4 #include <linux/errno.h>
9 #include <linux/list.h>
10 #include <linux/mmdebug.h>
11 #include <linux/mmzone.h>
12 #include <linux/rbtree.h>
13 #include <linux/prio_tree.h>
14 #include <linux/debug_locks.h>
15 #include <linux/mm_types.h>
21 struct writeback_control;
23 #ifndef CONFIG_DISCONTIGMEM /* Don't use mapnrs, do it properly */
24 extern unsigned long max_mapnr;
27 extern unsigned long num_physpages;
28 extern void * high_memory;
29 extern int page_cluster;
32 extern int sysctl_legacy_va_layout;
34 #define sysctl_legacy_va_layout 0
37 extern unsigned long mmap_min_addr;
40 #include <asm/pgtable.h>
41 #include <asm/processor.h>
43 #define nth_page(page,n) pfn_to_page(page_to_pfn((page)) + (n))
45 /* to align the pointer to the (next) page boundary */
46 #define PAGE_ALIGN(addr) ALIGN(addr, PAGE_SIZE)
49 * Linux kernel virtual memory manager primitives.
50 * The idea being to have a "virtual" mm in the same way
51 * we have a virtual fs - giving a cleaner interface to the
52 * mm details, and allowing different kinds of memory mappings
53 * (from shared memory to executable loading to arbitrary
57 extern struct kmem_cache *vm_area_cachep;
60 extern struct rb_root nommu_region_tree;
61 extern struct rw_semaphore nommu_region_sem;
63 extern unsigned int kobjsize(const void *objp);
67 * vm_flags in vm_area_struct, see mm_types.h.
69 #define VM_READ 0x00000001 /* currently active flags */
70 #define VM_WRITE 0x00000002
71 #define VM_EXEC 0x00000004
72 #define VM_SHARED 0x00000008
74 /* mprotect() hardcodes VM_MAYREAD >> 4 == VM_READ, and so for r/w/x bits. */
75 #define VM_MAYREAD 0x00000010 /* limits for mprotect() etc */
76 #define VM_MAYWRITE 0x00000020
77 #define VM_MAYEXEC 0x00000040
78 #define VM_MAYSHARE 0x00000080
80 #define VM_GROWSDOWN 0x00000100 /* general info on the segment */
81 #define VM_GROWSUP 0x00000200
82 #define VM_PFNMAP 0x00000400 /* Page-ranges managed without "struct page", just pure PFN */
83 #define VM_DENYWRITE 0x00000800 /* ETXTBSY on write attempts.. */
85 #define VM_EXECUTABLE 0x00001000
86 #define VM_LOCKED 0x00002000
87 #define VM_IO 0x00004000 /* Memory mapped I/O or similar */
89 /* Used by sys_madvise() */
90 #define VM_SEQ_READ 0x00008000 /* App will access data sequentially */
91 #define VM_RAND_READ 0x00010000 /* App will not benefit from clustered reads */
93 #define VM_DONTCOPY 0x00020000 /* Do not copy this vma on fork */
94 #define VM_DONTEXPAND 0x00040000 /* Cannot expand with mremap() */
95 #define VM_RESERVED 0x00080000 /* Count as reserved_vm like IO */
96 #define VM_ACCOUNT 0x00100000 /* Is a VM accounted object */
97 #define VM_NORESERVE 0x00200000 /* should the VM suppress accounting */
98 #define VM_HUGETLB 0x00400000 /* Huge TLB Page VM */
99 #define VM_NONLINEAR 0x00800000 /* Is non-linear (remap_file_pages) */
100 #define VM_MAPPED_COPY 0x01000000 /* T if mapped copy of data (nommu mmap) */
101 #define VM_INSERTPAGE 0x02000000 /* The vma has had "vm_insert_page()" done on it */
102 #define VM_ALWAYSDUMP 0x04000000 /* Always include in core dumps */
104 #define VM_CAN_NONLINEAR 0x08000000 /* Has ->fault & does nonlinear pages */
105 #define VM_MIXEDMAP 0x10000000 /* Can contain "struct page" and pure PFN pages */
106 #define VM_SAO 0x20000000 /* Strong Access Ordering (powerpc) */
107 #define VM_PFN_AT_MMAP 0x40000000 /* PFNMAP vma that is fully mapped at mmap time */
109 #ifndef VM_STACK_DEFAULT_FLAGS /* arch can override this */
110 #define VM_STACK_DEFAULT_FLAGS VM_DATA_DEFAULT_FLAGS
113 #ifdef CONFIG_STACK_GROWSUP
114 #define VM_STACK_FLAGS (VM_GROWSUP | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT)
116 #define VM_STACK_FLAGS (VM_GROWSDOWN | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT)
119 #define VM_READHINTMASK (VM_SEQ_READ | VM_RAND_READ)
120 #define VM_ClearReadHint(v) (v)->vm_flags &= ~VM_READHINTMASK
121 #define VM_NormalReadHint(v) (!((v)->vm_flags & VM_READHINTMASK))
122 #define VM_SequentialReadHint(v) ((v)->vm_flags & VM_SEQ_READ)
123 #define VM_RandomReadHint(v) ((v)->vm_flags & VM_RAND_READ)
126 * special vmas that are non-mergable, non-mlock()able
128 #define VM_SPECIAL (VM_IO | VM_DONTEXPAND | VM_RESERVED | VM_PFNMAP)
131 * mapping from the currently active vm_flags protection bits (the
132 * low four bits) to a page protection mask..
134 extern pgprot_t protection_map[16];
136 #define FAULT_FLAG_WRITE 0x01 /* Fault was a write access */
137 #define FAULT_FLAG_NONLINEAR 0x02 /* Fault was via a nonlinear mapping */
138 #define FAULT_FLAG_MKWRITE 0x04 /* Fault was mkwrite of existing pte */
141 * This interface is used by x86 PAT code to identify a pfn mapping that is
142 * linear over entire vma. This is to optimize PAT code that deals with
143 * marking the physical region with a particular prot. This is not for generic
144 * mm use. Note also that this check will not work if the pfn mapping is
145 * linear for a vma starting at physical address 0. In which case PAT code
146 * falls back to slow path of reserving physical range page by page.
