Merge tag 'ext4_for_linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tytso...
[platform/adaptation/renesas_rcar/renesas_kernel.git] / include / linux / page-flags.h
1 /*
2  * Macros for manipulating and testing page->flags
3  */
4
5 #ifndef PAGE_FLAGS_H
6 #define PAGE_FLAGS_H
7
8 #include <linux/types.h>
9 #include <linux/bug.h>
10 #include <linux/mmdebug.h>
11 #ifndef __GENERATING_BOUNDS_H
12 #include <linux/mm_types.h>
13 #include <generated/bounds.h>
14 #endif /* !__GENERATING_BOUNDS_H */
15
16 /*
17  * Various page->flags bits:
18  *
19  * PG_reserved is set for special pages, which can never be swapped out. Some
20  * of them might not even exist (eg empty_bad_page)...
21  *
22  * The PG_private bitflag is set on pagecache pages if they contain filesystem
23  * specific data (which is normally at page->private). It can be used by
24  * private allocations for its own usage.
25  *
26  * During initiation of disk I/O, PG_locked is set. This bit is set before I/O
27  * and cleared when writeback _starts_ or when read _completes_. PG_writeback
28  * is set before writeback starts and cleared when it finishes.
29  *
30  * PG_locked also pins a page in pagecache, and blocks truncation of the file
31  * while it is held.
32  *
33  * page_waitqueue(page) is a wait queue of all tasks waiting for the page
34  * to become unlocked.
35  *
36  * PG_uptodate tells whether the page's contents is valid.  When a read
37  * completes, the page becomes uptodate, unless a disk I/O error happened.
38  *
39  * PG_referenced, PG_reclaim are used for page reclaim for anonymous and
40  * file-backed pagecache (see mm/vmscan.c).
41  *
42  * PG_error is set to indicate that an I/O error occurred on this page.
43  *
44  * PG_arch_1 is an architecture specific page state bit.  The generic code
45  * guarantees that this bit is cleared for a page when it first is entered into
46  * the page cache.
47  *
48  * PG_highmem pages are not permanently mapped into the kernel virtual address
49  * space, they need to be kmapped separately for doing IO on the pages.  The
50  * struct page (these bits with information) are always mapped into kernel
51  * address space...
52  *
53  * PG_hwpoison indicates that a page got corrupted in hardware and contains
54  * data with incorrect ECC bits that triggered a machine check. Accessing is
55  * not safe since it may cause another machine check. Don't touch!
56  */
57
58 /*
59  * Don't use the *_dontuse flags.  Use the macros.  Otherwise you'll break
60  * locked- and dirty-page accounting.
61  *
62  * The page flags field is split into two parts, the main flags area
63  * which extends from the low bits upwards, and the fields area which
64  * extends from the high bits downwards.
65  *
66  *  | FIELD | ... | FLAGS |
67  *  N-1           ^       0
68  *               (NR_PAGEFLAGS)
69  *
70  * The fields area is reserved for fields mapping zone, node (for NUMA) and
71  * SPARSEMEM section (for variants of SPARSEMEM that require section ids like
72  * SPARSEMEM_EXTREME with !SPARSEMEM_VMEMMAP).
73  */
74 enum pageflags {
75         PG_locked,              /* Page is locked. Don't touch. */
76         PG_error,
77         PG_referenced,
78         PG_uptodate,
79         PG_dirty,
80         PG_lru,
81         PG_active,
82         PG_slab,
83         PG_owner_priv_1,        /* Owner use. If pagecache, fs may use*/
84         PG_arch_1,
85         PG_reserved,
86         PG_private,             /* If pagecache, has fs-private data */
87         PG_private_2,           /* If pagecache, has fs aux data */
88         PG_writeback,           /* Page is under writeback */
89 #ifdef CONFIG_PAGEFLAGS_EXTENDED
90         PG_head,                /* A head page */
91         PG_tail,                /* A tail page */
92 #else
93         PG_compound,            /* A compound page */
94 #endif
95         PG_swapcache,           /* Swap page: swp_entry_t in private */
96         PG_mappedtodisk,        /* Has blocks allocated on-disk */
97         PG_reclaim,             /* To be reclaimed asap */
98         PG_swapbacked,          /* Page is backed by RAM/swap */
99         PG_unevictable,         /* Page is "unevictable"  */
100 #ifdef CONFIG_MMU
101         PG_mlocked,             /* Page is vma mlocked */
102 #endif
103 #ifdef CONFIG_ARCH_USES_PG_UNCACHED
104         PG_uncached,            /* Page has been mapped as uncached */
105 #endif
106 #ifdef CONFIG_MEMORY_FAILURE
107         PG_hwpoison,            /* hardware poisoned page. Don't touch */
108 #endif
109 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
110         PG_compound_lock,
111 #endif
112         __NR_PAGEFLAGS,
113
114         /* Filesystems */
115         PG_checked = PG_owner_priv_1,
116
117         /* Two page bits are conscripted by FS-Cache to maintain local caching
118          * state.  These bits are set on pages belonging to the netfs's inodes
119          * when those inodes are being locally cached.
