Merge tag 'wireless-drivers-next-for-davem-2017-04-21' of git://git.kernel.org/pub...
[platform/kernel/linux-rpi.git] / include / linux / netdevice.h
1 /*
2  * INET         An implementation of the TCP/IP protocol suite for the LINUX
3  *              operating system.  INET is implemented using the  BSD Socket
4  *              interface as the means of communication with the user level.
5  *
6  *              Definitions for the Interfaces handler.
7  *
8  * Version:     @(#)dev.h       1.0.10  08/12/93
9  *
10  * Authors:     Ross Biro
11  *              Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12  *              Corey Minyard <wf-rch!minyard@relay.EU.net>
13  *              Donald J. Becker, <becker@cesdis.gsfc.nasa.gov>
14  *              Alan Cox, <alan@lxorguk.ukuu.org.uk>
15  *              Bjorn Ekwall. <bj0rn@blox.se>
16  *              Pekka Riikonen <priikone@poseidon.pspt.fi>
17  *
18  *              This program is free software; you can redistribute it and/or
19  *              modify it under the terms of the GNU General Public License
20  *              as published by the Free Software Foundation; either version
21  *              2 of the License, or (at your option) any later version.
22  *
23  *              Moved to /usr/include/linux for NET3
24  */
25 #ifndef _LINUX_NETDEVICE_H
26 #define _LINUX_NETDEVICE_H
27
28 #include <linux/timer.h>
29 #include <linux/bug.h>
30 #include <linux/delay.h>
31 #include <linux/atomic.h>
32 #include <linux/prefetch.h>
33 #include <asm/cache.h>
34 #include <asm/byteorder.h>
35
36 #include <linux/percpu.h>
37 #include <linux/rculist.h>
38 #include <linux/dmaengine.h>
39 #include <linux/workqueue.h>
40 #include <linux/dynamic_queue_limits.h>
41
42 #include <linux/ethtool.h>
43 #include <net/net_namespace.h>
44 #ifdef CONFIG_DCB
45 #include <net/dcbnl.h>
46 #endif
47 #include <net/netprio_cgroup.h>
48
49 #include <linux/netdev_features.h>
50 #include <linux/neighbour.h>
51 #include <uapi/linux/netdevice.h>
52 #include <uapi/linux/if_bonding.h>
53 #include <uapi/linux/pkt_cls.h>
54 #include <linux/hashtable.h>
55
56 struct netpoll_info;
57 struct device;
58 struct phy_device;
59 struct dsa_switch_tree;
60
61 /* 802.11 specific */
62 struct wireless_dev;
63 /* 802.15.4 specific */
64 struct wpan_dev;
65 struct mpls_dev;
66 /* UDP Tunnel offloads */
67 struct udp_tunnel_info;
68 struct bpf_prog;
69
70 void netdev_set_default_ethtool_ops(struct net_device *dev,
71                                     const struct ethtool_ops *ops);
72
73 /* Backlog congestion levels */
74 #define NET_RX_SUCCESS          0       /* keep 'em coming, baby */
75 #define NET_RX_DROP             1       /* packet dropped */
76
77 /*
78  * Transmit return codes: transmit return codes originate from three different
79  * namespaces:
80  *
81  * - qdisc return codes
82  * - driver transmit return codes
83  * - errno values
84  *
85  * Drivers are allowed to return any one of those in their hard_start_xmit()
86  * function. Real network devices commonly used with qdiscs should only return
87  * the driver transmit return codes though - when qdiscs are used, the actual
88  * transmission happens asynchronously, so the value is not propagated to
89  * higher layers. Virtual network devices transmit synchronously; in this case
90  * the driver transmit return codes are consumed by dev_queue_xmit(), and all
91  * others are propagated to higher layers.
92  */
93
94 /* qdisc ->enqueue() return codes. */
95 #define NET_XMIT_SUCCESS        0x00
96 #define NET_XMIT_DROP           0x01    /* skb dropped                  */
97 #define NET_XMIT_CN             0x02    /* congestion notification      */
98 #define NET_XMIT_MASK           0x0f    /* qdisc flags in net/sch_generic.h */
99
100 /* NET_XMIT_CN is special. It does not guarantee that this packet is lost. It
101  * indicates that the device will soon be dropping packets, or already drops
102  * some packets of the same priority; prompting us to send less aggressively. */
103 #define net_xmit_eval(e)        ((e) == NET_XMIT_CN ? 0 : (e))
104 #define net_xmit_errno(e)       ((e) != NET_XMIT_CN ? -ENOBUFS : 0)
105
106 /* Driver transmit return codes */
107 #define NETDEV_TX_MASK          0xf0
108
109 enum netdev_tx {
110         __NETDEV_TX_MIN  = INT_MIN,     /* make sure enum is signed */
111         NETDEV_TX_OK     = 0x00,        /* driver took care of packet */
112         NETDEV_TX_BUSY   = 0x10,        /* driver tx path was busy*/
113 };
114 typedef enum netdev_tx netdev_tx_t;
115
116 /*
117  * Current order: NETDEV_TX_MASK > NET_XMIT_MASK >= 0 is significant;
118  * hard_start_xmit() return < NET_XMIT_MASK means skb was consumed.
119  */
120 static inline bool dev_xmit_complete(int rc)
121 {
122         /*
123          * Positive cases with an skb consumed by a driver:
124          * - successful transmission (rc == NETDEV_TX_OK)
125          * - error while transmitting (rc < 0)
126          * - error while queueing to a different device (rc & NET_XMIT_MASK)
127          */
128         if (likely(rc < NET_XMIT_MASK))
129                 return true;
130
131         return false;
132 }
133
134 /*
135  *      Compute the worst-case header length according to the protocols
136  *      used.
137  */
138
139 #if defined(CONFIG_HYPERV_NET)
140 # define LL_MAX_HEADER 128
141 #elif defined(CONFIG_WLAN) || IS_ENABLED(CONFIG_AX25)
142 # if defined(CONFIG_MAC80211_MESH)
143 #  define LL_MAX_HEADER 128
144 # else
145 #  define LL_MAX_HEADER 96
146 # endif
147 #else
148 # define LL_MAX_HEADER 32
149 #endif
150
151 #if !IS_ENABLED(CONFIG_NET_IPIP) && !IS_ENABLED(CONFIG_NET_IPGRE) && \
152     !IS_ENABLED(CONFIG_IPV6_SIT) && !IS_ENABLED(CONFIG_IPV6_TUNNEL)
153 #define MAX_HEADER LL_MAX_HEADER
154 #else
155 #define MAX_HEADER (LL_MAX_HEADER + 48)
156 #endif
157
158 /*
159  *      Old network device statistics. Fields are native words
160  *      (unsigned long) so they can be read and written atomically.
161  */
162
163 struct net_device_stats {
164         unsigned long   rx_packets;
165         unsigned long   tx_packets;
166         unsigned long   rx_bytes;
167         unsigned long   tx_bytes;
168         unsigned long   rx_errors;
169         unsigned long   tx_errors;
170         unsigned long   rx_dropped;
171         unsigned long   tx_dropped;
172         unsigned long   multicast;
173         unsigned long   collisions;
174         unsigned long   rx_length_errors;
175         unsigned long   rx_over_errors;
176         unsigned long   rx_crc_errors;
177         unsigned long   rx_frame_errors;
178         unsigned long   rx_fifo_errors;
179         unsigned long   rx_missed_errors;
180         unsigned long   tx_aborted_errors;
181         unsigned long   tx_carrier_errors;
182         unsigned long   tx_fifo_errors;
183         unsigned long   tx_heartbeat_errors;
184         unsigned long   tx_window_errors;
185         unsigned long   rx_compressed;
186         unsigned long   tx_compressed;
187 };
188
189
190 #include <linux/cache.h>
191 #include <linux/skbuff.h>
192
193 #ifdef CONFIG_RPS
194 #include <linux/static_key.h>
195 extern struct static_key rps_needed;
196 extern struct static_key rfs_needed;
197 #endif
198
199 struct neighbour;
200 struct neigh_parms;
201 struct sk_buff;
202
203 struct netdev_hw_addr {
204         struct list_head        list;
205         unsigned char           addr[MAX_ADDR_LEN];
206         unsigned char           type;
207 #define NETDEV_HW_ADDR_T_LAN            1
208 #define NETDEV_HW_ADDR_T_SAN            2
209 #define NETDEV_HW_ADDR_T_SLAVE          3
210 #define NETDEV_HW_ADDR_T_UNICAST        4
211 #define NETDEV_HW_ADDR_T_MULTICAST      5
212         bool                    global_use;
213         int                     sync_cnt;
214         int                     refcount;
215         int                     synced;
216         struct rcu_head         rcu_head;
217 };
218
219 struct netdev_hw_addr_list {
220         struct list_head        list;
221         int                     count;
222 };
223
224 #define netdev_hw_addr_list_count(l) ((l)->count)
225 #define netdev_hw_addr_list_empty(l) (netdev_hw_addr_list_count(l) == 0)
226 #define netdev_hw_addr_list_for_each(ha, l) \
227         list_for_each_entry(ha, &(l)->list, list)
228
229 #define netdev_uc_count(dev) netdev_hw_addr_list_count(&(dev)->uc)
230 #define netdev_uc_empty(dev) netdev_hw_addr_list_empty(&(dev)->uc)
231 #define netdev_for_each_uc_addr(ha, dev) \
232         netdev_hw_addr_list_for_each(ha, &(dev)->uc)
233
234 #define netdev_mc_count(dev) netdev_hw_addr_list_count(&(dev)->mc)
235 #define netdev_mc_empty(dev) netdev_hw_addr_list_empty(&(dev)->mc)
236 #define netdev_for_each_mc_addr(ha, dev) \
237         netdev_hw_addr_list_for_each(ha, &(dev)->mc)
238
239 struct hh_cache {
240         unsigned int    hh_len;
241         seqlock_t       hh_lock;
242
243         /* cached hardware header; allow for machine alignment needs.        */
244 #define HH_DATA_MOD     16
245 #define HH_DATA_OFF(__len) \
246         (HH_DATA_MOD - (((__len - 1) & (HH_DATA_MOD - 1)) + 1))
247 #define HH_DATA_ALIGN(__len) \
248         (((__len)+(HH_DATA_MOD-1))&~(HH_DATA_MOD - 1))
249         unsigned long   hh_data[HH_DATA_ALIGN(LL_MAX_HEADER) / sizeof(long)];
250 };
251
252 /* Reserve HH_DATA_MOD byte-aligned hard_header_len, but at least that much.
253  * Alternative is:
254  *   dev->hard_header_len ? (dev->hard_header_len +
255  *                           (HH_DATA_MOD - 1)) & ~(HH_DATA_MOD - 1) : 0
256  *
257  * We could use other alignment values, but we must maintain the
258  * relationship HH alignment <= LL alignment.
259  */
260 #define LL_RESERVED_SPACE(dev) \
261         ((((dev)->hard_header_len+(dev)->needed_headroom)&~(HH_DATA_MOD - 1)) + HH_DATA_MOD)
262 #define LL_RESERVED_SPACE_EXTRA(dev,extra) \
263         ((((dev)->hard_header_len+(dev)->needed_headroom+(extra))&~(HH_DATA_MOD - 1)) + HH_DATA_MOD)
264
265 struct header_ops {
266         int     (*create) (struct sk_buff *skb, struct net_device *dev,
267                            unsigned short type, const void *daddr,
268                            const void *saddr, unsigned int len);
269         int     (*parse)(const struct sk_buff *skb, unsigned char *haddr);
270         int     (*cache)(const struct neighbour *neigh, struct hh_cache *hh, __be16 type);
271         void    (*cache_update)(struct hh_cache *hh,
272                                 const struct net_device *dev,
273                                 const unsigned char *haddr);
274         bool    (*validate)(const char *ll_header, unsigned int len);
275 };
276
277 /* These flag bits are private to the generic network queueing
278  * layer; they may not be explicitly referenced by any other
279  * code.
280  */
281
282 enum netdev_state_t {
283         __LINK_STATE_START,
284         __LINK_STATE_PRESENT,
285         __LINK_STATE_NOCARRIER,
286         __LINK_STATE_LINKWATCH_PENDING,
287         __LINK_STATE_DORMANT,
288 };
289
290
291 /*
292  * This structure holds boot-time configured netdevice settings. They
293  * are then used in the device probing.
294  */
295 struct netdev_boot_setup {
296         char name[IFNAMSIZ];
297         struct ifmap map;
298 };
299 #define NETDEV_BOOT_SETUP_MAX 8
300
301 int __init netdev_boot_setup(char *str);
302
303 /*
304  * Structure for NAPI scheduling similar to tasklet but with weighting
305  */
306 struct napi_struct {
307         /* The poll_list must only be managed by the entity which
308          * changes the state of the NAPI_STATE_SCHED bit.  This means
309          * whoever atomically sets that bit can add this napi_struct
310          * to the per-CPU poll_list, and whoever clears that bit
311          * can remove from the list right before clearing the bit.
312          */
313         struct list_head        poll_list;
314
315         unsigned long           state;
316         int                     weight;
317         unsigned int            gro_count;
318         int                     (*poll)(struct napi_struct *, int);
319 #ifdef CONFIG_NETPOLL
320         int                     poll_owner;
321 #endif
322         struct net_device       *dev;
323         struct sk_buff          *gro_list;
324         struct sk_buff          *skb;
325         struct hrtimer          timer;
326         struct list_head        dev_list;
327         struct hlist_node       napi_hash_node;
328         unsigned int            napi_id;
329 };
330
331 enum {
332         NAPI_STATE_SCHED,       /* Poll is scheduled */
333         NAPI_STATE_MISSED,      /* reschedule a napi */
334         NAPI_STATE_DISABLE,     /* Disable pending */
335         NAPI_STATE_NPSVC,       /* Netpoll - don't dequeue from poll_list */
336         NAPI_STATE_HASHED,      /* In NAPI hash (busy polling possible) */
337         NAPI_STATE_NO_BUSY_POLL,/* Do not add in napi_hash, no busy polling */
338         NAPI_STATE_IN_BUSY_POLL,/* sk_busy_loop() owns this NAPI */
339 };
340
341 enum {
342         NAPIF_STATE_SCHED        = BIT(NAPI_STATE_SCHED),
343         NAPIF_STATE_MISSED       = BIT(NAPI_STATE_MISSED),
344         NAPIF_STATE_DISABLE      = BIT(NAPI_STATE_DISABLE),
345         NAPIF_STATE_NPSVC        = BIT(NAPI_STATE_NPSVC),
346         NAPIF_STATE_HASHED       = BIT(NAPI_STATE_HASHED),
347         NAPIF_STATE_NO_BUSY_POLL = BIT(NAPI_STATE_NO_BUSY_POLL),
348         NAPIF_STATE_IN_BUSY_POLL = BIT(NAPI_STATE_IN_BUSY_POLL),
349 };
350
351 enum gro_result {
352         GRO_MERGED,
353         GRO_MERGED_FREE,
354         GRO_HELD,
355         GRO_NORMAL,
356         GRO_DROP,
357         GRO_CONSUMED,
358 };
359 typedef enum gro_result gro_result_t;
360
361 /*
362  * enum rx_handler_result - Possible return values for rx_handlers.
363  * @RX_HANDLER_CONSUMED: skb was consumed by rx_handler, do not process it
364  * further.
365  * @RX_HANDLER_ANOTHER: Do another round in receive path. This is indicated in
366  * case skb->dev was changed by rx_handler.
367  * @RX_HANDLER_EXACT: Force exact delivery, no wildcard.
368  * @RX_HANDLER_PASS: Do nothing, pass the skb as if no rx_handler was called.
369  *
370  * rx_handlers are functions called from inside __netif_receive_skb(), to do
371  * special processing of the skb, prior to delivery to protocol handlers.
372  *
373  * Currently, a net_device can only have a single rx_handler registered. Trying
374  * to register a second rx_handler will return -EBUSY.
375  *
376  * To register a rx_handler on a net_device, use netdev_rx_handler_register().
377  * To unregister a rx_handler on a net_device, use
378  * netdev_rx_handler_unregister().
379  *
380  * Upon return, rx_handler is expected to tell __netif_receive_skb() what to
381  * do with the skb.
382  *
383  * If the rx_handler consumed the skb in some way, it should return
384  * RX_HANDLER_CONSUMED. This is appropriate when the rx_handler arranged for
385  * the skb to be delivered in some other way.
386  *
387  * If the rx_handler changed skb->dev, to divert the skb to another
388  * net_device, it should return RX_HANDLER_ANOTHER. The rx_handler for the
389  * new device will be called if it exists.
390  *
391  * If the rx_handler decides the skb should be ignored, it should return
392  * RX_HANDLER_EXACT. The skb will only be delivered to protocol handlers that
393  * are registered on exact device (ptype->dev == skb->dev).
394  *
395  * If the rx_handler didn't change skb->dev, but wants the skb to be normally
396  * delivered, it should return RX_HANDLER_PASS.
397  *
398  * A device without a registered rx_handler will behave as if rx_handler
399  * returned RX_HANDLER_PASS.
400  */
401
402 enum rx_handler_result {
403         RX_HANDLER_CONSUMED,
404         RX_HANDLER_ANOTHER,
405         RX_HANDLER_EXACT,
406         RX_HANDLER_PASS,
407 };
408 typedef enum rx_handler_result rx_handler_result_t;
409 typedef rx_handler_result_t rx_handler_func_t(struct sk_buff **pskb);
410
411 void __napi_schedule(struct napi_struct *n);
412 void __napi_schedule_irqoff(struct napi_struct *n);
413
414 static inline bool napi_disable_pending(struct napi_struct *n)
415 {
416         return test_bit(NAPI_STATE_DISABLE, &n->state);
417 }
418
419 bool napi_schedule_prep(struct napi_struct *n);
420
421 /**
422  *      napi_schedule - schedule NAPI poll
423  *      @n: NAPI context
424  *
425  * Schedule NAPI poll routine to be called if it is not already
426  * running.
427  */
428 static inline void napi_schedule(struct napi_struct *n)
429 {
430         if (napi_schedule_prep(n))
431                 __napi_schedule(n);
432 }
433
434 /**
435  *      napi_schedule_irqoff - schedule NAPI poll
436  *      @n: NAPI context
437  *
438  * Variant of napi_schedule(), assuming hard irqs are masked.
439  */
440 static inline void napi_schedule_irqoff(struct napi_struct *n)
441 {
442         if (napi_schedule_prep(n))
443                 __napi_schedule_irqoff(n);
444 }
445
446 /* Try to reschedule poll. Called by dev->poll() after napi_complete().  */
447 static inline bool napi_reschedule(struct napi_struct *napi)
448 {
449         if (napi_schedule_prep(napi)) {
450                 __napi_schedule(napi);
451                 return true;
452         }
453         return false;
454 }
455
456 bool napi_complete_done(struct napi_struct *n, int work_done);
457 /**
458  *      napi_complete - NAPI processing complete
459  *      @n: NAPI context
460  *
461  * Mark NAPI processing as complete.
462  * Consider using napi_complete_done() instead.
463  * Return false if device should avoid rearming interrupts.
464  */
465 static inline bool napi_complete(struct napi_struct *n)
466 {
467         return napi_complete_done(n, 0);
468 }
469
470 /**
471  *      napi_hash_del - remove a NAPI from global table
472  *      @napi: NAPI context
473  *
474  * Warning: caller must observe RCU grace period
475  * before freeing memory containing @napi, if
476  * this function returns true.
477  * Note: core networking stack automatically calls it
478  * from netif_napi_del().
479  * Drivers might want to call this helper to combine all
480  * the needed RCU grace periods into a single one.
481  */
482 bool napi_hash_del(struct napi_struct *napi);
483
484 /**
485  *      napi_disable - prevent NAPI from scheduling
486  *      @n: NAPI context
487  *
488  * Stop NAPI from being scheduled on this context.
489  * Waits till any outstanding processing completes.
490  */
491 void napi_disable(struct napi_struct *n);
492
493 /**
494  *      napi_enable - enable NAPI scheduling
495  *      @n: NAPI context
496  *
497  * Resume NAPI from being scheduled on this context.
498  * Must be paired with napi_disable.
499  */
500 static inline void napi_enable(struct napi_struct *n)
501 {
502         BUG_ON(!test_bit(NAPI_STATE_SCHED, &n->state));
503         smp_mb__before_atomic();
504         clear_bit(NAPI_STATE_SCHED, &n->state);
505         clear_bit(NAPI_STATE_NPSVC, &n->state);
506 }
507
508 /**
509  *      napi_synchronize - wait until NAPI is not running
510  *      @n: NAPI context
511  *
512  * Wait until NAPI is done being scheduled on this context.
513  * Waits till any outstanding processing completes but
514  * does not disable future activations.
515  */
516 static inline void napi_synchronize(const struct napi_struct *n)
517 {
518         if (IS_ENABLED(CONFIG_SMP))
519                 while (test_bit(NAPI_STATE_SCHED, &n->state))
520                         msleep(1);
521         else
522                 barrier();
523 }
524
525 enum netdev_queue_state_t {
526         __QUEUE_STATE_DRV_XOFF,
527         __QUEUE_STATE_STACK_XOFF,
528         __QUEUE_STATE_FROZEN,
529 };
530
531 #define QUEUE_STATE_DRV_XOFF    (1 << __QUEUE_STATE_DRV_XOFF)
532 #define QUEUE_STATE_STACK_XOFF  (1 << __QUEUE_STATE_STACK_XOFF)
533 #define QUEUE_STATE_FROZEN      (1 << __QUEUE_STATE_FROZEN)
534
535 #define QUEUE_STATE_ANY_XOFF    (QUEUE_STATE_DRV_XOFF | QUEUE_STATE_STACK_XOFF)
536 #define QUEUE_STATE_ANY_XOFF_OR_FROZEN (QUEUE_STATE_ANY_XOFF | \
537                                         QUEUE_STATE_FROZEN)
538 #define QUEUE_STATE_DRV_XOFF_OR_FROZEN (QUEUE_STATE_DRV_XOFF | \
539                                         QUEUE_STATE_FROZEN)
540
541 /*
542  * __QUEUE_STATE_DRV_XOFF is used by drivers to stop the transmit queue.  The
543  * netif_tx_* functions below are used to manipulate this flag.  The
544  * __QUEUE_STATE_STACK_XOFF flag is used by the stack to stop the transmit
545  * queue independently.  The netif_xmit_*stopped functions below are called
546  * to check if the queue has been stopped by the driver or stack (either
547  * of the XOFF bits are set in the state).  Drivers should not need to call
548  * netif_xmit*stopped functions, they should only be using netif_tx_*.
549  */
550
551 struct netdev_queue {
552 /*
553  * read-mostly part
554  */
555         struct net_device       *dev;
556         struct Qdisc __rcu      *qdisc;
557         struct Qdisc            *qdisc_sleeping;
558 #ifdef CONFIG_SYSFS
559         struct kobject          kobj;
560 #endif
561 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
562         int                     numa_node;
563 #endif
564         unsigned long           tx_maxrate;
565         /*
566          * Number of TX timeouts for this queue
567          * (/sys/class/net/DEV/Q/trans_timeout)
568          */
569         unsigned long           trans_timeout;
570 /*
571  * write-mostly part
572  */
573         spinlock_t              _xmit_lock ____cacheline_aligned_in_smp;
574         int                     xmit_lock_owner;
575         /*
576          * Time (in jiffies) of last Tx
577          */
578         unsigned long           trans_start;
579
580         unsigned long           state;
581
582 #ifdef CONFIG_BQL
583         struct dql              dql;
584 #endif
585 } ____cacheline_aligned_in_smp;
586
587 static inline int netdev_queue_numa_node_read(const struct netdev_queue *q)
588 {
589 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
590         return q->numa_node;
591 #else
592         return NUMA_NO_NODE;
593 #endif
594 }
595
596 static inline void netdev_queue_numa_node_write(struct netdev_queue *q, int node)
597 {
598 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
599         q->numa_node = node;
600 #endif
601 }
602
603 #ifdef CONFIG_RPS
604 /*
605  * This structure holds an RPS map which can be of variable length.  The
606  * map is an array of CPUs.