148 static inline int is_linear_pfn_mapping(struct vm_area_struct *vma)
150 return (vma->vm_flags & VM_PFN_AT_MMAP);
153 static inline int is_pfn_mapping(struct vm_area_struct *vma)
155 return (vma->vm_flags & VM_PFNMAP);
159 * vm_fault is filled by the the pagefault handler and passed to the vma's
160 * ->fault function. The vma's ->fault is responsible for returning a bitmask
161 * of VM_FAULT_xxx flags that give details about how the fault was handled.
163 * pgoff should be used in favour of virtual_address, if possible. If pgoff
164 * is used, one may set VM_CAN_NONLINEAR in the vma->vm_flags to get nonlinear
168 unsigned int flags; /* FAULT_FLAG_xxx flags */
169 pgoff_t pgoff; /* Logical page offset based on vma */
170 void __user *virtual_address; /* Faulting virtual address */
172 struct page *page; /* ->fault handlers should return a
173 * page here, unless VM_FAULT_NOPAGE
174 * is set (which is also implied by
180 * These are the virtual MM functions - opening of an area, closing and
181 * unmapping it (needed to keep files on disk up-to-date etc), pointer
182 * to the functions called when a no-page or a wp-page exception occurs.
184 struct vm_operations_struct {
185 void (*open)(struct vm_area_struct * area);
186 void (*close)(struct vm_area_struct * area);
187 int (*fault)(struct vm_area_struct *vma, struct vm_fault *vmf);
189 /* notification that a previously read-only page is about to become
190 * writable, if an error is returned it will cause a SIGBUS */
191 int (*page_mkwrite)(struct vm_area_struct *vma, struct vm_fault *vmf);
193 /* called by access_process_vm when get_user_pages() fails, typically
194 * for use by special VMAs that can switch between memory and hardware
196 int (*access)(struct vm_area_struct *vma, unsigned long addr,
197 void *buf, int len, int write);
200 * set_policy() op must add a reference to any non-NULL @new mempolicy
201 * to hold the policy upon return. Caller should pass NULL @new to
202 * remove a policy and fall back to surrounding context--i.e. do not
203 * install a MPOL_DEFAULT policy, nor the task or system default
206 int (*set_policy)(struct vm_area_struct *vma, struct mempolicy *new);
209 * get_policy() op must add reference [mpol_get()] to any policy at
210 * (vma,addr) marked as MPOL_SHARED. The shared policy infrastructure
211 * in mm/mempolicy.c will do this automatically.
212 * get_policy() must NOT add a ref if the policy at (vma,addr) is not
213 * marked as MPOL_SHARED. vma policies are protected by the mmap_sem.
214 * If no [shared/vma] mempolicy exists at the addr, get_policy() op
215 * must return NULL--i.e., do not "fallback" to task or system default
218 struct mempolicy *(*get_policy)(struct vm_area_struct *vma,
220 int (*migrate)(struct vm_area_struct *vma, const nodemask_t *from,
221 const nodemask_t *to, unsigned long flags);
228 #define page_private(page) ((page)->private)
229 #define set_page_private(page, v) ((page)->private = (v))
232 * FIXME: take this include out, include page-flags.h in
233 * files which need it (119 of them)
235 #include <linux/page-flags.h>
238 * Methods to modify the page usage count.
240 * What counts for a page usage:
241 * - cache mapping (page->mapping)
242 * - private data (page->private)
243 * - page mapped in a task's page tables, each mapping
244 * is counted separately
246 * Also, many kernel routines increase the page count before a critical
247 * routine so they can be sure the page doesn't go away from under them.
251 * Drop a ref, return true if the refcount fell to zero (the page has no users)
253 static inline int put_page_testzero(struct page *page)
255 VM_BUG_ON(atomic_read(&page->_count) == 0);
256 return atomic_dec_and_test(&page->_count);
260 * Try to grab a ref unless the page has a refcount of zero, return false if
263 static inline int get_page_unless_zero(struct page *page)
265 return atomic_inc_not_zero(&page->_count);
268 /* Support for virtually mapped pages */
269 struct page *vmalloc_to_page(const void *addr);
270 unsigned long vmalloc_to_pfn(const void *addr);
273 * Determine if an address is within the vmalloc range
275 * On nommu, vmalloc/vfree wrap through kmalloc/kfree directly, so there
276 * is no special casing required.
278 static inline int is_vmalloc_addr(const void *x)
281 unsigned long addr = (unsigned long)x;
283 return addr >= VMALLOC_START && addr < VMALLOC_END;
289 static inline struct page *compound_head(struct page *page)
291 if (unlikely(PageTail(page)))
292 return page->first_page;
296 static inline int page_count(struct page *page)
298 return atomic_read(&compound_head(page)->_count);
301 static inline void get_page(struct page *page)
303 page = compound_head(page);
304 VM_BUG_ON(atomic_read(&page->_count) == 0);
305 atomic_inc(&page->_count);
308 static inline struct page *virt_to_head_page(const void *x)
310 struct page *page = virt_to_page(x);
311 return compound_head(page);
315 * Setup the page count before being freed into the page allocator for
316 * the first time (boot or memory hotplug)
318 static inline void init_page_count(struct page *page)
320 atomic_set(&page->_count, 1);
323 void put_page(struct page *page);
324 void put_pages_list(struct list_head *pages);
326 void split_page(struct page *page, unsigned int order);
329 * Compound pages have a destructor function. Provide a
330 * prototype for that function and accessor functions.
331 * These are _only_ valid on the head of a PG_compound page.
333 typedef void compound_page_dtor(struct page *);
335 static inline void set_compound_page_dtor(struct page *page,
336 compound_page_dtor *dtor)
338 page[1].lru.next = (void *)dtor;
341 static inline compound_page_dtor *get_compound_page_dtor(struct page *page)
343 return (compound_page_dtor *)page[1].lru.next;
346 static inline int compound_order(struct page *page)
350 return (unsigned long)page[1].lru.prev;
353 static inline void set_compound_order(struct page *page, unsigned long order)
355 page[1].lru.prev = (void *)order;
359 * Multiple processes may "see" the same page. E.g. for untouched
360 * mappings of /dev/null, all processes see the same page full of
361 * zeroes, and text pages of executables and shared libraries have
362 * only one copy in memory, at most, normally.
364 * For the non-reserved pages, page_count(page) denotes a reference count.
365 * page_count() == 0 means the page is free. page->lru is then used for
366 * freelist management in the buddy allocator.
367 * page_count() > 0 means the page has been allocated.