120          */
121         PG_fscache = PG_private_2,      /* page backed by cache */
122
123         /* XEN */
124         PG_pinned = PG_owner_priv_1,
125         PG_savepinned = PG_dirty,
126
127         /* SLOB */
128         PG_slob_free = PG_private,
129 };
130
131 #ifndef __GENERATING_BOUNDS_H
132
133 /*
134  * Macros to create function definitions for page flags
135  */
136 #define TESTPAGEFLAG(uname, lname)                                      \
137 static inline int Page##uname(const struct page *page)                  \
138                         { return test_bit(PG_##lname, &page->flags); }
139
140 #define SETPAGEFLAG(uname, lname)                                       \
141 static inline void SetPage##uname(struct page *page)                    \
142                         { set_bit(PG_##lname, &page->flags); }
143
144 #define CLEARPAGEFLAG(uname, lname)                                     \
145 static inline void ClearPage##uname(struct page *page)                  \
146                         { clear_bit(PG_##lname, &page->flags); }
147
148 #define __SETPAGEFLAG(uname, lname)                                     \
149 static inline void __SetPage##uname(struct page *page)                  \
150                         { __set_bit(PG_##lname, &page->flags); }
151
152 #define __CLEARPAGEFLAG(uname, lname)                                   \
153 static inline void __ClearPage##uname(struct page *page)                \
154                         { __clear_bit(PG_##lname, &page->flags); }
155
156 #define TESTSETFLAG(uname, lname)                                       \
157 static inline int TestSetPage##uname(struct page *page)                 \
158                 { return test_and_set_bit(PG_##lname, &page->flags); }
159
160 #define TESTCLEARFLAG(uname, lname)                                     \
161 static inline int TestClearPage##uname(struct page *page)               \
162                 { return test_and_clear_bit(PG_##lname, &page->flags); }
163
164 #define __TESTCLEARFLAG(uname, lname)                                   \
165 static inline int __TestClearPage##uname(struct page *page)             \
166                 { return __test_and_clear_bit(PG_##lname, &page->flags); }
167
168 #define PAGEFLAG(uname, lname) TESTPAGEFLAG(uname, lname)               \
169         SETPAGEFLAG(uname, lname) CLEARPAGEFLAG(uname, lname)
170
171 #define __PAGEFLAG(uname, lname) TESTPAGEFLAG(uname, lname)             \
172         __SETPAGEFLAG(uname, lname)  __CLEARPAGEFLAG(uname, lname)
173
174 #define PAGEFLAG_FALSE(uname)                                           \
175 static inline int Page##uname(const struct page *page)                  \
176                         { return 0; }
177
178 #define TESTSCFLAG(uname, lname)                                        \
179         TESTSETFLAG(uname, lname) TESTCLEARFLAG(uname, lname)
180
181 #define SETPAGEFLAG_NOOP(uname)                                         \
182 static inline void SetPage##uname(struct page *page) {  }
183
184 #define CLEARPAGEFLAG_NOOP(uname)                                       \
185 static inline void ClearPage##uname(struct page *page) {  }
186
187 #define __CLEARPAGEFLAG_NOOP(uname)                                     \
188 static inline void __ClearPage##uname(struct page *page) {  }
189
190 #define TESTCLEARFLAG_FALSE(uname)                                      \
191 static inline int TestClearPage##uname(struct page *page) { return 0; }
192
193 #define __TESTCLEARFLAG_FALSE(uname)                                    \
