1 #ifndef __LINUX_PERCPU_H
2 #define __LINUX_PERCPU_H
4 #include <linux/preempt.h>
6 #include <linux/cpumask.h>
8 #include <linux/init.h>
10 #include <asm/percpu.h>
12 /* enough to cover all DEFINE_PER_CPUs in modules */
14 #define PERCPU_MODULE_RESERVE (8 << 10)
16 #define PERCPU_MODULE_RESERVE 0
19 #ifndef PERCPU_ENOUGH_ROOM
20 #define PERCPU_ENOUGH_ROOM \
21 (ALIGN(__per_cpu_end - __per_cpu_start, SMP_CACHE_BYTES) + \
22 PERCPU_MODULE_RESERVE)
26 * Must be an lvalue. Since @var must be a simple identifier,
27 * we force a syntax error here if it isn't.
29 #define get_cpu_var(var) (*({ \
31 &__get_cpu_var(var); }))
34 * The weird & is necessary because sparse considers (void)(var) to be
35 * a direct dereference of percpu variable (var).
37 #define put_cpu_var(var) do { \
42 #define get_cpu_ptr(var) ({ \
46 #define put_cpu_ptr(var) do { \
51 /* minimum unit size, also is the maximum supported allocation size */
52 #define PCPU_MIN_UNIT_SIZE PFN_ALIGN(32 << 10)
55 * Percpu allocator can serve percpu allocations before slab is
56 * initialized which allows slab to depend on the percpu allocator.
57 * The following two parameters decide how much resource to
58 * preallocate for this. Keep PERCPU_DYNAMIC_RESERVE equal to or
59 * larger than PERCPU_DYNAMIC_EARLY_SIZE.
61 #define PERCPU_DYNAMIC_EARLY_SLOTS 128
62 #define PERCPU_DYNAMIC_EARLY_SIZE (12 << 10)
65 * PERCPU_DYNAMIC_RESERVE indicates the amount of free area to piggy
66 * back on the first chunk for dynamic percpu allocation if arch is
67 * manually allocating and mapping it for faster access (as a part of
68 * large page mapping for example).
70 * The following values give between one and two pages of free space
71 * after typical minimal boot (2-way SMP, single disk and NIC) with
72 * both defconfig and a distro config on x86_64 and 32. More
73 * intelligent way to determine this would be nice.
75 #if BITS_PER_LONG > 32
76 #define PERCPU_DYNAMIC_RESERVE (20 << 10)
78 #define PERCPU_DYNAMIC_RESERVE (12 << 10)
81 extern void *pcpu_base_addr;
82 extern const unsigned long *pcpu_unit_offsets;
84 struct pcpu_group_info {
85 int nr_units; /* aligned # of units */
86 unsigned long base_offset; /* base address offset */
87 unsigned int *cpu_map; /* unit->cpu map, empty
88 * entries contain NR_CPUS */
91 struct pcpu_alloc_info {
98 size_t __ai_size; /* internal, don't use */
99 int nr_groups; /* 0 if grouping unnecessary */
100 struct pcpu_group_info groups[];
110 extern const char * const pcpu_fc_names[PCPU_FC_NR];
112 extern enum pcpu_fc pcpu_chosen_fc;
114 typedef void * (*pcpu_fc_alloc_fn_t)(unsigned int cpu, size_t size,
116 typedef void (*pcpu_fc_free_fn_t)(void *ptr, size_t size);
117 typedef void (*pcpu_fc_populate_pte_fn_t)(unsigned long addr);
118 typedef int (pcpu_fc_cpu_distance_fn_t)(unsigned int from, unsigned int to);
120 extern struct pcpu_alloc_info * __init pcpu_alloc_alloc_info(int nr_groups,
122 extern void __init pcpu_free_alloc_info(struct pcpu_alloc_info *ai);
124 extern int __init pcpu_setup_first_chunk(const struct pcpu_alloc_info *ai,
127 #ifdef CONFIG_NEED_PER_CPU_EMBED_FIRST_CHUNK
128 extern int __init pcpu_embed_first_chunk(size_t reserved_size, size_t dyn_size,
130 pcpu_fc_cpu_distance_fn_t cpu_distance_fn,
131 pcpu_fc_alloc_fn_t alloc_fn,
132 pcpu_fc_free_fn_t free_fn);
135 #ifdef CONFIG_NEED_PER_CPU_PAGE_FIRST_CHUNK
136 extern int __init pcpu_page_first_chunk(size_t reserved_size,
137 pcpu_fc_alloc_fn_t alloc_fn,
138 pcpu_fc_free_fn_t free_fn,
139 pcpu_fc_populate_pte_fn_t populate_pte_fn);
143 * Use this to get to a cpu's version of the per-cpu object
144 * dynamically allocated. Non-atomic access to the current CPU's
145 * version should probably be combined with get_cpu()/put_cpu().
