1,
283 };
284
285 #define SWEVENT_HLIST_BITS              8
286 #define SWEVENT_HLIST_SIZE              (1 << SWEVENT_HLIST_BITS)
287
288 struct swevent_hlist {
289         struct hlist_head               heads[SWEVENT_HLIST_SIZE];
290         struct rcu_head                 rcu_head;
291 };
292
293 #define PERF_ATTACH_CONTEXT     0x01
294 #define PERF_ATTACH_GROUP       0x02
295 #define PERF_ATTACH_TASK        0x04
296
297 #ifdef CONFIG_CGROUP_PERF
298 /*
299  * perf_cgroup_info keeps track of time_enabled for a cgroup.
300  * This is a per-cpu dynamically allocated data structure.
301  */
302 struct perf_cgroup_info {
303         u64                             time;
304         u64                             timestamp;
305 };
306
307 struct perf_cgroup {
308         struct                          cgroup_subsys_state css;
309         struct                          perf_cgroup_info *info; /* timing info, one per cpu */
310 };
311 #endif
312
313 struct ring_buffer;
314
315 /**
316  * struct perf_event - performance event kernel representation:
317  */
318 struct perf_event {
319 #ifdef CONFIG_PERF_EVENTS
320         struct list_head                group_entry;
321         struct list_head                event_entry;
322         struct list_head                sibling_list;
323         struct hlist_node               hlist_entry;
324         int                             nr_siblings;
325         int                             group_flags;
326         struct perf_event               *group_leader;
327         struct pmu                      *pmu;
328
329         enum perf_event_active_state    state;
330         unsigned int                    attach_state;
331         local64_t                       count;
332         atomic64_t                      child_count;
333
334         /*
335          * These are the total time in nanoseconds that the event
336          * has been enabled (i.e. eligible to run, and the task has
337          * been scheduled in, if this is a per-task event)
338          * and running (scheduled onto the CPU), respectively.
339          *
340          * They are computed from tstamp_enabled, tstamp_running and
341          * tstamp_stopped when the event is in INACTIVE or ACTIVE state.
342          */
343         u64                             total_time_enabled;
344         u64                             total_time_running;
345
346         /*
347          * These are timestamps used for computing total_time_enabled
348          * and total_time_running when the event is in INACTIVE or
349          * ACTIVE state, measured in nanoseconds from an arbitrary point
350          * in time.
351          * tstamp_enabled: the notional time when the event was enabled
352          * tstamp_running: the notional time when the event was scheduled on
353          * tstamp_stopped: in INACTIVE state, the notional time when the
354          *      event was scheduled off.
355          */
356         u64                             tstamp_enabled;
357         u64                             tstamp_running;
358         u64                             tstamp_stopped;
359
360         /*
361          * timestamp shadows the actual context timing but it can
362          * be safely used in NMI interrupt context. It reflects the
363          * context time as it was when the event was last scheduled in.
364          *
365          * ctx_time already accounts for ctx->timestamp. Therefore to
366          * compute ctx_time for a sample, simply add perf_clock().
367          */
368         u64                             shadow_ctx_time;
369
370         struct perf_event_attr          attr;
371         u16                             header_size;
372         u16                             id_header_size;
373         u16                             read_size;
374         struct hw_perf_event            hw;
375
376         struct perf_event_context       *ctx;
377         atomic_long_t                   refcount;
378
379         /*
380          * These accumulate total time (in nanoseconds) that children
381          * events have been enabled and running, respectively.