607  */
608 struct rps_map {
609         unsigned int len;
610         struct rcu_head rcu;
611         u16 cpus[0];
612 };
613 #define RPS_MAP_SIZE(_num) (sizeof(struct rps_map) + ((_num) * sizeof(u16)))
614
615 /*
616  * The rps_dev_flow structure contains the mapping of a flow to a CPU, the
617  * tail pointer for that CPU's input queue at the time of last enqueue, and
618  * a hardware filter index.
619  */
620 struct rps_dev_flow {
621         u16 cpu;
622         u16 filter;
623         unsigned int last_qtail;
624 };
625 #define RPS_NO_FILTER 0xffff
626
627 /*
628  * The rps_dev_flow_table structure contains a table of flow mappings.
629  */
630 struct rps_dev_flow_table {
631         unsigned int mask;
632         struct rcu_head rcu;
633         struct rps_dev_flow flows[0];
634 };
635 #define RPS_DEV_FLOW_TABLE_SIZE(_num) (sizeof(struct rps_dev_flow_table) + \
636     ((_num) * sizeof(struct rps_dev_flow)))
637
638 /*
639  * The rps_sock_flow_table contains mappings of flows to the last CPU
640  * on which they were processed by the application (set in recvmsg).
641  * Each entry is a 32bit value. Upper part is the high-order bits
642  * of flow hash, lower part is CPU number.
643  * rps_cpu_mask is used to partition the space, depending on number of
644  * possible CPUs : rps_cpu_mask = roundup_pow_of_two(nr_cpu_ids) - 1
645  * For example, if 64 CPUs are possible, rps_cpu_mask = 0x3f,
646  * meaning we use 32-6=26 bits for the hash.
647  */
648 struct rps_sock_flow_table {
649         u32     mask;
650
651         u32     ents[0] ____cacheline_aligned_in_smp;
652 };
653 #define RPS_SOCK_FLOW_TABLE_SIZE(_num) (offsetof(struct rps_sock_flow_table, ents[_num]))
654
655 #define RPS_NO_CPU 0xffff
656
657 extern u32 rps_cpu_mask;
658 extern struct rps_sock_flow_table __rcu *rps_sock_flow_table;
659
660 static inline void rps_record_sock_flow(struct rps_sock_flow_table *table,
661                                         u32 hash)
662 {
663         if (table && hash) {
664                 unsigned int index = hash & table->mask;
665                 u32 val = hash & ~rps_cpu_mask;
666
667                 /* We only give a hint, preemption can change CPU under us */
668                 val |= raw_smp_processor_id();
669
670                 if (table->ents[index] != val)
671                         table->ents[index] = val;
672         }
673 }
674
675 #ifdef CONFIG_RFS_ACCEL
676 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index, u32 flow_id,
677                          u16 filter_id);
678 #endif
679 #endif /* CONFIG_RPS */
680
681 /* This structure contains an instance of an RX queue. */
682 struct netdev_rx_queue {
683 #ifdef CONFIG_RPS
684         struct rps_map __rcu            *rps_map;
685         struct rps_dev_flow_table __rcu *rps_flow_table;
686 #endif
687         struct kobject                  kobj;
688         struct net_device               *dev;
689 } ____cacheline_aligned_in_smp;
690
691 /*
692  * RX queue sysfs structures and functions.
693  */
694 struct rx_queue_attribute {
695         struct attribute attr;
696         ssize_t (*show)(struct netdev_rx_queue *queue,
697             struct rx_queue_attribute *attr, char *buf);
698         ssize_t (*store)(struct netdev_rx_queue *queue,
699             struct rx_queue_attribute *attr, const char *buf, size_t len);
700 };
701
702 #ifdef CONFIG_XPS
703 /*
704  * This structure holds an XPS map which can be of variable length.  The
705  * map is an array of queues.
706  */
707 struct xps_map {
708         unsigned int len;
709         unsigned int alloc_len;
710         struct rcu_head rcu;
711         u16 queues[0];
712 };
713 #define XPS_MAP_SIZE(_num) (sizeof(struct xps_map) + ((_num) * sizeof(u16)))
714 #define XPS_MIN_MAP_ALLOC ((L1_CACHE_ALIGN(offsetof(struct xps_map, queues[1])) \
715        - sizeof(struct xps_map)) / sizeof(u16))
716
717 /*
718  * This structure holds all XPS maps for device.  Maps are indexed by CPU.
719  */
720 struct xps_dev_maps {
721         struct rcu_head rcu;
722         struct xps_map __rcu *cpu_map[0];
723 };
724 #define XPS_DEV_MAPS_SIZE(_tcs) (sizeof(struct xps_dev_maps) +          \
725         (nr_cpu_ids * (_tcs) * sizeof(struct xps_map *)))
726 #endif /* CONFIG_XPS */
727
728 #define TC_MAX_QUEUE    16
729 #define TC_BITMASK      15
730 /* HW offloaded queuing disciplines txq count and offset maps */
731 struct netdev_tc_txq {
732         u16 count;
733         u16 offset;
734 };
735
736 #if defined(CONFIG_FCOE) || defined(CONFIG_FCOE_MODULE)
737 /*
738  * This structure is to hold information about the device
739  * configured to run FCoE protocol stack.
740  */
741 struct netdev_fcoe_hbainfo {
742         char    manufacturer[64];
743         char    serial_number[64];
744         char    hardware_version[64];
745         char    driver_version[64];
746         char    optionrom_version[64];
747         char    firmware_version[64];
748         char    model[256];
749         char    model_description[256];
750 };
751 #endif
752
753 #define MAX_PHYS_ITEM_ID_LEN 32
754
755 /* This structure holds a unique identifier to identify some
756  * physical item (port for example) used by a netdevice.
757  */
758 struct netdev_phys_item_id {
759         unsigned char id[MAX_PHYS_ITEM_ID_LEN];
760         unsigned char id_len;
761 };
762
763 static inline bool netdev_phys_item_id_same(struct netdev_phys_item_id *a,
764                                             struct netdev_phys_item_id *b)
765 {
766         return a->id_len == b->id_len &&
767                memcmp(a->id, b->id, a->id_len) == 0;
768 }
769
770 typedef u16 (*select_queue_fallback_t)(struct net_device *dev,
771                                        struct sk_buff *skb);
772
773 /* These structures hold the attributes of qdisc and classifiers
774  * that are being passed to the netdevice through the setup_tc op.
775  */
776 enum {
777         TC_SETUP_MQPRIO,
778         TC_SETUP_CLSU32,
779         TC_SETUP_CLSFLOWER,
780         TC_SETUP_MATCHALL,
781         TC_SETUP_CLSBPF,
782 };
783
784 struct tc_cls_u32_offload;
785
786 struct tc_to_netdev {
787         unsigned int type;
788         union {
789                 struct tc_cls_u32_offload *cls_u32;
790                 struct tc_cls_flower_offload *cls_flower;
791                 struct tc_cls_matchall_offload *cls_mall;
792                 struct tc_cls_bpf_offload *cls_bpf;
793                 struct tc_mqprio_qopt *mqprio;
794         };
795         bool egress_dev;
796 };
797
798 /* These structures hold the attributes of xdp state that are being passed
799  * to the netdevice through the xdp op.
800  */
801 enum xdp_netdev_command {
802         /* Set or clear a bpf program used in the earliest stages of packet
803          * rx. The prog will have been loaded as BPF_PROG_TYPE_XDP. The callee
804          * is responsible for calling bpf_prog_put on any old progs that are
805          * stored. In case of error, the callee need not release the new prog
806          * reference, but on success it takes ownership and must bpf_prog_put
807          * when it is no longer used.
808          */
809         XDP_SETUP_PROG,
810         /* Check if a bpf program is set on the device.  The callee should
811          * return true if a program is currently attached and running.
812          */
813         XDP_QUERY_PROG,
814 };
815
816 struct netdev_xdp {
817         enum xdp_netdev_command command;
818         union {
819                 /* XDP_SETUP_PROG */
820                 struct bpf_prog *prog;
821                 /* XDP_QUERY_PROG */
822                 bool prog_attached;
823         };
824 };
825
826 #ifdef CONFIG_XFRM_OFFLOAD
827 struct xfrmdev_ops {
828         int     (*xdo_dev_state_add) (struct xfrm_state *x);
829         void    (*xdo_dev_state_delete) (struct xfrm_state *x);
830         void    (*xdo_dev_state_free) (struct xfrm_state *x);
831         bool    (*xdo_dev_offload_ok) (struct sk_buff *skb,
832                                        struct xfrm_state *x);
833 };
834 #endif
835
836 /*
837  * This structure defines the management hooks for network devices.
838  * The following hooks can be defined; unless noted otherwise, they are
839  * optional and can be filled with a null pointer.
840  *
841  * int (*ndo_init)(struct net_device *dev);
842  *     This function is called once when a network device is registered.
843  *     The network device can use this for any late stage initialization
844  *     or semantic validation. It can fail with an error code which will
845  *     be propagated back to register_netdev.
846  *
847  * void (*ndo_uninit)(struct net_device *dev);
848  *     This function is called when device is unregistered or when registration
849  *     fails. It is not called if init fails.
850  *
851  * int (*ndo_open)(struct net_device *dev);
852  *     This function is called when a network device transitions to the up
853  *     state.
854  *
855  * int (*ndo_stop)(struct net_device *dev);
856  *     This function is called when a network device transitions to the down
857  *     state.
858  *
859  * netdev_tx_t (*ndo_start_xmit)(struct sk_buff *skb,
860  *                               struct net_device *dev);
861  *      Called when a packet needs to be transmitted.
862  *      Returns NETDEV_TX_OK.  Can return NETDEV_TX_BUSY, but you should stop
863  *      the queue before that can happen; it's for obsolete devices and weird
864  *      corner cases, but the stack really does a non-trivial amount
865  *      of useless work if you return NETDEV_TX_BUSY.
866  *      Required; cannot be NULL.
867  *
868  * netdev_features_t (*ndo_features_check)(struct sk_buff *skb,
869  *                                         struct net_device *dev
870  *                                         netdev_features_t features);
871  *      Called by core transmit path to determine if device is capable of
872  *      performing offload operations on a given packet. This is to give
873  *      the device an opportunity to implement any restrictions that cannot
874  *      be otherwise expressed by feature flags. The check is called with
875  *      the set of features that the stack has calculated and it returns
876  *      those the driver believes to be appropriate.
877  *
878  * u16 (*ndo_select_queue)(struct net_device *dev, struct sk_buff *skb,
879  *                         void *accel_priv, select_queue_fallback_t fallback);
880  *      Called to decide which queue to use when device supports multiple
881  *      transmit queues.
882  *
883  * void (*ndo_change_rx_flags)(struct net_device *dev, int flags);
884  *      This function is called to allow device receiver to make
885  *      changes to configuration when multicast or promiscuous is enabled.
886  *
887  * void (*ndo_set_rx_mode)(struct net_device *dev);
888  *      This function is called device changes address list filtering.
889  *      If driver handles unicast address filtering, it should set
890  *      IFF_UNICAST_FLT in its priv_flags.
891  *
892  * int (*ndo_set_mac_address)(struct net_device *dev, void *addr);
893  *      This function  is called when the Media Access Control address
894  *      needs to be changed. If this interface is not defined, the
895  *      MAC address can not be changed.
896  *
897  * int (*ndo_validate_addr)(struct net_device *dev);
898  *      Test if Media Access Control address is valid for the device.
899  *
900  * int (*ndo_do_ioctl)(struct net_device *dev, struct ifreq *ifr, int cmd);
901  *      Called when a user requests an ioctl which can't be handled by
902  *      the generic interface code. If not defined ioctls return
903  *      not supported error code.
904  *
905  * int (*ndo_set_config)(struct net_device *dev, struct ifmap *map);
906  *      Used to set network devices bus interface parameters. This interface
907  *      is retained for legacy reasons; new devices should use the bus
908  *      interface (PCI) for low level management.
909  *
910  * int (*ndo_change_mtu)(struct net_device *dev, int new_mtu);
911  *      Called when a user wants to change the Maximum Transfer Unit
912  *      of a device. If not defined, any request to change MTU will
913  *      will return an error.
914  *
915  * void (*ndo_tx_timeout)(struct net_device *dev);
916  *      Callback used when the transmitter has not made any progress
917  *      for dev->watchdog ticks.
918  *
919  * void (*ndo_get_stats64)(struct net_device *dev,
920  *                         struct rtnl_link_stats64 *storage);
921  * struct net_device_stats* (*ndo_get_stats)(struct net_device *dev);
922  *      Called when a user wants to get the network device usage
923  *      statistics. Drivers must do one of the following:
924  *      1. Define @ndo_get_stats64 to fill in a zero-initialised
925  *         rtnl_link_stats64 structure passed by the caller.
926  *      2. Define @ndo_get_stats to update a net_device_stats structure
927  *         (which should normally be dev->stats) and return a pointer to
928  *         it. The structure may be changed asynchronously only if each
929  *         field is written atomically.
930  *      3. Update dev->stats asynchronously and atomically, and define
931  *         neither operation.
932  *
933  * bool (*ndo_has_offload_stats)(const struct net_device *dev, int attr_id)
934  *      Return true if this device supports offload stats of this attr_id.
935  *
936  * int (*ndo_get_offload_stats)(int attr_id, const struct net_device *dev,
937  *      void *attr_data)
938  *      Get statistics for offload operations by attr_id. Write it into the
939  *      attr_data pointer.
940  *
941  * int (*ndo_vlan_rx_add_vid)(struct net_device *dev, __be16 proto, u16 vid);
942  *      If device supports VLAN filtering this function is called when a
943  *      VLAN id is registered.
944  *
945  * int (*ndo_vlan_rx_kill_vid)(struct net_device *dev, __be16 proto, u16 vid);
946  *      If device supports VLAN filtering this function is called when a
947  *      VLAN id is unregistered.
948  *
949  * void (*ndo_poll_controller)(struct net_device *dev);
950  *
951  *      SR-IOV management functions.
952  * int (*ndo_set_vf_mac)(struct net_device *dev, int vf, u8* mac);
953  * int (*ndo_set_vf_vlan)(struct net_device *dev, int vf, u16 vlan,
954  *                        u8 qos, __be16 proto);
955  * int (*ndo_set_vf_rate)(struct net_device *dev, int vf, int min_tx_rate,
956  *                        int max_tx_rate);
957  * int (*ndo_set_vf_spoofchk)(struct net_device *dev, int vf, bool setting);
958  * int (*ndo_set_vf_trust)(struct net_device *dev, int vf, bool setting);
959  * int (*ndo_get_vf_config)(struct net_device *dev,
960  *                          int vf, struct ifla_vf_info *ivf);
961  * int (*ndo_set_vf_link_state)(struct net_device *dev, int vf, int link_state);
962  * int (*ndo_set_vf_port)(struct net_device *dev, int vf,
963  *                        struct nlattr *port[]);
964  *
965  *      Enable or disable the VF ability to query its RSS Redirection Table and
966  *      Hash Key. This is needed since on some devices VF share this information
967  *      with PF and querying it may introduce a theoretical security risk.
968  * int (*ndo_set_vf_rss_query_en)(struct net_device *dev, int vf, bool setting);
969  * int (*ndo_get_vf_port)(struct net_device *dev, int vf, struct sk_buff *skb);
970  * int (*ndo_setup_tc)(struct net_device *dev, u32 handle,
971  *                     __be16 protocol, struct tc_to_netdev *tc);
972  *      Called to setup any 'tc' scheduler, classifier or action on @dev.
973  *      This is always called from the stack with the rtnl lock held and netif
974  *      tx queues stopped. This allows the netdevice to perform queue
975  *      management safely.
976  *
977  *      Fiber Channel over Ethernet (FCoE) offload functions.
978  * int (*ndo_fcoe_enable)(struct net_device *dev);
979  *      Called when the FCoE protocol stack wants to start using LLD for FCoE
980  *      so the underlying device can perform whatever needed configuration or
981  *      initialization to support acceleration of FCoE traffic.
982  *
983  * int (*ndo_fcoe_disable)(struct net_device *dev);
984  *      Called when the FCoE protocol stack wants to stop using LLD for FCoE
985  *      so the underlying device can perform whatever needed clean-ups to
986  *      stop supporting acceleration of FCoE traffic.
987  *
988  * int (*ndo_fcoe_ddp_setup)(struct net_device *dev, u16 xid,
989  *                           struct scatterlist *sgl, unsigned int sgc);
990  *      Called when the FCoE Initiator wants to initialize an I/O that
991  *      is a possible candidate for Direct Data Placement (DDP). The LLD can
992  *      perform necessary setup and returns 1 to indicate the device is set up
993  *      successfully to perform DDP on this I/O, otherwise this returns 0.
994  *
995  * int (*ndo_fcoe_ddp_done)(struct net_device *dev,  u16 xid);
996  *      Called when the FCoE Initiator/Target is done with the DDPed I/O as
997  *      indicated by the FC exchange id 'xid', so the underlying device can
998  *      clean up and reuse resources for later DDP requests.
999  *
1000  * int (*ndo_fcoe_ddp_target)(struct net_device *dev, u16 xid,
1001  *                            struct scatterlist *sgl, unsigned int sgc);
1002  *      Called when the FCoE Target wants to initialize an I/O that
1003  *      is a possible candidate for Direct Data Placement (DDP). The LLD can
1004  *      perform necessary setup and returns 1 to indicate the device is set up
1005  *      successfully to perform DDP on this I/O, otherwise this returns 0.
1006  *
1007  * int (*ndo_fcoe_get_hbainfo)(struct net_device *dev,
1008  *                             struct netdev_fcoe_hbainfo *hbainfo);
1009  *      Called when the FCoE Protocol stack wants information on the underlying
1010  *      device. This information is utilized by the FCoE protocol stack to
1011  *      register attributes with Fiber Channel management service as per the
1012  *      FC-GS Fabric Device Management Information(FDMI) specification.
1013  *
1014  * int (*ndo_fcoe_get_wwn)(struct net_device *dev, u64 *wwn, int type);
1015  *      Called when the underlying device wants to override default World Wide
1016  *      Name (WWN) generation mechanism in FCoE protocol stack to pass its own
1017  *      World Wide Port Name (WWPN) or World Wide Node Name (WWNN) to the FCoE
1018  *      protocol stack to use.
1019  *
1020  *      RFS acceleration.
1021  * int (*ndo_rx_flow_steer)(struct net_device *dev, const struct sk_buff *skb,
1022  *                          u16 rxq_index, u32 flow_id);
1023  *      Set hardware filter for RFS.  rxq_index is the target queue index;
1024  *      flow_id is a flow ID to be passed to rps_may_expire_flow() later.
1025  *      Return the filter ID on success, or a negative error code.
1026  *
1027  *      Slave management functions (for bridge, bonding, etc).
1028  * int (*ndo_add_slave)(struct net_device *dev, struct net_device *slave_dev);
1029  *      Called to make another netdev an underling.
1030  *
1031  * int (*ndo_del_slave)(struct net_device *dev, struct net_device *slave_dev);
1032  *      Called to release previously enslaved netdev.
1033  *
1034  *      Feature/offload setting functions.
1035  * netdev_features_t (*ndo_fix_features)(struct net_device *dev,
1036  *              netdev_features_t features);
1037  *      Adjusts the requested feature flags according to device-specific
1038  *      constraints, and returns the resulting flags. Must not modify
1039  *      the device state.
1040  *
1041  * int (*ndo_set_features)(struct net_device *dev, netdev_features_t features);
1042  *      Called to update device configuration to new features. Passed
1043  *      feature set might be less than what was returned by ndo_fix_features()).
1044  *      Must return >0 or -errno if it changed dev->features itself.
1045  *
1046  * int (*ndo_fdb_add)(struct ndmsg *ndm, struct nlattr *tb[],
1047  *                    struct net_device *dev,
1048  *                    const unsigned char *addr, u16 vid, u16 flags)
1049  *      Adds an FDB entry to dev for addr.
1050  * int (*ndo_fdb_del)(struct ndmsg *ndm, struct nlattr *tb[],
1051  *                    struct net_device *dev,
1052  *                    const unsigned char *addr, u16 vid)
1053  *      Deletes the FDB entry from dev coresponding to addr.
1054  * int (*ndo_fdb_dump)(struct sk_buff *skb, struct netlink_callback *cb,
1055  *                     struct net_device *dev, struct net_device *filter_dev,
1056  *                     int *idx)
1057  *      Used to add FDB entries to dump requests. Implementers should add
1058  *      entries to skb and update idx with the number of entries.
1059  *
1060  * int (*ndo_bridge_setlink)(struct net_device *dev, struct nlmsghdr *nlh,
1061  *                           u16 flags)
1062  * int (*ndo_bridge_getlink)(struct sk_buff *skb, u32 pid, u32 seq,
1063  *                           struct net_device *dev, u32 filter_mask,
1064  *                           int nlflags)
1065  * int (*ndo_bridge_dellink)(struct net_device *dev, struct nlmsghdr *nlh,
1066  *                           u16 flags);
1067  *
1068  * int (*ndo_change_carrier)(struct net_device *dev, bool new_carrier);
1069  *      Called to change device carrier. Soft-devices (like dummy, team, etc)
1070  *      which do not represent real hardware may define this to allow their
1071  *      userspace components to manage their virtual carrier state. Devices
1072  *      that determine carrier state from physical hardware properties (eg
1073  *      network cables) or protocol-dependent mechanisms (eg
1074  *      USB_CDC_NOTIFY_NETWORK_CONNECTION) should NOT implement this function.
1075  *
1076  * int (*ndo_get_phys_port_id)(struct net_device *dev,
1077  *                             struct netdev_phys_item_id *ppid);
1078  *      Called to get ID of physical port of this device. If driver does
1079  *      not implement this, it is assumed that the hw is not able to have
1080  *      multiple net devices on single physical port.
1081  *
1082  * void (*ndo_udp_tunnel_add)(struct net_device *dev,
1083  *                            struct udp_tunnel_info *ti);
1084  *      Called by UDP tunnel to notify a driver about the UDP port and socket
1085  *      address family that a UDP tunnel is listnening to. It is called only
1086  *      when a new port starts listening. The operation is protected by the
1087  *      RTNL.
1088  *
1089  * void (*ndo_udp_tunnel_del)(struct net_device *dev,
1090  *                            struct udp_tunnel_info *ti);
1091  *      Called by UDP tunnel to notify the driver about a UDP port and socket
1092  *      address family that the UDP tunnel is not listening to anymore. The
1093  *      operation is protected by the RTNL.
1094  *
1095  * void* (*ndo_dfwd_add_station)(struct net_device *pdev,
1096  *                               struct net_device *dev)
1097  *      Called by upper layer devices to accelerate switching or other
1098  *      station functionality into hardware. 'pdev is the lowerdev
1099  *      to use for the offload and 'dev' is the net device that will
1100  *      back the offload. Returns a pointer to the private structure
1101  *      the upper layer will maintain.