148 #define per_cpu_ptr(ptr, cpu) SHIFT_PERCPU_PTR((ptr), per_cpu_offset((cpu)))
150 #define per_cpu_ptr(ptr, cpu) ({ (void)(cpu); VERIFY_PERCPU_PTR((ptr)); })
153 extern void __percpu *__alloc_reserved_percpu(size_t size, size_t align);
154 extern bool is_kernel_percpu_address(unsigned long addr);
156 #if !defined(CONFIG_SMP) || !defined(CONFIG_HAVE_SETUP_PER_CPU_AREA)
157 extern void __init setup_per_cpu_areas(void);
159 extern void __init percpu_init_late(void);
161 extern void __percpu *__alloc_percpu(size_t size, size_t align);
162 extern void free_percpu(void __percpu *__pdata);
163 extern phys_addr_t per_cpu_ptr_to_phys(void *addr);
165 #define alloc_percpu(type) \
166 (typeof(type) __percpu *)__alloc_percpu(sizeof(type), __alignof__(type))
169 * Branching function to split up a function into a set of functions that
170 * are called for different scalar sizes of the objects handled.
173 extern void __bad_size_call_parameter(void);
175 #define __pcpu_size_call_return(stem, variable) \
176 ({ typeof(variable) pscr_ret__; \
177 __verify_pcpu_ptr(&(variable)); \
178 switch(sizeof(variable)) { \
179 case 1: pscr_ret__ = stem##1(variable);break; \
180 case 2: pscr_ret__ = stem##2(variable);break; \
181 case 4: pscr_ret__ = stem##4(variable);break; \
182 case 8: pscr_ret__ = stem##8(variable);break; \
184 __bad_size_call_parameter();break; \
189 #define __pcpu_size_call_return2(stem, variable, ...) \
191 typeof(variable) pscr2_ret__; \
192 __verify_pcpu_ptr(&(variable)); \
193 switch(sizeof(variable)) { \
194 case 1: pscr2_ret__ = stem##1(variable, __VA_ARGS__); break; \
195 case 2: pscr2_ret__ = stem##2(variable, __VA_ARGS__); break; \
196 case 4: pscr2_ret__ = stem##4(variable, __VA_ARGS__); break; \
197 case 8: pscr2_ret__ = stem##8(variable, __VA_ARGS__); break; \
199 __bad_size_call_parameter(); break; \
205 * Special handling for cmpxchg_double. cmpxchg_double is passed two
206 * percpu variables. The first has to be aligned to a double word
207 * boundary and the second has to follow directly thereafter.
208 * We enforce this on all architectures even if they don't support
209 * a double cmpxchg instruction, since it's a cheap requirement, and it
210 * avoids breaking the requirement for architectures with the instruction.
