mm/memremap_pages: Introduce memremap_compat_align()
[platform/kernel/linux-rpi.git] / include / linux / mmzone.h
1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef _LINUX_MMZONE_H
3 #define _LINUX_MMZONE_H
4
5 #ifndef __ASSEMBLY__
6 #ifndef __GENERATING_BOUNDS_H
7
8 #include <linux/spinlock.h>
9 #include <linux/list.h>
10 #include <linux/wait.h>
11 #include <linux/bitops.h>
12 #include <linux/cache.h>
13 #include <linux/threads.h>
14 #include <linux/numa.h>
15 #include <linux/init.h>
16 #include <linux/seqlock.h>
17 #include <linux/nodemask.h>
18 #include <linux/pageblock-flags.h>
19 #include <linux/page-flags-layout.h>
20 #include <linux/atomic.h>
21 #include <linux/mm_types.h>
22 #include <linux/page-flags.h>
23 #include <asm/page.h>
24
25 /* Free memory management - zoned buddy allocator.  */
26 #ifndef CONFIG_FORCE_MAX_ZONEORDER
27 #define MAX_ORDER 11
28 #else
29 #define MAX_ORDER CONFIG_FORCE_MAX_ZONEORDER
30 #endif
31 #define MAX_ORDER_NR_PAGES (1 << (MAX_ORDER - 1))
32
33 /*
34  * PAGE_ALLOC_COSTLY_ORDER is the order at which allocations are deemed
35  * costly to service.  That is between allocation orders which should
36  * coalesce naturally under reasonable reclaim pressure and those which
37  * will not.
38  */
39 #define PAGE_ALLOC_COSTLY_ORDER 3
40
41 enum migratetype {
42         MIGRATE_UNMOVABLE,
43         MIGRATE_MOVABLE,
44         MIGRATE_RECLAIMABLE,
45         MIGRATE_PCPTYPES,       /* the number of types on the pcp lists */
46         MIGRATE_HIGHATOMIC = MIGRATE_PCPTYPES,
47 #ifdef CONFIG_CMA
48         /*
49          * MIGRATE_CMA migration type is designed to mimic the way
50          * ZONE_MOVABLE works.  Only movable pages can be allocated
51          * from MIGRATE_CMA pageblocks and page allocator never
52          * implicitly change migration type of MIGRATE_CMA pageblock.
53          *
54          * The way to use it is to change migratetype of a range of
55          * pageblocks to MIGRATE_CMA which can be done by
56          * __free_pageblock_cma() function.  What is important though
57          * is that a range of pageblocks must be aligned to
58          * MAX_ORDER_NR_PAGES should biggest page be bigger then
59          * a single pageblock.
60          */
61         MIGRATE_CMA,
62 #endif
63 #ifdef CONFIG_MEMORY_ISOLATION
64         MIGRATE_ISOLATE,        /* can't allocate from here */
65 #endif
66         MIGRATE_TYPES
67 };
68
69 /* In mm/page_alloc.c; keep in sync also with show_migration_types() there */
70 extern const char * const migratetype_names[MIGRATE_TYPES];
71
72 #ifdef CONFIG_CMA
73 #  define is_migrate_cma(migratetype) unlikely((migratetype) == MIGRATE_CMA)
74 #  define is_migrate_cma_page(_page) (get_pageblock_migratetype(_page) == MIGRATE_CMA)
75 #else
76 #  define is_migrate_cma(migratetype) false
77 #  define is_migrate_cma_page(_page) false
78 #endif
79
80 static inline bool is_migrate_movable(int mt)
81 {
82         return is_migrate_cma(mt) || mt == MIGRATE_MOVABLE;
83 }
84
85 #define for_each_migratetype_order(order, type) \
86         for (order = 0; order < MAX_ORDER; order++) \
87                 for (type = 0; type < MIGRATE_TYPES; type++)
88
89 extern int page_group_by_mobility_disabled;
90
91 #define NR_MIGRATETYPE_BITS (PB_migrate_end - PB_migrate + 1)
92 #define MIGRATETYPE_MASK ((1UL << NR_MIGRATETYPE_BITS) - 1)
93
94 #define get_pageblock_migratetype(page)                                 \
95         get_pfnblock_flags_mask(page, page_to_pfn(page),                \
96                         PB_migrate_end, MIGRATETYPE_MASK)
97
98 struct free_area {
99         struct list_head        free_list[MIGRATE_TYPES];
100         unsigned long           nr_free;
101 };
102
103 /* Used for pages not on another list */
104 static inline void add_to_free_area(struct page *page, struct free_area *area,
105                              int migratetype)
106 {
107         list_add(&page->lru, &area->free_list[migratetype]);
108         area->nr_free++;
109 }
110
111 /* Used for pages not on another list */
112 static inline void add_to_free_area_tail(struct page *page, struct free_area *area,
113                                   int migratetype)
114 {
115         list_add_tail(&page->lru, &area->free_list[migratetype]);
116         area->nr_free++;
117 }
118
119 #ifdef CONFIG_SHUFFLE_PAGE_ALLOCATOR
120 /* Used to preserve page allocation order entropy */
121 void add_to_free_area_random(struct page *page, struct free_area *area,
122                 int migratetype);
123 #else
124 static inline void add_to_free_area_random(struct page *page,
125                 struct free_area *area, int migratetype)
126 {
127         add_to_free_area(page, area, migratetype);
128 }
129 #endif
130
131 /* Used for pages which are on another list */
132 static inline void move_to_free_area(struct page *page, struct free_area *area,
133                              int migratetype)
134 {
135         list_move(&page->lru, &area->free_list[migratetype]);
136 }
137
138 static inline struct page *get_page_from_free_area(struct free_area *area,
139                                             int migratetype)
140 {
141         return list_first_entry_or_null(&area->free_list[migratetype],
142                                         struct page, lru);
143 }
144
145 static inline void del_page_from_free_area(struct page *page,
146                 struct free_area *area)
147 {
148         list_del(&page->lru);
149         __ClearPageBuddy(page);
150         set_page_private(page, 0);
151         area->nr_free--;
152 }
153
154 static inline bool free_area_empty(struct free_area *area, int migratetype)
155 {
156         return list_empty(&area->free_list[migratetype]);
157 }
158
159 struct pglist_data;
160
161 /*
162  * zone->lock and the zone lru_lock are two of the hottest locks in the kernel.
163  * So add a wild amount of padding here to ensure that they fall into separate
164  * cachelines.  There are very few zone structures in the machine, so space
165  * consumption is not a concern here.
