4 #include <linux/errno.h>
9 #include <linux/list.h>
10 #include <linux/mmzone.h>
11 #include <linux/rbtree.h>
12 #include <linux/prio_tree.h>
13 #include <linux/debug_locks.h>
14 #include <linux/mm_types.h>
15 #include <linux/range.h>
16 #include <linux/pfn.h>
17 #include <linux/bit_spinlock.h>
23 struct writeback_control;
25 #ifndef CONFIG_DISCONTIGMEM /* Don't use mapnrs, do it properly */
26 extern unsigned long max_mapnr;
29 extern unsigned long num_physpages;
30 extern unsigned long totalram_pages;
31 extern void * high_memory;
32 extern int page_cluster;
35 extern int sysctl_legacy_va_layout;
37 #define sysctl_legacy_va_layout 0
41 #include <asm/pgtable.h>
42 #include <asm/processor.h>
44 #define nth_page(page,n) pfn_to_page(page_to_pfn((page)) + (n))
46 /* to align the pointer to the (next) page boundary */
47 #define PAGE_ALIGN(addr) ALIGN(addr, PAGE_SIZE)
50 * Linux kernel virtual memory manager primitives.
51 * The idea being to have a "virtual" mm in the same way
52 * we have a virtual fs - giving a cleaner interface to the
53 * mm details, and allowing different kinds of memory mappings
54 * (from shared memory to executable loading to arbitrary
58 extern struct kmem_cache *vm_area_cachep;
61 extern struct rb_root nommu_region_tree;
62 extern struct rw_semaphore nommu_region_sem;
64 extern unsigned int kobjsize(const void *objp);
68 * vm_flags in vm_area_struct, see mm_types.h.
70 #define VM_READ 0x00000001 /* currently active flags */
71 #define VM_WRITE 0x00000002
72 #define VM_EXEC 0x00000004
73 #define VM_SHARED 0x00000008
75 /* mprotect() hardcodes VM_MAYREAD >> 4 == VM_READ, and so for r/w/x bits. */
76 #define VM_MAYREAD 0x00000010 /* limits for mprotect() etc */
77 #define VM_MAYWRITE 0x00000020
78 #define VM_MAYEXEC 0x00000040
79 #define VM_MAYSHARE 0x00000080
81 #define VM_GROWSDOWN 0x00000100 /* general info on the segment */
82 #if defined(CONFIG_STACK_GROWSUP) || defined(CONFIG_IA64)
83 #define VM_GROWSUP 0x00000200
85 #define VM_GROWSUP 0x00000000
86 #define VM_NOHUGEPAGE 0x00000200 /* MADV_NOHUGEPAGE marked this vma */
88 #define VM_PFNMAP 0x00000400 /* Page-ranges managed without "struct page", just pure PFN */
89 #define VM_DENYWRITE 0x00000800 /* ETXTBSY on write attempts.. */
91 #define VM_EXECUTABLE 0x00001000
92 #define VM_LOCKED 0x00002000
93 #define VM_IO 0x00004000 /* Memory mapped I/O or similar */
95 /* Used by sys_madvise() */
96 #define VM_SEQ_READ 0x00008000 /* App will access data sequentially */
97 #define VM_RAND_READ 0x00010000 /* App will not benefit from clustered reads */
99 #define VM_DONTCOPY 0x00020000 /* Do not copy this vma on fork */
100 #define VM_DONTEXPAND 0x00040000 /* Cannot expand with mremap() */
101 #define VM_RESERVED 0x00080000 /* Count as reserved_vm like IO */
102 #define VM_ACCOUNT 0x00100000 /* Is a VM accounted object */
103 #define VM_NORESERVE 0x00200000 /* should the VM suppress accounting */
104 #define VM_HUGETLB 0x00400000 /* Huge TLB Page VM */
105 #define VM_NONLINEAR 0x00800000 /* Is non-linear (remap_file_pages) */
106 #ifndef CONFIG_TRANSPARENT_HUGEPAGE
107 #define VM_MAPPED_COPY 0x01000000 /* T if mapped copy of data (nommu mmap) */
109 #define VM_HUGEPAGE 0x01000000 /* MADV_HUGEPAGE marked this vma */
111 #define VM_INSERTPAGE 0x02000000 /* The vma has had "vm_insert_page()" done on it */
112 #define VM_ALWAYSDUMP 0x04000000 /* Always include in core dumps */
114 #define VM_CAN_NONLINEAR 0x08000000 /* Has ->fault & does nonlinear pages */
115 #define VM_MIXEDMAP 0x10000000 /* Can contain "struct page" and pure PFN pages */
116 #define VM_SAO 0x20000000 /* Strong Access Ordering (powerpc) */
117 #define VM_PFN_AT_MMAP 0x40000000 /* PFNMAP vma that is fully mapped at mmap time */
118 #define VM_MERGEABLE 0x80000000 /* KSM may merge identical pages */
120 /* Bits set in the VMA until the stack is in its final location */
121 #define VM_STACK_INCOMPLETE_SETUP (VM_RAND_READ | VM_SEQ_READ)
123 #ifndef VM_STACK_DEFAULT_FLAGS /* arch can override this */
124 #define VM_STACK_DEFAULT_FLAGS VM_DATA_DEFAULT_FLAGS
127 #ifdef CONFIG_STACK_GROWSUP
128 #define VM_STACK_FLAGS (VM_GROWSUP | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT)
130 #define VM_STACK_FLAGS (VM_GROWSDOWN | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT)
133 #define VM_READHINTMASK (VM_SEQ_READ | VM_RAND_READ)
134 #define VM_ClearReadHint(v) (v)->vm_flags &= ~VM_READHINTMASK
135 #define VM_NormalReadHint(v) (!((v)->vm_flags & VM_READHINTMASK))
136 #define VM_SequentialReadHint(v) ((v)->vm_flags & VM_SEQ_READ)
137 #define VM_RandomReadHint(v) ((v)->vm_flags & VM_RAND_READ)
140 * special vmas that are non-mergable, non-mlock()able
142 #define VM_SPECIAL (VM_IO | VM_DONTEXPAND | VM_RESERVED | VM_PFNMAP)
145 * mapping from the currently active vm_flags protection bits (the
146 * low four bits) to a page protection mask..
148 extern pgprot_t protection_map[16];
150 #define FAULT_FLAG_WRITE 0x01 /* Fault was a write access */
151 #define FAULT_FLAG_NONLINEAR 0x02 /* Fault was via a nonlinear mapping */
152 #define FAULT_FLAG_MKWRITE 0x04 /* Fault was mkwrite of existing pte */
153 #define FAULT_FLAG_ALLOW_RETRY 0x08 /* Retry fault if blocking */
156 * This interface is used by x86 PAT code to identify a pfn mapping that is
157 * linear over entire vma. This is to optimize PAT code that deals with
158 * marking the physical region with a particular prot. This is not for generic
159 * mm use. Note also that this check will not work if the pfn mapping is
160 * linear for a vma starting at physical address 0. In which case PAT code
161 * falls back to slow path of reserving physical range page by page.
163 static inline int is_linear_pfn_mapping(struct vm_area_struct *vma)
165 return (vma->vm_flags & VM_PFN_AT_MMAP);
168 static inline int is_pfn_mapping(struct vm_area_struct *vma)
170 return (vma->vm_flags & VM_PFNMAP);
174 * vm_fault is filled by the the pagefault handler and passed to the vma's
175 * ->fault function. The vma's ->fault is responsible for returning a bitmask
176 * of VM_FAULT_xxx flags that give details about how the fault was handled.