212 #define __pcpu_double_call_return_bool(stem, pcp1, pcp2, ...) \
215 __verify_pcpu_ptr(&pcp1); \
216 BUILD_BUG_ON(sizeof(pcp1) != sizeof(pcp2)); \
217 VM_BUG_ON((unsigned long)(&pcp1) % (2 * sizeof(pcp1))); \
218 VM_BUG_ON((unsigned long)(&pcp2) != \
219 (unsigned long)(&pcp1) + sizeof(pcp1)); \
220 switch(sizeof(pcp1)) { \
221 case 1: pdcrb_ret__ = stem##1(pcp1, pcp2, __VA_ARGS__); break; \
222 case 2: pdcrb_ret__ = stem##2(pcp1, pcp2, __VA_ARGS__); break; \
223 case 4: pdcrb_ret__ = stem##4(pcp1, pcp2, __VA_ARGS__); break; \
224 case 8: pdcrb_ret__ = stem##8(pcp1, pcp2, __VA_ARGS__); break; \
226 __bad_size_call_parameter(); break; \
231 #define __pcpu_size_call(stem, variable, ...) \
233 __verify_pcpu_ptr(&(variable)); \
234 switch(sizeof(variable)) { \
235 case 1: stem##1(variable, __VA_ARGS__);break; \
236 case 2: stem##2(variable, __VA_ARGS__);break; \
237 case 4: stem##4(variable, __VA_ARGS__);break; \
238 case 8: stem##8(variable, __VA_ARGS__);break; \
240 __bad_size_call_parameter();break; \
245 * Optimized manipulation for memory allocated through the per cpu
246 * allocator or for addresses of per cpu variables.
248 * These operation guarantee exclusivity of access for other operations
249 * on the *same* processor. The assumption is that per cpu data is only
250 * accessed by a single processor instance (the current one).
252 * The first group is used for accesses that must be done in a
253 * preemption safe way since we know that the context is not preempt
254 * safe. Interrupts may occur. If the interrupt modifies the variable
255 * too then RMW actions will not be reliable.
257 * The arch code can provide optimized functions in two ways:
259 * 1. Override the function completely. F.e. define this_cpu_add().
260 * The arch must then ensure that the various scalar format passed
261 * are handled correctly.
263 * 2. Provide functions for certain scalar sizes. F.e. provide
264 * this_cpu_add_2() to provide per cpu atomic operations for 2 byte
265 * sized RMW actions. If arch code does not provide operations for
266 * a scalar size then the fallback in the generic code will be
270 #define _this_cpu_generic_read(pcp) \
271 ({ typeof(pcp) ret__; \
273 ret__ = *this_cpu_ptr(&(pcp)); \
278 #ifndef this_cpu_read
279 # ifndef this_cpu_read_1
280 # define this_cpu_read_1(pcp) _this_cpu_generic_read(pcp)
282 # ifndef this_cpu_read_2
283 # define this_cpu_read_2(pcp) _this_cpu_generic_read(pcp)
285 # ifndef this_cpu_read_4
286 # define this_cpu_read_4(pcp) _this_cpu_generic_read(pcp)
288 # ifndef this_cpu_read_8
289 # define this_cpu_read_8(pcp) _this_cpu_generic_read(pcp)
291 # define this_cpu_read(pcp) __pcpu_size_call_return(this_cpu_read_, (pcp))
294 #define _this_cpu_generic_to_op(pcp, val, op) \
296 unsigned long flags; \
297 raw_local_irq_save(flags); \
298 *__this_cpu_ptr(&(pcp)) op val; \
299 raw_local_irq_restore(flags); \
302 #ifndef this_cpu_write
303 # ifndef this_cpu_write_1
304 # define this_cpu_write_1(pcp, val) _this_cpu_generic_to_op((pcp), (val), =)
306 # ifndef this_cpu_write_2
307 # define this_cpu_write_2(pcp, val) _this_cpu_generic_to_op((pcp), (val), =)
309 # ifndef this_cpu_write_4
310 # define this_cpu_write_4(pcp, val) _this_cpu_generic_to_op((pcp), (val), =)
312 # ifndef this_cpu_write_8
313 # define this_cpu_write_8(pcp, val) _this_cpu_generic_to_op((pcp), (val), =)