1102  * void (*ndo_dfwd_del_station)(struct net_device *pdev, void *priv)
1103  *      Called by upper layer device to delete the station created
1104  *      by 'ndo_dfwd_add_station'. 'pdev' is the net device backing
1105  *      the station and priv is the structure returned by the add
1106  *      operation.
1107  * netdev_tx_t (*ndo_dfwd_start_xmit)(struct sk_buff *skb,
1108  *                                    struct net_device *dev,
1109  *                                    void *priv);
1110  *      Callback to use for xmit over the accelerated station. This
1111  *      is used in place of ndo_start_xmit on accelerated net
1112  *      devices.
1113  * int (*ndo_set_tx_maxrate)(struct net_device *dev,
1114  *                           int queue_index, u32 maxrate);
1115  *      Called when a user wants to set a max-rate limitation of specific
1116  *      TX queue.
1117  * int (*ndo_get_iflink)(const struct net_device *dev);
1118  *      Called to get the iflink value of this device.
1119  * void (*ndo_change_proto_down)(struct net_device *dev,
1120  *                               bool proto_down);
1121  *      This function is used to pass protocol port error state information
1122  *      to the switch driver. The switch driver can react to the proto_down
1123  *      by doing a phys down on the associated switch port.
1124  * int (*ndo_fill_metadata_dst)(struct net_device *dev, struct sk_buff *skb);
1125  *      This function is used to get egress tunnel information for given skb.
1126  *      This is useful for retrieving outer tunnel header parameters while
1127  *      sampling packet.
1128  * void (*ndo_set_rx_headroom)(struct net_device *dev, int needed_headroom);
1129  *      This function is used to specify the headroom that the skb must
1130  *      consider when allocation skb during packet reception. Setting
1131  *      appropriate rx headroom value allows avoiding skb head copy on
1132  *      forward. Setting a negative value resets the rx headroom to the
1133  *      default value.
1134  * int (*ndo_xdp)(struct net_device *dev, struct netdev_xdp *xdp);
1135  *      This function is used to set or query state related to XDP on the
1136  *      netdevice. See definition of enum xdp_netdev_command for details.
1137  *
1138  */
1139 struct net_device_ops {
1140         int                     (*ndo_init)(struct net_device *dev);
1141         void                    (*ndo_uninit)(struct net_device *dev);
1142         int                     (*ndo_open)(struct net_device *dev);
1143         int                     (*ndo_stop)(struct net_device *dev);
1144         netdev_tx_t             (*ndo_start_xmit)(struct sk_buff *skb,
1145                                                   struct net_device *dev);
1146         netdev_features_t       (*ndo_features_check)(struct sk_buff *skb,
1147                                                       struct net_device *dev,
1148                                                       netdev_features_t features);
1149         u16                     (*ndo_select_queue)(struct net_device *dev,
1150                                                     struct sk_buff *skb,
1151                                                     void *accel_priv,
1152                                                     select_queue_fallback_t fallback);
1153         void                    (*ndo_change_rx_flags)(struct net_device *dev,
1154                                                        int flags);
1155         void                    (*ndo_set_rx_mode)(struct net_device *dev);
1156         int                     (*ndo_set_mac_address)(struct net_device *dev,
1157                                                        void *addr);
1158         int                     (*ndo_validate_addr)(struct net_device *dev);
1159         int                     (*ndo_do_ioctl)(struct net_device *dev,
1160                                                 struct ifreq *ifr, int cmd);
1161         int                     (*ndo_set_config)(struct net_device *dev,
1162                                                   struct ifmap *map);
1163         int                     (*ndo_change_mtu)(struct net_device *dev,
1164                                                   int new_mtu);
1165         int                     (*ndo_neigh_setup)(struct net_device *dev,
1166                                                    struct neigh_parms *);
1167         void                    (*ndo_tx_timeout) (struct net_device *dev);
1168
1169         void                    (*ndo_get_stats64)(struct net_device *dev,
1170                                                    struct rtnl_link_stats64 *storage);
1171         bool                    (*ndo_has_offload_stats)(const struct net_device *dev, int attr_id);
1172         int                     (*ndo_get_offload_stats)(int attr_id,
1173                                                          const struct net_device *dev,
1174                                                          void *attr_data);
1175         struct net_device_stats* (*ndo_get_stats)(struct net_device *dev);
1176
1177         int                     (*ndo_vlan_rx_add_vid)(struct net_device *dev,
1178                                                        __be16 proto, u16 vid);
1179         int                     (*ndo_vlan_rx_kill_vid)(struct net_device *dev,
1180                                                         __be16 proto, u16 vid);
1181 #ifdef CONFIG_NET_POLL_CONTROLLER
1182         void                    (*ndo_poll_controller)(struct net_device *dev);
1183         int                     (*ndo_netpoll_setup)(struct net_device *dev,
1184                                                      struct netpoll_info *info);
1185         void                    (*ndo_netpoll_cleanup)(struct net_device *dev);
1186 #endif
1187         int                     (*ndo_set_vf_mac)(struct net_device *dev,
1188                                                   int queue, u8 *mac);
1189         int                     (*ndo_set_vf_vlan)(struct net_device *dev,
1190                                                    int queue, u16 vlan,
1191                                                    u8 qos, __be16 proto);
1192         int                     (*ndo_set_vf_rate)(struct net_device *dev,
1193                                                    int vf, int min_tx_rate,
1194                                                    int max_tx_rate);
1195         int                     (*ndo_set_vf_spoofchk)(struct net_device *dev,
1196                                                        int vf, bool setting);
1197         int                     (*ndo_set_vf_trust)(struct net_device *dev,
1198                                                     int vf, bool setting);
1199         int                     (*ndo_get_vf_config)(struct net_device *dev,
1200                                                      int vf,
1201                                                      struct ifla_vf_info *ivf);
1202         int                     (*ndo_set_vf_link_state)(struct net_device *dev,
1203                                                          int vf, int link_state);
1204         int                     (*ndo_get_vf_stats)(struct net_device *dev,
1205                                                     int vf,
1206                                                     struct ifla_vf_stats
1207                                                     *vf_stats);
1208         int                     (*ndo_set_vf_port)(struct net_device *dev,
1209                                                    int vf,
1210                                                    struct nlattr *port[]);
1211         int                     (*ndo_get_vf_port)(struct net_device *dev,
1212                                                    int vf, struct sk_buff *skb);
1213         int                     (*ndo_set_vf_guid)(struct net_device *dev,
1214                                                    int vf, u64 guid,
1215                                                    int guid_type);
1216         int                     (*ndo_set_vf_rss_query_en)(
1217                                                    struct net_device *dev,
1218                                                    int vf, bool setting);
1219         int                     (*ndo_setup_tc)(struct net_device *dev,
1220                                                 u32 handle,
1221                                                 __be16 protocol,
1222                                                 struct tc_to_netdev *tc);
1223 #if IS_ENABLED(CONFIG_FCOE)
1224         int                     (*ndo_fcoe_enable)(struct net_device *dev);
1225         int                     (*ndo_fcoe_disable)(struct net_device *dev);
1226         int                     (*ndo_fcoe_ddp_setup)(struct net_device *dev,
1227                                                       u16 xid,
1228                                                       struct scatterlist *sgl,
1229                                                       unsigned int sgc);
1230         int                     (*ndo_fcoe_ddp_done)(struct net_device *dev,
1231                                                      u16 xid);
1232         int                     (*ndo_fcoe_ddp_target)(struct net_device *dev,
1233                                                        u16 xid,
1234                                                        struct scatterlist *sgl,
1235                                                        unsigned int sgc);
1236         int                     (*ndo_fcoe_get_hbainfo)(struct net_device *dev,
1237                                                         struct netdev_fcoe_hbainfo *hbainfo);
1238 #endif
1239
1240 #if IS_ENABLED(CONFIG_LIBFCOE)
1241 #define NETDEV_FCOE_WWNN 0
1242 #define NETDEV_FCOE_WWPN 1
1243         int                     (*ndo_fcoe_get_wwn)(struct net_device *dev,
1244                                                     u64 *wwn, int type);
1245 #endif
1246
1247 #ifdef CONFIG_RFS_ACCEL
1248         int                     (*ndo_rx_flow_steer)(struct net_device *dev,
1249                                                      const struct sk_buff *skb,
1250                                                      u16 rxq_index,
1251                                                      u32 flow_id);
1252 #endif
1253         int                     (*ndo_add_slave)(struct net_device *dev,
1254                                                  struct net_device *slave_dev);
1255         int                     (*ndo_del_slave)(struct net_device *dev,
1256                                                  struct net_device *slave_dev);
1257         netdev_features_t       (*ndo_fix_features)(struct net_device *dev,
1258                                                     netdev_features_t features);
1259         int                     (*ndo_set_features)(struct net_device *dev,
1260                                                     netdev_features_t features);
1261         int                     (*ndo_neigh_construct)(struct net_device *dev,
1262                                                        struct neighbour *n);
1263         void                    (*ndo_neigh_destroy)(struct net_device *dev,
1264                                                      struct neighbour *n);
1265
1266         int                     (*ndo_fdb_add)(struct ndmsg *ndm,
1267                                                struct nlattr *tb[],
1268                                                struct net_device *dev,
1269                                                const unsigned char *addr,
1270                                                u16 vid,
1271                                                u16 flags);
1272         int                     (*ndo_fdb_del)(struct ndmsg *ndm,
1273                                                struct nlattr *tb[],
1274                                                struct net_device *dev,
1275                                                const unsigned char *addr,
1276                                                u16 vid);
1277         int                     (*ndo_fdb_dump)(struct sk_buff *skb,
1278                                                 struct netlink_callback *cb,
1279                                                 struct net_device *dev,
1280                                                 struct net_device *filter_dev,
1281                                                 int *idx);
1282
1283         int                     (*ndo_bridge_setlink)(struct net_device *dev,
1284                                                       struct nlmsghdr *nlh,
1285                                                       u16 flags);
1286         int                     (*ndo_bridge_getlink)(struct sk_buff *skb,
1287                                                       u32 pid, u32 seq,
1288                                                       struct net_device *dev,
1289                                                       u32 filter_mask,
1290                                                       int nlflags);
1291         int                     (*ndo_bridge_dellink)(struct net_device *dev,
1292                                                       struct nlmsghdr *nlh,
1293                                                       u16 flags);
1294         int                     (*ndo_change_carrier)(struct net_device *dev,
1295                                                       bool new_carrier);
1296         int                     (*ndo_get_phys_port_id)(struct net_device *dev,
1297                                                         struct netdev_phys_item_id *ppid);
1298         int                     (*ndo_get_phys_port_name)(struct net_device *dev,
1299                                                           char *name, size_t len);
1300         void                    (*ndo_udp_tunnel_add)(struct net_device *dev,
1301                                                       struct udp_tunnel_info *ti);
1302         void                    (*ndo_udp_tunnel_del)(struct net_device *dev,
1303                                                       struct udp_tunnel_info *ti);
1304         void*                   (*ndo_dfwd_add_station)(struct net_device *pdev,
1305                                                         struct net_device *dev);
1306         void                    (*ndo_dfwd_del_station)(struct net_device *pdev,
1307                                                         void *priv);
1308
1309         netdev_tx_t             (*ndo_dfwd_start_xmit) (struct sk_buff *skb,
1310                                                         struct net_device *dev,
1311                                                         void *priv);
1312         int                     (*ndo_get_lock_subclass)(struct net_device *dev);
1313         int                     (*ndo_set_tx_maxrate)(struct net_device *dev,
1314                                                       int queue_index,
1315                                                       u32 maxrate);
1316         int                     (*ndo_get_iflink)(const struct net_device *dev);
1317         int                     (*ndo_change_proto_down)(struct net_device *dev,
1318                                                          bool proto_down);
1319         int                     (*ndo_fill_metadata_dst)(struct net_device *dev,
1320                                                        struct sk_buff *skb);
1321         void                    (*ndo_set_rx_headroom)(struct net_device *dev,
1322                                                        int needed_headroom);
1323         int                     (*ndo_xdp)(struct net_device *dev,
1324                                            struct netdev_xdp *xdp);
1325 };
1326
1327 /**
1328  * enum net_device_priv_flags - &struct net_device priv_flags
1329  *
1330  * These are the &struct net_device, they are only set internally
1331  * by drivers and used in the kernel. These flags are invisible to
1332  * userspace; this means that the order of these flags can change
1333  * during any kernel release.
1334  *
1335  * You should have a pretty good reason to be extending these flags.
1336  *
1337  * @IFF_802_1Q_VLAN: 802.1Q VLAN device
1338  * @IFF_EBRIDGE: Ethernet bridging device
1339  * @IFF_BONDING: bonding master or slave
1340  * @IFF_ISATAP: ISATAP interface (RFC4214)
1341  * @IFF_WAN_HDLC: WAN HDLC device
1342  * @IFF_XMIT_DST_RELEASE: dev_hard_start_xmit() is allowed to
1343  *      release skb->dst
1344  * @IFF_DONT_BRIDGE: disallow bridging this ether dev
1345  * @IFF_DISABLE_NETPOLL: disable netpoll at run-time
1346  * @IFF_MACVLAN_PORT: device used as macvlan port
1347  * @IFF_BRIDGE_PORT: device used as bridge port
1348  * @IFF_OVS_DATAPATH: device used as Open vSwitch datapath port
1349  * @IFF_TX_SKB_SHARING: The interface supports sharing skbs on transmit
1350  * @IFF_UNICAST_FLT: Supports unicast filtering
1351  * @IFF_TEAM_PORT: device used as team port
1352  * @IFF_SUPP_NOFCS: device supports sending custom FCS
1353  * @IFF_LIVE_ADDR_CHANGE: device supports hardware address
1354  *      change when it's running
1355  * @IFF_MACVLAN: Macvlan device
1356  * @IFF_XMIT_DST_RELEASE_PERM: IFF_XMIT_DST_RELEASE not taking into account
1357  *      underlying stacked devices
1358  * @IFF_IPVLAN_MASTER: IPvlan master device
1359  * @IFF_IPVLAN_SLAVE: IPvlan slave device
1360  * @IFF_L3MDEV_MASTER: device is an L3 master device
1361  * @IFF_NO_QUEUE: device can run without qdisc attached
1362  * @IFF_OPENVSWITCH: device is a Open vSwitch master
1363  * @IFF_L3MDEV_SLAVE: device is enslaved to an L3 master device
1364  * @IFF_TEAM: device is a team device
1365  * @IFF_RXFH_CONFIGURED: device has had Rx Flow indirection table configured
1366  * @IFF_PHONY_HEADROOM: the headroom value is controlled by an external
1367  *      entity (i.e. the master device for bridged veth)
1368  * @IFF_MACSEC: device is a MACsec device
1369  */
1370 enum netdev_priv_flags {
1371         IFF_802_1Q_VLAN                 = 1<<0,
1372         IFF_EBRIDGE                     = 1<<1,
1373         IFF_BONDING                     = 1<<2,
1374         IFF_ISATAP                      = 1<<3,
1375         IFF_WAN_HDLC                    = 1<<4,
1376         IFF_XMIT_DST_RELEASE            = 1<<5,
1377         IFF_DONT_BRIDGE                 = 1<<6,
1378         IFF_DISABLE_NETPOLL             = 1<<7,
1379         IFF_MACVLAN_PORT                = 1<<8,
1380         IFF_BRIDGE_PORT                 = 1<<9,
1381         IFF_OVS_DATAPATH                = 1<<10,
1382         IFF_TX_SKB_SHARING              = 1<<11,
1383         IFF_UNICAST_FLT                 = 1<<12,
1384         IFF_TEAM_PORT                   = 1<<13,
1385         IFF_SUPP_NOFCS                  = 1<<14,
1386         IFF_LIVE_ADDR_CHANGE            = 1<<15,
1387         IFF_MACVLAN                     = 1<<16,
1388         IFF_XMIT_DST_RELEASE_PERM       = 1<<17,
1389         IFF_IPVLAN_MASTER               = 1<<18,
1390         IFF_IPVLAN_SLAVE                = 1<<19,
1391         IFF_L3MDEV_MASTER               = 1<<20,
1392         IFF_NO_QUEUE                    = 1<<21,
1393         IFF_OPENVSWITCH                 = 1<<22,
1394         IFF_L3MDEV_SLAVE                = 1<<23,
1395         IFF_TEAM                        = 1<<24,
1396         IFF_RXFH_CONFIGURED             = 1<<25,
1397         IFF_PHONY_HEADROOM              = 1<<26,
1398         IFF_MACSEC                      = 1<<27,
1399 };
1400
1401 #define IFF_802_1Q_VLAN                 IFF_802_1Q_VLAN
1402 #define IFF_EBRIDGE                     IFF_EBRIDGE
1403 #define IFF_BONDING                     IFF_BONDING
1404 #define IFF_ISATAP                      IFF_ISATAP
1405 #define IFF_WAN_HDLC                    IFF_WAN_HDLC
1406 #define IFF_XMIT_DST_RELEASE            IFF_XMIT_DST_RELEASE
1407 #define IFF_DONT_BRIDGE                 IFF_DONT_BRIDGE
1408 #define IFF_DISABLE_NETPOLL             IFF_DISABLE_NETPOLL
1409 #define IFF_MACVLAN_PORT                IFF_MACVLAN_PORT
1410 #define IFF_BRIDGE_PORT                 IFF_BRIDGE_PORT
1411 #define IFF_OVS_DATAPATH                IFF_OVS_DATAPATH
1412 #define IFF_TX_SKB_SHARING              IFF_TX_SKB_SHARING
1413 #define IFF_UNICAST_FLT                 IFF_UNICAST_FLT
1414 #define IFF_TEAM_PORT                   IFF_TEAM_PORT
1415 #define IFF_SUPP_NOFCS                  IFF_SUPP_NOFCS
1416 #define IFF_LIVE_ADDR_CHANGE            IFF_LIVE_ADDR_CHANGE
1417 #define IFF_MACVLAN                     IFF_MACVLAN
1418 #define IFF_XMIT_DST_RELEASE_PERM       IFF_XMIT_DST_RELEASE_PERM
1419 #define IFF_IPVLAN_MASTER               IFF_IPVLAN_MASTER
1420 #define IFF_IPVLAN_SLAVE                IFF_IPVLAN_SLAVE
1421 #define IFF_L3MDEV_MASTER               IFF_L3MDEV_MASTER
1422 #define IFF_NO_QUEUE                    IFF_NO_QUEUE
1423 #define IFF_OPENVSWITCH                 IFF_OPENVSWITCH
1424 #define IFF_L3MDEV_SLAVE                IFF_L3MDEV_SLAVE
1425 #define IFF_TEAM                        IFF_TEAM
1426 #define IFF_RXFH_CONFIGURED             IFF_RXFH_CONFIGURED
1427 #define IFF_MACSEC                      IFF_MACSEC
1428
1429 /**
1430  *      struct net_device - The DEVICE structure.
1431  *              Actually, this whole structure is a big mistake.  It mixes I/O
1432  *              data with strictly "high-level" data, and it has to know about
1433  *              almost every data structure used in the INET module.
1434  *
1435  *      @name:  This is the first field of the "visible" part of this structure
1436  *              (i.e. as seen by users in the "Space.c" file).  It is the name
1437  *              of the interface.
1438  *
1439  *      @name_hlist:    Device name hash chain, please keep it close to name[]
1440  *      @ifalias:       SNMP alias
1441  *      @mem_end:       Shared memory end
1442  *      @mem_start:     Shared memory start
1443  *      @base_addr:     Device I/O address
1444  *      @irq:           Device IRQ number
1445  *
1446  *      @carrier_changes:       Stats to monitor carrier on<->off transitions
1447  *
1448  *      @state:         Generic network queuing layer state, see netdev_state_t
1449  *      @dev_list:      The global list of network devices
1450  *      @napi_list:     List entry used for polling NAPI devices
1451  *      @unreg_list:    List entry  when we are unregistering the
1452  *                      device; see the function unregister_netdev
1453  *      @close_list:    List entry used when we are closing the device
1454  *      @ptype_all:     Device-specific packet handlers for all protocols
1455  *      @ptype_specific: Device-specific, protocol-specific packet handlers
1456  *
1457  *      @adj_list:      Directly linked devices, like slaves for bonding
1458  *      @features:      Currently active device features
1459  *      @hw_features:   User-changeable features
1460  *
1461  *      @wanted_features:       User-requested features
1462  *      @vlan_features:         Mask of features inheritable by VLAN devices
1463  *
1464  *      @hw_enc_features:       Mask of features inherited by encapsulating devices
1465  *                              This field indicates what encapsulation
1466  *                              offloads the hardware is capable of doing,
1467  *                              and drivers will need to set them appropriately.
1468  *
1469  *      @mpls_features: Mask of features inheritable by MPLS
1470  *
1471  *      @ifindex:       interface index
1472  *      @group:         The group the device belongs to
1473  *
1474  *      @stats:         Statistics struct, which was left as a legacy, use
1475  *                      rtnl_link_stats64 instead
1476  *
1477  *      @rx_dropped:    Dropped packets by core network,
1478  *                      do not use this in drivers
1479  *      @tx_dropped:    Dropped packets by core network,
1480  *                      do not use this in drivers
1481  *      @rx_nohandler:  nohandler dropped packets by core network on
1482  *                      inactive devices, do not use this in drivers
1483  *
1484  *      @wireless_handlers:     List of functions to handle Wireless Extensions,
1485  *                              instead of ioctl,
1486  *                              see <net/iw_handler.h> for details.
1487  *      @wireless_data: Instance data managed by the core of wireless extensions
1488  *
1489  *      @netdev_ops:    Includes several pointers to callbacks,
1490  *                      if one wants to override the ndo_*() functions
1491  *      @ethtool_ops:   Management operations
1492  *      @ndisc_ops:     Includes callbacks for different IPv6 neighbour
1493  *                      discovery handling. Necessary for e.g. 6LoWPAN.
1494  *      @header_ops:    Includes callbacks for creating,parsing,caching,etc
1495  *                      of Layer 2 headers.
1496  *
1497  *      @flags:         Interface flags (a la BSD)
1498  *      @priv_flags:    Like 'flags' but invisible to userspace,
1499  *                      see if.h for the definitions
1500  *      @gflags:        Global flags ( kept as legacy )
1501  *      @padded:        How much padding added by alloc_netdev()
1502  *      @operstate:     RFC2863 operstate
1503  *      @link_mode:     Mapping policy to operstate
1504  *      @if_port:       Selectable AUI, TP, ...
1505  *      @dma:           DMA channel
1506  *      @mtu:           Interface MTU value
1507  *      @min_mtu:       Interface Minimum MTU value
1508  *      @max_mtu:       Interface Maximum MTU value
1509  *      @type:          Interface hardware type
1510  *      @hard_header_len: Maximum hardware header length.