194 static inline int __TestClearPage##uname(struct page *page) { return 0; }
195
196 struct page;    /* forward declaration */
197
198 TESTPAGEFLAG(Locked, locked)
199 PAGEFLAG(Error, error) TESTCLEARFLAG(Error, error)
200 PAGEFLAG(Referenced, referenced) TESTCLEARFLAG(Referenced, referenced)
201 PAGEFLAG(Dirty, dirty) TESTSCFLAG(Dirty, dirty) __CLEARPAGEFLAG(Dirty, dirty)
202 PAGEFLAG(LRU, lru) __CLEARPAGEFLAG(LRU, lru)
203 PAGEFLAG(Active, active) __CLEARPAGEFLAG(Active, active)
204         TESTCLEARFLAG(Active, active)
205 __PAGEFLAG(Slab, slab)
206 PAGEFLAG(Checked, checked)              /* Used by some filesystems */
207 PAGEFLAG(Pinned, pinned) TESTSCFLAG(Pinned, pinned)     /* Xen */
208 PAGEFLAG(SavePinned, savepinned);                       /* Xen */
209 PAGEFLAG(Reserved, reserved) __CLEARPAGEFLAG(Reserved, reserved)
210 PAGEFLAG(SwapBacked, swapbacked) __CLEARPAGEFLAG(SwapBacked, swapbacked)
211
212 __PAGEFLAG(SlobFree, slob_free)
213
214 /*
215  * Private page markings that may be used by the filesystem that owns the page
216  * for its own purposes.
217  * - PG_private and PG_private_2 cause releasepage() and co to be invoked
218  */
219 PAGEFLAG(Private, private) __SETPAGEFLAG(Private, private)
220         __CLEARPAGEFLAG(Private, private)
221 PAGEFLAG(Private2, private_2) TESTSCFLAG(Private2, private_2)
222 PAGEFLAG(OwnerPriv1, owner_priv_1) TESTCLEARFLAG(OwnerPriv1, owner_priv_1)
223
224 /*
225  * Only test-and-set exist for PG_writeback.  The unconditional operators are
226  * risky: they bypass page accounting.
227  */
228 TESTPAGEFLAG(Writeback, writeback) TESTSCFLAG(Writeback, writeback)
229 PAGEFLAG(MappedToDisk, mappedtodisk)
230
231 /* PG_readahead is only used for file reads; PG_reclaim is only for writes */
232 PAGEFLAG(Reclaim, reclaim) TESTCLEARFLAG(Reclaim, reclaim)
233 PAGEFLAG(Readahead, reclaim)            /* Reminder to do async read-ahead */
234
235 #ifdef CONFIG_HIGHMEM
236 /*
237  * Must use a macro here due to header dependency issues. page_zone() is not
238  * available at this point.
239  */
240 #define PageHighMem(__p) is_highmem(page_zone(__p))
241 #else
242 PAGEFLAG_FALSE(HighMem)
243 #endif
244
245 #ifdef CONFIG_SWAP
246 PAGEFLAG(SwapCache, swapcache)
247 #else
248 PAGEFLAG_FALSE(SwapCache)
249         SETPAGEFLAG_NOOP(SwapCache) CLEARPAGEFLAG_NOOP(SwapCache)
250 #endif
251
252 PAGEFLAG(Unevictable, unevictable) __CLEARPAGEFLAG(Unevictable, unevictable)
253         TESTCLEARFLAG(Unevictable, unevictable)
254
255 #ifdef CONFIG_MMU
256 PAGEFLAG(Mlocked, mlocked) __CLEARPAGEFLAG(Mlocked, mlocked)
257         TESTSCFLAG(Mlocked, mlocked) __TESTCLEARFLAG(Mlocked, mlocked)
258 #else
259 PAGEFLAG_FALSE(Mlocked) SETPAGEFLAG_NOOP(Mlocked)
260         TESTCLEARFLAG_FALSE(Mlocked) __TESTCLEARFLAG_FALSE(Mlocked)
261 #endif
262
263 #ifdef CONFIG_ARCH_USES_PG_UNCACHED
264 PAGEFLAG(Uncached, uncached)
265 #else
266 PAGEFLAG_FALSE(Uncached)
267 #endif
268
269 #ifdef CONFIG_MEMORY_FAILURE
270 PAGEFLAG(HWPoison, hwpoison)
271 TESTSCFLAG(HWPoison, hwpoison)
272 #define __PG_HWPOISON (1UL << PG_hwpoison)
273 #else
274 PAGEFLAG_FALSE(HWPoison)
275 #define __PG_HWPOISON 0
276 #endif
277
278 u64 stable_page_flags(struct page *page);
279
280 static inline int PageUptodate(struct page *page)
281 {
282         int ret = test_bit(PG_uptodate, &(page)->flags);
283
284         /*
285          * Must ensure that the data we read out of the page is loaded
286          * _after_ we've loaded page->flags to check for PageUptodate.