315 # define this_cpu_write(pcp, val) __pcpu_size_call(this_cpu_write_, (pcp), (val))
319 # ifndef this_cpu_add_1
320 # define this_cpu_add_1(pcp, val) _this_cpu_generic_to_op((pcp), (val), +=)
322 # ifndef this_cpu_add_2
323 # define this_cpu_add_2(pcp, val) _this_cpu_generic_to_op((pcp), (val), +=)
325 # ifndef this_cpu_add_4
326 # define this_cpu_add_4(pcp, val) _this_cpu_generic_to_op((pcp), (val), +=)
328 # ifndef this_cpu_add_8
329 # define this_cpu_add_8(pcp, val) _this_cpu_generic_to_op((pcp), (val), +=)
331 # define this_cpu_add(pcp, val) __pcpu_size_call(this_cpu_add_, (pcp), (val))
335 # define this_cpu_sub(pcp, val) this_cpu_add((pcp), -(val))
339 # define this_cpu_inc(pcp) this_cpu_add((pcp), 1)
343 # define this_cpu_dec(pcp) this_cpu_sub((pcp), 1)
347 # ifndef this_cpu_and_1
348 # define this_cpu_and_1(pcp, val) _this_cpu_generic_to_op((pcp), (val), &=)
350 # ifndef this_cpu_and_2
351 # define this_cpu_and_2(pcp, val) _this_cpu_generic_to_op((pcp), (val), &=)
353 # ifndef this_cpu_and_4
354 # define this_cpu_and_4(pcp, val) _this_cpu_generic_to_op((pcp), (val), &=)
356 # ifndef this_cpu_and_8
357 # define this_cpu_and_8(pcp, val) _this_cpu_generic_to_op((pcp), (val), &=)
359 # define this_cpu_and(pcp, val) __pcpu_size_call(this_cpu_and_, (pcp), (val))
363 # ifndef this_cpu_or_1
364 # define this_cpu_or_1(pcp, val) _this_cpu_generic_to_op((pcp), (val), |=)
366 # ifndef this_cpu_or_2
367 # define this_cpu_or_2(pcp, val) _this_cpu_generic_to_op((pcp), (val), |=)
369 # ifndef this_cpu_or_4
370 # define this_cpu_or_4(pcp, val) _this_cpu_generic_to_op((pcp), (val), |=)
372 # ifndef this_cpu_or_8
373 # define this_cpu_or_8(pcp, val) _this_cpu_generic_to_op((pcp), (val), |=)
375 # define this_cpu_or(pcp, val) __pcpu_size_call(this_cpu_or_, (pcp), (val))
379 # ifndef this_cpu_xor_1
380 # define this_cpu_xor_1(pcp, val) _this_cpu_generic_to_op((pcp), (val), ^=)
382 # ifndef this_cpu_xor_2
383 # define this_cpu_xor_2(pcp, val) _this_cpu_generic_to_op((pcp), (val), ^=)
385 # ifndef this_cpu_xor_4
386 # define this_cpu_xor_4(pcp, val) _this_cpu_generic_to_op((pcp), (val), ^=)
388 # ifndef this_cpu_xor_8
389 # define this_cpu_xor_8(pcp, val) _this_cpu_generic_to_op((pcp), (val), ^=)
391 # define this_cpu_xor(pcp, val) __pcpu_size_call(this_cpu_or_, (pcp), (val))
394 #define _this_cpu_generic_add_return(pcp, val) \
397 unsigned long flags; \
398 raw_local_irq_save(flags); \
399 __this_cpu_add(pcp, val); \
400 ret__ = __this_cpu_read(pcp); \
401 raw_local_irq_restore(flags); \
405 #ifndef this_cpu_add_return
406 # ifndef this_cpu_add_return_1
407 # define this_cpu_add_return_1(pcp, val) _this_cpu_generic_add_return(pcp, val)
409 # ifndef this_cpu_add_return_2
410 # define this_cpu_add_return_2(pcp, val) _this_cpu_generic_add_return(pcp, val)
412 # ifndef this_cpu_add_return_4
413 # define this_cpu_add_return_4(pcp, val) _this_cpu_generic_add_return(pcp, val)
415 # ifndef this_cpu_add_return_8
416 # define this_cpu_add_return_8(pcp, val) _this_cpu_generic_add_return(pcp, val)
418 # define this_cpu_add_return(pcp, val) __pcpu_size_call_return2(this_cpu_add_return_, pcp, val)
421 #define this_cpu_sub_return(pcp, val) this_cpu_add_return(pcp, -(val))
422 #define this_cpu_inc_return(pcp) this_cpu_add_return(pcp, 1)
423 #define this_cpu_dec_return(pcp) this_cpu_add_return(pcp, -1)
425 #define _this_cpu_generic_xchg(pcp, nval) \