1511  *      @min_header_len:  Minimum hardware header length
1512  *
1513  *      @needed_headroom: Extra headroom the hardware may need, but not in all
1514  *                        cases can this be guaranteed
1515  *      @needed_tailroom: Extra tailroom the hardware may need, but not in all
1516  *                        cases can this be guaranteed. Some cases also use
1517  *                        LL_MAX_HEADER instead to allocate the skb
1518  *
1519  *      interface address info:
1520  *
1521  *      @perm_addr:             Permanent hw address
1522  *      @addr_assign_type:      Hw address assignment type
1523  *      @addr_len:              Hardware address length
1524  *      @neigh_priv_len:        Used in neigh_alloc()
1525  *      @dev_id:                Used to differentiate devices that share
1526  *                              the same link layer address
1527  *      @dev_port:              Used to differentiate devices that share
1528  *                              the same function
1529  *      @addr_list_lock:        XXX: need comments on this one
1530  *      @uc_promisc:            Counter that indicates promiscuous mode
1531  *                              has been enabled due to the need to listen to
1532  *                              additional unicast addresses in a device that
1533  *                              does not implement ndo_set_rx_mode()
1534  *      @uc:                    unicast mac addresses
1535  *      @mc:                    multicast mac addresses
1536  *      @dev_addrs:             list of device hw addresses
1537  *      @queues_kset:           Group of all Kobjects in the Tx and RX queues
1538  *      @promiscuity:           Number of times the NIC is told to work in
1539  *                              promiscuous mode; if it becomes 0 the NIC will
1540  *                              exit promiscuous mode
1541  *      @allmulti:              Counter, enables or disables allmulticast mode
1542  *
1543  *      @vlan_info:     VLAN info
1544  *      @dsa_ptr:       dsa specific data
1545  *      @tipc_ptr:      TIPC specific data
1546  *      @atalk_ptr:     AppleTalk link
1547  *      @ip_ptr:        IPv4 specific data
1548  *      @dn_ptr:        DECnet specific data
1549  *      @ip6_ptr:       IPv6 specific data
1550  *      @ax25_ptr:      AX.25 specific data
1551  *      @ieee80211_ptr: IEEE 802.11 specific data, assign before registering
1552  *
1553  *      @dev_addr:      Hw address (before bcast,
1554  *                      because most packets are unicast)
1555  *
1556  *      @_rx:                   Array of RX queues
1557  *      @num_rx_queues:         Number of RX queues
1558  *                              allocated at register_netdev() time
1559  *      @real_num_rx_queues:    Number of RX queues currently active in device
1560  *
1561  *      @rx_handler:            handler for received packets
1562  *      @rx_handler_data:       XXX: need comments on this one
1563  *      @ingress_queue:         XXX: need comments on this one
1564  *      @broadcast:             hw bcast address
1565  *
1566  *      @rx_cpu_rmap:   CPU reverse-mapping for RX completion interrupts,
1567  *                      indexed by RX queue number. Assigned by driver.
1568  *                      This must only be set if the ndo_rx_flow_steer
1569  *                      operation is defined
1570  *      @index_hlist:           Device index hash chain
1571  *
1572  *      @_tx:                   Array of TX queues
1573  *      @num_tx_queues:         Number of TX queues allocated at alloc_netdev_mq() time
1574  *      @real_num_tx_queues:    Number of TX queues currently active in device
1575  *      @qdisc:                 Root qdisc from userspace point of view
1576  *      @tx_queue_len:          Max frames per queue allowed
1577  *      @tx_global_lock:        XXX: need comments on this one
1578  *
1579  *      @xps_maps:      XXX: need comments on this one
1580  *
1581  *      @watchdog_timeo:        Represents the timeout that is used by
1582  *                              the watchdog (see dev_watchdog())
1583  *      @watchdog_timer:        List of timers
1584  *
1585  *      @pcpu_refcnt:           Number of references to this device
1586  *      @todo_list:             Delayed register/unregister
1587  *      @link_watch_list:       XXX: need comments on this one
1588  *
1589  *      @reg_state:             Register/unregister state machine
1590  *      @dismantle:             Device is going to be freed
1591  *      @rtnl_link_state:       This enum represents the phases of creating
1592  *                              a new link
1593  *
1594  *      @destructor:            Called from unregister,
1595  *                              can be used to call free_netdev
1596  *      @npinfo:                XXX: need comments on this one
1597  *      @nd_net:                Network namespace this network device is inside
1598  *
1599  *      @ml_priv:       Mid-layer private
1600  *      @lstats:        Loopback statistics
1601  *      @tstats:        Tunnel statistics
1602  *      @dstats:        Dummy statistics
1603  *      @vstats:        Virtual ethernet statistics
1604  *
1605  *      @garp_port:     GARP
1606  *      @mrp_port:      MRP
1607  *
1608  *      @dev:           Class/net/name entry
1609  *      @sysfs_groups:  Space for optional device, statistics and wireless
1610  *                      sysfs groups
1611  *
1612  *      @sysfs_rx_queue_group:  Space for optional per-rx queue attributes
1613  *      @rtnl_link_ops: Rtnl_link_ops
1614  *
1615  *      @gso_max_size:  Maximum size of generic segmentation offload
1616  *      @gso_max_segs:  Maximum number of segments that can be passed to the
1617  *                      NIC for GSO
1618  *
1619  *      @dcbnl_ops:     Data Center Bridging netlink ops
1620  *      @num_tc:        Number of traffic classes in the net device
1621  *      @tc_to_txq:     XXX: need comments on this one
1622  *      @prio_tc_map:   XXX: need comments on this one
1623  *
1624  *      @fcoe_ddp_xid:  Max exchange id for FCoE LRO by ddp
1625  *
1626  *      @priomap:       XXX: need comments on this one
1627  *      @phydev:        Physical device may attach itself
1628  *                      for hardware timestamping
1629  *
1630  *      @qdisc_tx_busylock: lockdep class annotating Qdisc->busylock spinlock
1631  *      @qdisc_running_key: lockdep class annotating Qdisc->running seqcount
1632  *
1633  *      @proto_down:    protocol port state information can be sent to the
1634  *                      switch driver and used to set the phys state of the
1635  *                      switch port.
1636  *
1637  *      FIXME: cleanup struct net_device such that network protocol info
1638  *      moves out.
1639  */
1640
1641 struct net_device {
1642         char                    name[IFNAMSIZ];
1643         struct hlist_node       name_hlist;
1644         char                    *ifalias;
1645         /*
1646          *      I/O specific fields
1647          *      FIXME: Merge these and struct ifmap into one
1648          */
1649         unsigned long           mem_end;
1650         unsigned long           mem_start;
1651         unsigned long           base_addr;
1652         int                     irq;
1653
1654         atomic_t                carrier_changes;
1655
1656         /*
1657          *      Some hardware also needs these fields (state,dev_list,
1658          *      napi_list,unreg_list,close_list) but they are not
1659          *      part of the usual set specified in Space.c.
1660          */
1661
1662         unsigned long           state;
1663
1664         struct list_head        dev_list;
1665         struct list_head        napi_list;
1666         struct list_head        unreg_list;
1667         struct list_head        close_list;
1668         struct list_head        ptype_all;
1669         struct list_head        ptype_specific;
1670
1671         struct {
1672                 struct list_head upper;
1673                 struct list_head lower;
1674         } adj_list;
1675
1676         netdev_features_t       features;
1677         netdev_features_t       hw_features;
1678         netdev_features_t       wanted_features;
1679         netdev_features_t       vlan_features;
1680         netdev_features_t       hw_enc_features;
1681         netdev_features_t       mpls_features;
1682         netdev_features_t       gso_partial_features;
1683
1684         int                     ifindex;
1685         int                     group;
1686
1687         struct net_device_stats stats;
1688
1689         atomic_long_t           rx_dropped;
1690         atomic_long_t           tx_dropped;
1691         atomic_long_t           rx_nohandler;
1692
1693 #ifdef CONFIG_WIRELESS_EXT
1694         const struct iw_handler_def *wireless_handlers;
1695         struct iw_public_data   *wireless_data;
1696 #endif
1697         const struct net_device_ops *netdev_ops;
1698         const struct ethtool_ops *ethtool_ops;
1699 #ifdef CONFIG_NET_SWITCHDEV
1700         const struct switchdev_ops *switchdev_ops;
1701 #endif
1702 #ifdef CONFIG_NET_L3_MASTER_DEV
1703         const struct l3mdev_ops *l3mdev_ops;
1704 #endif
1705 #if IS_ENABLED(CONFIG_IPV6)
1706         const struct ndisc_ops *ndisc_ops;
1707 #endif
1708
1709 #ifdef CONFIG_XFRM
1710         const struct xfrmdev_ops *xfrmdev_ops;
1711 #endif
1712
1713         const struct header_ops *header_ops;
1714
1715         unsigned int            flags;
1716         unsigned int            priv_flags;
1717
1718         unsigned short          gflags;
1719         unsigned short          padded;
1720
1721         unsigned char           operstate;
1722         unsigned char           link_mode;
1723
1724         unsigned char           if_port;
1725         unsigned char           dma;
1726
1727         unsigned int            mtu;
1728         unsigned int            min_mtu;
1729         unsigned int            max_mtu;
1730         unsigned short          type;
1731         unsigned short          hard_header_len;
1732         unsigned char           min_header_len;
1733
1734         unsigned short          needed_headroom;
1735         unsigned short          needed_tailroom;
1736
1737         /* Interface address info. */
1738         unsigned char           perm_addr[MAX_ADDR_LEN];
1739         unsigned char           addr_assign_type;
1740         unsigned char           addr_len;
1741         unsigned short          neigh_priv_len;
1742         unsigned short          dev_id;
1743         unsigned short          dev_port;
1744         spinlock_t              addr_list_lock;
1745         unsigned char           name_assign_type;
1746         bool                    uc_promisc;
1747         struct netdev_hw_addr_list      uc;
1748         struct netdev_hw_addr_list      mc;
1749         struct netdev_hw_addr_list      dev_addrs;
1750
1751 #ifdef CONFIG_SYSFS
1752         struct kset             *queues_kset;
1753 #endif
1754         unsigned int            promiscuity;
1755         unsigned int            allmulti;
1756
1757
1758         /* Protocol-specific pointers */
1759
1760 #if IS_ENABLED(CONFIG_VLAN_8021Q)
1761         struct vlan_info __rcu  *vlan_info;
1762 #endif
1763 #if IS_ENABLED(CONFIG_NET_DSA)
1764         struct dsa_switch_tree  *dsa_ptr;
1765 #endif
1766 #if IS_ENABLED(CONFIG_TIPC)
1767         struct tipc_bearer __rcu *tipc_ptr;
1768 #endif
1769         void                    *atalk_ptr;
1770         struct in_device __rcu  *ip_ptr;
1771         struct dn_dev __rcu     *dn_ptr;
1772         struct inet6_dev __rcu  *ip6_ptr;
1773         void                    *ax25_ptr;
1774         struct wireless_dev     *ieee80211_ptr;
1775         struct wpan_dev         *ieee802154_ptr;
1776 #if IS_ENABLED(CONFIG_MPLS_ROUTING)
1777         struct mpls_dev __rcu   *mpls_ptr;
1778 #endif
1779
1780 /*
1781  * Cache lines mostly used on receive path (including eth_type_trans())
1782  */
1783         /* Interface address info used in eth_type_trans() */
1784         unsigned char           *dev_addr;
1785
1786 #ifdef CONFIG_SYSFS
1787         struct netdev_rx_queue  *_rx;
1788
1789         unsigned int            num_rx_queues;
1790         unsigned int            real_num_rx_queues;
1791 #endif
1792
1793         unsigned long           gro_flush_timeout;
1794         rx_handler_func_t __rcu *rx_handler;
1795         void __rcu              *rx_handler_data;
1796
1797 #ifdef CONFIG_NET_CLS_ACT
1798         struct tcf_proto __rcu  *ingress_cl_list;
1799 #endif
1800         struct netdev_queue __rcu *ingress_queue;
1801 #ifdef CONFIG_NETFILTER_INGRESS
1802         struct nf_hook_entry __rcu *nf_hooks_ingress;
1803 #endif
1804
1805         unsigned char           broadcast[MAX_ADDR_LEN];
1806 #ifdef CONFIG_RFS_ACCEL
1807         struct cpu_rmap         *rx_cpu_rmap;
1808 #endif
1809         struct hlist_node       index_hlist;
1810
1811 /*
1812  * Cache lines mostly used on transmit path
1813  */
1814         struct netdev_queue     *_tx ____cacheline_aligned_in_smp;
1815         unsigned int            num_tx_queues;
1816         unsigned int            real_num_tx_queues;
1817         struct Qdisc            *qdisc;
1818 #ifdef CONFIG_NET_SCHED
1819         DECLARE_HASHTABLE       (qdisc_hash, 4);
1820 #endif
1821         unsigned long           tx_queue_len;
1822         spinlock_t              tx_global_lock;
1823         int                     watchdog_timeo;
1824
1825 #ifdef CONFIG_XPS
1826         struct xps_dev_maps __rcu *xps_maps;
1827 #endif
1828 #ifdef CONFIG_NET_CLS_ACT
1829         struct tcf_proto __rcu  *egress_cl_list;
1830 #endif
1831
1832         /* These may be needed for future network-power-down code. */
1833         struct timer_list       watchdog_timer;
1834
1835         int __percpu            *pcpu_refcnt;
1836         struct list_head        todo_list;
1837
1838         struct list_head        link_watch_list;
1839
1840         enum { NETREG_UNINITIALIZED=0,
1841                NETREG_REGISTERED,       /* completed register_netdevice */
1842                NETREG_UNREGISTERING,    /* called unregister_netdevice */
1843                NETREG_UNREGISTERED,     /* completed unregister todo */
1844                NETREG_RELEASED,         /* called free_netdev */
1845                NETREG_DUMMY,            /* dummy device for NAPI poll */
1846         } reg_state:8;
1847
1848         bool dismantle;
1849
1850         enum {
1851                 RTNL_LINK_INITIALIZED,
1852                 RTNL_LINK_INITIALIZING,
1853         } rtnl_link_state:16;
1854
1855         void (*destructor)(struct net_device *dev);
1856
1857 #ifdef CONFIG_NETPOLL
1858         struct netpoll_info __rcu       *npinfo;
1859 #endif
1860
1861         possible_net_t                  nd_net;
1862
1863         /* mid-layer private */
1864         union {
1865                 void                                    *ml_priv;
1866                 struct pcpu_lstats __percpu             *lstats;
1867                 struct pcpu_sw_netstats __percpu        *tstats;
1868                 struct pcpu_dstats __percpu             *dstats;
1869                 struct pcpu_vstats __percpu             *vstats;
1870         };
1871
1872 #if IS_ENABLED(CONFIG_GARP)
1873         struct garp_port __rcu  *garp_port;
1874 #endif
1875 #if IS_ENABLED(CONFIG_MRP)
1876         struct mrp_port __rcu   *mrp_port;
1877 #endif
1878
1879         struct device           dev;
1880         const struct attribute_group *sysfs_groups[4];
1881         const struct attribute_group *sysfs_rx_queue_group;
1882
1883         const struct rtnl_link_ops *rtnl_link_ops;
1884
1885         /* for setting kernel sock attribute on TCP connection setup */
1886 #define GSO_MAX_SIZE            65536
1887         unsigned int            gso_max_size;
1888 #define GSO_MAX_SEGS            65535
1889         u16                     gso_max_segs;
1890
1891 #ifdef CONFIG_DCB
1892         const struct dcbnl_rtnl_ops *dcbnl_ops;
1893 #endif
1894         u8                      num_tc;
1895         struct netdev_tc_txq    tc_to_txq[TC_MAX_QUEUE];
1896         u8                      prio_tc_map[TC_BITMASK + 1];
1897
1898 #if IS_ENABLED(CONFIG_FCOE)
1899         unsigned int            fcoe_ddp_xid;
1900 #endif
1901 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
1902         struct netprio_map __rcu *priomap;
1903 #endif
1904         struct phy_device       *phydev;
1905         struct lock_class_key   *qdisc_tx_busylock;
1906         struct lock_class_key   *qdisc_running_key;
1907         bool                    proto_down;
1908 };
1909 #define to_net_dev(d) container_of(d, struct net_device, dev)
1910
1911 #define NETDEV_ALIGN            32
1912
1913 static inline
1914 int netdev_get_prio_tc_map(const struct net_device *dev, u32 prio)
1915 {
1916         return dev->prio_tc_map[prio & TC_BITMASK];
1917 }
1918
1919 static inline
1920 int netdev_set_prio_tc_map(struct net_device *dev, u8 prio, u8 tc)
1921 {
1922         if (tc >= dev->num_tc)
1923                 return -EINVAL;
1924
1925         dev->prio_tc_map[prio & TC_BITMASK] = tc & TC_BITMASK;
1926         return 0;
1927 }
1928
1929 int netdev_txq_to_tc(struct net_device *dev, unsigned int txq);
1930 void netdev_reset_tc(struct net_device *dev);
1931 int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset);
1932 int netdev_set_num_tc(struct net_device *dev, u8 num_tc);
1933
1934 static inline
1935 int netdev_get_num_tc(struct net_device *dev)
1936 {
1937         return dev->num_tc;
1938 }
1939
1940 static inline
1941 struct netdev_queue *netdev_get_tx_queue(const struct net_device *dev,
1942                                          unsigned int index)
1943 {
1944         return &dev->_tx[index];
1945 }
1946
1947 static inline struct netdev_queue *skb_get_tx_queue(const struct net_device *dev,
1948                                                     const struct sk_buff *skb)
1949 {
1950         return netdev_get_tx_queue(dev, skb_get_queue_mapping(skb));
1951 }
1952
1953 static inline void netdev_for_each_tx_queue(struct net_device *dev,
1954                                             void (*f)(struct net_device *,
1955                                                       struct netdev_queue *,
1956                                                       void *),
1957                                             void *arg)
1958 {
1959         unsigned int i;
1960
1961         for (i = 0; i < dev->num_tx_queues; i++)
1962                 f(dev, &dev->_tx[i], arg);
1963 }
1964
1965 #define netdev_lockdep_set_classes(dev)                         \
1966 {                                                               \
1967         static struct lock_class_key qdisc_tx_busylock_key;     \
1968         static struct lock_class_key qdisc_running_key;         \
1969         static struct lock_class_key qdisc_xmit_lock_key;       \
1970         static struct lock_class_key dev_addr_list_lock_key;    \
1971         unsigned int i;                                         \
1972                                                                 \
1973         (dev)->qdisc_tx_busylock = &qdisc_tx_busylock_key;      \
1974         (dev)->qdisc_running_key = &qdisc_running_key;          \
1975         lockdep_set_class(&(dev)->addr_list_lock,               \
1976                           &dev_addr_list_lock_key);             \
1977         for (i = 0; i < (dev)->num_tx_queues; i++)              \
1978                 lockdep_set_class(&(dev)->_tx[i]._xmit_lock,    \
1979                                   &qdisc_xmit_lock_key);        \
1980 }
1981
1982 struct netdev_queue *netdev_pick_tx(struct net_device *dev,
1983                                     struct sk_buff *skb,
1984                                     void *accel_priv);
1985
1986 /* returns the headroom that the master device needs to take in account
1987  * when forwarding to this dev
1988  */
1989 static inline unsigned netdev_get_fwd_headroom(struct net_device *dev)
1990 {
1991         return dev->priv_flags & IFF_PHONY_HEADROOM ? 0 : dev->needed_headroom;
1992 }
1993
1994 static inline void netdev_set_rx_headroom(struct net_device *dev, int new_hr)
1995 {
1996         if (dev->netdev_ops->ndo_set_rx_headroom)
1997                 dev->netdev_ops->ndo_set_rx_headroom(dev, new_hr);
1998 }
1999
2000 /* set the device rx headroom to the dev's default */
2001 static inline void netdev_reset_rx_headroom(struct net_device *dev)
2002 {
2003         netdev_set_rx_headroom(dev, -1);
2004 }
2005
2006 /*
2007  * Net namespace inlines
2008  */
2009 static inline
2010 struct net *dev_net(const struct net_device *dev)
2011 {
2012         return read_pnet(&dev->nd_net);
2013 }
2014
2015 static inline
2016 void dev_net_set(struct net_device *dev, struct net *net)
2017 {
2018         write_pnet(&dev->nd_net, net);
2019 }
2020
2021 /**
2022  *      netdev_priv - access network device private data
2023  *      @dev: network device
2024  *
2025  * Get network device private data
2026  */
2027 static inline void *netdev_priv(const struct net_device *dev)
2028 {
2029         return (char *)dev + ALIGN(sizeof(struct net_device), NETDEV_ALIGN);
2030 }
2031
2032 /* Set the sysfs physical device reference for the network logical device
2033  * if set prior to registration will cause a symlink during initialization.
2034  */
2035 #define SET_NETDEV_DEV(net, pdev)       ((net)->dev.parent = (pdev))
2036
2037 /* Set the sysfs device type for the network logical device to allow
2038  * fine-grained identification of different network device types. For
2039  * example Ethernet, Wireless LAN, Bluetooth, WiMAX etc.
2040  */
2041 #define SET_NETDEV_DEVTYPE(net, devtype)        ((net)->dev.type = (devtype))
2042
2043 /* Default NAPI poll() weight
2044  * Device drivers are strongly advised to not use bigger value
2045  */
2046 #define NAPI_POLL_WEIGHT 64
2047
2048 /**
2049  *      netif_napi_add - initialize a NAPI context
2050  *      @dev:  network device
2051  *      @napi: NAPI context
2052  *      @poll: polling function
2053  *      @weight: default weight
2054  *
2055  * netif_napi_add() must be used to initialize a NAPI context prior to calling
2056  * *any* of the other NAPI-related functions.
2057  */
2058 void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
2059                     int (*poll)(struct napi_struct *, int), int weight);
2060
2061 /**
2062  *      netif_tx_napi_add - initialize a NAPI context
2063  *      @dev:  network device
2064  *      @napi: NAPI context
2065  *      @poll: polling function
2066  *      @weight: default weight
2067  *
2068  * This variant of netif_napi_add() should be used from drivers using NAPI
2069  * to exclusively poll a TX queue.
2070  * This will avoid we add it into napi_hash[], thus polluting this hash table.