287          * We can skip the barrier if the page is not uptodate, because
288          * we wouldn't be reading anything from it.
289          *
290          * See SetPageUptodate() for the other side of the story.
291          */
292         if (ret)
293                 smp_rmb();
294
295         return ret;
296 }
297
298 static inline void __SetPageUptodate(struct page *page)
299 {
300         smp_wmb();
301         __set_bit(PG_uptodate, &(page)->flags);
302 }
303
304 static inline void SetPageUptodate(struct page *page)
305 {
306 #ifdef CONFIG_S390
307         if (!test_and_set_bit(PG_uptodate, &page->flags))
308                 page_set_storage_key(page_to_phys(page), PAGE_DEFAULT_KEY, 0);
309 #else
310         /*
311          * Memory barrier must be issued before setting the PG_uptodate bit,
312          * so that all previous stores issued in order to bring the page
313          * uptodate are actually visible before PageUptodate becomes true.
314          *
315          * s390 doesn't need an explicit smp_wmb here because the test and
316          * set bit already provides full barriers.
317          */
318         smp_wmb();
319         set_bit(PG_uptodate, &(page)->flags);
320 #endif
321 }
322
323 CLEARPAGEFLAG(Uptodate, uptodate)
324
325 extern void cancel_dirty_page(struct page *page, unsigned int account_size);
326
327 int test_clear_page_writeback(struct page *page);
328 int test_set_page_writeback(struct page *page);
329
330 static inline void set_page_writeback(struct page *page)
331 {
332         test_set_page_writeback(page);
333 }
334
335 #ifdef CONFIG_PAGEFLAGS_EXTENDED
336 /*
337  * System with lots of page flags available. This allows separate
338  * flags for PageHead() and PageTail() checks of compound pages so that bit
339  * tests can be used in performance sensitive paths. PageCompound is
340  * generally not used in hot code paths.
341  */
342 __PAGEFLAG(Head, head) CLEARPAGEFLAG(Head, head)
343 __PAGEFLAG(Tail, tail)
344
345 static inline int PageCompound(struct page *page)
346 {
347         return page->flags & ((1L << PG_head) | (1L << PG_tail));
348
349 }
350 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
351 static inline void ClearPageCompound(struct page *page)
352 {
353         BUG_ON(!PageHead(page));
354         ClearPageHead(page);
355 }
356 #endif
357 #else
358 /*
359  * Reduce page flag use as much as possible by overlapping
360  * compound page flags with the flags used for page cache pages. Possible
361  * because PageCompound is always set for compound pages and not for
362  * pages on the LRU and/or pagecache.
363  */
364 TESTPAGEFLAG(Compound, compound)
365 __PAGEFLAG(Head, compound)
366
367 /*
368  * PG_reclaim is used in combination with PG_compound to mark the
369  * head and tail of a compound page. This saves one page flag
370  * but makes it impossible to use compound pages for the page cache.
371  * The PG_reclaim bit would have to be used for reclaim or readahead
372  * if compound pages enter the page cache.
373  *
374  * PG_compound & PG_reclaim     => Tail page
375  * PG_compound & ~PG_reclaim    => Head page
376  */
377 #define PG_head_tail_mask ((1L << PG_compound) | (1L << PG_reclaim))
378
379 static inline int PageTail(struct page *page)
380 {
381         return ((page->flags & PG_head_tail_mask) == PG_head_tail_mask);
382 }
383
384 static inline void __SetPageTail(struct page *page)
385 {
386         page->flags |= PG_head_tail_mask;
387 }
388
389 static inline void __ClearPageTail(struct page *page)
390 {
391         page->flags &= ~PG_head_tail_mask;
392 }
393
394 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
395 static inline void ClearPageCompound(struct page *page)
396 {
397         BUG_ON((page->flags & PG_head_tail_mask) != (1 << PG_compound));
398         clear_bit(PG_compound, &page->flags);
399 }
400 #endif
401
402 #endif /* !PAGEFLAGS_EXTENDED */
403
404 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
405 /*
406  * PageHuge() only returns true for hugetlbfs pages, but not for
407  * normal or transparent huge pages.