166  */
167 #if defined(CONFIG_SMP)
168 struct zone_padding {
169         char x[0];
170 } ____cacheline_internodealigned_in_smp;
171 #define ZONE_PADDING(name)      struct zone_padding name;
172 #else
173 #define ZONE_PADDING(name)
174 #endif
175
176 #ifdef CONFIG_NUMA
177 enum numa_stat_item {
178         NUMA_HIT,               /* allocated in intended node */
179         NUMA_MISS,              /* allocated in non intended node */
180         NUMA_FOREIGN,           /* was intended here, hit elsewhere */
181         NUMA_INTERLEAVE_HIT,    /* interleaver preferred this zone */
182         NUMA_LOCAL,             /* allocation from local node */
183         NUMA_OTHER,             /* allocation from other node */
184         NR_VM_NUMA_STAT_ITEMS
185 };
186 #else
187 #define NR_VM_NUMA_STAT_ITEMS 0
188 #endif
189
190 enum zone_stat_item {
191         /* First 128 byte cacheline (assuming 64 bit words) */
192         NR_FREE_PAGES,
193         NR_ZONE_LRU_BASE, /* Used only for compaction and reclaim retry */
194         NR_ZONE_INACTIVE_ANON = NR_ZONE_LRU_BASE,
195         NR_ZONE_ACTIVE_ANON,
196         NR_ZONE_INACTIVE_FILE,
197         NR_ZONE_ACTIVE_FILE,
198         NR_ZONE_UNEVICTABLE,
199         NR_ZONE_WRITE_PENDING,  /* Count of dirty, writeback and unstable pages */
200         NR_MLOCK,               /* mlock()ed pages found and moved off LRU */
201         NR_PAGETABLE,           /* used for pagetables */
202         NR_KERNEL_STACK_KB,     /* measured in KiB */
203         /* Second 128 byte cacheline */
204         NR_BOUNCE,
205 #if IS_ENABLED(CONFIG_ZSMALLOC)
206         NR_ZSPAGES,             /* allocated in zsmalloc */
207 #endif
208         NR_FREE_CMA_PAGES,
209         NR_VM_ZONE_STAT_ITEMS };
210
211 enum node_stat_item {
212         NR_LRU_BASE,
213         NR_INACTIVE_ANON = NR_LRU_BASE, /* must match order of LRU_[IN]ACTIVE */
214         NR_ACTIVE_ANON,         /*  "     "     "   "       "         */
215         NR_INACTIVE_FILE,       /*  "     "     "   "       "         */
216         NR_ACTIVE_FILE,         /*  "     "     "   "       "         */
217         NR_UNEVICTABLE,         /*  "     "     "   "       "         */
218         NR_SLAB_RECLAIMABLE,
219         NR_SLAB_UNRECLAIMABLE,
220         NR_ISOLATED_ANON,       /* Temporary isolated pages from anon lru */
221         NR_ISOLATED_FILE,       /* Temporary isolated pages from file lru */
222         WORKINGSET_NODES,
223         WORKINGSET_REFAULT,
224         WORKINGSET_ACTIVATE,
225         WORKINGSET_RESTORE,
226         WORKINGSET_NODERECLAIM,
227         NR_ANON_MAPPED, /* Mapped anonymous pages */
228         NR_FILE_MAPPED, /* pagecache pages mapped into pagetables.
229                            only modified from process context */
230         NR_FILE_PAGES,
231         NR_FILE_DIRTY,
232         NR_WRITEBACK,
233         NR_WRITEBACK_TEMP,      /* Writeback using temporary buffers */
234         NR_SHMEM,               /* shmem pages (included tmpfs/GEM pages) */
235         NR_SHMEM_THPS,
236         NR_SHMEM_PMDMAPPED,
237         NR_FILE_THPS,
238         NR_FILE_PMDMAPPED,
239         NR_ANON_THPS,
240         NR_UNSTABLE_NFS,        /* NFS unstable pages */
241         NR_VMSCAN_WRITE,
242         NR_VMSCAN_IMMEDIATE,    /* Prioritise for reclaim when writeback ends */
243         NR_DIRTIED,             /* page dirtyings since bootup */
244         NR_WRITTEN,             /* page writings since bootup */
245         NR_KERNEL_MISC_RECLAIMABLE,     /* reclaimable non-slab kernel pages */
246         NR_VM_NODE_STAT_ITEMS
247 };
248
249 /*
250  * We do arithmetic on the LRU lists in various places in the code,
251  * so it is important to keep the active lists LRU_ACTIVE higher in
252  * the array than the corresponding inactive lists, and to keep
253  * the *_FILE lists LRU_FILE higher than the corresponding _ANON lists.
254  *
255  * This has to be kept in sync with the statistics in zone_stat_item
256  * above and the descriptions in vmstat_text in mm/vmstat.c
257  */
258 #define LRU_BASE 0
259 #define LRU_ACTIVE 1
260 #define LRU_FILE 2
261
262 enum lru_list {
263         LRU_INACTIVE_ANON = LRU_BASE,
264         LRU_ACTIVE_ANON = LRU_BASE + LRU_ACTIVE,
265         LRU_INACTIVE_FILE = LRU_BASE + LRU_FILE,
266         LRU_ACTIVE_FILE = LRU_BASE + LRU_FILE + LRU_ACTIVE,
267         LRU_UNEVICTABLE,
268         NR_LRU_LISTS
269 };
270
271 #define for_each_lru(lru) for (lru = 0; lru < NR_LRU_LISTS; lru++)
272
273 #define for_each_evictable_lru(lru) for (lru = 0; lru <= LRU_ACTIVE_FILE; lru++)
274
275 static inline bool is_file_lru(enum lru_list lru)
276 {
277         return (lru == LRU_INACTIVE_FILE || lru == LRU_ACTIVE_FILE);
278 }
279
280 static inline bool is_active_lru(enum lru_list lru)
281 {
282         return (lru == LRU_ACTIVE_ANON || lru == LRU_ACTIVE_FILE);
283 }
284
285 struct zone_reclaim_stat {
286         /*
287          * The pageout code in vmscan.c keeps track of how many of the
288          * mem/swap backed and file backed pages are referenced.
289          * The higher the rotated/scanned ratio, the more valuable
290          * that cache is.
291          *
292          * The anon LRU stats live in [0], file LRU stats in [1]
293          */
294         unsigned long           recent_rotated[2];
295         unsigned long           recent_scanned[2];
296 };
297
298 enum lruvec_flags {
299         LRUVEC_CONGESTED,               /* lruvec has many dirty pages
300                                          * backed by a congested BDI
301                                          */
302 };
303
304 struct lruvec {
305         struct list_head                lists[NR_LRU_LISTS];
306         struct zone_reclaim_stat        reclaim_stat;
307         /* Evictions & activations on the inactive file list */
308         atomic_long_t                   inactive_age;
309         /* Refaults at the time of last reclaim cycle */
310         unsigned long                   refaults;
311         /* Various lruvec state flags (enum lruvec_flags) */
312         unsigned long                   flags;
313 #ifdef CONFIG_MEMCG
314         struct pglist_data *pgdat;
315 #endif
316 };
317
318 /* Isolate unmapped pages */
319 #define ISOLATE_UNMAPPED        ((__force isolate_mode_t)0x2)
320 /* Isolate for asynchronous migration */
321 #define ISOLATE_ASYNC_MIGRATE   ((__force isolate_mode_t)0x4)
322 /* Isolate unevictable pages */
323 #define ISOLATE_UNEVICTABLE     ((__force isolate_mode_t)0x8)
324
325 /* LRU Isolation modes. */
326 typedef unsigned __bitwise isolate_mode_t;
327
328 enum zone_watermarks {
329         WMARK_MIN,
330         WMARK_LOW,
331         WMARK_HIGH,
332         NR_WMARK
333 };
334
335 #define min_wmark_pages(z) (z->_watermark[WMARK_MIN] + z->watermark_boost)
336 #define low_wmark_pages(z) (z->_watermark[WMARK_LOW] + z->watermark_boost)
337 #define high_wmark_pages(z) (z->_watermark[WMARK_HIGH] + z->watermark_boost)
338 #define wmark_pages(z, i) (z->_watermark[i] + z->watermark_boost)
339
340 struct per_cpu_pages {
341         int count;              /* number of pages in the list */
342         int high;               /* high watermark, emptying needed */
343         int batch;              /* chunk size for buddy add/remove */
344
345         /* Lists of pages, one per migrate type stored on the pcp-lists */
346         struct list_head lists[MIGRATE_PCPTYPES];
347 };
348
349 struct per_cpu_pageset {
350         struct per_cpu_pages pcp;
351 #ifdef CONFIG_NUMA
352         s8 expire;
353         u16 vm_numa_stat_diff[NR_VM_NUMA_STAT_ITEMS];
354 #endif
355 #ifdef CONFIG_SMP
356         s8 stat_threshold;
357         s8 vm_stat_diff[NR_VM_ZONE_STAT_ITEMS];
358 #endif
359 };
360
361 struct per_cpu_nodestat {
362         s8 stat_threshold;
363         s8 vm_node_stat_diff[NR_VM_NODE_STAT_ITEMS];
364 };
365
366 #endif /* !__GENERATING_BOUNDS.H */
367
368 enum zone_type {
369         /*
370          * ZONE_DMA and ZONE_DMA32 are used when there are peripherals not able
371          * to DMA to all of the addressable memory (ZONE_NORMAL).