178 * pgoff should be used in favour of virtual_address, if possible. If pgoff
179 * is used, one may set VM_CAN_NONLINEAR in the vma->vm_flags to get nonlinear
183 unsigned int flags; /* FAULT_FLAG_xxx flags */
184 pgoff_t pgoff; /* Logical page offset based on vma */
185 void __user *virtual_address; /* Faulting virtual address */
187 struct page *page; /* ->fault handlers should return a
188 * page here, unless VM_FAULT_NOPAGE
189 * is set (which is also implied by
195 * These are the virtual MM functions - opening of an area, closing and
196 * unmapping it (needed to keep files on disk up-to-date etc), pointer
197 * to the functions called when a no-page or a wp-page exception occurs.
199 struct vm_operations_struct {
200 void (*open)(struct vm_area_struct * area);
201 void (*close)(struct vm_area_struct * area);
202 int (*fault)(struct vm_area_struct *vma, struct vm_fault *vmf);
204 /* notification that a previously read-only page is about to become
205 * writable, if an error is returned it will cause a SIGBUS */
206 int (*page_mkwrite)(struct vm_area_struct *vma, struct vm_fault *vmf);
208 /* called by access_process_vm when get_user_pages() fails, typically
209 * for use by special VMAs that can switch between memory and hardware
211 int (*access)(struct vm_area_struct *vma, unsigned long addr,
212 void *buf, int len, int write);
215 * set_policy() op must add a reference to any non-NULL @new mempolicy
216 * to hold the policy upon return. Caller should pass NULL @new to
217 * remove a policy and fall back to surrounding context--i.e. do not
218 * install a MPOL_DEFAULT policy, nor the task or system default
221 int (*set_policy)(struct vm_area_struct *vma, struct mempolicy *new);
224 * get_policy() op must add reference [mpol_get()] to any policy at
225 * (vma,addr) marked as MPOL_SHARED. The shared policy infrastructure
226 * in mm/mempolicy.c will do this automatically.
227 * get_policy() must NOT add a ref if the policy at (vma,addr) is not
228 * marked as MPOL_SHARED. vma policies are protected by the mmap_sem.
229 * If no [shared/vma] mempolicy exists at the addr, get_policy() op
230 * must return NULL--i.e., do not "fallback" to task or system default
233 struct mempolicy *(*get_policy)(struct vm_area_struct *vma,
235 int (*migrate)(struct vm_area_struct *vma, const nodemask_t *from,
236 const nodemask_t *to, unsigned long flags);
243 #define page_private(page) ((page)->private)
244 #define set_page_private(page, v) ((page)->private = (v))
247 * FIXME: take this include out, include page-flags.h in
248 * files which need it (119 of them)
250 #include <linux/page-flags.h>
251 #include <linux/huge_mm.h>
254 * Methods to modify the page usage count.
256 * What counts for a page usage:
257 * - cache mapping (page->mapping)
258 * - private data (page->private)
259 * - page mapped in a task's page tables, each mapping
260 * is counted separately
262 * Also, many kernel routines increase the page count before a critical
263 * routine so they can be sure the page doesn't go away from under them.
267 * Drop a ref, return true if the refcount fell to zero (the page has no users)
269 static inline int put_page_testzero(struct page *page)
271 VM_BUG_ON(atomic_read(&page->_count) == 0);
272 return atomic_dec_and_test(&page->_count);
276 * Try to grab a ref unless the page has a refcount of zero, return false if
279 static inline int get_page_unless_zero(struct page *page)
281 return atomic_inc_not_zero(&page->_count);
284 extern int page_is_ram(unsigned long pfn);
286 /* Support for virtually mapped pages */
287 struct page *vmalloc_to_page(const void *addr);
288 unsigned long vmalloc_to_pfn(const void *addr);
291 * Determine if an address is within the vmalloc range
293 * On nommu, vmalloc/vfree wrap through kmalloc/kfree directly, so there
294 * is no special casing required.
296 static inline int is_vmalloc_addr(const void *x)
299 unsigned long addr = (unsigned long)x;
301 return addr >= VMALLOC_START && addr < VMALLOC_END;
307 extern int is_vmalloc_or_module_addr(const void *x);
309 static inline int is_vmalloc_or_module_addr(const void *x)
315 static inline void compound_lock(struct page *page)
317 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
318 bit_spin_lock(PG_compound_lock, &page->flags);
322 static inline void compound_unlock(struct page *page)
324 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
325 bit_spin_unlock(PG_compound_lock, &page->flags);
329 static inline unsigned long compound_lock_irqsave(struct page *page)
331 unsigned long uninitialized_var(flags);
332 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
333 local_irq_save(flags);
339 static inline void compound_unlock_irqrestore(struct page *page,
342 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
343 compound_unlock(page);
344 local_irq_restore(flags);
348 static inline struct page *compound_head(struct page *page)
350 if (unlikely(PageTail(page)))
351 return page->first_page;
355 static inline int page_count(struct page *page)
357 return atomic_read(&compound_head(page)->_count);
360 static inline void get_page(struct page *page)
363 * Getting a normal page or the head of a compound page
364 * requires to already have an elevated page->_count. Only if
365 * we're getting a tail page, the elevated page->_count is
366 * required only in the head page, so for tail pages the
367 * bugcheck only verifies that the page->_count isn't
370 VM_BUG_ON(atomic_read(&page->_count) < !PageTail(page));
371 atomic_inc(&page->_count);
373 * Getting a tail page will elevate both the head and tail
376 if (unlikely(PageTail(page))) {
378 * This is safe only because
379 * __split_huge_page_refcount can't run under
382 VM_BUG_ON(atomic_read(&page->first_page->_count) <= 0);
383 atomic_inc(&page->first_page->_count);
387 static inline struct page *virt_to_head_page(const void *x)
389 struct page *page = virt_to_page(x);
390 return compound_head(page);
394 * Setup the page count before being freed into the page allocator for
395 * the first time (boot or memory hotplug)
397 static inline void init_page_count(struct page *page)
399 atomic_set(&page->_count, 1);
403 * PageBuddy() indicate that the page is free and in the buddy system
404 * (see mm/page_alloc.c).
406 * PAGE_BUDDY_MAPCOUNT_VALUE must be <= -2 but better not too close to
407 * -2 so that an underflow of the page_mapcount() won't be mistaken
408 * for a genuine PAGE_BUDDY_MAPCOUNT_VALUE. -128 can be created very
409 * efficiently by most CPU architectures.
411 #define PAGE_BUDDY_MAPCOUNT_VALUE (-128)
413 static inline int PageBuddy(struct page *page)
415 return atomic_read(&page->_mapcount) == PAGE_BUDDY_MAPCOUNT_VALUE;
418 static inline void __SetPageBuddy(struct page *page)
420 VM_BUG_ON(atomic_read(&page->_mapcount) != -1);
421 atomic_set(&page->_mapcount, PAGE_BUDDY_MAPCOUNT_VALUE);
424 static inline void __ClearPageBuddy(struct page *page)
426 VM_BUG_ON(!PageBuddy(page));
427 atomic_set(&page->_mapcount, -1);
430 void put_page(struct page *page);
431 void put_pages_list(struct list_head *pages);
433 void split_page(struct page *page, unsigned int order);
434 int split_free_page(struct page *page);
437 * Compound pages have a destructor function. Provide a
438 * prototype for that function and accessor functions.
439 * These are _only_ valid on the head of a PG_compound page.