2071  */
2072 static inline void netif_tx_napi_add(struct net_device *dev,
2073                                      struct napi_struct *napi,
2074                                      int (*poll)(struct napi_struct *, int),
2075                                      int weight)
2076 {
2077         set_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state);
2078         netif_napi_add(dev, napi, poll, weight);
2079 }
2080
2081 /**
2082  *  netif_napi_del - remove a NAPI context
2083  *  @napi: NAPI context
2084  *
2085  *  netif_napi_del() removes a NAPI context from the network device NAPI list
2086  */
2087 void netif_napi_del(struct napi_struct *napi);
2088
2089 struct napi_gro_cb {
2090         /* Virtual address of skb_shinfo(skb)->frags[0].page + offset. */
2091         void    *frag0;
2092
2093         /* Length of frag0. */
2094         unsigned int frag0_len;
2095
2096         /* This indicates where we are processing relative to skb->data. */
2097         int     data_offset;
2098
2099         /* This is non-zero if the packet cannot be merged with the new skb. */
2100         u16     flush;
2101
2102         /* Save the IP ID here and check when we get to the transport layer */
2103         u16     flush_id;
2104
2105         /* Number of segments aggregated. */
2106         u16     count;
2107
2108         /* Start offset for remote checksum offload */
2109         u16     gro_remcsum_start;
2110
2111         /* jiffies when first packet was created/queued */
2112         unsigned long age;
2113
2114         /* Used in ipv6_gro_receive() and foo-over-udp */
2115         u16     proto;
2116
2117         /* This is non-zero if the packet may be of the same flow. */
2118         u8      same_flow:1;
2119
2120         /* Used in tunnel GRO receive */
2121         u8      encap_mark:1;
2122
2123         /* GRO checksum is valid */
2124         u8      csum_valid:1;
2125
2126         /* Number of checksums via CHECKSUM_UNNECESSARY */
2127         u8      csum_cnt:3;
2128
2129         /* Free the skb? */
2130         u8      free:2;
2131 #define NAPI_GRO_FREE             1
2132 #define NAPI_GRO_FREE_STOLEN_HEAD 2
2133
2134         /* Used in foo-over-udp, set in udp[46]_gro_receive */
2135         u8      is_ipv6:1;
2136
2137         /* Used in GRE, set in fou/gue_gro_receive */
2138         u8      is_fou:1;
2139
2140         /* Used to determine if flush_id can be ignored */
2141         u8      is_atomic:1;
2142
2143         /* Number of gro_receive callbacks this packet already went through */
2144         u8 recursion_counter:4;
2145
2146         /* 1 bit hole */
2147
2148         /* used to support CHECKSUM_COMPLETE for tunneling protocols */
2149         __wsum  csum;
2150
2151         /* used in skb_gro_receive() slow path */
2152         struct sk_buff *last;
2153 };
2154
2155 #define NAPI_GRO_CB(skb) ((struct napi_gro_cb *)(skb)->cb)
2156
2157 #define GRO_RECURSION_LIMIT 15
2158 static inline int gro_recursion_inc_test(struct sk_buff *skb)
2159 {
2160         return ++NAPI_GRO_CB(skb)->recursion_counter == GRO_RECURSION_LIMIT;
2161 }
2162
2163 typedef struct sk_buff **(*gro_receive_t)(struct sk_buff **, struct sk_buff *);
2164 static inline struct sk_buff **call_gro_receive(gro_receive_t cb,
2165                                                 struct sk_buff **head,
2166                                                 struct sk_buff *skb)
2167 {
2168         if (unlikely(gro_recursion_inc_test(skb))) {
2169                 NAPI_GRO_CB(skb)->flush |= 1;
2170                 return NULL;
2171         }
2172
2173         return cb(head, skb);
2174 }
2175
2176 typedef struct sk_buff **(*gro_receive_sk_t)(struct sock *, struct sk_buff **,
2177                                              struct sk_buff *);
2178 static inline struct sk_buff **call_gro_receive_sk(gro_receive_sk_t cb,
2179                                                    struct sock *sk,
2180                                                    struct sk_buff **head,
2181                                                    struct sk_buff *skb)
2182 {
2183         if (unlikely(gro_recursion_inc_test(skb))) {
2184                 NAPI_GRO_CB(skb)->flush |= 1;
2185                 return NULL;
2186         }
2187
2188         return cb(sk, head, skb);
2189 }
2190
2191 struct packet_type {
2192         __be16                  type;   /* This is really htons(ether_type). */
2193         struct net_device       *dev;   /* NULL is wildcarded here           */
2194         int                     (*func) (struct sk_buff *,
2195                                          struct net_device *,
2196                                          struct packet_type *,
2197                                          struct net_device *);
2198         bool                    (*id_match)(struct packet_type *ptype,
2199                                             struct sock *sk);
2200         void                    *af_packet_priv;
2201         struct list_head        list;
2202 };
2203
2204 struct offload_callbacks {
2205         struct sk_buff          *(*gso_segment)(struct sk_buff *skb,
2206                                                 netdev_features_t features);
2207         struct sk_buff          **(*gro_receive)(struct sk_buff **head,
2208                                                  struct sk_buff *skb);
2209         int                     (*gro_complete)(struct sk_buff *skb, int nhoff);
2210 };
2211
2212 struct packet_offload {
2213         __be16                   type;  /* This is really htons(ether_type). */
2214         u16                      priority;
2215         struct offload_callbacks callbacks;
2216         struct list_head         list;
2217 };
2218
2219 /* often modified stats are per-CPU, other are shared (netdev->stats) */
2220 struct pcpu_sw_netstats {
2221         u64     rx_packets;
2222         u64     rx_bytes;
2223         u64     tx_packets;
2224         u64     tx_bytes;
2225         struct u64_stats_sync   syncp;
2226 };
2227
2228 #define __netdev_alloc_pcpu_stats(type, gfp)                            \
2229 ({                                                                      \
2230         typeof(type) __percpu *pcpu_stats = alloc_percpu_gfp(type, gfp);\
2231         if (pcpu_stats) {                                               \
2232                 int __cpu;                                              \
2233                 for_each_possible_cpu(__cpu) {                          \
2234                         typeof(type) *stat;                             \
2235                         stat = per_cpu_ptr(pcpu_stats, __cpu);          \
2236                         u64_stats_init(&stat->syncp);                   \
2237                 }                                                       \
2238         }                                                               \
2239         pcpu_stats;                                                     \
2240 })
2241
2242 #define netdev_alloc_pcpu_stats(type)                                   \
2243         __netdev_alloc_pcpu_stats(type, GFP_KERNEL)
2244
2245 enum netdev_lag_tx_type {
2246         NETDEV_LAG_TX_TYPE_UNKNOWN,
2247         NETDEV_LAG_TX_TYPE_RANDOM,
2248         NETDEV_LAG_TX_TYPE_BROADCAST,
2249         NETDEV_LAG_TX_TYPE_ROUNDROBIN,
2250         NETDEV_LAG_TX_TYPE_ACTIVEBACKUP,
2251         NETDEV_LAG_TX_TYPE_HASH,
2252 };
2253
2254 struct netdev_lag_upper_info {
2255         enum netdev_lag_tx_type tx_type;
2256 };
2257
2258 struct netdev_lag_lower_state_info {
2259         u8 link_up : 1,
2260            tx_enabled : 1;
2261 };
2262
2263 #include <linux/notifier.h>
2264
2265 /* netdevice notifier chain. Please remember to update the rtnetlink
2266  * notification exclusion list in rtnetlink_event() when adding new
2267  * types.
2268  */
2269 #define NETDEV_UP       0x0001  /* For now you can't veto a device up/down */
2270 #define NETDEV_DOWN     0x0002
2271 #define NETDEV_REBOOT   0x0003  /* Tell a protocol stack a network interface
2272                                    detected a hardware crash and restarted
2273                                    - we can use this eg to kick tcp sessions
2274                                    once done */
2275 #define NETDEV_CHANGE   0x0004  /* Notify device state change */
2276 #define NETDEV_REGISTER 0x0005
2277 #define NETDEV_UNREGISTER       0x0006
2278 #define NETDEV_CHANGEMTU        0x0007 /* notify after mtu change happened */
2279 #define NETDEV_CHANGEADDR       0x0008
2280 #define NETDEV_GOING_DOWN       0x0009
2281 #define NETDEV_CHANGENAME       0x000A
2282 #define NETDEV_FEAT_CHANGE      0x000B
2283 #define NETDEV_BONDING_FAILOVER 0x000C
2284 #define NETDEV_PRE_UP           0x000D
2285 #define NETDEV_PRE_TYPE_CHANGE  0x000E
2286 #define NETDEV_POST_TYPE_CHANGE 0x000F
2287 #define NETDEV_POST_INIT        0x0010
2288 #define NETDEV_UNREGISTER_FINAL 0x0011
2289 #define NETDEV_RELEASE          0x0012
2290 #define NETDEV_NOTIFY_PEERS     0x0013
2291 #define NETDEV_JOIN             0x0014
2292 #define NETDEV_CHANGEUPPER      0x0015
2293 #define NETDEV_RESEND_IGMP      0x0016
2294 #define NETDEV_PRECHANGEMTU     0x0017 /* notify before mtu change happened */
2295 #define NETDEV_CHANGEINFODATA   0x0018
2296 #define NETDEV_BONDING_INFO     0x0019
2297 #define NETDEV_PRECHANGEUPPER   0x001A
2298 #define NETDEV_CHANGELOWERSTATE 0x001B
2299 #define NETDEV_UDP_TUNNEL_PUSH_INFO     0x001C
2300 #define NETDEV_CHANGE_TX_QUEUE_LEN      0x001E
2301
2302 int register_netdevice_notifier(struct notifier_block *nb);
2303 int unregister_netdevice_notifier(struct notifier_block *nb);
2304
2305 struct netdev_notifier_info {
2306         struct net_device *dev;
2307 };
2308
2309 struct netdev_notifier_change_info {
2310         struct netdev_notifier_info info; /* must be first */
2311         unsigned int flags_changed;
2312 };
2313
2314 struct netdev_notifier_changeupper_info {
2315         struct netdev_notifier_info info; /* must be first */
2316         struct net_device *upper_dev; /* new upper dev */
2317         bool master; /* is upper dev master */
2318         bool linking; /* is the notification for link or unlink */
2319         void *upper_info; /* upper dev info */
2320 };
2321
2322 struct netdev_notifier_changelowerstate_info {
2323         struct netdev_notifier_info info; /* must be first */
2324         void *lower_state_info; /* is lower dev state */
2325 };
2326
2327 static inline void netdev_notifier_info_init(struct netdev_notifier_info *info,
2328                                              struct net_device *dev)
2329 {
2330         info->dev = dev;
2331 }
2332
2333 static inline struct net_device *
2334 netdev_notifier_info_to_dev(const struct netdev_notifier_info *info)
2335 {
2336         return info->dev;
2337 }
2338
2339 int call_netdevice_notifiers(unsigned long val, struct net_device *dev);
2340
2341
2342 extern rwlock_t                         dev_base_lock;          /* Device list lock */
2343
2344 #define for_each_netdev(net, d)         \
2345                 list_for_each_entry(d, &(net)->dev_base_head, dev_list)
2346 #define for_each_netdev_reverse(net, d) \
2347                 list_for_each_entry_reverse(d, &(net)->dev_base_head, dev_list)
2348 #define for_each_netdev_rcu(net, d)             \
2349                 list_for_each_entry_rcu(d, &(net)->dev_base_head, dev_list)
2350 #define for_each_netdev_safe(net, d, n) \
2351                 list_for_each_entry_safe(d, n, &(net)->dev_base_head, dev_list)
2352 #define for_each_netdev_continue(net, d)                \
2353                 list_for_each_entry_continue(d, &(net)->dev_base_head, dev_list)
2354 #define for_each_netdev_continue_rcu(net, d)            \
2355         list_for_each_entry_continue_rcu(d, &(net)->dev_base_head, dev_list)
2356 #define for_each_netdev_in_bond_rcu(bond, slave)        \
2357                 for_each_netdev_rcu(&init_net, slave)   \
2358                         if (netdev_master_upper_dev_get_rcu(slave) == (bond))
2359 #define net_device_entry(lh)    list_entry(lh, struct net_device, dev_list)
2360
2361 static inline struct net_device *next_net_device(struct net_device *dev)
2362 {
2363         struct list_head *lh;
2364         struct net *net;
2365
2366         net = dev_net(dev);
2367         lh = dev->dev_list.next;
2368         return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
2369 }
2370
2371 static inline struct net_device *next_net_device_rcu(struct net_device *dev)
2372 {
2373         struct list_head *lh;
2374         struct net *net;
2375
2376         net = dev_net(dev);
2377         lh = rcu_dereference(list_next_rcu(&dev->dev_list));
2378         return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
2379 }
2380
2381 static inline struct net_device *first_net_device(struct net *net)
2382 {
2383         return list_empty(&net->dev_base_head) ? NULL :
2384                 net_device_entry(net->dev_base_head.next);
2385 }
2386
2387 static inline struct net_device *first_net_device_rcu(struct net *net)
2388 {
2389         struct list_head *lh = rcu_dereference(list_next_rcu(&net->dev_base_head));
2390
2391         return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
2392 }
2393
2394 int netdev_boot_setup_check(struct net_device *dev);
2395 unsigned long netdev_boot_base(const char *prefix, int unit);
2396 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
2397                                        const char *hwaddr);
2398 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type);
2399 struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type);
2400 void dev_add_pack(struct packet_type *pt);
2401 void dev_remove_pack(struct packet_type *pt);
2402 void __dev_remove_pack(struct packet_type *pt);
2403 void dev_add_offload(struct packet_offload *po);
2404 void dev_remove_offload(struct packet_offload *po);
2405
2406 int dev_get_iflink(const struct net_device *dev);
2407 int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb);
2408 struct net_device *__dev_get_by_flags(struct net *net, unsigned short flags,
2409                                       unsigned short mask);
2410 struct net_device *dev_get_by_name(struct net *net, const char *name);
2411 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name);
2412 struct net_device *__dev_get_by_name(struct net *net, const char *name);
2413 int dev_alloc_name(struct net_device *dev, const char *name);
2414 int dev_open(struct net_device *dev);
2415 int dev_close(struct net_device *dev);
2416 int dev_close_many(struct list_head *head, bool unlink);
2417 void dev_disable_lro(struct net_device *dev);
2418 int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *newskb);
2419 int dev_queue_xmit(struct sk_buff *skb);
2420 int dev_queue_xmit_accel(struct sk_buff *skb, void *accel_priv);
2421 int register_netdevice(struct net_device *dev);
2422 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head);
2423 void unregister_netdevice_many(struct list_head *head);
2424 static inline void unregister_netdevice(struct net_device *dev)
2425 {
2426         unregister_netdevice_queue(dev, NULL);
2427 }
2428
2429 int netdev_refcnt_read(const struct net_device *dev);
2430 void free_netdev(struct net_device *dev);
2431 void netdev_freemem(struct net_device *dev);
2432 void synchronize_net(void);
2433 int init_dummy_netdev(struct net_device *dev);
2434
2435 DECLARE_PER_CPU(int, xmit_recursion);
2436 #define XMIT_RECURSION_LIMIT    10
2437
2438 static inline int dev_recursion_level(void)
2439 {
2440         return this_cpu_read(xmit_recursion);
2441 }
2442
2443 struct net_device *dev_get_by_index(struct net *net, int ifindex);
2444 struct net_device *__dev_get_by_index(struct net *net, int ifindex);
2445 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex);
2446 int netdev_get_name(struct net *net, char *name, int ifindex);
2447 int dev_restart(struct net_device *dev);
2448 int skb_gro_receive(struct sk_buff **head, struct sk_buff *skb);
2449
2450 static inline unsigned int skb_gro_offset(const struct sk_buff *skb)
2451 {
2452         return NAPI_GRO_CB(skb)->data_offset;
2453 }
2454
2455 static inline unsigned int skb_gro_len(const struct sk_buff *skb)
2456 {
2457         return skb->len - NAPI_GRO_CB(skb)->data_offset;
2458 }
2459
2460 static inline void skb_gro_pull(struct sk_buff *skb, unsigned int len)
2461 {
2462         NAPI_GRO_CB(skb)->data_offset += len;
2463 }
2464
2465 static inline void *skb_gro_header_fast(struct sk_buff *skb,
2466                                         unsigned int offset)
2467 {
2468         return NAPI_GRO_CB(skb)->frag0 + offset;
2469 }
2470
2471 static inline int skb_gro_header_hard(struct sk_buff *skb, unsigned int hlen)
2472 {
2473         return NAPI_GRO_CB(skb)->frag0_len < hlen;
2474 }
2475
2476 static inline void skb_gro_frag0_invalidate(struct sk_buff *skb)
2477 {
2478         NAPI_GRO_CB(skb)->frag0 = NULL;
2479         NAPI_GRO_CB(skb)->frag0_len = 0;
2480 }
2481
2482 static inline void *skb_gro_header_slow(struct sk_buff *skb, unsigned int hlen,
2483                                         unsigned int offset)
2484 {
2485         if (!pskb_may_pull(skb, hlen))
2486                 return NULL;
2487
2488         skb_gro_frag0_invalidate(skb);
2489         return skb->data + offset;
2490 }
2491
2492 static inline void *skb_gro_network_header(struct sk_buff *skb)
2493 {
2494         return (NAPI_GRO_CB(skb)->frag0 ?: skb->data) +
2495                skb_network_offset(skb);
2496 }
2497
2498 static inline void skb_gro_postpull_rcsum(struct sk_buff *skb,
2499                                         const void *start, unsigned int len)
2500 {
2501         if (NAPI_GRO_CB(skb)->csum_valid)
2502                 NAPI_GRO_CB(skb)->csum = csum_sub(NAPI_GRO_CB(skb)->csum,
2503                                                   csum_partial(start, len, 0));
2504 }
2505
2506 /* GRO checksum functions. These are logical equivalents of the normal
2507  * checksum functions (in skbuff.h) except that they operate on the GRO
2508  * offsets and fields in sk_buff.
2509  */
2510
2511 __sum16 __skb_gro_checksum_complete(struct sk_buff *skb);
2512
2513 static inline bool skb_at_gro_remcsum_start(struct sk_buff *skb)
2514 {
2515         return (NAPI_GRO_CB(skb)->gro_remcsum_start == skb_gro_offset(skb));
2516 }
2517
2518 static inline bool __skb_gro_checksum_validate_needed(struct sk_buff *skb,
2519                                                       bool zero_okay,
2520                                                       __sum16 check)
2521 {
2522         return ((skb->ip_summed != CHECKSUM_PARTIAL ||
2523                 skb_checksum_start_offset(skb) <
2524                  skb_gro_offset(skb)) &&
2525                 !skb_at_gro_remcsum_start(skb) &&
2526                 NAPI_GRO_CB(skb)->csum_cnt == 0 &&
2527                 (!zero_okay || check));
2528 }
2529
2530 static inline __sum16 __skb_gro_checksum_validate_complete(struct sk_buff *skb,
2531                                                            __wsum psum)
2532 {
2533         if (NAPI_GRO_CB(skb)->csum_valid &&
2534             !csum_fold(csum_add(psum, NAPI_GRO_CB(skb)->csum)))
2535                 return 0;
2536
2537         NAPI_GRO_CB(skb)->csum = psum;
2538
2539         return __skb_gro_checksum_complete(skb);
2540 }
2541
2542 static inline void skb_gro_incr_csum_unnecessary(struct sk_buff *skb)
2543 {
2544         if (NAPI_GRO_CB(skb)->csum_cnt > 0) {
2545                 /* Consume a checksum from CHECKSUM_UNNECESSARY */
2546                 NAPI_GRO_CB(skb)->csum_cnt--;
2547         } else {
2548                 /* Update skb for CHECKSUM_UNNECESSARY and csum_level when we
2549                  * verified a new top level checksum or an encapsulated one
2550                  * during GRO. This saves work if we fallback to normal path.
2551                  */
2552                 __skb_incr_checksum_unnecessary(skb);
2553         }
2554 }
2555
2556 #define __skb_gro_checksum_validate(skb, proto, zero_okay, check,       \
2557                                     compute_pseudo)                     \
2558 ({                                                                      \
2559         __sum16 __ret = 0;                                              \
2560         if (__skb_gro_checksum_validate_needed(skb, zero_okay, check))  \
2561                 __ret = __skb_gro_checksum_validate_complete(skb,       \
2562                                 compute_pseudo(skb, proto));            \
2563         if (__ret)                                                      \
2564                 __skb_mark_checksum_bad(skb);                           \
2565         else                                                            \
2566                 skb_gro_incr_csum_unnecessary(skb);                     \
2567         __ret;                                                          \
2568 })
2569
2570 #define skb_gro_checksum_validate(skb, proto, compute_pseudo)           \
2571         __skb_gro_checksum_validate(skb, proto, false, 0, compute_pseudo)
2572
2573 #define skb_gro_checksum_validate_zero_check(skb, proto, check,         \
2574                                              compute_pseudo)            \
2575         __skb_gro_checksum_validate(skb, proto, true, check, compute_pseudo)
2576
2577 #define skb_gro_checksum_simple_validate(skb)                           \
2578         __skb_gro_checksum_validate(skb, 0, false, 0, null_compute_pseudo)
2579
2580 static inline bool __skb_gro_checksum_convert_check(struct sk_buff *skb)
2581 {
2582         return (NAPI_GRO_CB(skb)->csum_cnt == 0 &&
2583                 !NAPI_GRO_CB(skb)->csum_valid);
2584 }
2585
2586 static inline void __skb_gro_checksum_convert(struct sk_buff *skb,
2587                                               __sum16 check, __wsum pseudo)
2588 {
2589         NAPI_GRO_CB(skb)->csum = ~pseudo;
2590         NAPI_GRO_CB(skb)->csum_valid = 1;
2591 }
2592
2593 #define skb_gro_checksum_try_convert(skb, proto, check, compute_pseudo) \
2594 do {                                                                    \
2595         if (__skb_gro_checksum_convert_check(skb))                      \
2596                 __skb_gro_checksum_convert(skb, check,                  \
2597                                            compute_pseudo(skb, proto)); \
2598 } while (0)
2599
2600 struct gro_remcsum {
2601         int offset;
2602         __wsum delta;
2603 };
2604
2605 static inline void skb_gro_remcsum_init(struct gro_remcsum *grc)
2606 {
2607         grc->offset = 0;
2608         grc->delta = 0;
2609 }
2610
2611 static inline void *skb_gro_remcsum_process(struct sk_buff *skb, void *ptr,
2612                                             unsigned int off, size_t hdrlen,
2613                                             int start, int offset,
2614                                             struct gro_remcsum *grc,
2615                                             bool nopartial)
2616 {
2617         __wsum delta;
2618         size_t plen = hdrlen + max_t(size_t, offset + sizeof(u16), start);
2619
2620         BUG_ON(!NAPI_GRO_CB(skb)->csum_valid);
2621
2622         if (!nopartial) {
2623                 NAPI_GRO_CB(skb)->gro_remcsum_start = off + hdrlen + start;
2624                 return ptr;
2625         }
2626
2627         ptr = skb_gro_header_fast(skb, off);
2628         if (skb_gro_header_hard(skb, off + plen)) {
2629                 ptr = skb_gro_header_slow(skb, off + plen, off);
2630                 if (!ptr)
2631                         return NULL;
2632         }
2633
2634         delta = remcsum_adjust(ptr + hdrlen, NAPI_GRO_CB(skb)->csum,
2635                                start, offset);
2636
2637         /* Adjust skb->csum since we changed the packet */
2638         NAPI_GRO_CB(skb)->csum = csum_add(NAPI_GRO_CB(skb)->csum, delta);
2639
2640         grc->offset = off + hdrlen + offset;
2641         grc->delta = delta;
2642
2643         return ptr;
2644 }
2645
2646 static inline void skb_gro_remcsum_cleanup(struct sk_buff *skb,
2647                                            struct gro_remcsum *grc)
2648 {
2649         void *ptr;
2650         size_t plen = grc->offset + sizeof(u16);
2651
2652         if (!grc->delta)
2653                 return;
2654
2655         ptr = skb_gro_header_fast(skb, grc->offset);
2656         if (skb_gro_header_hard(skb, grc->offset + sizeof(u16))) {
2657                 ptr = skb_gro_header_slow(skb, plen, grc->offset);
2658                 if (!ptr)
2659                         return;
2660         }
2661
2662         remcsum_unadjust((__sum16 *)ptr, grc->delta);
2663 }
2664
2665 #ifdef CONFIG_XFRM_OFFLOAD
2666 static inline void skb_gro_flush_final(struct sk_buff *skb, struct sk_buff **pp, int flush)
2667 {
2668         if (PTR_ERR(pp) != -EINPROGRESS)
2669                 NAPI_GRO_CB(skb)->flush |= flush;
2670 }
2671 #else
2672 static inline void skb_gro_flush_final(struct sk_buff *skb, struct sk_buff **pp, int flush)
2673 {
2674         NAPI_GRO_CB(skb)->flush |= flush;
2675 }
2676 #endif
2677
2678 static inline int dev_hard_header(struct sk_buff *skb, struct net_device *dev,
2679                                   unsigned short type,
2680                                   const void *daddr, const void *saddr,
2681                                   unsigned int len)
2682 {
2683         if (!dev->header_ops || !dev->header_ops->create)
2684                 return 0;
2685
2686         return dev->header_ops->create(skb, dev, type, daddr, saddr, len);
2687 }
2688
2689 static inline int dev_parse_header(const struct sk_buff *skb,
2690                                    unsigned char *haddr)
2691 {
2692         const struct net_device *dev = skb->dev;
2693
2694         if (!dev->header_ops || !dev->header_ops->parse)
2695                 return 0;
2696         return dev->header_ops->parse(skb, haddr);
2697 }
2698
2699 /* ll_header must have at least hard_header_len allocated */
2700 static inline bool dev_validate_header(const struct net_device *dev,
2701                                        char *ll_header, int len)
2702 {
2703         if (likely(len >= dev->hard_header_len))
2704                 return true;
2705         if (len < dev->min_header_len)
2706                 return false;
2707
2708         if (capable(CAP_SYS_RAWIO)) {
2709                 memset(ll_header + len, 0, dev->hard_header_len - len);
2710                 return true;
2711         }
2712
2713         if (dev->header_ops && dev->header_ops->validate)
2714                 return dev->header_ops->validate(ll_header, len);
2715
2716         return false;
2717 }
2718
2719 typedef int gifconf_func_t(struct net_device * dev, char __user * bufptr, int len);
2720 int register_gifconf(unsigned int family, gifconf_func_t *gifconf);
2721 static inline int unregister_gifconf(unsigned int family)
2722 {
2723         return register_gifconf(family, NULL);
2724 }
2725
2726 #ifdef CONFIG_NET_FLOW_LIMIT
2727 #define FLOW_LIMIT_HISTORY      (1 << 7)  /* must be ^2 and !overflow buckets */
2728 struct sd_flow_limit {
2729         u64                     count;
2730         unsigned int            num_buckets;
2731         unsigned int            history_head;
2732         u16                     history[FLOW_LIMIT_HISTORY];
2733         u8                      buckets[];
2734 };
2735
2736 extern int netdev_flow_limit_table_len;
2737 #endif /* CONFIG_NET_FLOW_LIMIT */
2738
2739 /*
2740  * Incoming packets are placed on per-CPU queues
2741  */
2742 struct softnet_data {
2743         struct list_head        poll_list;
2744         struct sk_buff_head     process_queue;
2745
2746         /* stats */
2747         unsigned int            processed;
2748         unsigned int            time_squeeze;
2749         unsigned int            received_rps;
2750 #ifdef CONFIG_RPS
2751         struct softnet_data     *rps_ipi_list;
2752 #endif
2753 #ifdef CONFIG_NET_FLOW_LIMIT
2754         struct sd_flow_limit __rcu *flow_limit;
2755 #endif
2756         struct Qdisc            *output_queue;
2757         struct Qdisc            **output_queue_tailp;
2758         struct sk_buff          *completion_queue;
2759
2760 #ifdef CONFIG_RPS
2761         /* input_queue_head should be written by cpu owning this struct,
2762          * and only read by other cpus. Worth using a cache line.