426 ({ typeof(pcp) ret__; \
427 unsigned long flags; \
428 raw_local_irq_save(flags); \
429 ret__ = __this_cpu_read(pcp); \
430 __this_cpu_write(pcp, nval); \
431 raw_local_irq_restore(flags); \
435 #ifndef this_cpu_xchg
436 # ifndef this_cpu_xchg_1
437 # define this_cpu_xchg_1(pcp, nval) _this_cpu_generic_xchg(pcp, nval)
439 # ifndef this_cpu_xchg_2
440 # define this_cpu_xchg_2(pcp, nval) _this_cpu_generic_xchg(pcp, nval)
442 # ifndef this_cpu_xchg_4
443 # define this_cpu_xchg_4(pcp, nval) _this_cpu_generic_xchg(pcp, nval)
445 # ifndef this_cpu_xchg_8
446 # define this_cpu_xchg_8(pcp, nval) _this_cpu_generic_xchg(pcp, nval)
448 # define this_cpu_xchg(pcp, nval) \
449 __pcpu_size_call_return2(this_cpu_xchg_, (pcp), nval)
452 #define _this_cpu_generic_cmpxchg(pcp, oval, nval) \
455 unsigned long flags; \
456 raw_local_irq_save(flags); \
457 ret__ = __this_cpu_read(pcp); \
458 if (ret__ == (oval)) \
459 __this_cpu_write(pcp, nval); \
460 raw_local_irq_restore(flags); \
464 #ifndef this_cpu_cmpxchg
465 # ifndef this_cpu_cmpxchg_1
466 # define this_cpu_cmpxchg_1(pcp, oval, nval) _this_cpu_generic_cmpxchg(pcp, oval, nval)
468 # ifndef this_cpu_cmpxchg_2
469 # define this_cpu_cmpxchg_2(pcp, oval, nval) _this_cpu_generic_cmpxchg(pcp, oval, nval)
471 # ifndef this_cpu_cmpxchg_4
472 # define this_cpu_cmpxchg_4(pcp, oval, nval) _this_cpu_generic_cmpxchg(pcp, oval, nval)
474 # ifndef this_cpu_cmpxchg_8
475 # define this_cpu_cmpxchg_8(pcp, oval, nval) _this_cpu_generic_cmpxchg(pcp, oval, nval)
477 # define this_cpu_cmpxchg(pcp, oval, nval) \
478 __pcpu_size_call_return2(this_cpu_cmpxchg_, pcp, oval, nval)
482 * cmpxchg_double replaces two adjacent scalars at once. The first
483 * two parameters are per cpu variables which have to be of the same
484 * size. A truth value is returned to indicate success or failure
485 * (since a double register result is difficult to handle). There is
486 * very limited hardware support for these operations, so only certain
489 #define _this_cpu_generic_cmpxchg_double(pcp1, pcp2, oval1, oval2, nval1, nval2) \
492 unsigned long flags; \
493 raw_local_irq_save(flags); \
494 ret__ = __this_cpu_generic_cmpxchg_double(pcp1, pcp2, \
495 oval1, oval2, nval1, nval2); \
496 raw_local_irq_restore(flags); \
500 #ifndef this_cpu_cmpxchg_double
501 # ifndef this_cpu_cmpxchg_double_1
502 # define this_cpu_cmpxchg_double_1(pcp1, pcp2, oval1, oval2, nval1, nval2) \
503 _this_cpu_generic_cmpxchg_double(pcp1, pcp2, oval1, oval2, nval1, nval2)
505 # ifndef this_cpu_cmpxchg_double_2
506 # define this_cpu_cmpxchg_double_2(pcp1, pcp2, oval1, oval2, nval1, nval2) \
507 _this_cpu_generic_cmpxchg_double(pcp1, pcp2, oval1, oval2, nval1, nval2)
509 # ifndef this_cpu_cmpxchg_double_4
510 # define this_cpu_cmpxchg_double_4(pcp1, pcp2, oval1, oval2, nval1, nval2) \
511 _this_cpu_generic_cmpxchg_double(pcp1, pcp2, oval1, oval2, nval1, nval2)
513 # ifndef this_cpu_cmpxchg_double_8
514 # define this_cpu_cmpxchg_double_8(pcp1, pcp2, oval1, oval2, nval1, nval2) \
515 _this_cpu_generic_cmpxchg_double(pcp1, pcp2, oval1, oval2, nval1, nval2)
517 # define this_cpu_cmpxchg_double(pcp1, pcp2, oval1, oval2, nval1, nval2) \
518 __pcpu_double_call_return_bool(this_cpu_cmpxchg_double_, (pcp1), (pcp2), (oval1), (oval2), (nval1), (nval2))
522 * Generic percpu operations for context that are safe from preemption/interrupts.