369 * Pages are allocated by the slab allocator in order to provide memory
370 * to kmalloc and kmem_cache_alloc. In this case, the management of the
371 * page, and the fields in 'struct page' are the responsibility of mm/slab.c
372 * unless a particular usage is carefully commented. (the responsibility of
373 * freeing the kmalloc memory is the caller's, of course).
375 * A page may be used by anyone else who does a __get_free_page().
376 * In this case, page_count still tracks the references, and should only
377 * be used through the normal accessor functions. The top bits of page->flags
378 * and page->virtual store page management information, but all other fields
379 * are unused and could be used privately, carefully. The management of this
380 * page is the responsibility of the one who allocated it, and those who have
381 * subsequently been given references to it.
383 * The other pages (we may call them "pagecache pages") are completely
384 * managed by the Linux memory manager: I/O, buffers, swapping etc.
385 * The following discussion applies only to them.
387 * A pagecache page contains an opaque `private' member, which belongs to the
388 * page's address_space. Usually, this is the address of a circular list of
389 * the page's disk buffers. PG_private must be set to tell the VM to call
390 * into the filesystem to release these pages.
392 * A page may belong to an inode's memory mapping. In this case, page->mapping
393 * is the pointer to the inode, and page->index is the file offset of the page,
394 * in units of PAGE_CACHE_SIZE.
396 * If pagecache pages are not associated with an inode, they are said to be
397 * anonymous pages. These may become associated with the swapcache, and in that
398 * case PG_swapcache is set, and page->private is an offset into the swapcache.
400 * In either case (swapcache or inode backed), the pagecache itself holds one
401 * reference to the page. Setting PG_private should also increment the
402 * refcount. The each user mapping also has a reference to the page.
404 * The pagecache pages are stored in a per-mapping radix tree, which is
405 * rooted at mapping->page_tree, and indexed by offset.
406 * Where 2.4 and early 2.6 kernels kept dirty/clean pages in per-address_space
407 * lists, we instead now tag pages as dirty/writeback in the radix tree.
409 * All pagecache pages may be subject to I/O:
410 * - inode pages may need to be read from disk,
411 * - inode pages which have been modified and are MAP_SHARED may need
412 * to be written back to the inode on disk,
413 * - anonymous pages (including MAP_PRIVATE file mappings) which have been
414 * modified may need to be swapped out to swap space and (later) to be read
419 * The zone field is never updated after free_area_init_core()
420 * sets it, so none of the operations on it need to be atomic.
425 * page->flags layout:
427 * There are three possibilities for how page->flags get
428 * laid out. The first is for the normal case, without
429 * sparsemem. The second is for sparsemem when there is
430 * plenty of space for node and section. The last is when
431 * we have run out of space and have to fall back to an
432 * alternate (slower) way of determining the node.
434 * No sparsemem or sparsemem vmemmap: | NODE | ZONE | ... | FLAGS |
435 * classic sparse with space for node:| SECTION | NODE | ZONE | ... | FLAGS |
436 * classic sparse no space for node: | SECTION | ZONE | ... | FLAGS |
438 #if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP)
439 #define SECTIONS_WIDTH SECTIONS_SHIFT
441 #define SECTIONS_WIDTH 0
444 #define ZONES_WIDTH ZONES_SHIFT
446 #if SECTIONS_WIDTH+ZONES_WIDTH+NODES_SHIFT <= BITS_PER_LONG - NR_PAGEFLAGS
447 #define NODES_WIDTH NODES_SHIFT
449 #ifdef CONFIG_SPARSEMEM_VMEMMAP
450 #error "Vmemmap: No space for nodes field in page flags"
452 #define NODES_WIDTH 0
455 /* Page flags: | [SECTION] | [NODE] | ZONE | ... | FLAGS | */
456 #define SECTIONS_PGOFF ((sizeof(unsigned long)*8) - SECTIONS_WIDTH)
457 #define NODES_PGOFF (SECTIONS_PGOFF - NODES_WIDTH)
458 #define ZONES_PGOFF (NODES_PGOFF - ZONES_WIDTH)
461 * We are going to use the flags for the page to node mapping if its in
462 * there. This includes the case where there is no node, so it is implicit.
464 #if !(NODES_WIDTH > 0 || NODES_SHIFT == 0)
465 #define NODE_NOT_IN_PAGE_FLAGS
468 #ifndef PFN_SECTION_SHIFT
469 #define PFN_SECTION_SHIFT 0
473 * Define the bit shifts to access each section. For non-existant
474 * sections we define the shift as 0; that plus a 0 mask ensures
475 * the compiler will optimise away reference to them.
477 #define SECTIONS_PGSHIFT (SECTIONS_PGOFF * (SECTIONS_WIDTH != 0))
478 #define NODES_PGSHIFT (NODES_PGOFF * (NODES_WIDTH != 0))
479 #define ZONES_PGSHIFT (ZONES_PGOFF * (ZONES_WIDTH != 0))
481 /* NODE:ZONE or SECTION:ZONE is used to ID a zone for the buddy allcator */
482 #ifdef NODE_NOT_IN_PAGEFLAGS
483 #define ZONEID_SHIFT (SECTIONS_SHIFT + ZONES_SHIFT)
484 #define ZONEID_PGOFF ((SECTIONS_PGOFF < ZONES_PGOFF)? \
485 SECTIONS_PGOFF : ZONES_PGOFF)
487 #define ZONEID_SHIFT (NODES_SHIFT + ZONES_SHIFT)
488 #define ZONEID_PGOFF ((NODES_PGOFF < ZONES_PGOFF)? \
489 NODES_PGOFF : ZONES_PGOFF)
492 #define ZONEID_PGSHIFT (ZONEID_PGOFF * (ZONEID_SHIFT != 0))
494 #if SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > BITS_PER_LONG - NR_PAGEFLAGS
495 #error SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > BITS_PER_LONG - NR_PAGEFLAGS
498 #define ZONES_MASK ((1UL << ZONES_WIDTH) - 1)
499 #define NODES_MASK ((1UL << NODES_WIDTH) - 1)
500 #define SECTIONS_MASK ((1UL << SECTIONS_WIDTH) - 1)
501 #define ZONEID_MASK ((1UL << ZONEID_SHIFT) - 1)
503 static inline enum zone_type page_zonenum(struct page *page)
505 return (page->flags >> ZONES_PGSHIFT) & ZONES_MASK;
509 * The identification function is only used by the buddy allocator for
510 * determining if two pages could be buddies. We are not really
511 * identifying a zone since we could be using a the section number
512 * id if we have not node id available in page flags.