408  *
409  * PageTransHuge() returns true for both transparent huge and
410  * hugetlbfs pages, but not normal pages. PageTransHuge() can only be
411  * called only in the core VM paths where hugetlbfs pages can't exist.
412  */
413 static inline int PageTransHuge(struct page *page)
414 {
415         VM_BUG_ON(PageTail(page));
416         return PageHead(page);
417 }
418
419 /*
420  * PageTransCompound returns true for both transparent huge pages
421  * and hugetlbfs pages, so it should only be called when it's known
422  * that hugetlbfs pages aren't involved.
423  */
424 static inline int PageTransCompound(struct page *page)
425 {
426         return PageCompound(page);
427 }
428
429 /*
430  * PageTransTail returns true for both transparent huge pages
431  * and hugetlbfs pages, so it should only be called when it's known
432  * that hugetlbfs pages aren't involved.
433  */
434 static inline int PageTransTail(struct page *page)
435 {
436         return PageTail(page);
437 }
438
439 #else
440
441 static inline int PageTransHuge(struct page *page)
442 {
443         return 0;
444 }
445
446 static inline int PageTransCompound(struct page *page)
447 {
448         return 0;
449 }
450
451 static inline int PageTransTail(struct page *page)
452 {
453         return 0;
454 }
455 #endif
456
457 /*
458  * If network-based swap is enabled, sl*b must keep track of whether pages
459  * were allocated from pfmemalloc reserves.
460  */
461 static inline int PageSlabPfmemalloc(struct page *page)
462 {
463         VM_BUG_ON(!PageSlab(page));
464         return PageActive(page);
465 }
466
467 static inline void SetPageSlabPfmemalloc(struct page *page)
468 {
469         VM_BUG_ON(!PageSlab(page));
470         SetPageActive(page);
471 }
472
473 static inline void __ClearPageSlabPfmemalloc(struct page *page)
474 {
475         VM_BUG_ON(!PageSlab(page));
476         __ClearPageActive(page);
477 }
478
479 static inline void ClearPageSlabPfmemalloc(struct page *page)
480 {
481         VM_BUG_ON(!PageSlab(page));
482         ClearPageActive(page);
483 }
484
485 #ifdef CONFIG_MMU
486 #define __PG_MLOCKED            (1 << PG_mlocked)
487 #else
488 #define __PG_MLOCKED            0
489 #endif
490
491 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
492 #define __PG_COMPOUND_LOCK              (1 << PG_compound_lock)
493 #else
494 #define __PG_COMPOUND_LOCK              0
495 #endif
496
497 /*
498  * Flags checked when a page is freed.  Pages being freed should not have
499  * these flags set.  It they are, there is a problem.
500  */
501 #define PAGE_FLAGS_CHECK_AT_FREE \
502         (1 << PG_lru     | 1 << PG_locked    | \
503          1 << PG_private | 1 << PG_private_2 | \
504          1 << PG_writeback | 1 << PG_reserved | \
505          1 << PG_slab    | 1 << PG_swapcache | 1 << PG_active | \
506          1 << PG_unevictable | __PG_MLOCKED | __PG_HWPOISON | \
507          __PG_COMPOUND_LOCK)
508
509 /*
510  * Flags checked when a page is prepped for return by the page allocator.
511  * Pages being prepped should not have any flags set.  It they are set,
512  * there has been a kernel bug or struct page corruption.
513  */
514 #define PAGE_FLAGS_CHECK_AT_PREP        ((1 << NR_PAGEFLAGS) - 1)
515
516 #define PAGE_FLAGS_PRIVATE                              \
517         (1 << PG_private | 1 << PG_private_2)
518 /**
519  * page_has_private - Determine if page has private stuff
520  * @page: The page to be checked
521  *
522  * Determine if a page has private stuff, indicating that release routines
523  * should be invoked upon it.
524  */
525 static inline int page_has_private(struct page *page)
526 {
527         return !!(page->flags & PAGE_FLAGS_PRIVATE);
528 }
529
530 #endif /* !__GENERATING_BOUNDS_H */
531
532 #endif  /* PAGE_FLAGS_H */