382          */
383         atomic64_t                      child_total_time_enabled;
384         atomic64_t                      child_total_time_running;
385
386         /*
387          * Protect attach/detach and child_list:
388          */
389         struct mutex                    child_mutex;
390         struct list_head                child_list;
391         struct perf_event               *parent;
392
393         int                             oncpu;
394         int                             cpu;
395
396         struct list_head                owner_entry;
397         struct task_struct              *owner;
398
399         /* mmap bits */
400         struct mutex                    mmap_mutex;
401         atomic_t                        mmap_count;
402         int                             mmap_locked;
403         struct user_struct              *mmap_user;
404         struct ring_buffer              *rb;
405         struct list_head                rb_entry;
406
407         /* poll related */
408         wait_queue_head_t               waitq;
409         struct fasync_struct            *fasync;
410
411         /* delayed work for NMIs and such */
412         int                             pending_wakeup;
413         int                             pending_kill;
414         int                             pending_disable;
415         struct irq_work                 pending;
416
417         atomic_t                        event_limit;
418
419         void (*destroy)(struct perf_event *);
420         struct rcu_head                 rcu_head;
421
422         struct pid_namespace            *ns;
423         u64                             id;
424
425         perf_overflow_handler_t         overflow_handler;
426         void                            *overflow_handler_context;
427
428 #ifdef CONFIG_EVENT_TRACING
429         struct ftrace_event_call        *tp_event;
430         struct event_filter             *filter;
431 #ifdef CONFIG_FUNCTION_TRACER
432         struct ftrace_ops               ftrace_ops;
433 #endif
434 #endif
435
436 #ifdef CONFIG_CGROUP_PERF
437         struct perf_cgroup              *cgrp; /* cgroup event is attach to */
438         int                             cgrp_defer_enabled;
439 #endif
440
441 #endif /* CONFIG_PERF_EVENTS */
442 };
443
444 enum perf_event_context_type {
445         task_context,
446         cpu_context,
447 };
448
449 /**
450  * struct perf_event_context - event context structure
451  *
452  * Used as a container for task events and CPU events as well:
453  */
454 struct perf_event_context {
455         struct pmu                      *pmu;
456         enum perf_event_context_type    type;
457         /*
458          * Protect the states of the events in the list,
459          * nr_active, and the list:
460          */
461         raw_spinlock_t                  lock;
462         /*
463          * Protect the list of events.  Locking either mutex or lock
464          * is sufficient to ensure the list doesn't change; to change
465          * the list you need to lock both the mutex and the spinlock.
466          */
467         struct mutex                    mutex;
468
469         struct list_head                pinned_groups;
470         struct list_head                flexible_groups;
471         struct list_head                event_list;
472         int                             nr_events;
473         int                             nr_active;
474         int                             is_active;
475         int                             nr_stat;
476         int                             nr_freq;
477         int                             rotate_disable;
478         atomic_t                        refcount;
479         struct task_struct              *task;
480
481         /*
482          * Context clock, runs when context enabled.
483          */
484         u64                             time;
485         u64                             timestamp;
486
487         /*
488          * These fields let us detect when two contexts have both
489          * been cloned (inherited) from a common ancestor.
490          */
491         struct perf_event_context       *parent_ctx;
492         u64                             parent_gen;
493         u64                             generation;
494         int                             pin_count;
495         int                             nr_cgroups;      /* cgroup evts */
496         int                             nr_branch_stack; /* branch_stack evt */
497         struct rcu_head                 rcu_head;
498 };
499
500 /*
501  * Number of contexts where an event can trigger:
502  *      task, softirq, hardirq, nmi.