513 * We guarantee only that it will return the same value for two
514 * combinable pages in a zone.
516 static inline int page_zone_id(struct page *page)
518 return (page->flags >> ZONEID_PGSHIFT) & ZONEID_MASK;
521 static inline int zone_to_nid(struct zone *zone)
530 #ifdef NODE_NOT_IN_PAGE_FLAGS
531 extern int page_to_nid(struct page *page);
533 static inline int page_to_nid(struct page *page)
535 return (page->flags >> NODES_PGSHIFT) & NODES_MASK;
539 static inline struct zone *page_zone(struct page *page)
541 return &NODE_DATA(page_to_nid(page))->node_zones[page_zonenum(page)];
544 #if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP)
545 static inline unsigned long page_to_section(struct page *page)
547 return (page->flags >> SECTIONS_PGSHIFT) & SECTIONS_MASK;
551 static inline void set_page_zone(struct page *page, enum zone_type zone)
553 page->flags &= ~(ZONES_MASK << ZONES_PGSHIFT);
554 page->flags |= (zone & ZONES_MASK) << ZONES_PGSHIFT;
557 static inline void set_page_node(struct page *page, unsigned long node)
559 page->flags &= ~(NODES_MASK << NODES_PGSHIFT);
560 page->flags |= (node & NODES_MASK) << NODES_PGSHIFT;
563 static inline void set_page_section(struct page *page, unsigned long section)
565 page->flags &= ~(SECTIONS_MASK << SECTIONS_PGSHIFT);
566 page->flags |= (section & SECTIONS_MASK) << SECTIONS_PGSHIFT;
569 static inline void set_page_links(struct page *page, enum zone_type zone,
570 unsigned long node, unsigned long pfn)
572 set_page_zone(page, zone);
573 set_page_node(page, node);
574 set_page_section(page, pfn_to_section_nr(pfn));
578 * If a hint addr is less than mmap_min_addr change hint to be as
579 * low as possible but still greater than mmap_min_addr
581 static inline unsigned long round_hint_to_min(unsigned long hint)
583 #ifdef CONFIG_SECURITY
585 if (((void *)hint != NULL) &&
586 (hint < mmap_min_addr))
587 return PAGE_ALIGN(mmap_min_addr);
593 * Some inline functions in vmstat.h depend on page_zone()
595 #include <linux/vmstat.h>
597 static __always_inline void *lowmem_page_address(struct page *page)
599 return __va(page_to_pfn(page) << PAGE_SHIFT);
602 #if defined(CONFIG_HIGHMEM) && !defined(WANT_PAGE_VIRTUAL)
603 #define HASHED_PAGE_VIRTUAL
606 #if defined(WANT_PAGE_VIRTUAL)
607 #define page_address(page) ((page)->virtual)
608 #define set_page_address(page, address) \
610 (page)->virtual = (address); \
612 #define page_address_init() do { } while(0)
615 #if defined(HASHED_PAGE_VIRTUAL)
616 void *page_address(struct page *page);
617 void set_page_address(struct page *page, void *virtual);
618 void page_address_init(void);
621 #if !defined(HASHED_PAGE_VIRTUAL) && !defined(WANT_PAGE_VIRTUAL)
622 #define page_address(page) lowmem_page_address(page)
623 #define set_page_address(page, address) do { } while(0)
624 #define page_address_init() do { } while(0)
628 * On an anonymous page mapped into a user virtual memory area,
629 * page->mapping points to its anon_vma, not to a struct address_space;
630 * with the PAGE_MAPPING_ANON bit set to distinguish it.
632 * Please note that, confusingly, "page_mapping" refers to the inode
633 * address_space which maps the page from disk; whereas "page_mapped"
634 * refers to user virtual address space into which the page is mapped.
636 #define PAGE_MAPPING_ANON 1
638 extern struct address_space swapper_space;
639 static inline struct address_space *page_mapping(struct page *page)
641 struct address_space *mapping = page->mapping;
643 VM_BUG_ON(PageSlab(page));
645 if (unlikely(PageSwapCache(page)))
646 mapping = &swapper_space;
649 if (unlikely((unsigned long)mapping & PAGE_MAPPING_ANON))
654 static inline int PageAnon(struct page *page)
656 return ((unsigned long)page->mapping & PAGE_MAPPING_ANON) != 0;
660 * Return the pagecache index of the passed page. Regular pagecache pages
661 * use ->index whereas swapcache pages use ->private
663 static inline pgoff_t page_index(struct page *page)
665 if (unlikely(PageSwapCache(page)))
666 return page_private(page);
671 * The atomic page->_mapcount, like _count, starts from -1:
672 * so that transitions both from it and to it can be tracked,
673 * using atomic_inc_and_test and atomic_add_negative(-1).
675 static inline void reset_page_mapcount(struct page *page)
677 atomic_set(&(page)->_mapcount, -1);
680 static inline int page_mapcount(struct page *page)
682 return atomic_read(&(page)->_mapcount) + 1;
686 * Return true if this page is mapped into pagetables.
688 static inline int page_mapped(struct page *page)
690 return atomic_read(&(page)->_mapcount) >= 0;
694 * Different kinds of faults, as returned by handle_mm_fault().
695 * Used to decide whether a process gets delivered SIGBUS or
696 * just gets major/minor fault counters bumped up.
699 #define VM_FAULT_MINOR 0 /* For backwards compat. Remove me quickly. */
701 #define VM_FAULT_OOM 0x0001
702 #define VM_FAULT_SIGBUS 0x0002
703 #define VM_FAULT_MAJOR 0x0004
704 #define VM_FAULT_WRITE 0x0008 /* Special case for get_user_pages */
706 #define VM_FAULT_NOPAGE 0x0100 /* ->fault installed the pte, not return page */
707 #define VM_FAULT_LOCKED 0x0200 /* ->fault locked the returned page */
709 #define VM_FAULT_ERROR (VM_FAULT_OOM | VM_FAULT_SIGBUS)
712 * Can be called by the pagefault handler when it gets a VM_FAULT_OOM.