441 typedef void compound_page_dtor(struct page *);
443 static inline void set_compound_page_dtor(struct page *page,
444 compound_page_dtor *dtor)
446 page[1].lru.next = (void *)dtor;
449 static inline compound_page_dtor *get_compound_page_dtor(struct page *page)
451 return (compound_page_dtor *)page[1].lru.next;
454 static inline int compound_order(struct page *page)
458 return (unsigned long)page[1].lru.prev;
461 static inline int compound_trans_order(struct page *page)
469 flags = compound_lock_irqsave(page);
470 order = compound_order(page);
471 compound_unlock_irqrestore(page, flags);
475 static inline void set_compound_order(struct page *page, unsigned long order)
477 page[1].lru.prev = (void *)order;
482 * Do pte_mkwrite, but only if the vma says VM_WRITE. We do this when
483 * servicing faults for write access. In the normal case, do always want
484 * pte_mkwrite. But get_user_pages can cause write faults for mappings
485 * that do not have writing enabled, when used by access_process_vm.
487 static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma)
489 if (likely(vma->vm_flags & VM_WRITE))
490 pte = pte_mkwrite(pte);
496 * Multiple processes may "see" the same page. E.g. for untouched
497 * mappings of /dev/null, all processes see the same page full of
498 * zeroes, and text pages of executables and shared libraries have
499 * only one copy in memory, at most, normally.
501 * For the non-reserved pages, page_count(page) denotes a reference count.
502 * page_count() == 0 means the page is free. page->lru is then used for
503 * freelist management in the buddy allocator.
504 * page_count() > 0 means the page has been allocated.
506 * Pages are allocated by the slab allocator in order to provide memory
507 * to kmalloc and kmem_cache_alloc. In this case, the management of the
508 * page, and the fields in 'struct page' are the responsibility of mm/slab.c
509 * unless a particular usage is carefully commented. (the responsibility of
510 * freeing the kmalloc memory is the caller's, of course).
512 * A page may be used by anyone else who does a __get_free_page().
513 * In this case, page_count still tracks the references, and should only
514 * be used through the normal accessor functions. The top bits of page->flags
515 * and page->virtual store page management information, but all other fields
516 * are unused and could be used privately, carefully. The management of this
517 * page is the responsibility of the one who allocated it, and those who have
518 * subsequently been given references to it.
520 * The other pages (we may call them "pagecache pages") are completely
521 * managed by the Linux memory manager: I/O, buffers, swapping etc.
522 * The following discussion applies only to them.
524 * A pagecache page contains an opaque `private' member, which belongs to the
525 * page's address_space. Usually, this is the address of a circular list of
526 * the page's disk buffers. PG_private must be set to tell the VM to call
527 * into the filesystem to release these pages.
529 * A page may belong to an inode's memory mapping. In this case, page->mapping
530 * is the pointer to the inode, and page->index is the file offset of the page,
531 * in units of PAGE_CACHE_SIZE.
533 * If pagecache pages are not associated with an inode, they are said to be
534 * anonymous pages. These may become associated with the swapcache, and in that
535 * case PG_swapcache is set, and page->private is an offset into the swapcache.
537 * In either case (swapcache or inode backed), the pagecache itself holds one
538 * reference to the page. Setting PG_private should also increment the
539 * refcount. The each user mapping also has a reference to the page.
541 * The pagecache pages are stored in a per-mapping radix tree, which is
542 * rooted at mapping->page_tree, and indexed by offset.
543 * Where 2.4 and early 2.6 kernels kept dirty/clean pages in per-address_space
544 * lists, we instead now tag pages as dirty/writeback in the radix tree.
546 * All pagecache pages may be subject to I/O:
547 * - inode pages may need to be read from disk,
548 * - inode pages which have been modified and are MAP_SHARED may need
549 * to be written back to the inode on disk,
550 * - anonymous pages (including MAP_PRIVATE file mappings) which have been
551 * modified may need to be swapped out to swap space and (later) to be read
556 * The zone field is never updated after free_area_init_core()
557 * sets it, so none of the operations on it need to be atomic.
562 * page->flags layout:
564 * There are three possibilities for how page->flags get
565 * laid out. The first is for the normal case, without
566 * sparsemem. The second is for sparsemem when there is
567 * plenty of space for node and section. The last is when
568 * we have run out of space and have to fall back to an
569 * alternate (slower) way of determining the node.
571 * No sparsemem or sparsemem vmemmap: | NODE | ZONE | ... | FLAGS |
572 * classic sparse with space for node:| SECTION | NODE | ZONE | ... | FLAGS |
573 * classic sparse no space for node: | SECTION | ZONE | ... | FLAGS |
575 #if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP)
576 #define SECTIONS_WIDTH SECTIONS_SHIFT
578 #define SECTIONS_WIDTH 0
581 #define ZONES_WIDTH ZONES_SHIFT
583 #if SECTIONS_WIDTH+ZONES_WIDTH+NODES_SHIFT <= BITS_PER_LONG - NR_PAGEFLAGS
584 #define NODES_WIDTH NODES_SHIFT
586 #ifdef CONFIG_SPARSEMEM_VMEMMAP
587 #error "Vmemmap: No space for nodes field in page flags"
589 #define NODES_WIDTH 0
592 /* Page flags: | [SECTION] | [NODE] | ZONE | ... | FLAGS | */
593 #define SECTIONS_PGOFF ((sizeof(unsigned long)*8) - SECTIONS_WIDTH)
594 #define NODES_PGOFF (SECTIONS_PGOFF - NODES_WIDTH)
595 #define ZONES_PGOFF (NODES_PGOFF - ZONES_WIDTH)
598 * We are going to use the flags for the page to node mapping if its in
599 * there. This includes the case where there is no node, so it is implicit.
601 #if !(NODES_WIDTH > 0 || NODES_SHIFT == 0)
602 #define NODE_NOT_IN_PAGE_FLAGS
605 #ifndef PFN_SECTION_SHIFT
606 #define PFN_SECTION_SHIFT 0
610 * Define the bit shifts to access each section. For non-existant
611 * sections we define the shift as 0; that plus a 0 mask ensures
612 * the compiler will optimise away reference to them.
614 #define SECTIONS_PGSHIFT (SECTIONS_PGOFF * (SECTIONS_WIDTH != 0))
615 #define NODES_PGSHIFT (NODES_PGOFF * (NODES_WIDTH != 0))
616 #define ZONES_PGSHIFT (ZONES_PGOFF * (ZONES_WIDTH != 0))
618 /* NODE:ZONE or SECTION:ZONE is used to ID a zone for the buddy allocator */
619 #ifdef NODE_NOT_IN_PAGE_FLAGS
620 #define ZONEID_SHIFT (SECTIONS_SHIFT + ZONES_SHIFT)
621 #define ZONEID_PGOFF ((SECTIONS_PGOFF < ZONES_PGOFF)? \
622 SECTIONS_PGOFF : ZONES_PGOFF)
624 #define ZONEID_SHIFT (NODES_SHIFT + ZONES_SHIFT)
625 #define ZONEID_PGOFF ((NODES_PGOFF < ZONES_PGOFF)? \
626 NODES_PGOFF : ZONES_PGOFF)
629 #define ZONEID_PGSHIFT (ZONEID_PGOFF * (ZONEID_SHIFT != 0))
631 #if SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > BITS_PER_LONG - NR_PAGEFLAGS
632 #error SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > BITS_PER_LONG - NR_PAGEFLAGS
635 #define ZONES_MASK ((1UL << ZONES_WIDTH) - 1)
636 #define NODES_MASK ((1UL << NODES_WIDTH) - 1)
637 #define SECTIONS_MASK ((1UL << SECTIONS_WIDTH) - 1)
638 #define ZONEID_MASK ((1UL << ZONEID_SHIFT) - 1)
640 static inline enum zone_type page_zonenum(struct page *page)
642 return (page->flags >> ZONES_PGSHIFT) & ZONES_MASK;
646 * The identification function is only used by the buddy allocator for
647 * determining if two pages could be buddies. We are not really
648 * identifying a zone since we could be using a the section number
649 * id if we have not node id available in page flags.
650 * We guarantee only that it will return the same value for two
651 * combinable pages in a zone.