523 * Either we do not care about races or the caller has the
524 * responsibility of handling preemption/interrupt issues. Arch code can still
525 * override these instructions since the arch per cpu code may be more
526 * efficient and may actually get race freeness for free (that is the
527 * case for x86 for example).
529 * If there is no other protection through preempt disable and/or
530 * disabling interupts then one of these RMW operations can show unexpected
531 * behavior because the execution thread was rescheduled on another processor
532 * or an interrupt occurred and the same percpu variable was modified from
533 * the interrupt context.
535 #ifndef __this_cpu_read
536 # ifndef __this_cpu_read_1
537 # define __this_cpu_read_1(pcp) (*__this_cpu_ptr(&(pcp)))
539 # ifndef __this_cpu_read_2
540 # define __this_cpu_read_2(pcp) (*__this_cpu_ptr(&(pcp)))
542 # ifndef __this_cpu_read_4
543 # define __this_cpu_read_4(pcp) (*__this_cpu_ptr(&(pcp)))
545 # ifndef __this_cpu_read_8
546 # define __this_cpu_read_8(pcp) (*__this_cpu_ptr(&(pcp)))
548 # define __this_cpu_read(pcp) __pcpu_size_call_return(__this_cpu_read_, (pcp))
551 #define __this_cpu_generic_to_op(pcp, val, op) \
553 *__this_cpu_ptr(&(pcp)) op val; \
556 #ifndef __this_cpu_write
557 # ifndef __this_cpu_write_1
558 # define __this_cpu_write_1(pcp, val) __this_cpu_generic_to_op((pcp), (val), =)
560 # ifndef __this_cpu_write_2
561 # define __this_cpu_write_2(pcp, val) __this_cpu_generic_to_op((pcp), (val), =)
563 # ifndef __this_cpu_write_4
564 # define __this_cpu_write_4(pcp, val) __this_cpu_generic_to_op((pcp), (val), =)
566 # ifndef __this_cpu_write_8
567 # define __this_cpu_write_8(pcp, val) __this_cpu_generic_to_op((pcp), (val), =)
569 # define __this_cpu_write(pcp, val) __pcpu_size_call(__this_cpu_write_, (pcp), (val))
572 #ifndef __this_cpu_add
573 # ifndef __this_cpu_add_1
574 # define __this_cpu_add_1(pcp, val) __this_cpu_generic_to_op((pcp), (val), +=)
576 # ifndef __this_cpu_add_2
577 # define __this_cpu_add_2(pcp, val) __this_cpu_generic_to_op((pcp), (val), +=)
579 # ifndef __this_cpu_add_4
580 # define __this_cpu_add_4(pcp, val) __this_cpu_generic_to_op((pcp), (val), +=)
582 # ifndef __this_cpu_add_8
583 # define __this_cpu_add_8(pcp, val) __this_cpu_generic_to_op((pcp), (val), +=)
585 # define __this_cpu_add(pcp, val) __pcpu_size_call(__this_cpu_add_, (pcp), (val))
588 #ifndef __this_cpu_sub
589 # define __this_cpu_sub(pcp, val) __this_cpu_add((pcp), -(val))
592 #ifndef __this_cpu_inc
593 # define __this_cpu_inc(pcp) __this_cpu_add((pcp), 1)
596 #ifndef __this_cpu_dec
597 # define __this_cpu_dec(pcp) __this_cpu_sub((pcp), 1)
600 #ifndef __this_cpu_and
601 # ifndef __this_cpu_and_1