714 extern void pagefault_out_of_memory(void);
716 #define offset_in_page(p) ((unsigned long)(p) & ~PAGE_MASK)
718 extern void show_free_areas(void);
721 extern int shmem_lock(struct file *file, int lock, struct user_struct *user);
723 static inline int shmem_lock(struct file *file, int lock,
724 struct user_struct *user)
729 struct file *shmem_file_setup(char *name, loff_t size, unsigned long flags);
731 int shmem_zero_setup(struct vm_area_struct *);
734 extern unsigned long shmem_get_unmapped_area(struct file *file,
738 unsigned long flags);
741 extern int can_do_mlock(void);
742 extern int user_shm_lock(size_t, struct user_struct *);
743 extern void user_shm_unlock(size_t, struct user_struct *);
746 * Parameter block passed down to zap_pte_range in exceptional cases.
749 struct vm_area_struct *nonlinear_vma; /* Check page->index if set */
750 struct address_space *check_mapping; /* Check page->mapping if set */
751 pgoff_t first_index; /* Lowest page->index to unmap */
752 pgoff_t last_index; /* Highest page->index to unmap */
753 spinlock_t *i_mmap_lock; /* For unmap_mapping_range: */
754 unsigned long truncate_count; /* Compare vm_truncate_count */
757 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
760 int zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
762 unsigned long zap_page_range(struct vm_area_struct *vma, unsigned long address,
763 unsigned long size, struct zap_details *);
764 unsigned long unmap_vmas(struct mmu_gather **tlb,
765 struct vm_area_struct *start_vma, unsigned long start_addr,
766 unsigned long end_addr, unsigned long *nr_accounted,
767 struct zap_details *);
770 * mm_walk - callbacks for walk_page_range
771 * @pgd_entry: if set, called for each non-empty PGD (top-level) entry
772 * @pud_entry: if set, called for each non-empty PUD (2nd-level) entry
773 * @pmd_entry: if set, called for each non-empty PMD (3rd-level) entry
774 * @pte_entry: if set, called for each non-empty PTE (4th-level) entry
775 * @pte_hole: if set, called for each hole at all levels
777 * (see walk_page_range for more details)
780 int (*pgd_entry)(pgd_t *, unsigned long, unsigned long, struct mm_walk *);
781 int (*pud_entry)(pud_t *, unsigned long, unsigned long, struct mm_walk *);
782 int (*pmd_entry)(pmd_t *, unsigned long, unsigned long, struct mm_walk *);
783 int (*pte_entry)(pte_t *, unsigned long, unsigned long, struct mm_walk *);
784 int (*pte_hole)(unsigned long, unsigned long, struct mm_walk *);
785 struct mm_struct *mm;
789 int walk_page_range(unsigned long addr, unsigned long end,
790 struct mm_walk *walk);
791 void free_pgd_range(struct mmu_gather *tlb, unsigned long addr,
792 unsigned long end, unsigned long floor, unsigned long ceiling);
793 int copy_page_range(struct mm_struct *dst, struct mm_struct *src,
794 struct vm_area_struct *vma);
795 void unmap_mapping_range(struct address_space *mapping,
796 loff_t const holebegin, loff_t const holelen, int even_cows);
797 int follow_phys(struct vm_area_struct *vma, unsigned long address,
798 unsigned int flags, unsigned long *prot, resource_size_t *phys);
799 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
800 void *buf, int len, int write);
802 static inline void unmap_shared_mapping_range(struct address_space *mapping,
803 loff_t const holebegin, loff_t const holelen)
805 unmap_mapping_range(mapping, holebegin, holelen, 0);
808 extern int vmtruncate(struct inode * inode, loff_t offset);
809 extern int vmtruncate_range(struct inode * inode, loff_t offset, loff_t end);
812 extern int handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma,
813 unsigned long address, int write_access);
815 static inline int handle_mm_fault(struct mm_struct *mm,
816 struct vm_area_struct *vma, unsigned long address,
819 /* should never happen if there's no MMU */
821 return VM_FAULT_SIGBUS;
825 extern int make_pages_present(unsigned long addr, unsigned long end);
826 extern int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len, int write);
828 int get_user_pages(struct task_struct *tsk, struct mm_struct *mm, unsigned long start,
829 int len, int write, int force, struct page **pages, struct vm_area_struct **vmas);
831 extern int try_to_release_page(struct page * page, gfp_t gfp_mask);
832 extern void do_invalidatepage(struct page *page, unsigned long offset);
834 int __set_page_dirty_nobuffers(struct page *page);
835 int __set_page_dirty_no_writeback(struct page *page);
836 int redirty_page_for_writepage(struct writeback_control *wbc,
838 void account_page_dirtied(struct page *page, struct address_space *mapping);
839 int set_page_dirty(struct page *page);
840 int set_page_dirty_lock(struct page *page);
841 int clear_page_dirty_for_io(struct page *page);
843 extern unsigned long move_page_tables(struct vm_area_struct *vma,
844 unsigned long old_addr, struct vm_area_struct *new_vma,
845 unsigned long new_addr, unsigned long len);
846 extern unsigned long do_mremap(unsigned long addr,
847 unsigned long old_len, unsigned long new_len,
848 unsigned long flags, unsigned long new_addr);
849 extern int mprotect_fixup(struct vm_area_struct *vma,
850 struct vm_area_struct **pprev, unsigned long start,
851 unsigned long end, unsigned long newflags);
854 * get_user_pages_fast provides equivalent functionality to get_user_pages,
855 * operating on current and current->mm (force=0 and doesn't return any vmas).
857 * get_user_pages_fast may take mmap_sem and page tables, so no assumptions
858 * can be made about locking. get_user_pages_fast is to be implemented in a
859 * way that is advantageous (vs get_user_pages()) when the user memory area is
860 * already faulted in and present in ptes. However if the pages have to be
861 * faulted in, it may turn out to be slightly slower).
863 int get_user_pages_fast(unsigned long start, int nr_pages, int write,
864 struct page **pages);
867 * A callback you can register to apply pressure to ageable caches.
869 * 'shrink' is passed a count 'nr_to_scan' and a 'gfpmask'. It should
870 * look through the least-recently-used 'nr_to_scan' entries and
871 * attempt to free them up. It should return the number of objects
872 * which remain in the cache. If it returns -1, it means it cannot do
873 * any scanning at this time (eg. there is a risk of deadlock).
875 * The 'gfpmask' refers to the allocation we are currently trying to
878 * Note that 'shrink' will be passed nr_to_scan == 0 when the VM is
879 * querying the cache size, so a fastpath for that case is appropriate.