653 static inline int page_zone_id(struct page *page)
655 return (page->flags >> ZONEID_PGSHIFT) & ZONEID_MASK;
658 static inline int zone_to_nid(struct zone *zone)
667 #ifdef NODE_NOT_IN_PAGE_FLAGS
668 extern int page_to_nid(struct page *page);
670 static inline int page_to_nid(struct page *page)
672 return (page->flags >> NODES_PGSHIFT) & NODES_MASK;
676 static inline struct zone *page_zone(struct page *page)
678 return &NODE_DATA(page_to_nid(page))->node_zones[page_zonenum(page)];
681 #if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP)
682 static inline unsigned long page_to_section(struct page *page)
684 return (page->flags >> SECTIONS_PGSHIFT) & SECTIONS_MASK;
688 static inline void set_page_zone(struct page *page, enum zone_type zone)
690 page->flags &= ~(ZONES_MASK << ZONES_PGSHIFT);
691 page->flags |= (zone & ZONES_MASK) << ZONES_PGSHIFT;
694 static inline void set_page_node(struct page *page, unsigned long node)
696 page->flags &= ~(NODES_MASK << NODES_PGSHIFT);
697 page->flags |= (node & NODES_MASK) << NODES_PGSHIFT;
700 static inline void set_page_section(struct page *page, unsigned long section)
702 page->flags &= ~(SECTIONS_MASK << SECTIONS_PGSHIFT);
703 page->flags |= (section & SECTIONS_MASK) << SECTIONS_PGSHIFT;
706 static inline void set_page_links(struct page *page, enum zone_type zone,
707 unsigned long node, unsigned long pfn)
709 set_page_zone(page, zone);
710 set_page_node(page, node);
711 set_page_section(page, pfn_to_section_nr(pfn));
715 * Some inline functions in vmstat.h depend on page_zone()
717 #include <linux/vmstat.h>
719 static __always_inline void *lowmem_page_address(struct page *page)
721 return __va(PFN_PHYS(page_to_pfn(page)));
724 #if defined(CONFIG_HIGHMEM) && !defined(WANT_PAGE_VIRTUAL)
725 #define HASHED_PAGE_VIRTUAL
728 #if defined(WANT_PAGE_VIRTUAL)
729 #define page_address(page) ((page)->virtual)
730 #define set_page_address(page, address) \
732 (page)->virtual = (address); \
734 #define page_address_init() do { } while(0)
737 #if defined(HASHED_PAGE_VIRTUAL)
738 void *page_address(struct page *page);
739 void set_page_address(struct page *page, void *virtual);
740 void page_address_init(void);
743 #if !defined(HASHED_PAGE_VIRTUAL) && !defined(WANT_PAGE_VIRTUAL)
744 #define page_address(page) lowmem_page_address(page)
745 #define set_page_address(page, address) do { } while(0)
746 #define page_address_init() do { } while(0)
750 * On an anonymous page mapped into a user virtual memory area,
751 * page->mapping points to its anon_vma, not to a struct address_space;
752 * with the PAGE_MAPPING_ANON bit set to distinguish it. See rmap.h.
754 * On an anonymous page in a VM_MERGEABLE area, if CONFIG_KSM is enabled,
755 * the PAGE_MAPPING_KSM bit may be set along with the PAGE_MAPPING_ANON bit;
756 * and then page->mapping points, not to an anon_vma, but to a private
757 * structure which KSM associates with that merged page. See ksm.h.
759 * PAGE_MAPPING_KSM without PAGE_MAPPING_ANON is currently never used.
761 * Please note that, confusingly, "page_mapping" refers to the inode
762 * address_space which maps the page from disk; whereas "page_mapped"
763 * refers to user virtual address space into which the page is mapped.
765 #define PAGE_MAPPING_ANON 1
766 #define PAGE_MAPPING_KSM 2
767 #define PAGE_MAPPING_FLAGS (PAGE_MAPPING_ANON | PAGE_MAPPING_KSM)
769 extern struct address_space swapper_space;
770 static inline struct address_space *page_mapping(struct page *page)
772 struct address_space *mapping = page->mapping;
774 VM_BUG_ON(PageSlab(page));
775 if (unlikely(PageSwapCache(page)))
776 mapping = &swapper_space;
777 else if ((unsigned long)mapping & PAGE_MAPPING_ANON)
782 /* Neutral page->mapping pointer to address_space or anon_vma or other */
783 static inline void *page_rmapping(struct page *page)
785 return (void *)((unsigned long)page->mapping & ~PAGE_MAPPING_FLAGS);
788 static inline int PageAnon(struct page *page)
790 return ((unsigned long)page->mapping & PAGE_MAPPING_ANON) != 0;
794 * Return the pagecache index of the passed page. Regular pagecache pages
795 * use ->index whereas swapcache pages use ->private
797 static inline pgoff_t page_index(struct page *page)
799 if (unlikely(PageSwapCache(page)))
800 return page_private(page);
805 * The atomic page->_mapcount, like _count, starts from -1:
806 * so that transitions both from it and to it can be tracked,
807 * using atomic_inc_and_test and atomic_add_negative(-1).
809 static inline void reset_page_mapcount(struct page *page)
811 atomic_set(&(page)->_mapcount, -1);
814 static inline int page_mapcount(struct page *page)
816 return atomic_read(&(page)->_mapcount) + 1;
820 * Return true if this page is mapped into pagetables.
822 static inline int page_mapped(struct page *page)
824 return atomic_read(&(page)->_mapcount) >= 0;
828 * Different kinds of faults, as returned by handle_mm_fault().
829 * Used to decide whether a process gets delivered SIGBUS or
830 * just gets major/minor fault counters bumped up.
833 #define VM_FAULT_MINOR 0 /* For backwards compat. Remove me quickly. */
835 #define VM_FAULT_OOM 0x0001
836 #define VM_FAULT_SIGBUS 0x0002
837 #define VM_FAULT_MAJOR 0x0004
838 #define VM_FAULT_WRITE 0x0008 /* Special case for get_user_pages */
839 #define VM_FAULT_HWPOISON 0x0010 /* Hit poisoned small page */
840 #define VM_FAULT_HWPOISON_LARGE 0x0020 /* Hit poisoned large page. Index encoded in upper bits */
842 #define VM_FAULT_NOPAGE 0x0100 /* ->fault installed the pte, not return page */
843 #define VM_FAULT_LOCKED 0x0200 /* ->fault locked the returned page */
844 #define VM_FAULT_RETRY 0x0400 /* ->fault blocked, must retry */
846 #define VM_FAULT_HWPOISON_LARGE_MASK 0xf000 /* encodes hpage index for large hwpoison */
848 #define VM_FAULT_ERROR (VM_FAULT_OOM | VM_FAULT_SIGBUS | VM_FAULT_HWPOISON | \
849 VM_FAULT_HWPOISON_LARGE)
851 /* Encode hstate index for a hwpoisoned large page */
852 #define VM_FAULT_SET_HINDEX(x) ((x) << 12)
853 #define VM_FAULT_GET_HINDEX(x) (((x) >> 12) & 0xf)
856 * Can be called by the pagefault handler when it gets a VM_FAULT_OOM.
858 extern void pagefault_out_of_memory(void);
860 #define offset_in_page(p) ((unsigned long)(p) & ~PAGE_MASK)
862 extern void show_free_areas(void);
864 int shmem_lock(struct file *file, int lock, struct user_struct *user);
865 struct file *shmem_file_setup(const char *name, loff_t size, unsigned long flags);
866 int shmem_zero_setup(struct vm_area_struct *);
869 extern unsigned long shmem_get_unmapped_area(struct file *file,
873 unsigned long flags);
876 extern int can_do_mlock(void);
877 extern int user_shm_lock(size_t, struct user_struct *);
878 extern void user_shm_unlock(size_t, struct user_struct *);
881 * Parameter block passed down to zap_pte_range in exceptional cases.