372          * On architectures where this area covers the whole 32 bit address
373          * space ZONE_DMA32 is used. ZONE_DMA is left for the ones with smaller
374          * DMA addressing constraints. This distinction is important as a 32bit
375          * DMA mask is assumed when ZONE_DMA32 is defined. Some 64-bit
376          * platforms may need both zones as they support peripherals with
377          * different DMA addressing limitations.
378          *
379          * Some examples:
380          *
381          *  - i386 and x86_64 have a fixed 16M ZONE_DMA and ZONE_DMA32 for the
382          *    rest of the lower 4G.
383          *
384          *  - arm only uses ZONE_DMA, the size, up to 4G, may vary depending on
385          *    the specific device.
386          *
387          *  - arm64 has a fixed 1G ZONE_DMA and ZONE_DMA32 for the rest of the
388          *    lower 4G.
389          *
390          *  - powerpc only uses ZONE_DMA, the size, up to 2G, may vary
391          *    depending on the specific device.
392          *
393          *  - s390 uses ZONE_DMA fixed to the lower 2G.
394          *
395          *  - ia64 and riscv only use ZONE_DMA32.
396          *
397          *  - parisc uses neither.
398          */
399 #ifdef CONFIG_ZONE_DMA
400         ZONE_DMA,
401 #endif
402 #ifdef CONFIG_ZONE_DMA32
403         ZONE_DMA32,
404 #endif
405         /*
406          * Normal addressable memory is in ZONE_NORMAL. DMA operations can be
407          * performed on pages in ZONE_NORMAL if the DMA devices support
408          * transfers to all addressable memory.
409          */
410         ZONE_NORMAL,
411 #ifdef CONFIG_HIGHMEM
412         /*
413          * A memory area that is only addressable by the kernel through
414          * mapping portions into its own address space. This is for example
415          * used by i386 to allow the kernel to address the memory beyond
416          * 900MB. The kernel will set up special mappings (page
417          * table entries on i386) for each page that the kernel needs to
418          * access.
419          */
420         ZONE_HIGHMEM,
421 #endif
422         ZONE_MOVABLE,
423 #ifdef CONFIG_ZONE_DEVICE
424         ZONE_DEVICE,
425 #endif
426         __MAX_NR_ZONES
427
428 };
429
430 #ifndef __GENERATING_BOUNDS_H
431
432 struct zone {
433         /* Read-mostly fields */
434
435         /* zone watermarks, access with *_wmark_pages(zone) macros */
436         unsigned long _watermark[NR_WMARK];
437         unsigned long watermark_boost;
438
439         unsigned long nr_reserved_highatomic;
440
441         /*
442          * We don't know if the memory that we're going to allocate will be
443          * freeable or/and it will be released eventually, so to avoid totally
444          * wasting several GB of ram we must reserve some of the lower zone
445          * memory (otherwise we risk to run OOM on the lower zones despite
446          * there being tons of freeable ram on the higher zones).  This array is
447          * recalculated at runtime if the sysctl_lowmem_reserve_ratio sysctl
448          * changes.
449          */
450         long lowmem_reserve[MAX_NR_ZONES];
451
452 #ifdef CONFIG_NUMA
453         int node;
454 #endif
455         struct pglist_data      *zone_pgdat;
456         struct per_cpu_pageset __percpu *pageset;
457
458 #ifndef CONFIG_SPARSEMEM
459         /*
460          * Flags for a pageblock_nr_pages block. See pageblock-flags.h.
461          * In SPARSEMEM, this map is stored in struct mem_section
462          */
463         unsigned long           *pageblock_flags;
464 #endif /* CONFIG_SPARSEMEM */
465
466         /* zone_start_pfn == zone_start_paddr >> PAGE_SHIFT */
467         unsigned long           zone_start_pfn;
468
469         /*
470          * spanned_pages is the total pages spanned by the zone, including
471          * holes, which is calculated as:
472          *      spanned_pages = zone_end_pfn - zone_start_pfn;
473          *
474          * present_pages is physical pages existing within the zone, which
475          * is calculated as:
476          *      present_pages = spanned_pages - absent_pages(pages in holes);
477          *
478          * managed_pages is present pages managed by the buddy system, which
479          * is calculated as (reserved_pages includes pages allocated by the
480          * bootmem allocator):
481          *      managed_pages = present_pages - reserved_pages;
482          *
483          * So present_pages may be used by memory hotplug or memory power
484          * management logic to figure out unmanaged pages by checking
485          * (present_pages - managed_pages). And managed_pages should be used
486          * by page allocator and vm scanner to calculate all kinds of watermarks
487          * and thresholds.
488          *
489          * Locking rules:
490          *
491          * zone_start_pfn and spanned_pages are protected by span_seqlock.
492          * It is a seqlock because it has to be read outside of zone->lock,
493          * and it is done in the main allocator path.  But, it is written
494          * quite infrequently.
495          *
496          * The span_seq lock is declared along with zone->lock because it is
497          * frequently read in proximity to zone->lock.  It's good to
498          * give them a chance of being in the same cacheline.
499          *
500          * Write access to present_pages at runtime should be protected by
501          * mem_hotplug_begin/end(). Any reader who can't tolerant drift of
502          * present_pages should get_online_mems() to get a stable value.
503          */
504         atomic_long_t           managed_pages;
505         unsigned long           spanned_pages;
506         unsigned long           present_pages;
507
508         const char              *name;
509
510 #ifdef CONFIG_MEMORY_ISOLATION
511         /*
512          * Number of isolated pageblock. It is used to solve incorrect
513          * freepage counting problem due to racy retrieving migratetype
514          * of pageblock. Protected by zone->lock.
515          */
516         unsigned long           nr_isolate_pageblock;
517 #endif
518
519 #ifdef CONFIG_MEMORY_HOTPLUG
520         /* see spanned/present_pages for more description */
521         seqlock_t               span_seqlock;
522 #endif
523
524         int initialized;
525
526         /* Write-intensive fields used from the page allocator */
527         ZONE_PADDING(_pad1_)
528
529         /* free areas of different sizes */
530         struct free_area        free_area[MAX_ORDER];
531
532         /* zone flags, see below */
533         unsigned long           flags;
534
535         /* Primarily protects free_area */
536         spinlock_t              lock;
537
538         /* Write-intensive fields used by compaction and vmstats. */
539         ZONE_PADDING(_pad2_)
540
541         /*
542          * When free pages are below this point, additional steps are taken
543          * when reading the number of free pages to avoid per-cpu counter
544          * drift allowing watermarks to be breached
545          */
546         unsigned long percpu_drift_mark;
547
548 #if defined CONFIG_COMPACTION || defined CONFIG_CMA
549         /* pfn where compaction free scanner should start */
550         unsigned long           compact_cached_free_pfn;
551         /* pfn where async and sync compaction migration scanner should start */
552         unsigned long           compact_cached_migrate_pfn[2];
553         unsigned long           compact_init_migrate_pfn;
554         unsigned long           compact_init_free_pfn;
555 #endif
556
557 #ifdef CONFIG_COMPACTION
558         /*
559          * On compaction failure, 1<<compact_defer_shift compactions
560          * are skipped before trying again. The number attempted since
561          * last failure is tracked with compact_considered.