602 # define __this_cpu_and_1(pcp, val) __this_cpu_generic_to_op((pcp), (val), &=)
604 # ifndef __this_cpu_and_2
605 # define __this_cpu_and_2(pcp, val) __this_cpu_generic_to_op((pcp), (val), &=)
607 # ifndef __this_cpu_and_4
608 # define __this_cpu_and_4(pcp, val) __this_cpu_generic_to_op((pcp), (val), &=)
610 # ifndef __this_cpu_and_8
611 # define __this_cpu_and_8(pcp, val) __this_cpu_generic_to_op((pcp), (val), &=)
613 # define __this_cpu_and(pcp, val) __pcpu_size_call(__this_cpu_and_, (pcp), (val))
616 #ifndef __this_cpu_or
617 # ifndef __this_cpu_or_1
618 # define __this_cpu_or_1(pcp, val) __this_cpu_generic_to_op((pcp), (val), |=)
620 # ifndef __this_cpu_or_2
621 # define __this_cpu_or_2(pcp, val) __this_cpu_generic_to_op((pcp), (val), |=)
623 # ifndef __this_cpu_or_4
624 # define __this_cpu_or_4(pcp, val) __this_cpu_generic_to_op((pcp), (val), |=)
626 # ifndef __this_cpu_or_8
627 # define __this_cpu_or_8(pcp, val) __this_cpu_generic_to_op((pcp), (val), |=)
629 # define __this_cpu_or(pcp, val) __pcpu_size_call(__this_cpu_or_, (pcp), (val))
632 #ifndef __this_cpu_xor
633 # ifndef __this_cpu_xor_1
634 # define __this_cpu_xor_1(pcp, val) __this_cpu_generic_to_op((pcp), (val), ^=)
636 # ifndef __this_cpu_xor_2
637 # define __this_cpu_xor_2(pcp, val) __this_cpu_generic_to_op((pcp), (val), ^=)
639 # ifndef __this_cpu_xor_4
640 # define __this_cpu_xor_4(pcp, val) __this_cpu_generic_to_op((pcp), (val), ^=)
642 # ifndef __this_cpu_xor_8
643 # define __this_cpu_xor_8(pcp, val) __this_cpu_generic_to_op((pcp), (val), ^=)
645 # define __this_cpu_xor(pcp, val) __pcpu_size_call(__this_cpu_xor_, (pcp), (val))
648 #define __this_cpu_generic_add_return(pcp, val) \
650 __this_cpu_add(pcp, val); \
651 __this_cpu_read(pcp); \
654 #ifndef __this_cpu_add_return
655 # ifndef __this_cpu_add_return_1
656 # define __this_cpu_add_return_1(pcp, val) __this_cpu_generic_add_return(pcp, val)
658 # ifndef __this_cpu_add_return_2
659 # define __this_cpu_add_return_2(pcp, val) __this_cpu_generic_add_return(pcp, val)
661 # ifndef __this_cpu_add_return_4
662 # define __this_cpu_add_return_4(pcp, val) __this_cpu_generic_add_return(pcp, val)
664 # ifndef __this_cpu_add_return_8
665 # define __this_cpu_add_return_8(pcp, val) __this_cpu_generic_add_return(pcp, val)
667 # define __this_cpu_add_return(pcp, val) \
668 __pcpu_size_call_return2(__this_cpu_add_return_, pcp, val)
671 #define __this_cpu_sub_return(pcp, val) __this_cpu_add_return(pcp, -(val))
672 #define __this_cpu_inc_return(pcp) __this_cpu_add_return(pcp, 1)
673 #define __this_cpu_dec_return(pcp) __this_cpu_add_return(pcp, -1)
675 #define __this_cpu_generic_xchg(pcp, nval) \
676 ({ typeof(pcp) ret__; \
677 ret__ = __this_cpu_read(pcp); \
678 __this_cpu_write(pcp, nval); \