884 struct vm_area_struct *nonlinear_vma; /* Check page->index if set */
885 struct address_space *check_mapping; /* Check page->mapping if set */
886 pgoff_t first_index; /* Lowest page->index to unmap */
887 pgoff_t last_index; /* Highest page->index to unmap */
888 spinlock_t *i_mmap_lock; /* For unmap_mapping_range: */
889 unsigned long truncate_count; /* Compare vm_truncate_count */
892 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
895 int zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
897 unsigned long zap_page_range(struct vm_area_struct *vma, unsigned long address,
898 unsigned long size, struct zap_details *);
899 unsigned long unmap_vmas(struct mmu_gather **tlb,
900 struct vm_area_struct *start_vma, unsigned long start_addr,
901 unsigned long end_addr, unsigned long *nr_accounted,
902 struct zap_details *);
905 * mm_walk - callbacks for walk_page_range
906 * @pgd_entry: if set, called for each non-empty PGD (top-level) entry
907 * @pud_entry: if set, called for each non-empty PUD (2nd-level) entry
908 * @pmd_entry: if set, called for each non-empty PMD (3rd-level) entry
909 * @pte_entry: if set, called for each non-empty PTE (4th-level) entry
910 * @pte_hole: if set, called for each hole at all levels
911 * @hugetlb_entry: if set, called for each hugetlb entry
913 * (see walk_page_range for more details)
916 int (*pgd_entry)(pgd_t *, unsigned long, unsigned long, struct mm_walk *);
917 int (*pud_entry)(pud_t *, unsigned long, unsigned long, struct mm_walk *);
918 int (*pmd_entry)(pmd_t *, unsigned long, unsigned long, struct mm_walk *);
919 int (*pte_entry)(pte_t *, unsigned long, unsigned long, struct mm_walk *);
920 int (*pte_hole)(unsigned long, unsigned long, struct mm_walk *);
921 int (*hugetlb_entry)(pte_t *, unsigned long,
922 unsigned long, unsigned long, struct mm_walk *);
923 struct mm_struct *mm;
927 int walk_page_range(unsigned long addr, unsigned long end,
928 struct mm_walk *walk);
929 void free_pgd_range(struct mmu_gather *tlb, unsigned long addr,
930 unsigned long end, unsigned long floor, unsigned long ceiling);
931 int copy_page_range(struct mm_struct *dst, struct mm_struct *src,
932 struct vm_area_struct *vma);
933 void unmap_mapping_range(struct address_space *mapping,
934 loff_t const holebegin, loff_t const holelen, int even_cows);
935 int follow_pfn(struct vm_area_struct *vma, unsigned long address,
937 int follow_phys(struct vm_area_struct *vma, unsigned long address,
938 unsigned int flags, unsigned long *prot, resource_size_t *phys);
939 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
940 void *buf, int len, int write);
942 static inline void unmap_shared_mapping_range(struct address_space *mapping,
943 loff_t const holebegin, loff_t const holelen)
945 unmap_mapping_range(mapping, holebegin, holelen, 0);
948 extern void truncate_pagecache(struct inode *inode, loff_t old, loff_t new);
949 extern void truncate_setsize(struct inode *inode, loff_t newsize);
950 extern int vmtruncate(struct inode *inode, loff_t offset);
951 extern int vmtruncate_range(struct inode *inode, loff_t offset, loff_t end);
953 int truncate_inode_page(struct address_space *mapping, struct page *page);
954 int generic_error_remove_page(struct address_space *mapping, struct page *page);
956 int invalidate_inode_page(struct page *page);
959 extern int handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma,
960 unsigned long address, unsigned int flags);
962 static inline int handle_mm_fault(struct mm_struct *mm,
963 struct vm_area_struct *vma, unsigned long address,
966 /* should never happen if there's no MMU */
968 return VM_FAULT_SIGBUS;
972 extern int make_pages_present(unsigned long addr, unsigned long end);
973 extern int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len, int write);
975 int get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
976 unsigned long start, int nr_pages, int write, int force,
977 struct page **pages, struct vm_area_struct **vmas);
978 int get_user_pages_fast(unsigned long start, int nr_pages, int write,
979 struct page **pages);
980 struct page *get_dump_page(unsigned long addr);
982 extern int try_to_release_page(struct page * page, gfp_t gfp_mask);
983 extern void do_invalidatepage(struct page *page, unsigned long offset);
985 int __set_page_dirty_nobuffers(struct page *page);
986 int __set_page_dirty_no_writeback(struct page *page);
987 int redirty_page_for_writepage(struct writeback_control *wbc,
989 void account_page_dirtied(struct page *page, struct address_space *mapping);
990 void account_page_writeback(struct page *page);
991 int set_page_dirty(struct page *page);
992 int set_page_dirty_lock(struct page *page);
993 int clear_page_dirty_for_io(struct page *page);
995 /* Is the vma a continuation of the stack vma above it? */
996 static inline int vma_stack_continue(struct vm_area_struct *vma, unsigned long addr)
998 return vma && (vma->vm_end == addr) && (vma->vm_flags & VM_GROWSDOWN);
1001 extern unsigned long move_page_tables(struct vm_area_struct *vma,
1002 unsigned long old_addr, struct vm_area_struct *new_vma,
1003 unsigned long new_addr, unsigned long len);
1004 extern unsigned long do_mremap(unsigned long addr,
1005 unsigned long old_len, unsigned long new_len,
1006 unsigned long flags, unsigned long new_addr);
1007 extern int mprotect_fixup(struct vm_area_struct *vma,
1008 struct vm_area_struct **pprev, unsigned long start,
1009 unsigned long end, unsigned long newflags);
1012 * doesn't attempt to fault and will return short.
1014 int __get_user_pages_fast(unsigned long start, int nr_pages, int write,
1015 struct page **pages);
1017 * per-process(per-mm_struct) statistics.
1019 #if defined(SPLIT_RSS_COUNTING)
1021 * The mm counters are not protected by its page_table_lock,
1022 * so must be incremented atomically.
1024 static inline void set_mm_counter(struct mm_struct *mm, int member, long value)
1026 atomic_long_set(&mm->rss_stat.count[member], value);
1029 unsigned long get_mm_counter(struct mm_struct *mm, int member);
1031 static inline void add_mm_counter(struct mm_struct *mm, int member, long value)
1033 atomic_long_add(value, &mm->rss_stat.count[member]);
1036 static inline void inc_mm_counter(struct mm_struct *mm, int member)
1038 atomic_long_inc(&mm->rss_stat.count[member]);
1041 static inline void dec_mm_counter(struct mm_struct *mm, int member)
1043 atomic_long_dec(&mm->rss_stat.count[member]);
1046 #else /* !USE_SPLIT_PTLOCKS */
1048 * The mm counters are protected by its page_table_lock,
1049 * so can be incremented directly.