562          */
563         unsigned int            compact_considered;
564         unsigned int            compact_defer_shift;
565         int                     compact_order_failed;
566 #endif
567
568 #if defined CONFIG_COMPACTION || defined CONFIG_CMA
569         /* Set to true when the PG_migrate_skip bits should be cleared */
570         bool                    compact_blockskip_flush;
571 #endif
572
573         bool                    contiguous;
574
575         ZONE_PADDING(_pad3_)
576         /* Zone statistics */
577         atomic_long_t           vm_stat[NR_VM_ZONE_STAT_ITEMS];
578         atomic_long_t           vm_numa_stat[NR_VM_NUMA_STAT_ITEMS];
579 } ____cacheline_internodealigned_in_smp;
580
581 enum pgdat_flags {
582         PGDAT_DIRTY,                    /* reclaim scanning has recently found
583                                          * many dirty file pages at the tail
584                                          * of the LRU.
585                                          */
586         PGDAT_WRITEBACK,                /* reclaim scanning has recently found
587                                          * many pages under writeback
588                                          */
589         PGDAT_RECLAIM_LOCKED,           /* prevents concurrent reclaim */
590 };
591
592 enum zone_flags {
593         ZONE_BOOSTED_WATERMARK,         /* zone recently boosted watermarks.
594                                          * Cleared when kswapd is woken.
595                                          */
596 };
597
598 static inline unsigned long zone_managed_pages(struct zone *zone)
599 {
600         return (unsigned long)atomic_long_read(&zone->managed_pages);
601 }
602
603 static inline unsigned long zone_end_pfn(const struct zone *zone)
604 {
605         return zone->zone_start_pfn + zone->spanned_pages;
606 }
607
608 static inline bool zone_spans_pfn(const struct zone *zone, unsigned long pfn)
609 {
610         return zone->zone_start_pfn <= pfn && pfn < zone_end_pfn(zone);
611 }
612
613 static inline bool zone_is_initialized(struct zone *zone)
614 {
615         return zone->initialized;
616 }
617
618 static inline bool zone_is_empty(struct zone *zone)
619 {
620         return zone->spanned_pages == 0;
621 }
622
623 /*
624  * Return true if [start_pfn, start_pfn + nr_pages) range has a non-empty
625  * intersection with the given zone
626  */
627 static inline bool zone_intersects(struct zone *zone,
628                 unsigned long start_pfn, unsigned long nr_pages)
629 {
630         if (zone_is_empty(zone))
631                 return false;
632         if (start_pfn >= zone_end_pfn(zone) ||
633             start_pfn + nr_pages <= zone->zone_start_pfn)
634                 return false;
635
636         return true;
637 }
638
639 /*
640  * The "priority" of VM scanning is how much of the queues we will scan in one
641  * go. A value of 12 for DEF_PRIORITY implies that we will scan 1/4096th of the
642  * queues ("queue_length >> 12") during an aging round.
643  */
644 #define DEF_PRIORITY 12
645
646 /* Maximum number of zones on a zonelist */
647 #define MAX_ZONES_PER_ZONELIST (MAX_NUMNODES * MAX_NR_ZONES)
648
649 enum {
650         ZONELIST_FALLBACK,      /* zonelist with fallback */
651 #ifdef CONFIG_NUMA
652         /*
653          * The NUMA zonelists are doubled because we need zonelists that
654          * restrict the allocations to a single node for __GFP_THISNODE.
655          */
656         ZONELIST_NOFALLBACK,    /* zonelist without fallback (__GFP_THISNODE) */
657 #endif
658         MAX_ZONELISTS
659 };
660
661 /*
662  * This struct contains information about a zone in a zonelist. It is stored
663  * here to avoid dereferences into large structures and lookups of tables
664  */
665 struct zoneref {
666         struct zone *zone;      /* Pointer to actual zone */
667         int zone_idx;           /* zone_idx(zoneref->zone) */
668 };
669
670 /*
671  * One allocation request operates on a zonelist. A zonelist
672  * is a list of zones, the first one is the 'goal' of the
673  * allocation, the other zones are fallback zones, in decreasing
674  * priority.
675  *
676  * To speed the reading of the zonelist, the zonerefs contain the zone index
677  * of the entry being read. Helper functions to access information given
678  * a struct zoneref are
679  *
680  * zonelist_zone()      - Return the struct zone * for an entry in _zonerefs
681  * zonelist_zone_idx()  - Return the index of the zone for an entry
682  * zonelist_node_idx()  - Return the index of the node for an entry
683  */
684 struct zonelist {
685         struct zoneref _zonerefs[MAX_ZONES_PER_ZONELIST + 1];
686 };
687
688 #ifndef CONFIG_DISCONTIGMEM
689 /* The array of struct pages - for discontigmem use pgdat->lmem_map */
690 extern struct page *mem_map;
691 #endif
692
693 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
694 struct deferred_split {
695         spinlock_t split_queue_lock;
696         struct list_head split_queue;
697         unsigned long split_queue_len;
698 };
699 #endif
700
701 /*
702  * On NUMA machines, each NUMA node would have a pg_data_t to describe
703  * it's memory layout. On UMA machines there is a single pglist_data which
704  * describes the whole memory.
705  *
706  * Memory statistics and page replacement data structures are maintained on a
707  * per-zone basis.
708  */
709 struct bootmem_data;
710 typedef struct pglist_data {
711         struct zone node_zones[MAX_NR_ZONES];
712         struct zonelist node_zonelists[MAX_ZONELISTS];
713         int nr_zones;
714 #ifdef CONFIG_FLAT_NODE_MEM_MAP /* means !SPARSEMEM */
715         struct page *node_mem_map;
716 #ifdef CONFIG_PAGE_EXTENSION
717         struct page_ext *node_page_ext;
718 #endif
719 #endif
720 #if defined(CONFIG_MEMORY_HOTPLUG) || defined(CONFIG_DEFERRED_STRUCT_PAGE_INIT)
721         /*
722          * Must be held any time you expect node_start_pfn,
723          * node_present_pages, node_spanned_pages or nr_zones to stay constant.
724          *
725          * pgdat_resize_lock() and pgdat_resize_unlock() are provided to
726          * manipulate node_size_lock without checking for CONFIG_MEMORY_HOTPLUG
727          * or CONFIG_DEFERRED_STRUCT_PAGE_INIT.
728          *
729          * Nests above zone->lock and zone->span_seqlock
730          */
731         spinlock_t node_size_lock;
732 #endif
733         unsigned long node_start_pfn;
734         unsigned long node_present_pages; /* total number of physical pages */
735         unsigned long node_spanned_pages; /* total size of physical page
736                                              range, including holes */
737         int node_id;
738         wait_queue_head_t kswapd_wait;
739         wait_queue_head_t pfmemalloc_wait;
740         struct task_struct *kswapd;     /* Protected by
741                                            mem_hotplug_begin/end() */
742         int kswapd_order;
743         enum zone_type kswapd_classzone_idx;
744
745         int kswapd_failures;            /* Number of 'reclaimed == 0' runs */
746
747 #ifdef CONFIG_COMPACTION
748         int kcompactd_max_order;
749         enum zone_type kcompactd_classzone_idx;
750         wait_queue_head_t kcompactd_wait;
751         struct task_struct *kcompactd;
752 #endif
753         /*
754          * This is a per-node reserve of pages that are not available
755          * to userspace allocations.