503  */
504 #define PERF_NR_CONTEXTS        4
505
506 /**
507  * struct perf_event_cpu_context - per cpu event context structure
508  */
509 struct perf_cpu_context {
510         struct perf_event_context       ctx;
511         struct perf_event_context       *task_ctx;
512         int                             active_oncpu;
513         int                             exclusive;
514         struct list_head                rotation_list;
515         int                             jiffies_interval;
516         struct pmu                      *unique_pmu;
517         struct perf_cgroup              *cgrp;
518 };
519
520 struct perf_output_handle {
521         struct perf_event               *event;
522         struct ring_buffer              *rb;
523         unsigned long                   wakeup;
524         unsigned long                   size;
525         void                            *addr;
526         int                             page;
527 };
528
529 #ifdef CONFIG_PERF_EVENTS
530
531 extern int perf_pmu_register(struct pmu *pmu, char *name, int type);
532 extern void perf_pmu_unregister(struct pmu *pmu);
533
534 extern int perf_num_counters(void);
535 extern const char *perf_pmu_name(void);
536 extern void __perf_event_task_sched_in(struct task_struct *prev,
537                                        struct task_struct *task);
538 extern void __perf_event_task_sched_out(struct task_struct *prev,
539                                         struct task_struct *next);
540 extern int perf_event_init_task(struct task_struct *child);
541 extern void perf_event_exit_task(struct task_struct *child);
542 extern void perf_event_free_task(struct task_struct *task);
543 extern void perf_event_delayed_put(struct task_struct *task);
544 extern void perf_event_print_debug(void);
545 extern void perf_pmu_disable(struct pmu *pmu);
546 extern void perf_pmu_enable(struct pmu *pmu);
547 extern int perf_event_task_disable(void);
548 extern int perf_event_task_enable(void);
549 extern int perf_event_refresh(struct perf_event *event, int refresh);
550 extern void perf_event_update_userpage(struct perf_event *event);
551 extern int perf_event_release_kernel(struct perf_event *event);
552 extern struct perf_event *
553 perf_event_create_kernel_counter(struct perf_event_attr *attr,
554                                 int cpu,
555                                 struct task_struct *task,
556                                 perf_overflow_handler_t callback,
557                                 void *context);
558 extern void perf_pmu_migrate_context(struct pmu *pmu,
559                                 int src_cpu, int dst_cpu);
560 extern u64 perf_event_read_value(struct perf_event *event,
561                                  u64 *enabled, u64 *running);
562
563
564 struct perf_sample_data {
565         u64                             type;
566
567         u64                             ip;
568         struct {
569                 u32     pid;
570                 u32     tid;
571         }                               tid_entry;
572         u64                             time;
573         u64                             addr;
574         u64                             id;
575         u64                             stream_id;
576         struct {
577                 u32     cpu;
578                 u32     reserved;
579         }                               cpu_entry;
580         u64                             period;
581         struct perf_callchain_entry     *callchain;
582         struct perf_raw_record          *raw;
583         struct perf_branch_stack        *br_stack;
584         struct perf_regs_user           regs_user;
585         u64                             stack_user_size;
586 };
587
588 static inline void perf_sample_data_init(struct perf_sample_data *data,
589                                          u64 addr, u64 period)
590 {
591         /* remaining struct members initialized in perf_prepare_sample() */
592         data->addr = addr;
593         data->raw  = NULL;
594         data->br_stack = NULL;
595         data->period = period;
596         data->regs_user.abi = PERF_SAMPLE_REGS_ABI_NONE;
597         data->regs_user.regs = NULL;
598         data->stack_user_size = 0;
599 }
600
601 extern void perf_output_sample(struct perf_output_handle *handle,
602                                struct perf_event_header *header,
603                                struct perf_sample_data *data,
604                                struct perf_event *event);
605 extern void perf_prepare_sample(struct perf_event_header *header,
606                                 struct perf_sample_data *data,
607                                 struct perf_event *event,
608                                 struct pt_regs *regs);
609
610 extern int perf_event_overflow(struct perf_event *event,
611                                  struct perf_sample_data *data,
612                                  struct pt_regs *regs);
613
614 static inline bool is_sampling_event(struct perf_event *event)