1051 static inline void set_mm_counter(struct mm_struct *mm, int member, long value)
1053 mm->rss_stat.count[member] = value;
1056 static inline unsigned long get_mm_counter(struct mm_struct *mm, int member)
1058 return mm->rss_stat.count[member];
1061 static inline void add_mm_counter(struct mm_struct *mm, int member, long value)
1063 mm->rss_stat.count[member] += value;
1066 static inline void inc_mm_counter(struct mm_struct *mm, int member)
1068 mm->rss_stat.count[member]++;
1071 static inline void dec_mm_counter(struct mm_struct *mm, int member)
1073 mm->rss_stat.count[member]--;
1076 #endif /* !USE_SPLIT_PTLOCKS */
1078 static inline unsigned long get_mm_rss(struct mm_struct *mm)
1080 return get_mm_counter(mm, MM_FILEPAGES) +
1081 get_mm_counter(mm, MM_ANONPAGES);
1084 static inline unsigned long get_mm_hiwater_rss(struct mm_struct *mm)
1086 return max(mm->hiwater_rss, get_mm_rss(mm));
1089 static inline unsigned long get_mm_hiwater_vm(struct mm_struct *mm)
1091 return max(mm->hiwater_vm, mm->total_vm);
1094 static inline void update_hiwater_rss(struct mm_struct *mm)
1096 unsigned long _rss = get_mm_rss(mm);
1098 if ((mm)->hiwater_rss < _rss)
1099 (mm)->hiwater_rss = _rss;
1102 static inline void update_hiwater_vm(struct mm_struct *mm)
1104 if (mm->hiwater_vm < mm->total_vm)
1105 mm->hiwater_vm = mm->total_vm;
1108 static inline void setmax_mm_hiwater_rss(unsigned long *maxrss,
1109 struct mm_struct *mm)
1111 unsigned long hiwater_rss = get_mm_hiwater_rss(mm);
1113 if (*maxrss < hiwater_rss)
1114 *maxrss = hiwater_rss;
1117 #if defined(SPLIT_RSS_COUNTING)
1118 void sync_mm_rss(struct task_struct *task, struct mm_struct *mm);
1120 static inline void sync_mm_rss(struct task_struct *task, struct mm_struct *mm)
1126 * A callback you can register to apply pressure to ageable caches.
1128 * 'shrink' is passed a count 'nr_to_scan' and a 'gfpmask'. It should
1129 * look through the least-recently-used 'nr_to_scan' entries and
1130 * attempt to free them up. It should return the number of objects
1131 * which remain in the cache. If it returns -1, it means it cannot do
1132 * any scanning at this time (eg. there is a risk of deadlock).
1134 * The 'gfpmask' refers to the allocation we are currently trying to
1137 * Note that 'shrink' will be passed nr_to_scan == 0 when the VM is
1138 * querying the cache size, so a fastpath for that case is appropriate.
1141 int (*shrink)(struct shrinker *, int nr_to_scan, gfp_t gfp_mask);
1142 int seeks; /* seeks to recreate an obj */
1144 /* These are for internal use */
1145 struct list_head list;
1146 long nr; /* objs pending delete */
1148 #define DEFAULT_SEEKS 2 /* A good number if you don't know better. */
1149 extern void register_shrinker(struct shrinker *);
1150 extern void unregister_shrinker(struct shrinker *);
1152 int vma_wants_writenotify(struct vm_area_struct *vma);
1154 extern pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
1156 static inline pte_t *get_locked_pte(struct mm_struct *mm, unsigned long addr,
1160 __cond_lock(*ptl, ptep = __get_locked_pte(mm, addr, ptl));
1164 #ifdef __PAGETABLE_PUD_FOLDED
1165 static inline int __pud_alloc(struct mm_struct *mm, pgd_t *pgd,
1166 unsigned long address)
1171 int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address);
1174 #ifdef __PAGETABLE_PMD_FOLDED
1175 static inline int __pmd_alloc(struct mm_struct *mm, pud_t *pud,
1176 unsigned long address)
1181 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address);
1184 int __pte_alloc(struct mm_struct *mm, struct vm_area_struct *vma,
1185 pmd_t *pmd, unsigned long address);
1186 int __pte_alloc_kernel(pmd_t *pmd, unsigned long address);
1189 * The following ifdef needed to get the 4level-fixup.h header to work.
1190 * Remove it when 4level-fixup.h has been removed.
1192 #if defined(CONFIG_MMU) && !defined(__ARCH_HAS_4LEVEL_HACK)
1193 static inline pud_t *pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
1195 return (unlikely(pgd_none(*pgd)) && __pud_alloc(mm, pgd, address))?
1196 NULL: pud_offset(pgd, address);
1199 static inline pmd_t *pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
1201 return (unlikely(pud_none(*pud)) && __pmd_alloc(mm, pud, address))?
1202 NULL: pmd_offset(pud, address);
1204 #endif /* CONFIG_MMU && !__ARCH_HAS_4LEVEL_HACK */
1206 #if USE_SPLIT_PTLOCKS
1208 * We tuck a spinlock to guard each pagetable page into its struct page,
1209 * at page->private, with BUILD_BUG_ON to make sure that this will not
1210 * overflow into the next struct page (as it might with DEBUG_SPINLOCK).
1211 * When freeing, reset page->mapping so free_pages_check won't complain.
1213 #define __pte_lockptr(page) &((page)->ptl)
1214 #define pte_lock_init(_page) do { \
1215 spin_lock_init(__pte_lockptr(_page)); \
1217 #define pte_lock_deinit(page) ((page)->mapping = NULL)
1218 #define pte_lockptr(mm, pmd) ({(void)(mm); __pte_lockptr(pmd_page(*(pmd)));})
1219 #else /* !USE_SPLIT_PTLOCKS */
1221 * We use mm->page_table_lock to guard all pagetable pages of the mm.
1223 #define pte_lock_init(page) do {} while (0)
1224 #define pte_lock_deinit(page) do {} while (0)
1225 #define pte_lockptr(mm, pmd) ({(void)(pmd); &(mm)->page_table_lock;})
1226 #endif /* USE_SPLIT_PTLOCKS */
1228 static inline void pgtable_page_ctor(struct page *page)
1230 pte_lock_init(page);
1231 inc_zone_page_state(page, NR_PAGETABLE);
1234 static inline void pgtable_page_dtor(struct page *page)
1236 pte_lock_deinit(page);
1237 dec_zone_page_state(page, NR_PAGETABLE);
1240 #define pte_offset_map_lock(mm, pmd, address, ptlp) \
1242 spinlock_t *__ptl = pte_lockptr(mm, pmd); \
1243 pte_t *__pte = pte_offset_map(pmd, address); \
1249 #define pte_unmap_unlock(pte, ptl) do { \
1254 #define pte_alloc_map(mm, vma, pmd, address) \
1255 ((unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, vma, \
1257 NULL: pte_offset_map(pmd, address))
1259 #define pte_alloc_map_lock(mm, pmd, address, ptlp) \
1260 ((unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, NULL, \
1262 NULL: pte_offset_map_lock(mm, pmd, address, ptlp))
1264 #define pte_alloc_kernel(pmd, address) \
1265 ((unlikely(pmd_none(*(pmd))) && __pte_alloc_kernel(pmd, address))? \
1266 NULL: pte_offset_kernel(pmd, address))
1268 extern void free_area_init(unsigned long * zones_size);
1269 extern void free_area_init_node(int nid, unsigned long * zones_size,
1270 unsigned long zone_start_pfn, unsigned long *zholes_size);
1271 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
1273 * With CONFIG_ARCH_POPULATES_NODE_MAP set, an architecture may initialise its
1274 * zones, allocate the backing mem_map and account for memory holes in a more
1275 * architecture independent manner. This is a substitute for creating the
1276 * zone_sizes[] and zholes_size[] arrays and passing them to
1277 * free_area_init_node()
1279 * An architecture is expected to register range of page frames backed by
1280 * physical memory with add_active_range() before calling
1281 * free_area_init_nodes() passing in the PFN each zone ends at. At a basic
1282 * usage, an architecture is expected to do something like
1284 * unsigned long max_zone_pfns[MAX_NR_ZONES] = {max_dma, max_normal_pfn,
1286 * for_each_valid_physical_page_range()
1287 * add_active_range(node_id, start_pfn, end_pfn)
1288 * free_area_init_nodes(max_zone_pfns);
1290 * If the architecture guarantees that there are no holes in the ranges
1291 * registered with add_active_range(), free_bootmem_active_regions()
1292 * will call free_bootmem_node() for each registered physical page range.