756          */
757         unsigned long           totalreserve_pages;
758
759 #ifdef CONFIG_NUMA
760         /*
761          * node reclaim becomes active if more unmapped pages exist.
762          */
763         unsigned long           min_unmapped_pages;
764         unsigned long           min_slab_pages;
765 #endif /* CONFIG_NUMA */
766
767         /* Write-intensive fields used by page reclaim */
768         ZONE_PADDING(_pad1_)
769         spinlock_t              lru_lock;
770
771 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
772         /*
773          * If memory initialisation on large machines is deferred then this
774          * is the first PFN that needs to be initialised.
775          */
776         unsigned long first_deferred_pfn;
777 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
778
779 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
780         struct deferred_split deferred_split_queue;
781 #endif
782
783         /* Fields commonly accessed by the page reclaim scanner */
784
785         /*
786          * NOTE: THIS IS UNUSED IF MEMCG IS ENABLED.
787          *
788          * Use mem_cgroup_lruvec() to look up lruvecs.
789          */
790         struct lruvec           __lruvec;
791
792         unsigned long           flags;
793
794         ZONE_PADDING(_pad2_)
795
796         /* Per-node vmstats */
797         struct per_cpu_nodestat __percpu *per_cpu_nodestats;
798         atomic_long_t           vm_stat[NR_VM_NODE_STAT_ITEMS];
799 } pg_data_t;
800
801 #define node_present_pages(nid) (NODE_DATA(nid)->node_present_pages)
802 #define node_spanned_pages(nid) (NODE_DATA(nid)->node_spanned_pages)
803 #ifdef CONFIG_FLAT_NODE_MEM_MAP
804 #define pgdat_page_nr(pgdat, pagenr)    ((pgdat)->node_mem_map + (pagenr))
805 #else
806 #define pgdat_page_nr(pgdat, pagenr)    pfn_to_page((pgdat)->node_start_pfn + (pagenr))
807 #endif
808 #define nid_page_nr(nid, pagenr)        pgdat_page_nr(NODE_DATA(nid),(pagenr))
809
810 #define node_start_pfn(nid)     (NODE_DATA(nid)->node_start_pfn)
811 #define node_end_pfn(nid) pgdat_end_pfn(NODE_DATA(nid))
812
813 static inline unsigned long pgdat_end_pfn(pg_data_t *pgdat)
814 {
815         return pgdat->node_start_pfn + pgdat->node_spanned_pages;
816 }
817
818 static inline bool pgdat_is_empty(pg_data_t *pgdat)
819 {
820         return !pgdat->node_start_pfn && !pgdat->node_spanned_pages;
821 }
822
823 #include <linux/memory_hotplug.h>
824
825 void build_all_zonelists(pg_data_t *pgdat);
826 void wakeup_kswapd(struct zone *zone, gfp_t gfp_mask, int order,
827                    enum zone_type classzone_idx);
828 bool __zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
829                          int classzone_idx, unsigned int alloc_flags,
830                          long free_pages);
831 bool zone_watermark_ok(struct zone *z, unsigned int order,
832                 unsigned long mark, int classzone_idx,
833                 unsigned int alloc_flags);
834 bool zone_watermark_ok_safe(struct zone *z, unsigned int order,
835                 unsigned long mark, int classzone_idx);
836 enum memmap_context {
837         MEMMAP_EARLY,
838         MEMMAP_HOTPLUG,
839 };
840 extern void init_currently_empty_zone(struct zone *zone, unsigned long start_pfn,
841                                      unsigned long size);
842
843 extern void lruvec_init(struct lruvec *lruvec);
844
845 static inline struct pglist_data *lruvec_pgdat(struct lruvec *lruvec)
846 {
847 #ifdef CONFIG_MEMCG
848         return lruvec->pgdat;
849 #else
850         return container_of(lruvec, struct pglist_data, __lruvec);
851 #endif
852 }
853
854 extern unsigned long lruvec_lru_size(struct lruvec *lruvec, enum lru_list lru, int zone_idx);
855
856 #ifdef CONFIG_HAVE_MEMORY_PRESENT
857 void memory_present(int nid, unsigned long start, unsigned long end);
858 #else
859 static inline void memory_present(int nid, unsigned long start, unsigned long end) {}
860 #endif
861
862 #if defined(CONFIG_SPARSEMEM)
863 void memblocks_present(void);
864 #else
865 static inline void memblocks_present(void) {}
866 #endif
867
868 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
869 int local_memory_node(int node_id);
870 #else
871 static inline int local_memory_node(int node_id) { return node_id; };
872 #endif
873
874 /*
875  * zone_idx() returns 0 for the ZONE_DMA zone, 1 for the ZONE_NORMAL zone, etc.
876  */
877 #define zone_idx(zone)          ((zone) - (zone)->zone_pgdat->node_zones)
878
879 /*
880  * Returns true if a zone has pages managed by the buddy allocator.
881  * All the reclaim decisions have to use this function rather than
882  * populated_zone(). If the whole zone is reserved then we can easily
883  * end up with populated_zone() && !managed_zone().
884  */
885 static inline bool managed_zone(struct zone *zone)
886 {
887         return zone_managed_pages(zone);
888 }
889
890 /* Returns true if a zone has memory */
891 static inline bool populated_zone(struct zone *zone)
892 {
893         return zone->present_pages;
894 }
895
896 #ifdef CONFIG_NUMA
897 static inline int zone_to_nid(struct zone *zone)
898 {
899         return zone->node;
900 }
901
902 static inline void zone_set_nid(struct zone *zone, int nid)
903 {
904         zone->node = nid;
905 }
906 #else
907 static inline int zone_to_nid(struct zone *zone)
908 {
909         return 0;
910 }
911
912 static inline void zone_set_nid(struct zone *zone, int nid) {}
913 #endif
914
915 extern int movable_zone;
916
917 #ifdef CONFIG_HIGHMEM
918 static inline int zone_movable_is_highmem(void)
919 {
920 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
921         return movable_zone == ZONE_HIGHMEM;
922 #else
923         return (ZONE_MOVABLE - 1) == ZONE_HIGHMEM;
924 #endif
925 }
926 #endif
927
928 static inline int is_highmem_idx(enum zone_type idx)
929 {
930 #ifdef CONFIG_HIGHMEM
931         return (idx == ZONE_HIGHMEM ||
932                 (idx == ZONE_MOVABLE && zone_movable_is_highmem()));
933 #else
934         return 0;
935 #endif
936 }
937
938 /**
939  * is_highmem - helper function to quickly check if a struct zone is a
940  *              highmem zone or not.  This is an attempt to keep references
941  *              to ZONE_{DMA/NORMAL/HIGHMEM/etc} in general code to a minimum.