882 int (*shrink)(int nr_to_scan, gfp_t gfp_mask);
883 int seeks; /* seeks to recreate an obj */
885 /* These are for internal use */
886 struct list_head list;
887 long nr; /* objs pending delete */
889 #define DEFAULT_SEEKS 2 /* A good number if you don't know better. */
890 extern void register_shrinker(struct shrinker *);
891 extern void unregister_shrinker(struct shrinker *);
893 int vma_wants_writenotify(struct vm_area_struct *vma);
895 extern pte_t *get_locked_pte(struct mm_struct *mm, unsigned long addr, spinlock_t **ptl);
897 #ifdef __PAGETABLE_PUD_FOLDED
898 static inline int __pud_alloc(struct mm_struct *mm, pgd_t *pgd,
899 unsigned long address)
904 int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address);
907 #ifdef __PAGETABLE_PMD_FOLDED
908 static inline int __pmd_alloc(struct mm_struct *mm, pud_t *pud,
909 unsigned long address)
914 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address);
917 int __pte_alloc(struct mm_struct *mm, pmd_t *pmd, unsigned long address);
918 int __pte_alloc_kernel(pmd_t *pmd, unsigned long address);
921 * The following ifdef needed to get the 4level-fixup.h header to work.
922 * Remove it when 4level-fixup.h has been removed.
924 #if defined(CONFIG_MMU) && !defined(__ARCH_HAS_4LEVEL_HACK)
925 static inline pud_t *pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
927 return (unlikely(pgd_none(*pgd)) && __pud_alloc(mm, pgd, address))?
928 NULL: pud_offset(pgd, address);
931 static inline pmd_t *pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
933 return (unlikely(pud_none(*pud)) && __pmd_alloc(mm, pud, address))?
934 NULL: pmd_offset(pud, address);
936 #endif /* CONFIG_MMU && !__ARCH_HAS_4LEVEL_HACK */
938 #if USE_SPLIT_PTLOCKS
940 * We tuck a spinlock to guard each pagetable page into its struct page,
941 * at page->private, with BUILD_BUG_ON to make sure that this will not
942 * overflow into the next struct page (as it might with DEBUG_SPINLOCK).
943 * When freeing, reset page->mapping so free_pages_check won't complain.
945 #define __pte_lockptr(page) &((page)->ptl)
946 #define pte_lock_init(_page) do { \
947 spin_lock_init(__pte_lockptr(_page)); \
949 #define pte_lock_deinit(page) ((page)->mapping = NULL)
950 #define pte_lockptr(mm, pmd) ({(void)(mm); __pte_lockptr(pmd_page(*(pmd)));})
951 #else /* !USE_SPLIT_PTLOCKS */
953 * We use mm->page_table_lock to guard all pagetable pages of the mm.
955 #define pte_lock_init(page) do {} while (0)
956 #define pte_lock_deinit(page) do {} while (0)
957 #define pte_lockptr(mm, pmd) ({(void)(pmd); &(mm)->page_table_lock;})
958 #endif /* USE_SPLIT_PTLOCKS */
960 static inline void pgtable_page_ctor(struct page *page)
963 inc_zone_page_state(page, NR_PAGETABLE);
966 static inline void pgtable_page_dtor(struct page *page)
968 pte_lock_deinit(page);
969 dec_zone_page_state(page, NR_PAGETABLE);
972 #define pte_offset_map_lock(mm, pmd, address, ptlp) \
974 spinlock_t *__ptl = pte_lockptr(mm, pmd); \
975 pte_t *__pte = pte_offset_map(pmd, address); \
981 #define pte_unmap_unlock(pte, ptl) do { \
986 #define pte_alloc_map(mm, pmd, address) \
987 ((unlikely(!pmd_present(*(pmd))) && __pte_alloc(mm, pmd, address))? \
988 NULL: pte_offset_map(pmd, address))
990 #define pte_alloc_map_lock(mm, pmd, address, ptlp) \
991 ((unlikely(!pmd_present(*(pmd))) && __pte_alloc(mm, pmd, address))? \
992 NULL: pte_offset_map_lock(mm, pmd, address, ptlp))
994 #define pte_alloc_kernel(pmd, address) \
995 ((unlikely(!pmd_present(*(pmd))) && __pte_alloc_kernel(pmd, address))? \
996 NULL: pte_offset_kernel(pmd, address))
998 extern void free_area_init(unsigned long * zones_size);
999 extern void free_area_init_node(int nid, unsigned long * zones_size,
1000 unsigned long zone_start_pfn, unsigned long *zholes_size);
1001 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
1003 * With CONFIG_ARCH_POPULATES_NODE_MAP set, an architecture may initialise its
1004 * zones, allocate the backing mem_map and account for memory holes in a more
1005 * architecture independent manner. This is a substitute for creating the
1006 * zone_sizes[] and zholes_size[] arrays and passing them to
1007 * free_area_init_node()
1009 * An architecture is expected to register range of page frames backed by
1010 * physical memory with add_active_range() before calling
1011 * free_area_init_nodes() passing in the PFN each zone ends at. At a basic
1012 * usage, an architecture is expected to do something like
1014 * unsigned long max_zone_pfns[MAX_NR_ZONES] = {max_dma, max_normal_pfn,
1016 * for_each_valid_physical_page_range()
1017 * add_active_range(node_id, start_pfn, end_pfn)
1018 * free_area_init_nodes(max_zone_pfns);
1020 * If the architecture guarantees that there are no holes in the ranges
1021 * registered with add_active_range(), free_bootmem_active_regions()
1022 * will call free_bootmem_node() for each registered physical page range.
1023 * Similarly sparse_memory_present_with_active_regions() calls
1024 * memory_present() for each range when SPARSEMEM is enabled.