1293 * Similarly sparse_memory_present_with_active_regions() calls
1294 * memory_present() for each range when SPARSEMEM is enabled.
1296 * See mm/page_alloc.c for more information on each function exposed by
1297 * CONFIG_ARCH_POPULATES_NODE_MAP
1299 extern void free_area_init_nodes(unsigned long *max_zone_pfn);
1300 extern void add_active_range(unsigned int nid, unsigned long start_pfn,
1301 unsigned long end_pfn);
1302 extern void remove_active_range(unsigned int nid, unsigned long start_pfn,
1303 unsigned long end_pfn);
1304 extern void remove_all_active_ranges(void);
1305 void sort_node_map(void);
1306 unsigned long __absent_pages_in_range(int nid, unsigned long start_pfn,
1307 unsigned long end_pfn);
1308 extern unsigned long absent_pages_in_range(unsigned long start_pfn,
1309 unsigned long end_pfn);
1310 extern void get_pfn_range_for_nid(unsigned int nid,
1311 unsigned long *start_pfn, unsigned long *end_pfn);
1312 extern unsigned long find_min_pfn_with_active_regions(void);
1313 extern void free_bootmem_with_active_regions(int nid,
1314 unsigned long max_low_pfn);
1315 int add_from_early_node_map(struct range *range, int az,
1316 int nr_range, int nid);
1317 u64 __init find_memory_core_early(int nid, u64 size, u64 align,
1318 u64 goal, u64 limit);
1319 typedef int (*work_fn_t)(unsigned long, unsigned long, void *);
1320 extern void work_with_active_regions(int nid, work_fn_t work_fn, void *data);
1321 extern void sparse_memory_present_with_active_regions(int nid);
1322 #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
1324 #if !defined(CONFIG_ARCH_POPULATES_NODE_MAP) && \
1325 !defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID)
1326 static inline int __early_pfn_to_nid(unsigned long pfn)
1331 /* please see mm/page_alloc.c */
1332 extern int __meminit early_pfn_to_nid(unsigned long pfn);
1333 #ifdef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
1334 /* there is a per-arch backend function. */
1335 extern int __meminit __early_pfn_to_nid(unsigned long pfn);
1336 #endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
1339 extern void set_dma_reserve(unsigned long new_dma_reserve);
1340 extern void memmap_init_zone(unsigned long, int, unsigned long,
1341 unsigned long, enum memmap_context);
1342 extern void setup_per_zone_wmarks(void);
1343 extern void calculate_zone_inactive_ratio(struct zone *zone);
1344 extern void mem_init(void);
1345 extern void __init mmap_init(void);
1346 extern void show_mem(void);
1347 extern void si_meminfo(struct sysinfo * val);
1348 extern void si_meminfo_node(struct sysinfo *val, int nid);
1349 extern int after_bootmem;
1351 extern void setup_per_cpu_pageset(void);
1353 extern void zone_pcp_update(struct zone *zone);
1356 extern atomic_long_t mmap_pages_allocated;
1357 extern int nommu_shrink_inode_mappings(struct inode *, size_t, size_t);
1360 void vma_prio_tree_add(struct vm_area_struct *, struct vm_area_struct *old);
1361 void vma_prio_tree_insert(struct vm_area_struct *, struct prio_tree_root *);
1362 void vma_prio_tree_remove(struct vm_area_struct *, struct prio_tree_root *);
1363 struct vm_area_struct *vma_prio_tree_next(struct vm_area_struct *vma,
1364 struct prio_tree_iter *iter);
1366 #define vma_prio_tree_foreach(vma, iter, root, begin, end) \
1367 for (prio_tree_iter_init(iter, root, begin, end), vma = NULL; \
1368 (vma = vma_prio_tree_next(vma, iter)); )
1370 static inline void vma_nonlinear_insert(struct vm_area_struct *vma,
1371 struct list_head *list)
1373 vma->shared.vm_set.parent = NULL;
1374 list_add_tail(&vma->shared.vm_set.list, list);
1378 extern int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin);
1379 extern int vma_adjust(struct vm_area_struct *vma, unsigned long start,
1380 unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert);
1381 extern struct vm_area_struct *vma_merge(struct mm_struct *,
1382 struct vm_area_struct *prev, unsigned long addr, unsigned long end,
1383 unsigned long vm_flags, struct anon_vma *, struct file *, pgoff_t,
1384 struct mempolicy *);
1385 extern struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *);
1386 extern int split_vma(struct mm_struct *,
1387 struct vm_area_struct *, unsigned long addr, int new_below);
1388 extern int insert_vm_struct(struct mm_struct *, struct vm_area_struct *);
1389 extern void __vma_link_rb(struct mm_struct *, struct vm_area_struct *,
1390 struct rb_node **, struct rb_node *);
1391 extern void unlink_file_vma(struct vm_area_struct *);
1392 extern struct vm_area_struct *copy_vma(struct vm_area_struct **,
1393 unsigned long addr, unsigned long len, pgoff_t pgoff);
1394 extern void exit_mmap(struct mm_struct *);
1396 extern int mm_take_all_locks(struct mm_struct *mm);
1397 extern void mm_drop_all_locks(struct mm_struct *mm);
1399 #ifdef CONFIG_PROC_FS
1400 /* From fs/proc/base.c. callers must _not_ hold the mm's exe_file_lock */
1401 extern void added_exe_file_vma(struct mm_struct *mm);
1402 extern void removed_exe_file_vma(struct mm_struct *mm);
1404 static inline void added_exe_file_vma(struct mm_struct *mm)
1407 static inline void removed_exe_file_vma(struct mm_struct *mm)
1409 #endif /* CONFIG_PROC_FS */
1411 extern int may_expand_vm(struct mm_struct *mm, unsigned long npages);
1412 extern int install_special_mapping(struct mm_struct *mm,
1413 unsigned long addr, unsigned long len,
1414 unsigned long flags, struct page **pages);
1416 extern unsigned long get_unmapped_area(struct file *, unsigned long, unsigned long, unsigned long, unsigned long);
1418 extern unsigned long do_mmap_pgoff(struct file *file, unsigned long addr,
1419 unsigned long len, unsigned long prot,
1420 unsigned long flag, unsigned long pgoff);
1421 extern unsigned long mmap_region(struct file *file, unsigned long addr,
1422 unsigned long len, unsigned long flags,
1423 unsigned int vm_flags, unsigned long pgoff);
1425 static inline unsigned long do_mmap(struct file *file, unsigned long addr,
1426 unsigned long len, unsigned long prot,
1427 unsigned long flag, unsigned long offset)
1429 unsigned long ret = -EINVAL;
1430 if ((offset + PAGE_ALIGN(len)) < offset)
1432 if (!(offset & ~PAGE_MASK))
1433 ret = do_mmap_pgoff(file, addr, len, prot, flag, offset >> PAGE_SHIFT);
1438 extern int do_munmap(struct mm_struct *, unsigned long, size_t);
1440 extern unsigned long do_brk(unsigned long, unsigned long);
1443 extern unsigned long page_unuse(struct page *);
1444 extern void truncate_inode_pages(struct address_space *, loff_t);
1445 extern void truncate_inode_pages_range(struct address_space *,
1446 loff_t lstart, loff_t lend);
1448 /* generic vm_area_ops exported for stackable file systems */
1449 extern int filemap_fault(struct vm_area_struct *, struct vm_fault *);
1451 /* mm/page-writeback.c */
1452 int write_one_page(struct page *page, int wait);
1453 void task_dirty_inc(struct task_struct *tsk);