2763          */
2764         unsigned int            input_queue_head ____cacheline_aligned_in_smp;
2765
2766         /* Elements below can be accessed between CPUs for RPS/RFS */
2767         struct call_single_data csd ____cacheline_aligned_in_smp;
2768         struct softnet_data     *rps_ipi_next;
2769         unsigned int            cpu;
2770         unsigned int            input_queue_tail;
2771 #endif
2772         unsigned int            dropped;
2773         struct sk_buff_head     input_pkt_queue;
2774         struct napi_struct      backlog;
2775
2776 };
2777
2778 static inline void input_queue_head_incr(struct softnet_data *sd)
2779 {
2780 #ifdef CONFIG_RPS
2781         sd->input_queue_head++;
2782 #endif
2783 }
2784
2785 static inline void input_queue_tail_incr_save(struct softnet_data *sd,
2786                                               unsigned int *qtail)
2787 {
2788 #ifdef CONFIG_RPS
2789         *qtail = ++sd->input_queue_tail;
2790 #endif
2791 }
2792
2793 DECLARE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
2794
2795 void __netif_schedule(struct Qdisc *q);
2796 void netif_schedule_queue(struct netdev_queue *txq);
2797
2798 static inline void netif_tx_schedule_all(struct net_device *dev)
2799 {
2800         unsigned int i;
2801
2802         for (i = 0; i < dev->num_tx_queues; i++)
2803                 netif_schedule_queue(netdev_get_tx_queue(dev, i));
2804 }
2805
2806 static __always_inline void netif_tx_start_queue(struct netdev_queue *dev_queue)
2807 {
2808         clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state);
2809 }
2810
2811 /**
2812  *      netif_start_queue - allow transmit
2813  *      @dev: network device
2814  *
2815  *      Allow upper layers to call the device hard_start_xmit routine.
2816  */
2817 static inline void netif_start_queue(struct net_device *dev)
2818 {
2819         netif_tx_start_queue(netdev_get_tx_queue(dev, 0));
2820 }
2821
2822 static inline void netif_tx_start_all_queues(struct net_device *dev)
2823 {
2824         unsigned int i;
2825
2826         for (i = 0; i < dev->num_tx_queues; i++) {
2827                 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
2828                 netif_tx_start_queue(txq);
2829         }
2830 }
2831
2832 void netif_tx_wake_queue(struct netdev_queue *dev_queue);
2833
2834 /**
2835  *      netif_wake_queue - restart transmit
2836  *      @dev: network device
2837  *
2838  *      Allow upper layers to call the device hard_start_xmit routine.
2839  *      Used for flow control when transmit resources are available.
2840  */
2841 static inline void netif_wake_queue(struct net_device *dev)
2842 {
2843         netif_tx_wake_queue(netdev_get_tx_queue(dev, 0));
2844 }
2845
2846 static inline void netif_tx_wake_all_queues(struct net_device *dev)
2847 {
2848         unsigned int i;
2849
2850         for (i = 0; i < dev->num_tx_queues; i++) {
2851                 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
2852                 netif_tx_wake_queue(txq);
2853         }
2854 }
2855
2856 static __always_inline void netif_tx_stop_queue(struct netdev_queue *dev_queue)
2857 {
2858         set_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state);
2859 }
2860
2861 /**
2862  *      netif_stop_queue - stop transmitted packets
2863  *      @dev: network device
2864  *
2865  *      Stop upper layers calling the device hard_start_xmit routine.
2866  *      Used for flow control when transmit resources are unavailable.
2867  */
2868 static inline void netif_stop_queue(struct net_device *dev)
2869 {
2870         netif_tx_stop_queue(netdev_get_tx_queue(dev, 0));
2871 }
2872
2873 void netif_tx_stop_all_queues(struct net_device *dev);
2874
2875 static inline bool netif_tx_queue_stopped(const struct netdev_queue *dev_queue)
2876 {
2877         return test_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state);
2878 }
2879
2880 /**
2881  *      netif_queue_stopped - test if transmit queue is flowblocked
2882  *      @dev: network device
2883  *
2884  *      Test if transmit queue on device is currently unable to send.
2885  */
2886 static inline bool netif_queue_stopped(const struct net_device *dev)
2887 {
2888         return netif_tx_queue_stopped(netdev_get_tx_queue(dev, 0));
2889 }
2890
2891 static inline bool netif_xmit_stopped(const struct netdev_queue *dev_queue)
2892 {
2893         return dev_queue->state & QUEUE_STATE_ANY_XOFF;
2894 }
2895
2896 static inline bool
2897 netif_xmit_frozen_or_stopped(const struct netdev_queue *dev_queue)
2898 {
2899         return dev_queue->state & QUEUE_STATE_ANY_XOFF_OR_FROZEN;
2900 }
2901
2902 static inline bool
2903 netif_xmit_frozen_or_drv_stopped(const struct netdev_queue *dev_queue)
2904 {
2905         return dev_queue->state & QUEUE_STATE_DRV_XOFF_OR_FROZEN;
2906 }
2907
2908 /**
2909  *      netdev_txq_bql_enqueue_prefetchw - prefetch bql data for write
2910  *      @dev_queue: pointer to transmit queue
2911  *
2912  * BQL enabled drivers might use this helper in their ndo_start_xmit(),
2913  * to give appropriate hint to the CPU.
2914  */
2915 static inline void netdev_txq_bql_enqueue_prefetchw(struct netdev_queue *dev_queue)
2916 {
2917 #ifdef CONFIG_BQL
2918         prefetchw(&dev_queue->dql.num_queued);
2919 #endif
2920 }
2921
2922 /**
2923  *      netdev_txq_bql_complete_prefetchw - prefetch bql data for write
2924  *      @dev_queue: pointer to transmit queue
2925  *
2926  * BQL enabled drivers might use this helper in their TX completion path,
2927  * to give appropriate hint to the CPU.
2928  */
2929 static inline void netdev_txq_bql_complete_prefetchw(struct netdev_queue *dev_queue)
2930 {
2931 #ifdef CONFIG_BQL
2932         prefetchw(&dev_queue->dql.limit);
2933 #endif
2934 }
2935
2936 static inline void netdev_tx_sent_queue(struct netdev_queue *dev_queue,
2937                                         unsigned int bytes)
2938 {
2939 #ifdef CONFIG_BQL
2940         dql_queued(&dev_queue->dql, bytes);
2941
2942         if (likely(dql_avail(&dev_queue->dql) >= 0))
2943                 return;
2944
2945         set_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state);
2946
2947         /*
2948          * The XOFF flag must be set before checking the dql_avail below,
2949          * because in netdev_tx_completed_queue we update the dql_completed
2950          * before checking the XOFF flag.
2951          */
2952         smp_mb();
2953
2954         /* check again in case another CPU has just made room avail */
2955         if (unlikely(dql_avail(&dev_queue->dql) >= 0))
2956                 clear_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state);
2957 #endif
2958 }
2959
2960 /**
2961  *      netdev_sent_queue - report the number of bytes queued to hardware
2962  *      @dev: network device
2963  *      @bytes: number of bytes queued to the hardware device queue
2964  *
2965  *      Report the number of bytes queued for sending/completion to the network
2966  *      device hardware queue. @bytes should be a good approximation and should
2967  *      exactly match netdev_completed_queue() @bytes
2968  */
2969 static inline void netdev_sent_queue(struct net_device *dev, unsigned int bytes)
2970 {
2971         netdev_tx_sent_queue(netdev_get_tx_queue(dev, 0), bytes);
2972 }
2973
2974 static inline void netdev_tx_completed_queue(struct netdev_queue *dev_queue,
2975                                              unsigned int pkts, unsigned int bytes)
2976 {
2977 #ifdef CONFIG_BQL
2978         if (unlikely(!bytes))
2979                 return;
2980
2981         dql_completed(&dev_queue->dql, bytes);
2982
2983         /*
2984          * Without the memory barrier there is a small possiblity that
2985          * netdev_tx_sent_queue will miss the update and cause the queue to
2986          * be stopped forever
2987          */
2988         smp_mb();
2989
2990         if (dql_avail(&dev_queue->dql) < 0)
2991                 return;
2992
2993         if (test_and_clear_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state))
2994                 netif_schedule_queue(dev_queue);
2995 #endif
2996 }
2997
2998 /**
2999  *      netdev_completed_queue - report bytes and packets completed by device
3000  *      @dev: network device
3001  *      @pkts: actual number of packets sent over the medium
3002  *      @bytes: actual number of bytes sent over the medium
3003  *
3004  *      Report the number of bytes and packets transmitted by the network device
3005  *      hardware queue over the physical medium, @bytes must exactly match the
3006  *      @bytes amount passed to netdev_sent_queue()
3007  */
3008 static inline void netdev_completed_queue(struct net_device *dev,
3009                                           unsigned int pkts, unsigned int bytes)
3010 {
3011         netdev_tx_completed_queue(netdev_get_tx_queue(dev, 0), pkts, bytes);
3012 }
3013
3014 static inline void netdev_tx_reset_queue(struct netdev_queue *q)
3015 {
3016 #ifdef CONFIG_BQL
3017         clear_bit(__QUEUE_STATE_STACK_XOFF, &q->state);
3018         dql_reset(&q->dql);
3019 #endif
3020 }
3021
3022 /**
3023  *      netdev_reset_queue - reset the packets and bytes count of a network device
3024  *      @dev_queue: network device
3025  *
3026  *      Reset the bytes and packet count of a network device and clear the
3027  *      software flow control OFF bit for this network device
3028  */
3029 static inline void netdev_reset_queue(struct net_device *dev_queue)
3030 {
3031         netdev_tx_reset_queue(netdev_get_tx_queue(dev_queue, 0));
3032 }
3033
3034 /**
3035  *      netdev_cap_txqueue - check if selected tx queue exceeds device queues
3036  *      @dev: network device
3037  *      @queue_index: given tx queue index
3038  *
3039  *      Returns 0 if given tx queue index >= number of device tx queues,
3040  *      otherwise returns the originally passed tx queue index.
3041  */
3042 static inline u16 netdev_cap_txqueue(struct net_device *dev, u16 queue_index)
3043 {
3044         if (unlikely(queue_index >= dev->real_num_tx_queues)) {
3045                 net_warn_ratelimited("%s selects TX queue %d, but real number of TX queues is %d\n",
3046                                      dev->name, queue_index,
3047                                      dev->real_num_tx_queues);
3048                 return 0;
3049         }
3050
3051         return queue_index;
3052 }
3053
3054 /**
3055  *      netif_running - test if up
3056  *      @dev: network device
3057  *
3058  *      Test if the device has been brought up.
3059  */
3060 static inline bool netif_running(const struct net_device *dev)
3061 {
3062         return test_bit(__LINK_STATE_START, &dev->state);
3063 }
3064
3065 /*
3066  * Routines to manage the subqueues on a device.  We only need start,
3067  * stop, and a check if it's stopped.  All other device management is
3068  * done at the overall netdevice level.
3069  * Also test the device if we're multiqueue.
3070  */
3071
3072 /**
3073  *      netif_start_subqueue - allow sending packets on subqueue
3074  *      @dev: network device
3075  *      @queue_index: sub queue index
3076  *
3077  * Start individual transmit queue of a device with multiple transmit queues.
3078  */
3079 static inline void netif_start_subqueue(struct net_device *dev, u16 queue_index)
3080 {
3081         struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
3082
3083         netif_tx_start_queue(txq);
3084 }
3085
3086 /**
3087  *      netif_stop_subqueue - stop sending packets on subqueue
3088  *      @dev: network device
3089  *      @queue_index: sub queue index
3090  *
3091  * Stop individual transmit queue of a device with multiple transmit queues.
3092  */
3093 static inline void netif_stop_subqueue(struct net_device *dev, u16 queue_index)
3094 {
3095         struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
3096         netif_tx_stop_queue(txq);
3097 }
3098
3099 /**
3100  *      netif_subqueue_stopped - test status of subqueue
3101  *      @dev: network device
3102  *      @queue_index: sub queue index
3103  *
3104  * Check individual transmit queue of a device with multiple transmit queues.
3105  */
3106 static inline bool __netif_subqueue_stopped(const struct net_device *dev,
3107                                             u16 queue_index)
3108 {
3109         struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
3110
3111         return netif_tx_queue_stopped(txq);
3112 }
3113
3114 static inline bool netif_subqueue_stopped(const struct net_device *dev,
3115                                           struct sk_buff *skb)
3116 {
3117         return __netif_subqueue_stopped(dev, skb_get_queue_mapping(skb));
3118 }
3119
3120 /**
3121  *      netif_wake_subqueue - allow sending packets on subqueue
3122  *      @dev: network device
3123  *      @queue_index: sub queue index
3124  *
3125  * Resume individual transmit queue of a device with multiple transmit queues.
3126  */
3127 static inline void netif_wake_subqueue(struct net_device *dev, u16 queue_index)
3128 {
3129         struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
3130
3131         netif_tx_wake_queue(txq);
3132 }
3133
3134 #ifdef CONFIG_XPS
3135 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
3136                         u16 index);
3137 #else
3138 static inline int netif_set_xps_queue(struct net_device *dev,
3139                                       const struct cpumask *mask,
3140                                       u16 index)
3141 {
3142         return 0;
3143 }
3144 #endif
3145
3146 u16 __skb_tx_hash(const struct net_device *dev, struct sk_buff *skb,
3147                   unsigned int num_tx_queues);
3148
3149 /*
3150  * Returns a Tx hash for the given packet when dev->real_num_tx_queues is used
3151  * as a distribution range limit for the returned value.
3152  */
3153 static inline u16 skb_tx_hash(const struct net_device *dev,
3154                               struct sk_buff *skb)
3155 {
3156         return __skb_tx_hash(dev, skb, dev->real_num_tx_queues);
3157 }
3158
3159 /**
3160  *      netif_is_multiqueue - test if device has multiple transmit queues
3161  *      @dev: network device
3162  *
3163  * Check if device has multiple transmit queues
3164  */
3165 static inline bool netif_is_multiqueue(const struct net_device *dev)
3166 {
3167         return dev->num_tx_queues > 1;
3168 }
3169
3170 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq);
3171
3172 #ifdef CONFIG_SYSFS
3173 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq);
3174 #else
3175 static inline int netif_set_real_num_rx_queues(struct net_device *dev,
3176                                                 unsigned int rxq)
3177 {
3178         return 0;
3179 }
3180 #endif
3181
3182 #ifdef CONFIG_SYSFS
3183 static inline unsigned int get_netdev_rx_queue_index(
3184                 struct netdev_rx_queue *queue)
3185 {
3186         struct net_device *dev = queue->dev;
3187         int index = queue - dev->_rx;
3188
3189         BUG_ON(index >= dev->num_rx_queues);
3190         return index;
3191 }
3192 #endif
3193
3194 #define DEFAULT_MAX_NUM_RSS_QUEUES      (8)
3195 int netif_get_num_default_rss_queues(void);
3196
3197 enum skb_free_reason {
3198         SKB_REASON_CONSUMED,
3199         SKB_REASON_DROPPED,
3200 };
3201
3202 void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason);
3203 void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason);
3204
3205 /*
3206  * It is not allowed to call kfree_skb() or consume_skb() from hardware
3207  * interrupt context or with hardware interrupts being disabled.
3208  * (in_irq() || irqs_disabled())
3209  *
3210  * We provide four helpers that can be used in following contexts :
3211  *
3212  * dev_kfree_skb_irq(skb) when caller drops a packet from irq context,
3213  *  replacing kfree_skb(skb)
3214  *
3215  * dev_consume_skb_irq(skb) when caller consumes a packet from irq context.
3216  *  Typically used in place of consume_skb(skb) in TX completion path
3217  *
3218  * dev_kfree_skb_any(skb) when caller doesn't know its current irq context,
3219  *  replacing kfree_skb(skb)
3220  *
3221  * dev_consume_skb_any(skb) when caller doesn't know its current irq context,
3222  *  and consumed a packet. Used in place of consume_skb(skb)
3223  */
3224 static inline void dev_kfree_skb_irq(struct sk_buff *skb)
3225 {
3226         __dev_kfree_skb_irq(skb, SKB_REASON_DROPPED);
3227 }
3228
3229 static inline void dev_consume_skb_irq(struct sk_buff *skb)
3230 {
3231         __dev_kfree_skb_irq(skb, SKB_REASON_CONSUMED);
3232 }
3233
3234 static inline void dev_kfree_skb_any(struct sk_buff *skb)
3235 {
3236         __dev_kfree_skb_any(skb, SKB_REASON_DROPPED);
3237 }
3238
3239 static inline void dev_consume_skb_any(struct sk_buff *skb)
3240 {
3241         __dev_kfree_skb_any(skb, SKB_REASON_CONSUMED);
3242 }
3243
3244 int netif_rx(struct sk_buff *skb);
3245 int netif_rx_ni(struct sk_buff *skb);
3246 int netif_receive_skb(struct sk_buff *skb);
3247 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb);
3248 void napi_gro_flush(struct napi_struct *napi, bool flush_old);
3249 struct sk_buff *napi_get_frags(struct napi_struct *napi);
3250 gro_result_t napi_gro_frags(struct napi_struct *napi);
3251 struct packet_offload *gro_find_receive_by_type(__be16 type);
3252 struct packet_offload *gro_find_complete_by_type(__be16 type);
3253
3254 static inline void napi_free_frags(struct napi_struct *napi)
3255 {
3256         kfree_skb(napi->skb);
3257         napi->skb = NULL;
3258 }
3259
3260 bool netdev_is_rx_handler_busy(struct net_device *dev);
3261 int netdev_rx_handler_register(struct net_device *dev,
3262                                rx_handler_func_t *rx_handler,
3263                                void *rx_handler_data);
3264 void netdev_rx_handler_unregister(struct net_device *dev);
3265
3266 bool dev_valid_name(const char *name);
3267 int dev_ioctl(struct net *net, unsigned int cmd, void __user *);
3268 int dev_ethtool(struct net *net, struct ifreq *);
3269 unsigned int dev_get_flags(const struct net_device *);
3270 int __dev_change_flags(struct net_device *, unsigned int flags);
3271 int dev_change_flags(struct net_device *, unsigned int);
3272 void __dev_notify_flags(struct net_device *, unsigned int old_flags,
3273                         unsigned int gchanges);
3274 int dev_change_name(struct net_device *, const char *);
3275 int dev_set_alias(struct net_device *, const char *, size_t);
3276 int dev_change_net_namespace(struct net_device *, struct net *, const char *);
3277 int dev_set_mtu(struct net_device *, int);
3278 void dev_set_group(struct net_device *, int);
3279 int dev_set_mac_address(struct net_device *, struct sockaddr *);
3280 int dev_change_carrier(struct net_device *, bool new_carrier);
3281 int dev_get_phys_port_id(struct net_device *dev,
3282                          struct netdev_phys_item_id *ppid);
3283 int dev_get_phys_port_name(struct net_device *dev,
3284                            char *name, size_t len);
3285 int dev_change_proto_down(struct net_device *dev, bool proto_down);
3286 int dev_change_xdp_fd(struct net_device *dev, int fd, u32 flags);
3287 struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev);
3288 struct sk_buff *dev_hard_start_xmit(struct sk_buff *skb, struct net_device *dev,
3289                                     struct netdev_queue *txq, int *ret);
3290 int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb);
3291 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb);
3292 bool is_skb_forwardable(const struct net_device *dev,
3293                         const struct sk_buff *skb);
3294
3295 static __always_inline int ____dev_forward_skb(struct net_device *dev,
3296                                                struct sk_buff *skb)
3297 {
3298         if (skb_orphan_frags(skb, GFP_ATOMIC) ||
3299             unlikely(!is_skb_forwardable(dev, skb))) {
3300                 atomic_long_inc(&dev->rx_dropped);
3301                 kfree_skb(skb);
3302                 return NET_RX_DROP;
3303         }
3304
3305         skb_scrub_packet(skb, true);
3306         skb->priority = 0;
3307         return 0;
3308 }
3309
3310 void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev);
3311
3312 extern int              netdev_budget;
3313 extern unsigned int     netdev_budget_usecs;
3314
3315 /* Called by rtnetlink.c:rtnl_unlock() */
3316 void netdev_run_todo(void);
3317
3318 /**
3319  *      dev_put - release reference to device
3320  *      @dev: network device
3321  *
3322  * Release reference to device to allow it to be freed.