1026 * See mm/page_alloc.c for more information on each function exposed by
1027 * CONFIG_ARCH_POPULATES_NODE_MAP
1029 extern void free_area_init_nodes(unsigned long *max_zone_pfn);
1030 extern void add_active_range(unsigned int nid, unsigned long start_pfn,
1031 unsigned long end_pfn);
1032 extern void remove_active_range(unsigned int nid, unsigned long start_pfn,
1033 unsigned long end_pfn);
1034 extern void push_node_boundaries(unsigned int nid, unsigned long start_pfn,
1035 unsigned long end_pfn);
1036 extern void remove_all_active_ranges(void);
1037 extern unsigned long absent_pages_in_range(unsigned long start_pfn,
1038 unsigned long end_pfn);
1039 extern void get_pfn_range_for_nid(unsigned int nid,
1040 unsigned long *start_pfn, unsigned long *end_pfn);
1041 extern unsigned long find_min_pfn_with_active_regions(void);
1042 extern void free_bootmem_with_active_regions(int nid,
1043 unsigned long max_low_pfn);
1044 typedef int (*work_fn_t)(unsigned long, unsigned long, void *);
1045 extern void work_with_active_regions(int nid, work_fn_t work_fn, void *data);
1046 extern void sparse_memory_present_with_active_regions(int nid);
1047 #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
1049 #if !defined(CONFIG_ARCH_POPULATES_NODE_MAP) && \
1050 !defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID)
1051 static inline int __early_pfn_to_nid(unsigned long pfn)
1056 /* please see mm/page_alloc.c */
1057 extern int __meminit early_pfn_to_nid(unsigned long pfn);
1058 #ifdef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
1059 /* there is a per-arch backend function. */
1060 extern int __meminit __early_pfn_to_nid(unsigned long pfn);
1061 #endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
1064 extern void set_dma_reserve(unsigned long new_dma_reserve);
1065 extern void memmap_init_zone(unsigned long, int, unsigned long,
1066 unsigned long, enum memmap_context);
1067 extern void setup_per_zone_pages_min(void);
1068 extern void mem_init(void);
1069 extern void __init mmap_init(void);
1070 extern void show_mem(void);
1071 extern void si_meminfo(struct sysinfo * val);
1072 extern void si_meminfo_node(struct sysinfo *val, int nid);
1073 extern int after_bootmem;
1076 extern void setup_per_cpu_pageset(void);
1078 static inline void setup_per_cpu_pageset(void) {}
1082 extern atomic_t mmap_pages_allocated;
1085 void vma_prio_tree_add(struct vm_area_struct *, struct vm_area_struct *old);
1086 void vma_prio_tree_insert(struct vm_area_struct *, struct prio_tree_root *);
1087 void vma_prio_tree_remove(struct vm_area_struct *, struct prio_tree_root *);
1088 struct vm_area_struct *vma_prio_tree_next(struct vm_area_struct *vma,
1089 struct prio_tree_iter *iter);
1091 #define vma_prio_tree_foreach(vma, iter, root, begin, end) \
1092 for (prio_tree_iter_init(iter, root, begin, end), vma = NULL; \
1093 (vma = vma_prio_tree_next(vma, iter)); )
1095 static inline void vma_nonlinear_insert(struct vm_area_struct *vma,
1096 struct list_head *list)
1098 vma->shared.vm_set.parent = NULL;
1099 list_add_tail(&vma->shared.vm_set.list, list);
1103 extern int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin);
1104 extern void vma_adjust(struct vm_area_struct *vma, unsigned long start,
1105 unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert);
1106 extern struct vm_area_struct *vma_merge(struct mm_struct *,
1107 struct vm_area_struct *prev, unsigned long addr, unsigned long end,
1108 unsigned long vm_flags, struct anon_vma *, struct file *, pgoff_t,
1109 struct mempolicy *);
1110 extern struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *);
1111 extern int split_vma(struct mm_struct *,
1112 struct vm_area_struct *, unsigned long addr, int new_below);
1113 extern int insert_vm_struct(struct mm_struct *, struct vm_area_struct *);
1114 extern void __vma_link_rb(struct mm_struct *, struct vm_area_struct *,
1115 struct rb_node **, struct rb_node *);
1116 extern void unlink_file_vma(struct vm_area_struct *);
1117 extern struct vm_area_struct *copy_vma(struct vm_area_struct **,
1118 unsigned long addr, unsigned long len, pgoff_t pgoff);
1119 extern void exit_mmap(struct mm_struct *);
1121 extern int mm_take_all_locks(struct mm_struct *mm);
1122 extern void mm_drop_all_locks(struct mm_struct *mm);
1124 #ifdef CONFIG_PROC_FS
1125 /* From fs/proc/base.c. callers must _not_ hold the mm's exe_file_lock */
1126 extern void added_exe_file_vma(struct mm_struct *mm);
1127 extern void removed_exe_file_vma(struct mm_struct *mm);
1129 static inline void added_exe_file_vma(struct mm_struct *mm)
1132 static inline void removed_exe_file_vma(struct mm_struct *mm)
1134 #endif /* CONFIG_PROC_FS */
1136 extern int may_expand_vm(struct mm_struct *mm, unsigned long npages);
1137 extern int install_special_mapping(struct mm_struct *mm,
1138 unsigned long addr, unsigned long len,
1139 unsigned long flags, struct page **pages);
1141 extern unsigned long get_unmapped_area(struct file *, unsigned long, unsigned long, unsigned long, unsigned long);
1143 extern unsigned long do_mmap_pgoff(struct file *file, unsigned long addr,
1144 unsigned long len, unsigned long prot,
1145 unsigned long flag, unsigned long pgoff);
1146 extern unsigned long mmap_region(struct file *file, unsigned long addr,
1147 unsigned long len, unsigned long flags,
1148 unsigned int vm_flags, unsigned long pgoff);
1150 static inline unsigned long do_mmap(struct file *file, unsigned long addr,
1151 unsigned long len, unsigned long prot,
1152 unsigned long flag, unsigned long offset)
1154 unsigned long ret = -EINVAL;
1155 if ((offset + PAGE_ALIGN(len)) < offset)
1157 if (!(offset & ~PAGE_MASK))
1158 ret = do_mmap_pgoff(file, addr, len, prot, flag, offset >> PAGE_SHIFT);
1163 extern int do_munmap(struct mm_struct *, unsigned long, size_t);
1165 extern unsigned long do_brk(unsigned long, unsigned long);
1168 extern unsigned long page_unuse(struct page *);