1456 #define VM_MAX_READAHEAD 128 /* kbytes */
1457 #define VM_MIN_READAHEAD 16 /* kbytes (includes current page) */
1459 int force_page_cache_readahead(struct address_space *mapping, struct file *filp,
1460 pgoff_t offset, unsigned long nr_to_read);
1462 void page_cache_sync_readahead(struct address_space *mapping,
1463 struct file_ra_state *ra,
1466 unsigned long size);
1468 void page_cache_async_readahead(struct address_space *mapping,
1469 struct file_ra_state *ra,
1473 unsigned long size);
1475 unsigned long max_sane_readahead(unsigned long nr);
1476 unsigned long ra_submit(struct file_ra_state *ra,
1477 struct address_space *mapping,
1480 /* Do stack extension */
1481 extern int expand_stack(struct vm_area_struct *vma, unsigned long address);
1483 extern int expand_upwards(struct vm_area_struct *vma, unsigned long address);
1485 #define expand_upwards(vma, address) do { } while (0)
1487 extern int expand_stack_downwards(struct vm_area_struct *vma,
1488 unsigned long address);
1490 /* Look up the first VMA which satisfies addr < vm_end, NULL if none. */
1491 extern struct vm_area_struct * find_vma(struct mm_struct * mm, unsigned long addr);
1492 extern struct vm_area_struct * find_vma_prev(struct mm_struct * mm, unsigned long addr,
1493 struct vm_area_struct **pprev);
1495 /* Look up the first VMA which intersects the interval start_addr..end_addr-1,
1496 NULL if none. Assume start_addr < end_addr. */
1497 static inline struct vm_area_struct * find_vma_intersection(struct mm_struct * mm, unsigned long start_addr, unsigned long end_addr)
1499 struct vm_area_struct * vma = find_vma(mm,start_addr);
1501 if (vma && end_addr <= vma->vm_start)
1506 static inline unsigned long vma_pages(struct vm_area_struct *vma)
1508 return (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
1512 pgprot_t vm_get_page_prot(unsigned long vm_flags);
1514 static inline pgprot_t vm_get_page_prot(unsigned long vm_flags)
1520 struct vm_area_struct *find_extend_vma(struct mm_struct *, unsigned long addr);
1521 int remap_pfn_range(struct vm_area_struct *, unsigned long addr,
1522 unsigned long pfn, unsigned long size, pgprot_t);
1523 int vm_insert_page(struct vm_area_struct *, unsigned long addr, struct page *);
1524 int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
1526 int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
1529 struct page *follow_page(struct vm_area_struct *, unsigned long address,
1530 unsigned int foll_flags);
1531 #define FOLL_WRITE 0x01 /* check pte is writable */
1532 #define FOLL_TOUCH 0x02 /* mark page accessed */
1533 #define FOLL_GET 0x04 /* do get_page on page */
1534 #define FOLL_DUMP 0x08 /* give error on hole if it would be zero */
1535 #define FOLL_FORCE 0x10 /* get_user_pages read/write w/o permission */
1536 #define FOLL_MLOCK 0x40 /* mark page as mlocked */
1537 #define FOLL_SPLIT 0x80 /* don't return transhuge pages, split them */
1539 typedef int (*pte_fn_t)(pte_t *pte, pgtable_t token, unsigned long addr,
1541 extern int apply_to_page_range(struct mm_struct *mm, unsigned long address,
1542 unsigned long size, pte_fn_t fn, void *data);
1544 #ifdef CONFIG_PROC_FS
1545 void vm_stat_account(struct mm_struct *, unsigned long, struct file *, long);
1547 static inline void vm_stat_account(struct mm_struct *mm,
1548 unsigned long flags, struct file *file, long pages)
1551 #endif /* CONFIG_PROC_FS */
1553 #ifdef CONFIG_DEBUG_PAGEALLOC
1554 extern int debug_pagealloc_enabled;
1556 extern void kernel_map_pages(struct page *page, int numpages, int enable);
1558 static inline void enable_debug_pagealloc(void)
1560 debug_pagealloc_enabled = 1;
1562 #ifdef CONFIG_HIBERNATION
1563 extern bool kernel_page_present(struct page *page);
1564 #endif /* CONFIG_HIBERNATION */
1567 kernel_map_pages(struct page *page, int numpages, int enable) {}
1568 static inline void enable_debug_pagealloc(void)
1571 #ifdef CONFIG_HIBERNATION
1572 static inline bool kernel_page_present(struct page *page) { return true; }
1573 #endif /* CONFIG_HIBERNATION */
1576 extern struct vm_area_struct *get_gate_vma(struct task_struct *tsk);
1577 #ifdef __HAVE_ARCH_GATE_AREA
1578 int in_gate_area_no_task(unsigned long addr);
1579 int in_gate_area(struct task_struct *task, unsigned long addr);
1581 int in_gate_area_no_task(unsigned long addr);
1582 #define in_gate_area(task, addr) ({(void)task; in_gate_area_no_task(addr);})
1583 #endif /* __HAVE_ARCH_GATE_AREA */
1585 int drop_caches_sysctl_handler(struct ctl_table *, int,
1586 void __user *, size_t *, loff_t *);
1587 unsigned long shrink_slab(unsigned long scanned, gfp_t gfp_mask,
1588 unsigned long lru_pages);
1591 #define randomize_va_space 0
1593 extern int randomize_va_space;
1596 const char * arch_vma_name(struct vm_area_struct *vma);
1597 void print_vma_addr(char *prefix, unsigned long rip);
1599 void sparse_mem_maps_populate_node(struct page **map_map,
1600 unsigned long pnum_begin,
1601 unsigned long pnum_end,
1602 unsigned long map_count,
1605 struct page *sparse_mem_map_populate(unsigned long pnum, int nid);
1606 pgd_t *vmemmap_pgd_populate(unsigned long addr, int node);
1607 pud_t *vmemmap_pud_populate(pgd_t *pgd, unsigned long addr, int node);
1608 pmd_t *vmemmap_pmd_populate(pud_t *pud, unsigned long addr, int node);
1609 pte_t *vmemmap_pte_populate(pmd_t *pmd, unsigned long addr, int node);
1610 void *vmemmap_alloc_block(unsigned long size, int node);
1611 void *vmemmap_alloc_block_buf(unsigned long size, int node);
1612 void vmemmap_verify(pte_t *, int, unsigned long, unsigned long);
1613 int vmemmap_populate_basepages(struct page *start_page,
1614 unsigned long pages, int node);
1615 int vmemmap_populate(struct page *start_page, unsigned long pages, int node);
1616 void vmemmap_populate_print_last(void);
1620 MF_COUNT_INCREASED = 1 << 0,
1622 extern void memory_failure(unsigned long pfn, int trapno);
1623 extern int __memory_failure(unsigned long pfn, int trapno, int flags);
1624 extern int unpoison_memory(unsigned long pfn);
1625 extern int sysctl_memory_failure_early_kill;
1626 extern int sysctl_memory_failure_recovery;
1627 extern void shake_page(struct page *p, int access);
1628 extern atomic_long_t mce_bad_pages;
1629 extern int soft_offline_page(struct page *page, int flags);
1630 #ifdef CONFIG_MEMORY_FAILURE
1631 int is_hwpoison_address(unsigned long addr);
1633 static inline int is_hwpoison_address(unsigned long addr)
1639 extern void dump_page(struct page *page);
1641 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
1642 extern void clear_huge_page(struct page *page,
1644 unsigned int pages_per_huge_page);
1645 extern void copy_user_huge_page(struct page *dst, struct page *src,
1646 unsigned long addr, struct vm_area_struct *vma,
1647 unsigned int pages_per_huge_page);
1648 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
1650 #endif /* __KERNEL__ */
1651 #endif /* _LINUX_MM_H */