3323  */
3324 static inline void dev_put(struct net_device *dev)
3325 {
3326         this_cpu_dec(*dev->pcpu_refcnt);
3327 }
3328
3329 /**
3330  *      dev_hold - get reference to device
3331  *      @dev: network device
3332  *
3333  * Hold reference to device to keep it from being freed.
3334  */
3335 static inline void dev_hold(struct net_device *dev)
3336 {
3337         this_cpu_inc(*dev->pcpu_refcnt);
3338 }
3339
3340 /* Carrier loss detection, dial on demand. The functions netif_carrier_on
3341  * and _off may be called from IRQ context, but it is caller
3342  * who is responsible for serialization of these calls.
3343  *
3344  * The name carrier is inappropriate, these functions should really be
3345  * called netif_lowerlayer_*() because they represent the state of any
3346  * kind of lower layer not just hardware media.
3347  */
3348
3349 void linkwatch_init_dev(struct net_device *dev);
3350 void linkwatch_fire_event(struct net_device *dev);
3351 void linkwatch_forget_dev(struct net_device *dev);
3352
3353 /**
3354  *      netif_carrier_ok - test if carrier present
3355  *      @dev: network device
3356  *
3357  * Check if carrier is present on device
3358  */
3359 static inline bool netif_carrier_ok(const struct net_device *dev)
3360 {
3361         return !test_bit(__LINK_STATE_NOCARRIER, &dev->state);
3362 }
3363
3364 unsigned long dev_trans_start(struct net_device *dev);
3365
3366 void __netdev_watchdog_up(struct net_device *dev);
3367
3368 void netif_carrier_on(struct net_device *dev);
3369
3370 void netif_carrier_off(struct net_device *dev);
3371
3372 /**
3373  *      netif_dormant_on - mark device as dormant.
3374  *      @dev: network device
3375  *
3376  * Mark device as dormant (as per RFC2863).
3377  *
3378  * The dormant state indicates that the relevant interface is not
3379  * actually in a condition to pass packets (i.e., it is not 'up') but is
3380  * in a "pending" state, waiting for some external event.  For "on-
3381  * demand" interfaces, this new state identifies the situation where the
3382  * interface is waiting for events to place it in the up state.
3383  */
3384 static inline void netif_dormant_on(struct net_device *dev)
3385 {
3386         if (!test_and_set_bit(__LINK_STATE_DORMANT, &dev->state))
3387                 linkwatch_fire_event(dev);
3388 }
3389
3390 /**
3391  *      netif_dormant_off - set device as not dormant.
3392  *      @dev: network device
3393  *
3394  * Device is not in dormant state.
3395  */
3396 static inline void netif_dormant_off(struct net_device *dev)
3397 {
3398         if (test_and_clear_bit(__LINK_STATE_DORMANT, &dev->state))
3399                 linkwatch_fire_event(dev);
3400 }
3401
3402 /**
3403  *      netif_dormant - test if carrier present
3404  *      @dev: network device
3405  *
3406  * Check if carrier is present on device
3407  */
3408 static inline bool netif_dormant(const struct net_device *dev)
3409 {
3410         return test_bit(__LINK_STATE_DORMANT, &dev->state);
3411 }
3412
3413
3414 /**
3415  *      netif_oper_up - test if device is operational
3416  *      @dev: network device
3417  *
3418  * Check if carrier is operational
3419  */
3420 static inline bool netif_oper_up(const struct net_device *dev)
3421 {
3422         return (dev->operstate == IF_OPER_UP ||
3423                 dev->operstate == IF_OPER_UNKNOWN /* backward compat */);
3424 }
3425
3426 /**
3427  *      netif_device_present - is device available or removed
3428  *      @dev: network device
3429  *
3430  * Check if device has not been removed from system.
3431  */
3432 static inline bool netif_device_present(struct net_device *dev)
3433 {
3434         return test_bit(__LINK_STATE_PRESENT, &dev->state);
3435 }
3436
3437 void netif_device_detach(struct net_device *dev);
3438
3439 void netif_device_attach(struct net_device *dev);
3440
3441 /*
3442  * Network interface message level settings
3443  */
3444
3445 enum {
3446         NETIF_MSG_DRV           = 0x0001,
3447         NETIF_MSG_PROBE         = 0x0002,
3448         NETIF_MSG_LINK          = 0x0004,
3449         NETIF_MSG_TIMER         = 0x0008,
3450         NETIF_MSG_IFDOWN        = 0x0010,
3451         NETIF_MSG_IFUP          = 0x0020,
3452         NETIF_MSG_RX_ERR        = 0x0040,
3453         NETIF_MSG_TX_ERR        = 0x0080,
3454         NETIF_MSG_TX_QUEUED     = 0x0100,
3455         NETIF_MSG_INTR          = 0x0200,
3456         NETIF_MSG_TX_DONE       = 0x0400,
3457         NETIF_MSG_RX_STATUS     = 0x0800,
3458         NETIF_MSG_PKTDATA       = 0x1000,
3459         NETIF_MSG_HW            = 0x2000,
3460         NETIF_MSG_WOL           = 0x4000,
3461 };
3462
3463 #define netif_msg_drv(p)        ((p)->msg_enable & NETIF_MSG_DRV)
3464 #define netif_msg_probe(p)      ((p)->msg_enable & NETIF_MSG_PROBE)
3465 #define netif_msg_link(p)       ((p)->msg_enable & NETIF_MSG_LINK)
3466 #define netif_msg_timer(p)      ((p)->msg_enable & NETIF_MSG_TIMER)
3467 #define netif_msg_ifdown(p)     ((p)->msg_enable & NETIF_MSG_IFDOWN)
3468 #define netif_msg_ifup(p)       ((p)->msg_enable & NETIF_MSG_IFUP)
3469 #define netif_msg_rx_err(p)     ((p)->msg_enable & NETIF_MSG_RX_ERR)
3470 #define netif_msg_tx_err(p)     ((p)->msg_enable & NETIF_MSG_TX_ERR)
3471 #define netif_msg_tx_queued(p)  ((p)->msg_enable & NETIF_MSG_TX_QUEUED)
3472 #define netif_msg_intr(p)       ((p)->msg_enable & NETIF_MSG_INTR)
3473 #define netif_msg_tx_done(p)    ((p)->msg_enable & NETIF_MSG_TX_DONE)
3474 #define netif_msg_rx_status(p)  ((p)->msg_enable & NETIF_MSG_RX_STATUS)
3475 #define netif_msg_pktdata(p)    ((p)->msg_enable & NETIF_MSG_PKTDATA)
3476 #define netif_msg_hw(p)         ((p)->msg_enable & NETIF_MSG_HW)
3477 #define netif_msg_wol(p)        ((p)->msg_enable & NETIF_MSG_WOL)
3478
3479 static inline u32 netif_msg_init(int debug_value, int default_msg_enable_bits)
3480 {
3481         /* use default */
3482         if (debug_value < 0 || debug_value >= (sizeof(u32) * 8))
3483                 return default_msg_enable_bits;
3484         if (debug_value == 0)   /* no output */
3485                 return 0;
3486         /* set low N bits */
3487         return (1 << debug_value) - 1;
3488 }
3489
3490 static inline void __netif_tx_lock(struct netdev_queue *txq, int cpu)
3491 {
3492         spin_lock(&txq->_xmit_lock);
3493         txq->xmit_lock_owner = cpu;
3494 }
3495
3496 static inline bool __netif_tx_acquire(struct netdev_queue *txq)
3497 {
3498         __acquire(&txq->_xmit_lock);
3499         return true;
3500 }
3501
3502 static inline void __netif_tx_release(struct netdev_queue *txq)
3503 {
3504         __release(&txq->_xmit_lock);
3505 }
3506
3507 static inline void __netif_tx_lock_bh(struct netdev_queue *txq)
3508 {
3509         spin_lock_bh(&txq->_xmit_lock);
3510         txq->xmit_lock_owner = smp_processor_id();
3511 }
3512
3513 static inline bool __netif_tx_trylock(struct netdev_queue *txq)
3514 {
3515         bool ok = spin_trylock(&txq->_xmit_lock);
3516         if (likely(ok))
3517                 txq->xmit_lock_owner = smp_processor_id();
3518         return ok;
3519 }
3520
3521 static inline void __netif_tx_unlock(struct netdev_queue *txq)
3522 {
3523         txq->xmit_lock_owner = -1;
3524         spin_unlock(&txq->_xmit_lock);
3525 }
3526
3527 static inline void __netif_tx_unlock_bh(struct netdev_queue *txq)
3528 {
3529         txq->xmit_lock_owner = -1;
3530         spin_unlock_bh(&txq->_xmit_lock);
3531 }
3532
3533 static inline void txq_trans_update(struct netdev_queue *txq)
3534 {
3535         if (txq->xmit_lock_owner != -1)
3536                 txq->trans_start = jiffies;
3537 }
3538
3539 /* legacy drivers only, netdev_start_xmit() sets txq->trans_start */
3540 static inline void netif_trans_update(struct net_device *dev)
3541 {
3542         struct netdev_queue *txq = netdev_get_tx_queue(dev, 0);
3543
3544         if (txq->trans_start != jiffies)
3545                 txq->trans_start = jiffies;
3546 }
3547
3548 /**
3549  *      netif_tx_lock - grab network device transmit lock
3550  *      @dev: network device
3551  *
3552  * Get network device transmit lock
3553  */
3554 static inline void netif_tx_lock(struct net_device *dev)
3555 {
3556         unsigned int i;
3557         int cpu;
3558
3559         spin_lock(&dev->tx_global_lock);
3560         cpu = smp_processor_id();
3561         for (i = 0; i < dev->num_tx_queues; i++) {
3562                 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
3563
3564                 /* We are the only thread of execution doing a
3565                  * freeze, but we have to grab the _xmit_lock in
3566                  * order to synchronize with threads which are in
3567                  * the ->hard_start_xmit() handler and already
3568                  * checked the frozen bit.
3569                  */
3570                 __netif_tx_lock(txq, cpu);
3571                 set_bit(__QUEUE_STATE_FROZEN, &txq->state);
3572                 __netif_tx_unlock(txq);
3573         }
3574 }
3575
3576 static inline void netif_tx_lock_bh(struct net_device *dev)
3577 {
3578         local_bh_disable();
3579         netif_tx_lock(dev);
3580 }
3581
3582 static inline void netif_tx_unlock(struct net_device *dev)
3583 {
3584         unsigned int i;
3585
3586         for (i = 0; i < dev->num_tx_queues; i++) {
3587                 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
3588
3589                 /* No need to grab the _xmit_lock here.  If the
3590                  * queue is not stopped for another reason, we
3591                  * force a schedule.
3592                  */
3593                 clear_bit(__QUEUE_STATE_FROZEN, &txq->state);
3594                 netif_schedule_queue(txq);
3595         }
3596         spin_unlock(&dev->tx_global_lock);
3597 }
3598
3599 static inline void netif_tx_unlock_bh(struct net_device *dev)
3600 {
3601         netif_tx_unlock(dev);
3602         local_bh_enable();
3603 }
3604
3605 #define HARD_TX_LOCK(dev, txq, cpu) {                   \
3606         if ((dev->features & NETIF_F_LLTX) == 0) {      \
3607                 __netif_tx_lock(txq, cpu);              \
3608         } else {                                        \
3609                 __netif_tx_acquire(txq);                \
3610         }                                               \
3611 }
3612
3613 #define HARD_TX_TRYLOCK(dev, txq)                       \
3614         (((dev->features & NETIF_F_LLTX) == 0) ?        \
3615                 __netif_tx_trylock(txq) :               \
3616                 __netif_tx_acquire(txq))
3617
3618 #define HARD_TX_UNLOCK(dev, txq) {                      \
3619         if ((dev->features & NETIF_F_LLTX) == 0) {      \
3620                 __netif_tx_unlock(txq);                 \
3621         } else {                                        \
3622                 __netif_tx_release(txq);                \
3623         }                                               \
3624 }
3625
3626 static inline void netif_tx_disable(struct net_device *dev)
3627 {
3628         unsigned int i;
3629         int cpu;
3630
3631         local_bh_disable();
3632         cpu = smp_processor_id();
3633         for (i = 0; i < dev->num_tx_queues; i++) {
3634                 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
3635
3636                 __netif_tx_lock(txq, cpu);
3637                 netif_tx_stop_queue(txq);
3638                 __netif_tx_unlock(txq);
3639         }
3640         local_bh_enable();
3641 }
3642
3643 static inline void netif_addr_lock(struct net_device *dev)
3644 {
3645         spin_lock(&dev->addr_list_lock);
3646 }
3647
3648 static inline void netif_addr_lock_nested(struct net_device *dev)
3649 {
3650         int subclass = SINGLE_DEPTH_NESTING;
3651
3652         if (dev->netdev_ops->ndo_get_lock_subclass)
3653                 subclass = dev->netdev_ops->ndo_get_lock_subclass(dev);
3654
3655         spin_lock_nested(&dev->addr_list_lock, subclass);
3656 }
3657
3658 static inline void netif_addr_lock_bh(struct net_device *dev)
3659 {
3660         spin_lock_bh(&dev->addr_list_lock);
3661 }
3662
3663 static inline void netif_addr_unlock(struct net_device *dev)
3664 {
3665         spin_unlock(&dev->addr_list_lock);
3666 }
3667
3668 static inline void netif_addr_unlock_bh(struct net_device *dev)
3669 {
3670         spin_unlock_bh(&dev->addr_list_lock);
3671 }
3672
3673 /*
3674  * dev_addrs walker. Should be used only for read access. Call with
3675  * rcu_read_lock held.
3676  */
3677 #define for_each_dev_addr(dev, ha) \
3678                 list_for_each_entry_rcu(ha, &dev->dev_addrs.list, list)
3679
3680 /* These functions live elsewhere (drivers/net/net_init.c, but related) */
3681
3682 void ether_setup(struct net_device *dev);
3683
3684 /* Support for loadable net-drivers */
3685 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
3686                                     unsigned char name_assign_type,
3687                                     void (*setup)(struct net_device *),
3688                                     unsigned int txqs, unsigned int rxqs);
3689 #define alloc_netdev(sizeof_priv, name, name_assign_type, setup) \
3690         alloc_netdev_mqs(sizeof_priv, name, name_assign_type, setup, 1, 1)
3691
3692 #define alloc_netdev_mq(sizeof_priv, name, name_assign_type, setup, count) \
3693         alloc_netdev_mqs(sizeof_priv, name, name_assign_type, setup, count, \
3694                          count)
3695
3696 int register_netdev(struct net_device *dev);
3697 void unregister_netdev(struct net_device *dev);
3698
3699 /* General hardware address lists handling functions */
3700 int __hw_addr_sync(struct netdev_hw_addr_list *to_list,
3701                    struct netdev_hw_addr_list *from_list, int addr_len);
3702 void __hw_addr_unsync(struct netdev_hw_addr_list *to_list,
3703                       struct netdev_hw_addr_list *from_list, int addr_len);
3704 int __hw_addr_sync_dev(struct netdev_hw_addr_list *list,
3705                        struct net_device *dev,
3706                        int (*sync)(struct net_device *, const unsigned char *),
3707                        int (*unsync)(struct net_device *,
3708                                      const unsigned char *));
3709 void __hw_addr_unsync_dev(struct netdev_hw_addr_list *list,
3710                           struct net_device *dev,
3711                           int (*unsync)(struct net_device *,
3712                                         const unsigned char *));
3713 void __hw_addr_init(struct netdev_hw_addr_list *list);
3714
3715 /* Functions used for device addresses handling */
3716 int dev_addr_add(struct net_device *dev, const unsigned char *addr,
3717                  unsigned char addr_type);
3718 int dev_addr_del(struct net_device *dev, const unsigned char *addr,
3719                  unsigned char addr_type);
3720 void dev_addr_flush(struct net_device *dev);
3721 int dev_addr_init(struct net_device *dev);
3722
3723 /* Functions used for unicast addresses handling */
3724 int dev_uc_add(struct net_device *dev, const unsigned char *addr);
3725 int dev_uc_add_excl(struct net_device *dev, const unsigned char *addr);
3726 int dev_uc_del(struct net_device *dev, const unsigned char *addr);
3727 int dev_uc_sync(struct net_device *to, struct net_device *from);
3728 int dev_uc_sync_multiple(struct net_device *to, struct net_device *from);
3729 void dev_uc_unsync(struct net_device *to, struct net_device *from);
3730 void dev_uc_flush(struct net_device *dev);
3731 void dev_uc_init(struct net_device *dev);
3732
3733 /**
3734  *  __dev_uc_sync - Synchonize device's unicast list
3735  *  @dev:  device to sync
3736  *  @sync: function to call if address should be added
3737  *  @unsync: function to call if address should be removed
3738  *
3739  *  Add newly added addresses to the interface, and release
3740  *  addresses that have been deleted.
3741  */
3742 static inline int __dev_uc_sync(struct net_device *dev,
3743                                 int (*sync)(struct net_device *,
3744                                             const unsigned char *),
3745                                 int (*unsync)(struct net_device *,
3746                                               const unsigned char *))
3747 {
3748         return __hw_addr_sync_dev(&dev->uc, dev, sync, unsync);
3749 }
3750
3751 /**
3752  *  __dev_uc_unsync - Remove synchronized addresses from device
3753  *  @dev:  device to sync
3754  *  @unsync: function to call if address should be removed
3755  *
3756  *  Remove all addresses that were added to the device by dev_uc_sync().
3757  */
3758 static inline void __dev_uc_unsync(struct net_device *dev,
3759                                    int (*unsync)(struct net_device *,
3760                                                  const unsigned char *))
3761 {
3762         __hw_addr_unsync_dev(&dev->uc, dev, unsync);
3763 }
3764
3765 /* Functions used for multicast addresses handling */
3766 int dev_mc_add(struct net_device *dev, const unsigned char *addr);
3767 int dev_mc_add_global(struct net_device *dev, const unsigned char *addr);
3768 int dev_mc_add_excl(struct net_device *dev, const unsigned char *addr);
3769 int dev_mc_del(struct net_device *dev, const unsigned char *addr);
3770 int dev_mc_del_global(struct net_device *dev, const unsigned char *addr);
3771 int dev_mc_sync(struct net_device *to, struct net_device *from);
3772 int dev_mc_sync_multiple(struct net_device *to, struct net_device *from);
3773 void dev_mc_unsync(struct net_device *to, struct net_device *from);
3774 void dev_mc_flush(struct net_device *dev);
3775 void dev_mc_init(struct net_device *dev);
3776
3777 /**
3778  *  __dev_mc_sync - Synchonize device's multicast list
3779  *  @dev:  device to sync
3780  *  @sync: function to call if address should be added
3781  *  @unsync: function to call if address should be removed
3782  *
3783  *  Add newly added addresses to the interface, and release
3784  *  addresses that have been deleted.
3785  */
3786 static inline int __dev_mc_sync(struct net_device *dev,
3787                                 int (*sync)(struct net_device *,
3788                                             const unsigned char *),
3789                                 int (*unsync)(struct net_device *,
3790                                               const unsigned char *))
3791 {
3792         return __hw_addr_sync_dev(&dev->mc, dev, sync, unsync);
3793 }
3794
3795 /**
3796  *  __dev_mc_unsync - Remove synchronized addresses from device
3797  *  @dev:  device to sync
3798  *  @unsync: function to call if address should be removed
3799  *
3800  *  Remove all addresses that were added to the device by dev_mc_sync().