942  * @zone - pointer to struct zone variable
943  */
944 static inline int is_highmem(struct zone *zone)
945 {
946 #ifdef CONFIG_HIGHMEM
947         return is_highmem_idx(zone_idx(zone));
948 #else
949         return 0;
950 #endif
951 }
952
953 /* These two functions are used to setup the per zone pages min values */
954 struct ctl_table;
955 int min_free_kbytes_sysctl_handler(struct ctl_table *, int,
956                                         void __user *, size_t *, loff_t *);
957 int watermark_boost_factor_sysctl_handler(struct ctl_table *, int,
958                                         void __user *, size_t *, loff_t *);
959 int watermark_scale_factor_sysctl_handler(struct ctl_table *, int,
960                                         void __user *, size_t *, loff_t *);
961 extern int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES];
962 int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *, int,
963                                         void __user *, size_t *, loff_t *);
964 int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *, int,
965                                         void __user *, size_t *, loff_t *);
966 int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *, int,
967                         void __user *, size_t *, loff_t *);
968 int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *, int,
969                         void __user *, size_t *, loff_t *);
970
971 extern int numa_zonelist_order_handler(struct ctl_table *, int,
972                         void __user *, size_t *, loff_t *);
973 extern char numa_zonelist_order[];
974 #define NUMA_ZONELIST_ORDER_LEN 16
975
976 #ifndef CONFIG_NEED_MULTIPLE_NODES
977
978 extern struct pglist_data contig_page_data;
979 #define NODE_DATA(nid)          (&contig_page_data)
980 #define NODE_MEM_MAP(nid)       mem_map
981
982 #else /* CONFIG_NEED_MULTIPLE_NODES */
983
984 #include <asm/mmzone.h>
985
986 #endif /* !CONFIG_NEED_MULTIPLE_NODES */
987
988 extern struct pglist_data *first_online_pgdat(void);
989 extern struct pglist_data *next_online_pgdat(struct pglist_data *pgdat);
990 extern struct zone *next_zone(struct zone *zone);
991
992 /**
993  * for_each_online_pgdat - helper macro to iterate over all online nodes
994  * @pgdat - pointer to a pg_data_t variable
995  */
996 #define for_each_online_pgdat(pgdat)                    \
997         for (pgdat = first_online_pgdat();              \
998              pgdat;                                     \
999              pgdat = next_online_pgdat(pgdat))
1000 /**
1001  * for_each_zone - helper macro to iterate over all memory zones
1002  * @zone - pointer to struct zone variable
1003  *
1004  * The user only needs to declare the zone variable, for_each_zone
1005  * fills it in.
1006  */
1007 #define for_each_zone(zone)                             \
1008         for (zone = (first_online_pgdat())->node_zones; \
1009              zone;                                      \
1010              zone = next_zone(zone))
1011
1012 #define for_each_populated_zone(zone)                   \
1013         for (zone = (first_online_pgdat())->node_zones; \
1014              zone;                                      \
1015              zone = next_zone(zone))                    \
1016                 if (!populated_zone(zone))              \
1017                         ; /* do nothing */              \
1018                 else
1019
1020 static inline struct zone *zonelist_zone(struct zoneref *zoneref)
1021 {
1022         return zoneref->zone;
1023 }
1024
1025 static inline int zonelist_zone_idx(struct zoneref *zoneref)
1026 {
1027         return zoneref->zone_idx;
1028 }
1029
1030 static inline int zonelist_node_idx(struct zoneref *zoneref)
1031 {
1032         return zone_to_nid(zoneref->zone);
1033 }
1034
1035 struct zoneref *__next_zones_zonelist(struct zoneref *z,
1036                                         enum zone_type highest_zoneidx,
1037                                         nodemask_t *nodes);
1038
1039 /**
1040  * next_zones_zonelist - Returns the next zone at or below highest_zoneidx within the allowed nodemask using a cursor within a zonelist as a starting point
1041  * @z - The cursor used as a starting point for the search
1042  * @highest_zoneidx - The zone index of the highest zone to return
1043  * @nodes - An optional nodemask to filter the zonelist with
1044  *
1045  * This function returns the next zone at or below a given zone index that is
1046  * within the allowed nodemask using a cursor as the starting point for the
1047  * search. The zoneref returned is a cursor that represents the current zone
1048  * being examined. It should be advanced by one before calling
1049  * next_zones_zonelist again.
1050  */
1051 static __always_inline struct zoneref *next_zones_zonelist(struct zoneref *z,
1052                                         enum zone_type highest_zoneidx,
1053                                         nodemask_t *nodes)
1054 {
1055         if (likely(!nodes && zonelist_zone_idx(z) <= highest_zoneidx))
1056                 return z;
1057         return __next_zones_zonelist(z, highest_zoneidx, nodes);
1058 }
1059
1060 /**
1061  * first_zones_zonelist - Returns the first zone at or below highest_zoneidx within the allowed nodemask in a zonelist
1062  * @zonelist - The zonelist to search for a suitable zone
1063  * @highest_zoneidx - The zone index of the highest zone to return
1064  * @nodes - An optional nodemask to filter the zonelist with
1065  * @return - Zoneref pointer for the first suitable zone found (see below)
1066  *
1067  * This function returns the first zone at or below a given zone index that is
1068  * within the allowed nodemask. The zoneref returned is a cursor that can be
1069  * used to iterate the zonelist with next_zones_zonelist by advancing it by
1070  * one before calling.
1071  *
1072  * When no eligible zone is found, zoneref->zone is NULL (zoneref itself is
1073  * never NULL). This may happen either genuinely, or due to concurrent nodemask
1074  * update due to cpuset modification.
1075  */
1076 static inline struct zoneref *first_zones_zonelist(struct zonelist *zonelist,
1077                                         enum zone_type highest_zoneidx,
1078                                         nodemask_t *nodes)
1079 {
1080         return next_zones_zonelist(zonelist->_zonerefs,
1081                                                         highest_zoneidx, nodes);
1082 }
1083
1084 /**
1085  * for_each_zone_zonelist_nodemask - helper macro to iterate over valid zones in a zonelist at or below a given zone index and within a nodemask
1086  * @zone - The current zone in the iterator
1087  * @z - The current pointer within zonelist->_zonerefs being iterated
1088  * @zlist - The zonelist being iterated
1089  * @highidx - The zone index of the highest zone to return
1090  * @nodemask - Nodemask allowed by the allocator
1091  *
1092  * This iterator iterates though all zones at or below a given zone index and
1093  * within a given nodemask
1094  */
1095 #define for_each_zone_zonelist_nodemask(zone, z, zlist, highidx, nodemask) \
1096         for (z = first_zones_zonelist(zlist, highidx, nodemask), zone = zonelist_zone(z);       \
1097                 zone;                                                   \
1098                 z = next_zones_zonelist(++z, highidx, nodemask),        \
1099                         zone = zonelist_zone(z))
1100
1101 #define for_next_zone_zonelist_nodemask(zone, z, zlist, highidx, nodemask) \
1102         for (zone = z->zone;    \
1103                 zone;                                                   \
1104                 z = next_zones_zonelist(++z, highidx, nodemask),        \
1105                         zone = zonelist_zone(z))
1106
1107
1108 /**
1109  * for_each_zone_zonelist - helper macro to iterate over valid zones in a zonelist at or below a given zone index
1110  * @zone - The current zone in the iterator
1111  * @z - The current pointer within zonelist->zones being iterated
1112  * @zlist - The zonelist being iterated
1113  * @highidx - The zone index of the highest zone to return
1114  *
1115  * This iterator iterates though all zones at or below a given zone index.