615 {
616         return event->attr.sample_period != 0;
617 }
618
619 /*
620  * Return 1 for a software event, 0 for a hardware event
621  */
622 static inline int is_software_event(struct perf_event *event)
623 {
624         return event->pmu->task_ctx_nr == perf_sw_context;
625 }
626
627 extern struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX];
628
629 extern void __perf_sw_event(u32, u64, struct pt_regs *, u64);
630
631 #ifndef perf_arch_fetch_caller_regs
632 static inline void perf_arch_fetch_caller_regs(struct pt_regs *regs, unsigned long ip) { }
633 #endif
634
635 /*
636  * Take a snapshot of the regs. Skip ip and frame pointer to
637  * the nth caller. We only need a few of the regs:
638  * - ip for PERF_SAMPLE_IP
639  * - cs for user_mode() tests
640  * - bp for callchains
641  * - eflags, for future purposes, just in case
642  */
643 static inline void perf_fetch_caller_regs(struct pt_regs *regs)
644 {
645         memset(regs, 0, sizeof(*regs));
646
647         perf_arch_fetch_caller_regs(regs, CALLER_ADDR0);
648 }
649
650 static __always_inline void
651 perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
652 {
653         struct pt_regs hot_regs;
654
655         if (static_key_false(&perf_swevent_enabled[event_id])) {
656                 if (!regs) {
657                         perf_fetch_caller_regs(&hot_regs);
658                         regs = &hot_regs;
659                 }
660                 __perf_sw_event(event_id, nr, regs, addr);
661         }
662 }
663
664 extern struct static_key_deferred perf_sched_events;
665
666 static inline void perf_event_task_sched_in(struct task_struct *prev,
667                                             struct task_struct *task)
668 {
669         if (static_key_false(&perf_sched_events.key))
670                 __perf_event_task_sched_in(prev, task);
671 }
672
673 static inline void perf_event_task_sched_out(struct task_struct *prev,
674                                              struct task_struct *next)
675 {
676         perf_sw_event(PERF_COUNT_SW_CONTEXT_SWITCHES, 1, NULL, 0);
677
678         if (static_key_false(&perf_sched_events.key))
679                 __perf_event_task_sched_out(prev, next);
680 }
681
682 extern void perf_event_mmap(struct vm_area_struct *vma);
683 extern struct perf_guest_info_callbacks *perf_guest_cbs;
684 extern int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *callbacks);
685 extern int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *callbacks);
686
687 extern void perf_event_comm(struct task_struct *tsk);
688 extern void perf_event_fork(struct task_struct *tsk);
689
690 /* Callchains */
691 DECLARE_PER_CPU(struct perf_callchain_entry, perf_callchain_entry);
692
693 extern void perf_callchain_user(struct perf_callchain_entry *entry, struct pt_regs *regs);
694 extern void perf_callchain_kernel(struct perf_callchain_entry *entry, struct pt_regs *regs);
695
696 static inline void perf_callchain_store(struct perf_callchain_entry *entry, u64 ip)
697 {
698         if (entry->nr < PERF_MAX_STACK_DEPTH)
699                 entry->ip[entry->nr++] = ip;
700 }
701
702 extern int sysctl_perf_event_paranoid;
703 extern int sysctl_perf_event_mlock;
704 extern int sysctl_perf_event_sample_rate;
705
706 extern int perf_proc_update_handler(struct ctl_table *table, int write,
707                 void __user *buffer, size_t *lenp,
708                 loff_t *ppos);
709
710 static inline bool perf_paranoid_tracepoint_raw(void)
711 {
712         return sysctl_perf_event_paranoid > -1;
713 }
714
715 static inline bool perf_paranoid_cpu(void)
716 {
717         return sysctl_perf_event_paranoid > 0;
718 }
719
720 static inline bool perf_paranoid_kernel(void)
721 {
722         return sysctl_perf_event_paranoid > 1;
723 }
724
725 extern void perf_event_init(void);
726 extern void perf_tp_event(u64 addr, u64 count, void *record,
727                           int entry_size, struct pt_regs *regs,
728                           struct hlist_head *head, int rctx,
729                           struct task_struct *task);
730 extern void perf_bp_event(struct perf_event *event, void *data);
731
732 #ifndef perf_misc_flags
733 # define perf_misc_flags(regs) \
734                 (user_mode(regs) ? PERF_RECORD_MISC_USER : PERF_RECORD_MISC_KERNEL)
735 # define perf_instruction_pointer(regs) instruction_pointer(regs)
736 #endif
737
738 static inline bool has_branch_stack(struct perf_event *event)
739 {
740         return event->attr.sample_type & PERF_SAMPLE_BRANCH_STACK;
741 }
742
743 extern int perf_output_begin(struct perf_output_handle *handle,
744                              struct perf_event *event, unsigned int size);
745 extern void perf_output_end(struct perf_output_handle *handle);
746 extern unsigned int perf_output_copy(struct perf_output_handle *handle,
747                              const void *buf, unsigned int len);
748 extern unsigned int perf_output_skip(struct perf_output_handle *handle,