3801  */
3802 static inline void __dev_mc_unsync(struct net_device *dev,
3803                                    int (*unsync)(struct net_device *,
3804                                                  const unsigned char *))
3805 {
3806         __hw_addr_unsync_dev(&dev->mc, dev, unsync);
3807 }
3808
3809 /* Functions used for secondary unicast and multicast support */
3810 void dev_set_rx_mode(struct net_device *dev);
3811 void __dev_set_rx_mode(struct net_device *dev);
3812 int dev_set_promiscuity(struct net_device *dev, int inc);
3813 int dev_set_allmulti(struct net_device *dev, int inc);
3814 void netdev_state_change(struct net_device *dev);
3815 void netdev_notify_peers(struct net_device *dev);
3816 void netdev_features_change(struct net_device *dev);
3817 /* Load a device via the kmod */
3818 void dev_load(struct net *net, const char *name);
3819 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
3820                                         struct rtnl_link_stats64 *storage);
3821 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
3822                              const struct net_device_stats *netdev_stats);
3823
3824 extern int              netdev_max_backlog;
3825 extern int              netdev_tstamp_prequeue;
3826 extern int              weight_p;
3827 extern int              dev_weight_rx_bias;
3828 extern int              dev_weight_tx_bias;
3829 extern int              dev_rx_weight;
3830 extern int              dev_tx_weight;
3831
3832 bool netdev_has_upper_dev(struct net_device *dev, struct net_device *upper_dev);
3833 struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
3834                                                      struct list_head **iter);
3835 struct net_device *netdev_all_upper_get_next_dev_rcu(struct net_device *dev,
3836                                                      struct list_head **iter);
3837
3838 /* iterate through upper list, must be called under RCU read lock */
3839 #define netdev_for_each_upper_dev_rcu(dev, updev, iter) \
3840         for (iter = &(dev)->adj_list.upper, \
3841              updev = netdev_upper_get_next_dev_rcu(dev, &(iter)); \
3842              updev; \
3843              updev = netdev_upper_get_next_dev_rcu(dev, &(iter)))
3844
3845 int netdev_walk_all_upper_dev_rcu(struct net_device *dev,
3846                                   int (*fn)(struct net_device *upper_dev,
3847                                             void *data),
3848                                   void *data);
3849
3850 bool netdev_has_upper_dev_all_rcu(struct net_device *dev,
3851                                   struct net_device *upper_dev);
3852
3853 void *netdev_lower_get_next_private(struct net_device *dev,
3854                                     struct list_head **iter);
3855 void *netdev_lower_get_next_private_rcu(struct net_device *dev,
3856                                         struct list_head **iter);
3857
3858 #define netdev_for_each_lower_private(dev, priv, iter) \
3859         for (iter = (dev)->adj_list.lower.next, \
3860              priv = netdev_lower_get_next_private(dev, &(iter)); \
3861              priv; \
3862              priv = netdev_lower_get_next_private(dev, &(iter)))
3863
3864 #define netdev_for_each_lower_private_rcu(dev, priv, iter) \
3865         for (iter = &(dev)->adj_list.lower, \
3866              priv = netdev_lower_get_next_private_rcu(dev, &(iter)); \
3867              priv; \
3868              priv = netdev_lower_get_next_private_rcu(dev, &(iter)))
3869
3870 void *netdev_lower_get_next(struct net_device *dev,
3871                                 struct list_head **iter);
3872
3873 #define netdev_for_each_lower_dev(dev, ldev, iter) \
3874         for (iter = (dev)->adj_list.lower.next, \
3875              ldev = netdev_lower_get_next(dev, &(iter)); \
3876              ldev; \
3877              ldev = netdev_lower_get_next(dev, &(iter)))
3878
3879 struct net_device *netdev_all_lower_get_next(struct net_device *dev,
3880                                              struct list_head **iter);
3881 struct net_device *netdev_all_lower_get_next_rcu(struct net_device *dev,
3882                                                  struct list_head **iter);
3883
3884 int netdev_walk_all_lower_dev(struct net_device *dev,
3885                               int (*fn)(struct net_device *lower_dev,
3886                                         void *data),
3887                               void *data);
3888 int netdev_walk_all_lower_dev_rcu(struct net_device *dev,
3889                                   int (*fn)(struct net_device *lower_dev,
3890                                             void *data),
3891                                   void *data);
3892
3893 void *netdev_adjacent_get_private(struct list_head *adj_list);
3894 void *netdev_lower_get_first_private_rcu(struct net_device *dev);
3895 struct net_device *netdev_master_upper_dev_get(struct net_device *dev);
3896 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev);
3897 int netdev_upper_dev_link(struct net_device *dev, struct net_device *upper_dev);
3898 int netdev_master_upper_dev_link(struct net_device *dev,
3899                                  struct net_device *upper_dev,
3900                                  void *upper_priv, void *upper_info);
3901 void netdev_upper_dev_unlink(struct net_device *dev,
3902                              struct net_device *upper_dev);
3903 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname);
3904 void *netdev_lower_dev_get_private(struct net_device *dev,
3905                                    struct net_device *lower_dev);
3906 void netdev_lower_state_changed(struct net_device *lower_dev,
3907                                 void *lower_state_info);
3908
3909 /* RSS keys are 40 or 52 bytes long */
3910 #define NETDEV_RSS_KEY_LEN 52
3911 extern u8 netdev_rss_key[NETDEV_RSS_KEY_LEN] __read_mostly;
3912 void netdev_rss_key_fill(void *buffer, size_t len);
3913
3914 int dev_get_nest_level(struct net_device *dev);
3915 int skb_checksum_help(struct sk_buff *skb);
3916 struct sk_buff *__skb_gso_segment(struct sk_buff *skb,
3917                                   netdev_features_t features, bool tx_path);
3918 struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb,
3919                                     netdev_features_t features);
3920
3921 struct netdev_bonding_info {
3922         ifslave slave;
3923         ifbond  master;
3924 };
3925
3926 struct netdev_notifier_bonding_info {
3927         struct netdev_notifier_info info; /* must be first */
3928         struct netdev_bonding_info  bonding_info;
3929 };
3930
3931 void netdev_bonding_info_change(struct net_device *dev,
3932                                 struct netdev_bonding_info *bonding_info);
3933
3934 static inline
3935 struct sk_buff *skb_gso_segment(struct sk_buff *skb, netdev_features_t features)
3936 {
3937         return __skb_gso_segment(skb, features, true);
3938 }
3939 __be16 skb_network_protocol(struct sk_buff *skb, int *depth);
3940
3941 static inline bool can_checksum_protocol(netdev_features_t features,
3942                                          __be16 protocol)
3943 {
3944         if (protocol == htons(ETH_P_FCOE))
3945                 return !!(features & NETIF_F_FCOE_CRC);
3946
3947         /* Assume this is an IP checksum (not SCTP CRC) */
3948
3949         if (features & NETIF_F_HW_CSUM) {
3950                 /* Can checksum everything */
3951                 return true;
3952         }
3953
3954         switch (protocol) {
3955         case htons(ETH_P_IP):
3956                 return !!(features & NETIF_F_IP_CSUM);
3957         case htons(ETH_P_IPV6):
3958                 return !!(features & NETIF_F_IPV6_CSUM);
3959         default:
3960                 return false;
3961         }
3962 }
3963
3964 #ifdef CONFIG_BUG
3965 void netdev_rx_csum_fault(struct net_device *dev);
3966 #else
3967 static inline void netdev_rx_csum_fault(struct net_device *dev)
3968 {
3969 }
3970 #endif
3971 /* rx skb timestamps */
3972 void net_enable_timestamp(void);
3973 void net_disable_timestamp(void);
3974
3975 #ifdef CONFIG_PROC_FS
3976 int __init dev_proc_init(void);
3977 #else
3978 #define dev_proc_init() 0
3979 #endif
3980
3981 static inline netdev_tx_t __netdev_start_xmit(const struct net_device_ops *ops,
3982                                               struct sk_buff *skb, struct net_device *dev,
3983                                               bool more)
3984 {
3985         skb->xmit_more = more ? 1 : 0;
3986         return ops->ndo_start_xmit(skb, dev);
3987 }
3988
3989 static inline netdev_tx_t netdev_start_xmit(struct sk_buff *skb, struct net_device *dev,
3990                                             struct netdev_queue *txq, bool more)
3991 {
3992         const struct net_device_ops *ops = dev->netdev_ops;
3993         int rc;
3994
3995         rc = __netdev_start_xmit(ops, skb, dev, more);
3996         if (rc == NETDEV_TX_OK)
3997                 txq_trans_update(txq);
3998
3999         return rc;
4000 }
4001
4002 int netdev_class_create_file_ns(struct class_attribute *class_attr,
4003                                 const void *ns);
4004 void netdev_class_remove_file_ns(struct class_attribute *class_attr,
4005                                  const void *ns);
4006
4007 static inline int netdev_class_create_file(struct class_attribute *class_attr)
4008 {
4009         return netdev_class_create_file_ns(class_attr, NULL);
4010 }
4011
4012 static inline void netdev_class_remove_file(struct class_attribute *class_attr)
4013 {
4014         netdev_class_remove_file_ns(class_attr, NULL);
4015 }
4016
4017 extern struct kobj_ns_type_operations net_ns_type_operations;
4018
4019 const char *netdev_drivername(const struct net_device *dev);
4020
4021 void linkwatch_run_queue(void);
4022
4023 static inline netdev_features_t netdev_intersect_features(netdev_features_t f1,
4024                                                           netdev_features_t f2)
4025 {
4026         if ((f1 ^ f2) & NETIF_F_HW_CSUM) {
4027                 if (f1 & NETIF_F_HW_CSUM)
4028                         f1 |= (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
4029                 else
4030                         f2 |= (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
4031         }
4032
4033         return f1 & f2;
4034 }
4035
4036 static inline netdev_features_t netdev_get_wanted_features(
4037         struct net_device *dev)
4038 {
4039         return (dev->features & ~dev->hw_features) | dev->wanted_features;
4040 }
4041 netdev_features_t netdev_increment_features(netdev_features_t all,
4042         netdev_features_t one, netdev_features_t mask);
4043
4044 /* Allow TSO being used on stacked device :
4045  * Performing the GSO segmentation before last device
4046  * is a performance improvement.
4047  */
4048 static inline netdev_features_t netdev_add_tso_features(netdev_features_t features,
4049                                                         netdev_features_t mask)
4050 {
4051         return netdev_increment_features(features, NETIF_F_ALL_TSO, mask);
4052 }
4053
4054 int __netdev_update_features(struct net_device *dev);
4055 void netdev_update_features(struct net_device *dev);
4056 void netdev_change_features(struct net_device *dev);
4057
4058 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
4059                                         struct net_device *dev);
4060
4061 netdev_features_t passthru_features_check(struct sk_buff *skb,
4062                                           struct net_device *dev,
4063                                           netdev_features_t features);
4064 netdev_features_t netif_skb_features(struct sk_buff *skb);
4065
4066 static inline bool net_gso_ok(netdev_features_t features, int gso_type)
4067 {
4068         netdev_features_t feature = (netdev_features_t)gso_type << NETIF_F_GSO_SHIFT;
4069
4070         /* check flags correspondence */
4071         BUILD_BUG_ON(SKB_GSO_TCPV4   != (NETIF_F_TSO >> NETIF_F_GSO_SHIFT));
4072         BUILD_BUG_ON(SKB_GSO_UDP     != (NETIF_F_UFO >> NETIF_F_GSO_SHIFT));
4073         BUILD_BUG_ON(SKB_GSO_DODGY   != (NETIF_F_GSO_ROBUST >> NETIF_F_GSO_SHIFT));
4074         BUILD_BUG_ON(SKB_GSO_TCP_ECN != (NETIF_F_TSO_ECN >> NETIF_F_GSO_SHIFT));
4075         BUILD_BUG_ON(SKB_GSO_TCP_FIXEDID != (NETIF_F_TSO_MANGLEID >> NETIF_F_GSO_SHIFT));
4076         BUILD_BUG_ON(SKB_GSO_TCPV6   != (NETIF_F_TSO6 >> NETIF_F_GSO_SHIFT));
4077         BUILD_BUG_ON(SKB_GSO_FCOE    != (NETIF_F_FSO >> NETIF_F_GSO_SHIFT));
4078         BUILD_BUG_ON(SKB_GSO_GRE     != (NETIF_F_GSO_GRE >> NETIF_F_GSO_SHIFT));
4079         BUILD_BUG_ON(SKB_GSO_GRE_CSUM != (NETIF_F_GSO_GRE_CSUM >> NETIF_F_GSO_SHIFT));
4080         BUILD_BUG_ON(SKB_GSO_IPXIP4  != (NETIF_F_GSO_IPXIP4 >> NETIF_F_GSO_SHIFT));
4081         BUILD_BUG_ON(SKB_GSO_IPXIP6  != (NETIF_F_GSO_IPXIP6 >> NETIF_F_GSO_SHIFT));
4082         BUILD_BUG_ON(SKB_GSO_UDP_TUNNEL != (NETIF_F_GSO_UDP_TUNNEL >> NETIF_F_GSO_SHIFT));
4083         BUILD_BUG_ON(SKB_GSO_UDP_TUNNEL_CSUM != (NETIF_F_GSO_UDP_TUNNEL_CSUM >> NETIF_F_GSO_SHIFT));
4084         BUILD_BUG_ON(SKB_GSO_PARTIAL != (NETIF_F_GSO_PARTIAL >> NETIF_F_GSO_SHIFT));
4085         BUILD_BUG_ON(SKB_GSO_TUNNEL_REMCSUM != (NETIF_F_GSO_TUNNEL_REMCSUM >> NETIF_F_GSO_SHIFT));
4086         BUILD_BUG_ON(SKB_GSO_SCTP    != (NETIF_F_GSO_SCTP >> NETIF_F_GSO_SHIFT));
4087         BUILD_BUG_ON(SKB_GSO_ESP != (NETIF_F_GSO_ESP >> NETIF_F_GSO_SHIFT));
4088
4089         return (features & feature) == feature;
4090 }
4091
4092 static inline bool skb_gso_ok(struct sk_buff *skb, netdev_features_t features)
4093 {
4094         return net_gso_ok(features, skb_shinfo(skb)->gso_type) &&
4095                (!skb_has_frag_list(skb) || (features & NETIF_F_FRAGLIST));
4096 }
4097
4098 static inline bool netif_needs_gso(struct sk_buff *skb,
4099                                    netdev_features_t features)
4100 {
4101         return skb_is_gso(skb) && (!skb_gso_ok(skb, features) ||
4102                 unlikely((skb->ip_summed != CHECKSUM_PARTIAL) &&
4103                          (skb->ip_summed != CHECKSUM_UNNECESSARY)));
4104 }
4105
4106 static inline void netif_set_gso_max_size(struct net_device *dev,
4107                                           unsigned int size)
4108 {
4109         dev->gso_max_size = size;
4110 }
4111
4112 static inline void skb_gso_error_unwind(struct sk_buff *skb, __be16 protocol,
4113                                         int pulled_hlen, u16 mac_offset,
4114                                         int mac_len)
4115 {
4116         skb->protocol = protocol;
4117         skb->encapsulation = 1;
4118         skb_push(skb, pulled_hlen);
4119         skb_reset_transport_header(skb);
4120         skb->mac_header = mac_offset;
4121         skb->network_header = skb->mac_header + mac_len;
4122         skb->mac_len = mac_len;
4123 }
4124
4125 static inline bool netif_is_macsec(const struct net_device *dev)
4126 {
4127         return dev->priv_flags & IFF_MACSEC;
4128 }
4129
4130 static inline bool netif_is_macvlan(const struct net_device *dev)
4131 {
4132         return dev->priv_flags & IFF_MACVLAN;
4133 }
4134
4135 static inline bool netif_is_macvlan_port(const struct net_device *dev)
4136 {
4137         return dev->priv_flags & IFF_MACVLAN_PORT;
4138 }
4139
4140 static inline bool netif_is_ipvlan(const struct net_device *dev)
4141 {
4142         return dev->priv_flags & IFF_IPVLAN_SLAVE;
4143 }
4144
4145 static inline bool netif_is_ipvlan_port(const struct net_device *dev)
4146 {
4147         return dev->priv_flags & IFF_IPVLAN_MASTER;
4148 }
4149
4150 static inline bool netif_is_bond_master(const struct net_device *dev)
4151 {
4152         return dev->flags & IFF_MASTER && dev->priv_flags & IFF_BONDING;
4153 }
4154
4155 static inline bool netif_is_bond_slave(const struct net_device *dev)
4156 {
4157         return dev->flags & IFF_SLAVE && dev->priv_flags & IFF_BONDING;
4158 }
4159
4160 static inline bool netif_supports_nofcs(struct net_device *dev)
4161 {
4162         return dev->priv_flags & IFF_SUPP_NOFCS;
4163 }
4164
4165 static inline bool netif_is_l3_master(const struct net_device *dev)
4166 {
4167         return dev->priv_flags & IFF_L3MDEV_MASTER;
4168 }
4169
4170 static inline bool netif_is_l3_slave(const struct net_device *dev)
4171 {
4172         return dev->priv_flags & IFF_L3MDEV_SLAVE;
4173 }
4174
4175 static inline bool netif_is_bridge_master(const struct net_device *dev)
4176 {
4177         return dev->priv_flags & IFF_EBRIDGE;
4178 }
4179
4180 static inline bool netif_is_bridge_port(const struct net_device *dev)
4181 {
4182         return dev->priv_flags & IFF_BRIDGE_PORT;
4183 }
4184
4185 static inline bool netif_is_ovs_master(const struct net_device *dev)
4186 {
4187         return dev->priv_flags & IFF_OPENVSWITCH;
4188 }
4189
4190 static inline bool netif_is_ovs_port(const struct net_device *dev)
4191 {
4192         return dev->priv_flags & IFF_OVS_DATAPATH;
4193 }
4194
4195 static inline bool netif_is_team_master(const struct net_device *dev)
4196 {
4197         return dev->priv_flags & IFF_TEAM;
4198 }
4199
4200 static inline bool netif_is_team_port(const struct net_device *dev)
4201 {
4202         return dev->priv_flags & IFF_TEAM_PORT;
4203 }
4204
4205 static inline bool netif_is_lag_master(const struct net_device *dev)
4206 {
4207         return netif_is_bond_master(dev) || netif_is_team_master(dev);
4208 }
4209
4210 static inline bool netif_is_lag_port(const struct net_device *dev)
4211 {
4212         return netif_is_bond_slave(dev) || netif_is_team_port(dev);
4213 }
4214
4215 static inline bool netif_is_rxfh_configured(const struct net_device *dev)
4216 {
4217         return dev->priv_flags & IFF_RXFH_CONFIGURED;
4218 }
4219
4220 /* This device needs to keep skb dst for qdisc enqueue or ndo_start_xmit() */
4221 static inline void netif_keep_dst(struct net_device *dev)
4222 {
4223         dev->priv_flags &= ~(IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM);
4224 }
4225
4226 /* return true if dev can't cope with mtu frames that need vlan tag insertion */
4227 static inline bool netif_reduces_vlan_mtu(struct net_device *dev)
4228 {
4229         /* TODO: reserve and use an additional IFF bit, if we get more users */
4230         return dev->priv_flags & IFF_MACSEC;
4231 }
4232
4233 extern struct pernet_operations __net_initdata loopback_net_ops;
4234
4235 /* Logging, debugging and troubleshooting/diagnostic helpers. */
4236
4237 /* netdev_printk helpers, similar to dev_printk */
4238
4239 static inline const char *netdev_name(const struct net_device *dev)
4240 {
4241         if (!dev->name[0] || strchr(dev->name, '%'))
4242                 return "(unnamed net_device)";
4243         return dev->name;
4244 }
4245
4246 static inline const char *netdev_reg_state(const struct net_device *dev)
4247 {
4248         switch (dev->reg_state) {
4249         case NETREG_UNINITIALIZED: return " (uninitialized)";
4250         case NETREG_REGISTERED: return "";
4251         case NETREG_UNREGISTERING: return " (unregistering)";
4252         case NETREG_UNREGISTERED: return " (unregistered)";
4253         case NETREG_RELEASED: return " (released)";
4254         case NETREG_DUMMY: return " (dummy)";
4255         }
4256
4257         WARN_ONCE(1, "%s: unknown reg_state %d\n", dev->name, dev->reg_state);
4258         return " (unknown)";
4259 }
4260
4261 __printf(3, 4)
4262 void netdev_printk(const char *level, const struct net_device *dev,
4263                    const char *format, ...);
4264 __printf(2, 3)
4265 void netdev_emerg(const struct net_device *dev, const char *format, ...);
4266 __printf(2, 3)
4267 void netdev_alert(const struct net_device *dev, const char *format, ...);
4268 __printf(2, 3)
4269 void netdev_crit(const struct net_device *dev, const char *format, ...);
4270 __printf(2, 3)
4271 void netdev_err(const struct net_device *dev, const char *format, ...);
4272 __printf(2, 3)
4273 void netdev_warn(const struct net_device *dev, const char *format, ...);
4274 __printf(2, 3)
4275 void netdev_notice(const struct net_device *dev, const char *format, ...);
4276 __printf(2, 3)
4277 void netdev_info(const struct net_device *dev, const char *format, ...);
4278
4279 #define MODULE_ALIAS_NETDEV(device) \
4280         MODULE_ALIAS("netdev-" device)
4281
4282 #if defined(CONFIG_DYNAMIC_DEBUG)
4283 #define netdev_dbg(__dev, format, args...)                      \
4284 do {                                                            \
4285         dynamic_netdev_dbg(__dev, format, ##args);              \
4286 } while (0)
4287 #elif defined(DEBUG)
4288 #define netdev_dbg(__dev, format, args...)                      \
4289         netdev_printk(KERN_DEBUG, __dev, format, ##args)
4290 #else
4291 #define netdev_dbg(__dev, format, args...)                      \
4292 ({                                                              \
4293         if (0)                                                  \
4294                 netdev_printk(KERN_DEBUG, __dev, format, ##args); \
4295 })
4296 #endif
4297
4298 #if defined(VERBOSE_DEBUG)
4299 #define netdev_vdbg     netdev_dbg
4300 #else
4301
4302 #define netdev_vdbg(dev, format, args...)                       \
4303 ({                                                              \
4304         if (0)                                                  \
4305                 netdev_printk(KERN_DEBUG, dev, format, ##args); \
4306         0;                                                      \
4307 })
4308 #endif
4309
4310 /*
4311  * netdev_WARN() acts like dev_printk(), but with the key difference
4312  * of using a WARN/WARN_ON to get the message out, including the
4313  * file/line information and a backtrace.
4314  */
4315 #define netdev_WARN(dev, format, args...)                       \
4316         WARN(1, "netdevice: %s%s\n" format, netdev_name(dev),   \
4317              netdev_reg_state(dev), ##args)
4318
4319 /* netif printk helpers, similar to netdev_printk */
4320
4321 #define netif_printk(priv, type, level, dev, fmt, args...)      \
4322 do {                                                            \
4323         if (netif_msg_##type(priv))                             \
4324                 netdev_printk(level, (dev), fmt, ##args);       \
4325 } while (0)
4326
4327 #define netif_level(level, priv, type, dev, fmt, args...)       \
4328 do {                                                            \
4329         if (netif_msg_##type(priv))                             \
4330                 netdev_##level(dev, fmt, ##args);               \
4331 } while (0)
4332
4333 #define netif_emerg(priv, type, dev, fmt, args...)              \
4334         netif_level(emerg, priv, type, dev, fmt, ##args)
4335 #define netif_alert(priv, type, dev, fmt, args...)              \
4336         netif_level(alert, priv, type, dev, fmt, ##args)
4337 #define netif_crit(priv, type, dev, fmt, args...)               \
4338         netif_level(crit, priv, type, dev, fmt, ##args)
4339 #define netif_err(priv, type, dev, fmt, args...)                \
4340         netif_level(err, priv, type, dev, fmt, ##args)
4341 #define netif_warn(priv, type, dev, fmt, args...)               \
4342         netif_level(warn, priv, type, dev, fmt, ##args)
4343 #define netif_notice(priv, type, dev, fmt, args...)             \
4344         netif_level(notice, priv, type, dev, fmt, ##args)
4345 #define netif_info(priv, type, dev, fmt, args...)               \
4346         netif_level(info, priv, type, dev, fmt, ##args)
4347
4348 #if defined(CONFIG_DYNAMIC_DEBUG)
4349 #define netif_dbg(priv, type, netdev, format, args...)          \
4350 do {                                                            \
4351         if (netif_msg_##type(priv))                             \
4352                 dynamic_netdev_dbg(netdev, format, ##args);     \
4353 } while (0)
4354 #elif defined(DEBUG)
4355 #define netif_dbg(priv, type, dev, format, args...)             \
4356         netif_printk(priv, type, KERN_DEBUG, dev, format, ##args)
4357 #else
4358 #define netif_dbg(priv, type, dev, format, args...)                     \
4359 ({                                                                      \
4360         if (0)                                                          \
4361                 netif_printk(priv, type, KERN_DEBUG, dev, format, ##args); \
4362         0;                                                              \
4363 })
4364 #endif
4365
4366 /* if @cond then downgrade to debug, else print at @level */
4367 #define netif_cond_dbg(priv, type, netdev, cond, level, fmt, args...)     \
4368         do {                                                              \
4369                 if (cond)                                                 \
4370                         netif_dbg(priv, type, netdev, fmt, ##args);       \
4371                 else                                                      \
4372                         netif_ ## level(priv, type, netdev, fmt, ##args); \
4373         } while (0)
4374
4375 #if defined(VERBOSE_DEBUG)
4376 #define netif_vdbg      netif_dbg
4377 #else
4378 #define netif_vdbg(priv, type, dev, format, args...)            \
4379 ({                                                              \
4380         if (0)                                                  \
4381                 netif_printk(priv, type, KERN_DEBUG, dev, format, ##args); \
4382         0;                                                      \
4383 })
4384 #endif
4385
4386 /*
4387  *      The list of packet types we will receive (as opposed to discard)
4388  *      and the routines to invoke.
4389  *
4390  *      Why 16. Because with 16 the only overlap we get on a hash of the
4391  *      low nibble of the protocol value is RARP/SNAP/X.25.
4392  *
4393  *      NOTE:  That is no longer true with the addition of VLAN tags.  Not
4394  *             sure which should go first, but I bet it won't make much
4395  *             difference if we are running VLANs.  The good news is that
4396  *             this protocol won't be in the list unless compiled in, so
4397  *             the average user (w/out VLANs) will not be adversely affected.
4398  *             --BLG
4399  *
4400  *              0800    IP
4401  *              8100    802.1Q VLAN
4402  *              0001    802.3
4403  *              0002    AX.25
4404  *              0004    802.2
4405  *              8035    RARP
4406  *              0005    SNAP
4407  *              0805    X.25
4408  *              0806    ARP
4409  *              8137    IPX
4410  *              0009    Localtalk
4411  *              86DD    IPv6
4412  */
4413 #define PTYPE_HASH_SIZE (16)
4414 #define PTYPE_HASH_MASK (PTYPE_HASH_SIZE - 1)
4415
4416 #endif  /* _LINUX_NETDEVICE_H */