1116  */
1117 #define for_each_zone_zonelist(zone, z, zlist, highidx) \
1118         for_each_zone_zonelist_nodemask(zone, z, zlist, highidx, NULL)
1119
1120 #ifdef CONFIG_SPARSEMEM
1121 #include <asm/sparsemem.h>
1122 #endif
1123
1124 #if !defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID) && \
1125         !defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP)
1126 static inline unsigned long early_pfn_to_nid(unsigned long pfn)
1127 {
1128         BUILD_BUG_ON(IS_ENABLED(CONFIG_NUMA));
1129         return 0;
1130 }
1131 #endif
1132
1133 #ifdef CONFIG_FLATMEM
1134 #define pfn_to_nid(pfn)         (0)
1135 #endif
1136
1137 #ifdef CONFIG_SPARSEMEM
1138
1139 /*
1140  * SECTION_SHIFT                #bits space required to store a section #
1141  *
1142  * PA_SECTION_SHIFT             physical address to/from section number
1143  * PFN_SECTION_SHIFT            pfn to/from section number
1144  */
1145 #define PA_SECTION_SHIFT        (SECTION_SIZE_BITS)
1146 #define PFN_SECTION_SHIFT       (SECTION_SIZE_BITS - PAGE_SHIFT)
1147
1148 #define NR_MEM_SECTIONS         (1UL << SECTIONS_SHIFT)
1149
1150 #define PAGES_PER_SECTION       (1UL << PFN_SECTION_SHIFT)
1151 #define PAGE_SECTION_MASK       (~(PAGES_PER_SECTION-1))
1152
1153 #define SECTION_BLOCKFLAGS_BITS \
1154         ((1UL << (PFN_SECTION_SHIFT - pageblock_order)) * NR_PAGEBLOCK_BITS)
1155
1156 #if (MAX_ORDER - 1 + PAGE_SHIFT) > SECTION_SIZE_BITS
1157 #error Allocator MAX_ORDER exceeds SECTION_SIZE
1158 #endif
1159
1160 static inline unsigned long pfn_to_section_nr(unsigned long pfn)
1161 {
1162         return pfn >> PFN_SECTION_SHIFT;
1163 }
1164 static inline unsigned long section_nr_to_pfn(unsigned long sec)
1165 {
1166         return sec << PFN_SECTION_SHIFT;
1167 }
1168
1169 #define SECTION_ALIGN_UP(pfn)   (((pfn) + PAGES_PER_SECTION - 1) & PAGE_SECTION_MASK)
1170 #define SECTION_ALIGN_DOWN(pfn) ((pfn) & PAGE_SECTION_MASK)
1171
1172 #define SUBSECTION_SHIFT 21
1173 #define SUBSECTION_SIZE (1UL << SUBSECTION_SHIFT)
1174
1175 #define PFN_SUBSECTION_SHIFT (SUBSECTION_SHIFT - PAGE_SHIFT)
1176 #define PAGES_PER_SUBSECTION (1UL << PFN_SUBSECTION_SHIFT)
1177 #define PAGE_SUBSECTION_MASK (~(PAGES_PER_SUBSECTION-1))
1178
1179 #if SUBSECTION_SHIFT > SECTION_SIZE_BITS
1180 #error Subsection size exceeds section size
1181 #else
1182 #define SUBSECTIONS_PER_SECTION (1UL << (SECTION_SIZE_BITS - SUBSECTION_SHIFT))
1183 #endif
1184
1185 #define SUBSECTION_ALIGN_UP(pfn) ALIGN((pfn), PAGES_PER_SUBSECTION)
1186 #define SUBSECTION_ALIGN_DOWN(pfn) ((pfn) & PAGE_SUBSECTION_MASK)
1187
1188 struct mem_section_usage {
1189         DECLARE_BITMAP(subsection_map, SUBSECTIONS_PER_SECTION);
1190         /* See declaration of similar field in struct zone */
1191         unsigned long pageblock_flags[0];
1192 };
1193
1194 void subsection_map_init(unsigned long pfn, unsigned long nr_pages);
1195
1196 struct page;
1197 struct page_ext;
1198 struct mem_section {
1199         /*
1200          * This is, logically, a pointer to an array of struct
1201          * pages.  However, it is stored with some other magic.
1202          * (see sparse.c::sparse_init_one_section())
1203          *
1204          * Additionally during early boot we encode node id of
1205          * the location of the section here to guide allocation.
1206          * (see sparse.c::memory_present())
1207          *
1208          * Making it a UL at least makes someone do a cast
1209          * before using it wrong.
1210          */
1211         unsigned long section_mem_map;
1212
1213         struct mem_section_usage *usage;
1214 #ifdef CONFIG_PAGE_EXTENSION
1215         /*
1216          * If SPARSEMEM, pgdat doesn't have page_ext pointer. We use
1217          * section. (see page_ext.h about this.)
1218          */
1219         struct page_ext *page_ext;
1220         unsigned long pad;
1221 #endif
1222         /*
1223          * WARNING: mem_section must be a power-of-2 in size for the
1224          * calculation and use of SECTION_ROOT_MASK to make sense.
1225          */
1226 };
1227
1228 #ifdef CONFIG_SPARSEMEM_EXTREME
1229 #define SECTIONS_PER_ROOT       (PAGE_SIZE / sizeof (struct mem_section))
1230 #else
1231 #define SECTIONS_PER_ROOT       1
1232 #endif
1233
1234 #define SECTION_NR_TO_ROOT(sec) ((sec) / SECTIONS_PER_ROOT)
1235 #define NR_SECTION_ROOTS        DIV_ROUND_UP(NR_MEM_SECTIONS, SECTIONS_PER_ROOT)
1236 #define SECTION_ROOT_MASK       (SECTIONS_PER_ROOT - 1)
1237
1238 #ifdef CONFIG_SPARSEMEM_EXTREME
1239 extern struct mem_section **mem_section;
1240 #else
1241 extern struct mem_section mem_section[NR_SECTION_ROOTS][SECTIONS_PER_ROOT];
1242 #endif
1243
1244 static inline unsigned long *section_to_usemap(struct mem_section *ms)
1245 {
1246         return ms->usage->pageblock_flags;
1247 }
1248
1249 static inline struct mem_section *__nr_to_section(unsigned long nr)
1250 {
1251 #ifdef CONFIG_SPARSEMEM_EXTREME
1252         if (!mem_section)
1253                 return NULL;
1254 #endif
1255         if (!mem_section[SECTION_NR_TO_ROOT(nr)])
1256                 return NULL;
1257         return &mem_section[SECTION_NR_TO_ROOT(nr)][nr & SECTION_ROOT_MASK];
1258 }
1259 extern unsigned long __section_nr(struct mem_section *ms);
1260 extern size_t mem_section_usage_size(void);
1261
1262 /*
1263  * We use the lower bits of the mem_map pointer to store
1264  * a little bit of information.  The pointer is calculated
1265  * as mem_map - section_nr_to_pfn(pnum).  The result is
1266  * aligned to the minimum alignment of the two values:
1267  *   1. All mem_map arrays are page-aligned.
1268  *   2. section_nr_to_pfn() always clears PFN_SECTION_SHIFT
1269  *      lowest bits.  PFN_SECTION_SHIFT is arch-specific
1270  *      (equal SECTION_SIZE_BITS - PAGE_SHIFT), and the
1271  *      worst combination is powerpc with 256k pages,
1272  *      which results in PFN_SECTION_SHIFT equal 6.
1273  * To sum it up, at least 6 bits are available.