749                                      unsigned int len);
750 extern int perf_swevent_get_recursion_context(void);
751 extern void perf_swevent_put_recursion_context(int rctx);
752 extern void perf_event_enable(struct perf_event *event);
753 extern void perf_event_disable(struct perf_event *event);
754 extern int __perf_event_disable(void *info);
755 extern void perf_event_task_tick(void);
756 #else
757 static inline void
758 perf_event_task_sched_in(struct task_struct *prev,
759                          struct task_struct *task)                      { }
760 static inline void
761 perf_event_task_sched_out(struct task_struct *prev,
762                           struct task_struct *next)                     { }
763 static inline int perf_event_init_task(struct task_struct *child)       { return 0; }
764 static inline void perf_event_exit_task(struct task_struct *child)      { }
765 static inline void perf_event_free_task(struct task_struct *task)       { }
766 static inline void perf_event_delayed_put(struct task_struct *task)     { }
767 static inline void perf_event_print_debug(void)                         { }
768 static inline int perf_event_task_disable(void)                         { return -EINVAL; }
769 static inline int perf_event_task_enable(void)                          { return -EINVAL; }
770 static inline int perf_event_refresh(struct perf_event *event, int refresh)
771 {
772         return -EINVAL;
773 }
774
775 static inline void
776 perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)     { }
777 static inline void
778 perf_bp_event(struct perf_event *event, void *data)                     { }
779
780 static inline int perf_register_guest_info_callbacks
781 (struct perf_guest_info_callbacks *callbacks)                           { return 0; }
782 static inline int perf_unregister_guest_info_callbacks
783 (struct perf_guest_info_callbacks *callbacks)                           { return 0; }
784
785 static inline void perf_event_mmap(struct vm_area_struct *vma)          { }
786 static inline void perf_event_comm(struct task_struct *tsk)             { }
787 static inline void perf_event_fork(struct task_struct *tsk)             { }
788 static inline void perf_event_init(void)                                { }
789 static inline int  perf_swevent_get_recursion_context(void)             { return -1; }
790 static inline void perf_swevent_put_recursion_context(int rctx)         { }
791 static inline void perf_event_enable(struct perf_event *event)          { }
792 static inline void perf_event_disable(struct perf_event *event)         { }
793 static inline int __perf_event_disable(void *info)                      { return -1; }
794 static inline void perf_event_task_tick(void)                           { }
795 #endif
796
797 #define perf_output_put(handle, x) perf_output_copy((handle), &(x), sizeof(x))
798
799 /*
800  * This has to have a higher priority than migration_notifier in sched.c.
801  */
802 #define perf_cpu_notifier(fn)                                           \
803 do {                                                                    \
804         static struct notifier_block fn##_nb __cpuinitdata =            \
805                 { .notifier_call = fn, .priority = CPU_PRI_PERF };      \
806         unsigned long cpu = smp_processor_id();                         \
807         unsigned long flags;                                            \
808         fn(&fn##_nb, (unsigned long)CPU_UP_PREPARE,                     \
809                 (void *)(unsigned long)cpu);                            \
810         local_irq_save(flags);                                          \
811         fn(&fn##_nb, (unsigned long)CPU_STARTING,                       \
812                 (void *)(unsigned long)cpu);                            \
813         local_irq_restore(flags);                                       \
814         fn(&fn##_nb, (unsigned long)CPU_ONLINE,                         \
815                 (void *)(unsigned long)cpu);                            \
816         register_cpu_notifier(&fn##_nb);                                \
817 } while (0)
818
819
820 #define PMU_FORMAT_ATTR(_name, _format)                                 \
821 static ssize_t                                                          \
822 _name##_show(struct device *dev,                                        \
823                                struct device_attribute *attr,           \
824                                char *page)                              \
825 {                                                                       \
826         BUILD_BUG_ON(sizeof(_format) >= PAGE_SIZE);                     \
827         return sprintf(page, _format "\n");                             \
828 }                                                                       \
829                                                                         \
830 static struct device_attribute format_attr_##_name = __ATTR_RO(_name)
831
832 #endif /* _LINUX_PERF_EVENT_H */