682 #ifndef __this_cpu_xchg
683 # ifndef __this_cpu_xchg_1
684 # define __this_cpu_xchg_1(pcp, nval) __this_cpu_generic_xchg(pcp, nval)
686 # ifndef __this_cpu_xchg_2
687 # define __this_cpu_xchg_2(pcp, nval) __this_cpu_generic_xchg(pcp, nval)
689 # ifndef __this_cpu_xchg_4
690 # define __this_cpu_xchg_4(pcp, nval) __this_cpu_generic_xchg(pcp, nval)
692 # ifndef __this_cpu_xchg_8
693 # define __this_cpu_xchg_8(pcp, nval) __this_cpu_generic_xchg(pcp, nval)
695 # define __this_cpu_xchg(pcp, nval) \
696 __pcpu_size_call_return2(__this_cpu_xchg_, (pcp), nval)
699 #define __this_cpu_generic_cmpxchg(pcp, oval, nval) \
702 ret__ = __this_cpu_read(pcp); \
703 if (ret__ == (oval)) \
704 __this_cpu_write(pcp, nval); \
708 #ifndef __this_cpu_cmpxchg
709 # ifndef __this_cpu_cmpxchg_1
710 # define __this_cpu_cmpxchg_1(pcp, oval, nval) __this_cpu_generic_cmpxchg(pcp, oval, nval)
712 # ifndef __this_cpu_cmpxchg_2
713 # define __this_cpu_cmpxchg_2(pcp, oval, nval) __this_cpu_generic_cmpxchg(pcp, oval, nval)
715 # ifndef __this_cpu_cmpxchg_4
716 # define __this_cpu_cmpxchg_4(pcp, oval, nval) __this_cpu_generic_cmpxchg(pcp, oval, nval)
718 # ifndef __this_cpu_cmpxchg_8
719 # define __this_cpu_cmpxchg_8(pcp, oval, nval) __this_cpu_generic_cmpxchg(pcp, oval, nval)
721 # define __this_cpu_cmpxchg(pcp, oval, nval) \
722 __pcpu_size_call_return2(__this_cpu_cmpxchg_, pcp, oval, nval)
725 #define __this_cpu_generic_cmpxchg_double(pcp1, pcp2, oval1, oval2, nval1, nval2) \
728 if (__this_cpu_read(pcp1) == (oval1) && \
729 __this_cpu_read(pcp2) == (oval2)) { \
730 __this_cpu_write(pcp1, (nval1)); \
731 __this_cpu_write(pcp2, (nval2)); \
737 #ifndef __this_cpu_cmpxchg_double
738 # ifndef __this_cpu_cmpxchg_double_1
739 # define __this_cpu_cmpxchg_double_1(pcp1, pcp2, oval1, oval2, nval1, nval2) \
740 __this_cpu_generic_cmpxchg_double(pcp1, pcp2, oval1, oval2, nval1, nval2)
742 # ifndef __this_cpu_cmpxchg_double_2
743 # define __this_cpu_cmpxchg_double_2(pcp1, pcp2, oval1, oval2, nval1, nval2) \
744 __this_cpu_generic_cmpxchg_double(pcp1, pcp2, oval1, oval2, nval1, nval2)
746 # ifndef __this_cpu_cmpxchg_double_4
747 # define __this_cpu_cmpxchg_double_4(pcp1, pcp2, oval1, oval2, nval1, nval2) \
748 __this_cpu_generic_cmpxchg_double(pcp1, pcp2, oval1, oval2, nval1, nval2)
750 # ifndef __this_cpu_cmpxchg_double_8
751 # define __this_cpu_cmpxchg_double_8(pcp1, pcp2, oval1, oval2, nval1, nval2) \
752 __this_cpu_generic_cmpxchg_double(pcp1, pcp2, oval1, oval2, nval1, nval2)
754 # define __this_cpu_cmpxchg_double(pcp1, pcp2, oval1, oval2, nval1, nval2) \
755 __pcpu_double_call_return_bool(__this_cpu_cmpxchg_double_, (pcp1), (pcp2), (oval1), (oval2), (nval1), (nval2))
758 #endif /* __LINUX_PERCPU_H */