1274  */
1275 #define SECTION_MARKED_PRESENT  (1UL<<0)
1276 #define SECTION_HAS_MEM_MAP     (1UL<<1)
1277 #define SECTION_IS_ONLINE       (1UL<<2)
1278 #define SECTION_IS_EARLY        (1UL<<3)
1279 #define SECTION_MAP_LAST_BIT    (1UL<<4)
1280 #define SECTION_MAP_MASK        (~(SECTION_MAP_LAST_BIT-1))
1281 #define SECTION_NID_SHIFT       3
1282
1283 static inline struct page *__section_mem_map_addr(struct mem_section *section)
1284 {
1285         unsigned long map = section->section_mem_map;
1286         map &= SECTION_MAP_MASK;
1287         return (struct page *)map;
1288 }
1289
1290 static inline int present_section(struct mem_section *section)
1291 {
1292         return (section && (section->section_mem_map & SECTION_MARKED_PRESENT));
1293 }
1294
1295 static inline int present_section_nr(unsigned long nr)
1296 {
1297         return present_section(__nr_to_section(nr));
1298 }
1299
1300 static inline int valid_section(struct mem_section *section)
1301 {
1302         return (section && (section->section_mem_map & SECTION_HAS_MEM_MAP));
1303 }
1304
1305 static inline int early_section(struct mem_section *section)
1306 {
1307         return (section && (section->section_mem_map & SECTION_IS_EARLY));
1308 }
1309
1310 static inline int valid_section_nr(unsigned long nr)
1311 {
1312         return valid_section(__nr_to_section(nr));
1313 }
1314
1315 static inline int online_section(struct mem_section *section)
1316 {
1317         return (section && (section->section_mem_map & SECTION_IS_ONLINE));
1318 }
1319
1320 static inline int online_section_nr(unsigned long nr)
1321 {
1322         return online_section(__nr_to_section(nr));
1323 }
1324
1325 #ifdef CONFIG_MEMORY_HOTPLUG
1326 void online_mem_sections(unsigned long start_pfn, unsigned long end_pfn);
1327 #ifdef CONFIG_MEMORY_HOTREMOVE
1328 void offline_mem_sections(unsigned long start_pfn, unsigned long end_pfn);
1329 #endif
1330 #endif
1331
1332 static inline struct mem_section *__pfn_to_section(unsigned long pfn)
1333 {
1334         return __nr_to_section(pfn_to_section_nr(pfn));
1335 }
1336
1337 extern unsigned long __highest_present_section_nr;
1338
1339 static inline int subsection_map_index(unsigned long pfn)
1340 {
1341         return (pfn & ~(PAGE_SECTION_MASK)) / PAGES_PER_SUBSECTION;
1342 }
1343
1344 #ifdef CONFIG_SPARSEMEM_VMEMMAP
1345 static inline int pfn_section_valid(struct mem_section *ms, unsigned long pfn)
1346 {
1347         int idx = subsection_map_index(pfn);
1348
1349         return test_bit(idx, ms->usage->subsection_map);
1350 }
1351 #else
1352 static inline int pfn_section_valid(struct mem_section *ms, unsigned long pfn)
1353 {
1354         return 1;
1355 }
1356 #endif
1357
1358 #ifndef CONFIG_HAVE_ARCH_PFN_VALID
1359 static inline int pfn_valid(unsigned long pfn)
1360 {
1361         struct mem_section *ms;
1362
1363         if (pfn_to_section_nr(pfn) >= NR_MEM_SECTIONS)
1364                 return 0;
1365         ms = __nr_to_section(pfn_to_section_nr(pfn));
1366         if (!valid_section(ms))
1367                 return 0;
1368         /*
1369          * Traditionally early sections always returned pfn_valid() for
1370          * the entire section-sized span.
1371          */
1372         return early_section(ms) || pfn_section_valid(ms, pfn);
1373 }
1374 #endif
1375
1376 static inline int pfn_present(unsigned long pfn)
1377 {
1378         if (pfn_to_section_nr(pfn) >= NR_MEM_SECTIONS)
1379                 return 0;
1380         return present_section(__nr_to_section(pfn_to_section_nr(pfn)));
1381 }
1382
1383 static inline unsigned long next_present_section_nr(unsigned long section_nr)
1384 {
1385         while (++section_nr <= __highest_present_section_nr) {
1386                 if (present_section_nr(section_nr))
1387                         return section_nr;
1388         }
1389
1390         return -1;
1391 }
1392
1393 /*
1394  * These are _only_ used during initialisation, therefore they
1395  * can use __initdata ...  They could have names to indicate
1396  * this restriction.
1397  */
1398 #ifdef CONFIG_NUMA
1399 #define pfn_to_nid(pfn)                                                 \
1400 ({                                                                      \
1401         unsigned long __pfn_to_nid_pfn = (pfn);                         \
1402         page_to_nid(pfn_to_page(__pfn_to_nid_pfn));                     \
1403 })
1404 #else
1405 #define pfn_to_nid(pfn)         (0)
1406 #endif
1407
1408 #define early_pfn_valid(pfn)    pfn_valid(pfn)
1409 void sparse_init(void);
1410 #else
1411 #define sparse_init()   do {} while (0)
1412 #define sparse_index_init(_sec, _nid)  do {} while (0)
1413 #define pfn_present pfn_valid
1414 #define subsection_map_init(_pfn, _nr_pages) do {} while (0)
1415 #endif /* CONFIG_SPARSEMEM */
1416
1417 /*
1418  * During memory init memblocks map pfns to nids. The search is expensive and
1419  * this caches recent lookups. The implementation of __early_pfn_to_nid
1420  * may treat start/end as pfns or sections.
1421  */
1422 struct mminit_pfnnid_cache {
1423         unsigned long last_start;
1424         unsigned long last_end;
1425         int last_nid;
1426 };
1427
1428 #ifndef early_pfn_valid
1429 #define early_pfn_valid(pfn)    (1)
1430 #endif
1431
1432 void memory_present(int nid, unsigned long start, unsigned long end);
1433
1434 /*
1435  * If it is possible to have holes within a MAX_ORDER_NR_PAGES, then we
1436  * need to check pfn validity within that MAX_ORDER_NR_PAGES block.
1437  * pfn_valid_within() should be used in this case; we optimise this away
1438  * when we have no holes within a MAX_ORDER_NR_PAGES block.
1439  */
1440 #ifdef CONFIG_HOLES_IN_ZONE
1441 #define pfn_valid_within(pfn) pfn_valid(pfn)
1442 #else
1443 #define pfn_valid_within(pfn) (1)
1444 #endif
1445
1446 #ifdef CONFIG_ARCH_HAS_HOLES_MEMORYMODEL
1447 /*
1448  * pfn_valid() is meant to be able to tell if a given PFN has valid memmap
1449  * associated with it or not. This means that a struct page exists for this
1450  * pfn. The caller cannot assume the page is fully initialized in general.
1451  * Hotplugable pages might not have been onlined yet. pfn_to_online_page()
1452  * will ensure the struct page is fully online and initialized. Special pages
1453  * (e.g. ZONE_DEVICE) are never onlined and should be treated accordingly.
1454  *
1455  * In FLATMEM, it is expected that holes always have valid memmap as long as
1456  * there is valid PFNs either side of the hole. In SPARSEMEM, it is assumed
1457  * that a valid section has a memmap for the entire section.
1458  *
1459  * However, an ARM, and maybe other embedded architectures in the future
1460  * free memmap backing holes to save memory on the assumption the memmap is
1461  * never used. The page_zone linkages are then broken even though pfn_valid()
1462  * returns true. A walker of the full memmap must then do this additional
1463  * check to ensure the memmap they are looking at is sane by making sure
1464  * the zone and PFN linkages are still valid. This is expensive, but walkers
1465  * of the full memmap are extremely rare.
1466  */
1467 bool memmap_valid_within(unsigned long pfn,
1468                                         struct page *page, struct zone *zone);
1469 #else
1470 static inline bool memmap_valid_within(unsigned long pfn,
1471                                         struct page *page, struct zone *zone)
1472 {
1473         return true;
1474 }
1475 #endif /* CONFIG_ARCH_HAS_HOLES_MEMORYMODEL */
1476
1477 #endif /* !__GENERATING_BOUNDS.H */
1478 #endif /* !__ASSEMBLY__ */
1479 #endif /* _LINUX_MMZONE_H */