1169 extern void truncate_inode_pages(struct address_space *, loff_t);
1170 extern void truncate_inode_pages_range(struct address_space *,
1171 loff_t lstart, loff_t lend);
1173 /* generic vm_area_ops exported for stackable file systems */
1174 extern int filemap_fault(struct vm_area_struct *, struct vm_fault *);
1176 /* mm/page-writeback.c */
1177 int write_one_page(struct page *page, int wait);
1178 void task_dirty_inc(struct task_struct *tsk);
1181 #define VM_MAX_READAHEAD 128 /* kbytes */
1182 #define VM_MIN_READAHEAD 16 /* kbytes (includes current page) */
1184 int do_page_cache_readahead(struct address_space *mapping, struct file *filp,
1185 pgoff_t offset, unsigned long nr_to_read);
1186 int force_page_cache_readahead(struct address_space *mapping, struct file *filp,
1187 pgoff_t offset, unsigned long nr_to_read);
1189 void page_cache_sync_readahead(struct address_space *mapping,
1190 struct file_ra_state *ra,
1193 unsigned long size);
1195 void page_cache_async_readahead(struct address_space *mapping,
1196 struct file_ra_state *ra,
1200 unsigned long size);
1202 unsigned long max_sane_readahead(unsigned long nr);
1204 /* Do stack extension */
1205 extern int expand_stack(struct vm_area_struct *vma, unsigned long address);
1207 extern int expand_upwards(struct vm_area_struct *vma, unsigned long address);
1209 extern int expand_stack_downwards(struct vm_area_struct *vma,
1210 unsigned long address);
1212 /* Look up the first VMA which satisfies addr < vm_end, NULL if none. */
1213 extern struct vm_area_struct * find_vma(struct mm_struct * mm, unsigned long addr);
1214 extern struct vm_area_struct * find_vma_prev(struct mm_struct * mm, unsigned long addr,
1215 struct vm_area_struct **pprev);
1217 /* Look up the first VMA which intersects the interval start_addr..end_addr-1,
1218 NULL if none. Assume start_addr < end_addr. */
1219 static inline struct vm_area_struct * find_vma_intersection(struct mm_struct * mm, unsigned long start_addr, unsigned long end_addr)
1221 struct vm_area_struct * vma = find_vma(mm,start_addr);
1223 if (vma && end_addr <= vma->vm_start)
1228 static inline unsigned long vma_pages(struct vm_area_struct *vma)
1230 return (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
1233 pgprot_t vm_get_page_prot(unsigned long vm_flags);
1234 struct vm_area_struct *find_extend_vma(struct mm_struct *, unsigned long addr);
1235 int remap_pfn_range(struct vm_area_struct *, unsigned long addr,
1236 unsigned long pfn, unsigned long size, pgprot_t);
1237 int vm_insert_page(struct vm_area_struct *, unsigned long addr, struct page *);
1238 int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
1240 int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
1243 struct page *follow_page(struct vm_area_struct *, unsigned long address,
1244 unsigned int foll_flags);
1245 #define FOLL_WRITE 0x01 /* check pte is writable */
1246 #define FOLL_TOUCH 0x02 /* mark page accessed */
1247 #define FOLL_GET 0x04 /* do get_page on page */
1248 #define FOLL_ANON 0x08 /* give ZERO_PAGE if no pgtable */
1250 typedef int (*pte_fn_t)(pte_t *pte, pgtable_t token, unsigned long addr,
1252 extern int apply_to_page_range(struct mm_struct *mm, unsigned long address,
1253 unsigned long size, pte_fn_t fn, void *data);
1255 #ifdef CONFIG_PROC_FS
1256 void vm_stat_account(struct mm_struct *, unsigned long, struct file *, long);
1258 static inline void vm_stat_account(struct mm_struct *mm,
1259 unsigned long flags, struct file *file, long pages)
1262 #endif /* CONFIG_PROC_FS */
1264 #ifdef CONFIG_DEBUG_PAGEALLOC
1265 extern int debug_pagealloc_enabled;
1267 extern void kernel_map_pages(struct page *page, int numpages, int enable);
1269 static inline void enable_debug_pagealloc(void)
1271 debug_pagealloc_enabled = 1;
1273 #ifdef CONFIG_HIBERNATION
1274 extern bool kernel_page_present(struct page *page);
1275 #endif /* CONFIG_HIBERNATION */
1278 kernel_map_pages(struct page *page, int numpages, int enable) {}
1279 static inline void enable_debug_pagealloc(void)
1282 #ifdef CONFIG_HIBERNATION
1283 static inline bool kernel_page_present(struct page *page) { return true; }
1284 #endif /* CONFIG_HIBERNATION */
1287 extern struct vm_area_struct *get_gate_vma(struct task_struct *tsk);
1288 #ifdef __HAVE_ARCH_GATE_AREA
1289 int in_gate_area_no_task(unsigned long addr);
1290 int in_gate_area(struct task_struct *task, unsigned long addr);
1292 int in_gate_area_no_task(unsigned long addr);
1293 #define in_gate_area(task, addr) ({(void)task; in_gate_area_no_task(addr);})
1294 #endif /* __HAVE_ARCH_GATE_AREA */
1296 int drop_caches_sysctl_handler(struct ctl_table *, int, struct file *,
1297 void __user *, size_t *, loff_t *);
1298 unsigned long shrink_slab(unsigned long scanned, gfp_t gfp_mask,
1299 unsigned long lru_pages);
1302 #define randomize_va_space 0
1304 extern int randomize_va_space;
1307 const char * arch_vma_name(struct vm_area_struct *vma);
1308 void print_vma_addr(char *prefix, unsigned long rip);
1310 struct page *sparse_mem_map_populate(unsigned long pnum, int nid);
1311 pgd_t *vmemmap_pgd_populate(unsigned long addr, int node);
1312 pud_t *vmemmap_pud_populate(pgd_t *pgd, unsigned long addr, int node);
1313 pmd_t *vmemmap_pmd_populate(pud_t *pud, unsigned long addr, int node);
1314 pte_t *vmemmap_pte_populate(pmd_t *pmd, unsigned long addr, int node);
1315 void *vmemmap_alloc_block(unsigned long size, int node);
1316 void vmemmap_verify(pte_t *, int, unsigned long, unsigned long);
1317 int vmemmap_populate_basepages(struct page *start_page,
1318 unsigned long pages, int node);
1319 int vmemmap_populate(struct page *start_page, unsigned long pages, int node);
1320 void vmemmap_populate_print_last(void);
1322 extern void *alloc_locked_buffer(size_t size);
1323 extern void free_locked_buffer(void *buffer, size_t size);
1324 extern void release_locked_buffer(void *buffer, size_t size);
1325 #endif /* __KERNEL__ */
1326 #endif /* _LINUX_MM_H */